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Abstract

We consider an infinite system of quasilinear first-order partial differential equa-
tions, generalized to contain spacial integration, which describes an incompressible
fluid mixture of infinite components in a line segment whose motion is driven by un-
bounded and space-time dependent evaporation rates. We prove unique existence of
the solution to the initial-boundary value problem, with conservation-of-fluid condition
at the boundary. The proof uses a map on the space of collection of characteristics,
and a representation based on a non-Markovian point process with last-arrival-time
dependent intensity.
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1 Introduction.

Consider an incompressible fluid mixture in a line segment, say [0, 1], which flow in order
preserving manner and in one direction, with y = 0 being the upper stream boundary, and
no leaking occurs at y = 1. Each fluid component, say α, evaporates with rate wα which
may vary among different components and may depend on time. Flow of the fluid is driven
by filling the evaporated portion of the fluid toward the down stream. To formulate a system
of partial differential equations which explains the dynamics of this fluid up to time T > 0,
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let Uα(y, t) be the total volume (length) of fluid component α at time t in the interval [y, 1).
Then we have

∂ Uα

∂t
(y, t) +

∑
β

wβ(t)Uβ(y, t)
∂ Uα

∂y
(y, t) = −wα(t)Uα(y, t),

(y, t) ∈ [0, 1] × [0, T ].

(1)

We will preserve the total volume of each component by supplying the evaporated portion
from upper stream boundary through the boundary condition

Uα(0, t) = rα and Uα(1, t) = 0, t � 0,(2)

for non-negative constants rα satisfying
∑

α

rα = 1. The incompressibility condition is for-

mulated as ∑
α

Uα(y, t) = 1 − y, t � 0.(3)

The number of fluid components may be finite or infinite. (For the latter case we regard
the summations in α as series.) If the system is infinite, we should impose an additional
condition ∑

α

rα sup
t

wα(t) < ∞,(4)

to keep the velocity of the flow finite, namely, to keep coefficient of the y-derivative term in (1)
well-defined at y = 0. With appropriate initial conditions, these define an initial/boundary
value problem of a one dimensional first order quasilinear partial differential equations, and
we will look for non-negative solutions non-increasing in y (corresponding to non-negativity
of density of fluid components). The motion of the fluid mixture described by the equations
is driven by evaporation, a kind of situation where poluted water in a drain or groove slowly
flows into an inland lake, where the water escapes mostly by evaporation.

In this paper we consider a generalization of (1) to allow for spacial dependence for the
evaporation rates wα, as well as time dependence. Such generalization seems practically
natural, because if the fluid container has spacial non-uniformity in temperature, the evap-
oration rates would also have spacial dependence. Uα(y, t) is the volume of type α fluid
component in the interval [y, 1), and we need to consider its density to consider spacially
varying evaporation rates, hence a natural generalization of (1) is

∂ Uα

∂t
(y, t) −

∑
β

∫ 1

y

wβ(z, t)
∂ Uβ

∂z
(z, t) dz

∂ Uα

∂y
(y, t)

=

∫ 1

y

wα(z, t)
∂ Uα

∂z
(z, t) dz,

α = 1, 2, . . . , (y, t) ∈ [0, 1] × [0, T ].

(5)

Note that the equation is now non-local and contains integration. If wα are independent of
y, then, with (2), (5) reduces to (1).
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The equation of the form (1) is known to be solved by considering characteristic curves
[2], a curve y = yC(t) whose derivative is equal to the velocity of fluid;

d yC

dt
(t) =

∑
β

wβ(t) ϕβ(t)(6)

where ϕα(t) = Uα(yC(t), t). Then (1) implies an ordinary differential equation for ϕα(t),
which can be solved explicitly, and (6) then implies

yC(t) = 1 −
∑

β

Uβ(y0, t0) exp(−
∫ t

t0

wβ(u) du).(7)

A natural generalization of (6) for (5) is

d yC

dt
(t) = −

∑
β

∫ 1

yC(t)

wβ(z, t)
∂ Uβ

∂z
(z, t) dz.(8)

As we will see in the present paper, this is no longer solved in such simple form as (7).
Introduction of spacial dependence for wα complicates the solution when combined with the
boundary condition (2) which conserves component volumes. We will show later that yC is
determined as a fixed point to the map G defined by (77) and (78), a result which apparently
deviates largely from (7). To be specific, our proof in § 5 of Theorem 10 proves an expression
yC = lim

n→∞
Gn(θ0) for the characteristic curves, where θ0 is a constant flow.

In the preceding work [11], the problem (5) for wα with spacial dependence was considered
under the condition

sup
α

sup
(y,t)

wα(y, t) < ∞, and sup
α

sup
(y,t)

∂ wα

∂y
(y, t) < ∞.

In view of (4) for {wα} with spacially independent case, a natural restriction for wα is
expected to be a milder one,

∑
α

rα sup
(y,t)

wα(y, t) < ∞, and sup
α

sup
(y,t)

∂ wα

∂y
(y, t) < ∞,(9)

allowing, in particular, fluid mixture with unbounded evaporation rates. The unique ex-
istence of the solution was proved for the case of bounded evaporation rates in [11], but
explicit formula such as (78) were absent, and a rather strong restriction on wα was posed.
In the present paper we solve the equation under a natural assumption (9).

Besides mathematical naturalness of the assumption (9), removal of boundedness condi-
tion on {wα} also has a practical meaning in analyses of behaviors of web ranking data for
on-line retail businesses, using the stochastic ranking processes[4, 5, 3, 6, 7, 8, 12, 13, 11, 10].
For example, the time evolution of the sales ranks in an on-line bookstore Amazon.co.jp has
been found to be approximately explained by those solutions in the above references, which
correspond to the earlier version of the main result of the present paper. By regarding the
rank as the position y (popular books corresponding to upstream small y and professional
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books mainly in the downstream around y = 1), and by regarding each book as fluid particle
(molecule) α, and evaporation rate wα as the popularity of the book α, and by taking hydro-
dynamic limit of book titles N → ∞, we can consider the set of sales ranks for the bookstore
as a fluid system with infinitely many fluid components. Distinct book corresponds to dis-
tinct fluid comoponent, which is well-approximated to be infinitely many, and compared to
the sales (popularity) of professional books which we normalize to be wα = O(1), the sales of
top-sales books are usually considered to be of order positive power of N in the framework of
studies in economy, hence the set {wα} becomes unbounded in the hydrodynamic limit. The
dependence of wα on position in this application corresponds to the possibility that winning
high sales ranks attract people to enhance the sales further, a possibility which would be of
commercial interest. In fact, we consider in [10] a stochastic ranking process with space-time
dependent intensities, for which we have the solution considered in the present paper as a
hydrodynamic limit.

As we will show in this paper, the solution Uα turns out to have a concise expression
using the stochastic processes Nθ,w,z which we introduce in § 3,

Uα(y, t) =

∫
z∈[y0,1)

P[ NyC ,wα,z(t) = NyC ,wα,z(t0) ]µ0,α(dz),(10)

where µ0,α denotes initial spacial distribution of the fluid component α, and (y0, t0) is a
initial/boundary point such that the characteristic curve starting from the point satisfies
y = yC(t). (See (88) with (28).) The map G of (77) and (78) also has a corresponding
expression (76). The processes Nθ,w,z may be regarded as generalizations of the Poisson
process, but, in contrast to the Poisson process, lacks independent increment properties,
resulting in the complexity of the solution. In the case of spacially independent evaporation
rates, this underlying process reduces to the Poisson process, whose independent increment
property implies simple explicit formula such as (7).

We mentioned earlier that the characteristic curve, which is the key quantity for a solution
to a one dimensional first order quasilinear partial differential equation, will no longer be
obtained by ordinary differential equation for the spacially dependent {wα}, and that it is
determined as the fixed point to a map. The map is on the collection of the characteristic
curves parametrized by its intersection point with the initial/boundary points, the totality
of which we introduce as flow in § 4.

These notions were absent in the preceding work [11], and it is to clarify such mathemat-
ical structure of the solution that mainly motivated the present paper.

The plan of the paper is as follows. In § 2 we give the precise statement of our result, where
we generalize (5) to allow also for uncountable number of fluid components, by generalizing
the unknown functions to measure valued function. In § 3 we introduce the underlying
stochastic process and its elementary properties, with which we give an expression of the
solution in § 4 (see (88)), assuming existence of a fixed point to a certain map (Theorem 9).
The existence of the fixed point is proved in § 5, which completes the existence proof of the
solution. A uniqueness proof of the solution is given in § 6. As a remark concerning the
condition in (9) on the spacial derivatives of wα, we apply Schauder’s fixed point theorem
in § A to the map defined by (77) and (78), with the condition on derivative relaxed to a
global bound on oscillation of wα .
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2 Main Result.

Throughout this paper we fix T > 0, W ⊂ C1([0, 1] × [0, T ]; [0,∞)) a set of non-negative
valued C1 functions on [0, 1] × [0, T ], and a Borel probability measure λ supported on the
Borel measurable space (W,B(W )). B(W ) is the σ-algebra generated by open sets with
the topology from the space of continuous functions C0([0, 1] × [0, T ]; [0,∞)) ⊃ C1([0, 1] ×
[0, T ]; [0,∞)) with the metric given by the supremum norm

‖w‖T = sup
(y,t)∈[0,1]×[0,T ]

|w(y, t)|.(11)

We assume that

MW :=

∫
W

‖w‖T λ(dw) < ∞(12)

and

CW := sup
w∈W

∥∥∥∥∂ w

∂y

∥∥∥∥
T

< ∞(13)

hold.
Denote the sets of ‘initial (t = 0) points’ in the space-time [0, 1] × [0, T ], the set of

‘upper stream boundary (y = 0) points’, and their union, the set of initial/boundary points,
respectively by

Γb = {0} × [0, T ] = {(0, s) | 0 � s � T},
Γi = [0, 1] × {0} = {(z, 0) | 0 � z � 1},
Γ = Γb ∪ Γi .

(14)

For t ∈ [0, T ], denote the set of initial/boundary points up to time t by

Γt = {(z, s) ∈ Γ | t0 � t} = Γi ∪ {(0, t0) ∈ Γb | 0 � t0 � t},(15)

and the set of admissible pairs of the initial/boundary point γ and time t by

∆T := {(γ, t) ∈ ΓT × [0, T ] | γ ∈ Γt}.(16)

To state the initial condition, let µ0 = µ0(dw × dz) be a Borel probability measure on
the measurable space (W × [0, 1],B(W × [0, 1])) of the product space of W and [0, 1]. We
assume that µ0 is absolutely continuous with respect to the product measure λ × dz, where
dz denotes the standard Lebesgue measure on R. Denote the density function by σ, namely,

µ0(dw × dz) = σ(w, z) λ(dw) dz, (w, z) ∈ W × [0, 1].(17)

We assume µ0(W × dz) = dz and µ0(dw × [0, 1)) = λ, or equivalently, in terms of σ, we
assume ∫

W

σ(w, y) λ(dw) = 1, y ∈ [0, 1],(18)

and ∫ 1

0

σ(w, z) dz = 1, w ∈ W.(19)

We now state the main result we prove in this paper. For notational convenience, in the
following, and throughout the paper, we use a notation such as µ(dw) = ν(dw) to indicate
the equality of measures, µ(B) = ν(B), for all B ∈ B(W ).
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Theorem 1 There exists a unique pair of functions yC and µt(dw × dz), where yC is a
function of (γ, t) ∈ ∆T taking values in [0, 1], and µt(dw × dz) is a function of t ∈ [0, T ]
taking values in the probability measures on W × [0, 1], such that the following hold.

(i) yC((y0, 0), t) is non-decreasing in y0, yC((0, t0), t) is non-increasing in t0, and yC(γ, t)
is non-decreasing in t.

(ii) yC(γ, t) and
∂ yC

∂t
(γ, t) are continuous, and for each t ∈ [0, T ], yC(·, t) : Γt → [0, 1] is

surjective.

(iii) For all bounded measurable h : W → R,

∫
W

h(w)µt(dw×[y, 1)) is Lipschitz continuous

in (y, t) ∈ [0, 1] × [0, T ], with Lipschitz constant uniform in h satisfying

sup
w∈W

|h(w)| � 1.(20)

More precisely,

∣∣∣
∫

W

h(w)µt′(dw × [y′, 1))) −
∫

W

h(w)µt(dw × [y, 1))
∣∣∣

� |y′ − y| + MW e2CW T |t′ − t|,
(21)

for h satisfying (20).

(iv) The following equation of motion and initial and boundary conditions hold.

yC((y0, t0), t0) = y0 , (y0, t0) ∈ Γ, and µ0(dw × dy) as in (17),(22)

µt(dw × [0, 1)) = λ(dw), t ∈ [0, T ],(23)

µt(W × [y, 1)) = 1 − y, (y, t) ∈ [0, 1] × [0, T ],(24)

µt(dw × [yC((y0, t0), t), 1))

= µt0(dw × [y0, 1)) −
∫ t

t0

∫
z∈[yC((y0,t0),s),1)

w(z, s)µs(dw × dz) ds,

((y0, t0), t) ∈ ∆T .

(25)

�

Note that a substitution y = yC(γ, t) in (24) implies

yC(γ, t) = 1 − µt(W × [yC(γ, t), 1)),(26)

with which (25) and (24) imply

yC(γ, t) = y0 +

∫ t

t0

∫
W×[yC(γ,s),1)

w(z, s)µs(dw × dz) ds.(27)

If W is a countable set W = {w1, w2, . . .}, denote the distribution functions by

Uα(y, t) = µt({wα} × [y, 1)).(28)
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Assume further that the functions Uα : [0, 1]× [0, T ] → [0,∞) are in C1. Differentiating (27)
by t we reproduce (8) in § 1. Differentiating (25) by t, substituting (8), and then changing the
notation from yC(γ, t) to y, we can eliminate the dependence on initial/boundary parameter
γ, and we reproduce (5) in § 1. With λ({wα}) = rα, (23) and (24) respectively correspond to
(2) and (3), and the conditions (12) and (13) imply (9). Thus Theorem 1 contains a solution
to the problem introduced in § 1.

In Theorem 1 we claim differentiability for yC(γ, t) in t, while we formulated (25) so
that differentiability assumptions on Uα(y, t) or µt(dw × [y, 1)) are absent. In fact, at (y, t)
with y = yC((0, 0), t), where the characteristic curves starting at initial points γ ∈ Γi and
those starting at boundary points γ ∈ Γb meet, the differentiability with respect to variables
which cross the curve are lost in general. Loss of regularity across the characteristic curves
is common for the quasilinear partial differential equations [2]. In terms of [2, §3.4], we may
therefore say that Theorem 1 claims global existence of the Lipschitz solution (broad solution
which is Lipschitz continuous) to the system of quasilinear partial differential equations (5),
where we extended the definition of Lipschitz solution in [2, §3.4], to include the non-local
(integration) terms, and also generalized the notion of domain of determinancy defined in
[2, §3.4], which in the present case corresponds to {(y, t) ∈ [0, 1]× [0,∞) | y � yC((0, 0), t)},
to the boundary condition dependent domain {(y, t) ∈ [0, 1] × [0,∞) | y < yC((0, 0), t)}.
By formulating Theorem 1 in terms of probability measures on W × [0, 1] we also included
uncountably many components parametrized by the evaporation rates w, which are compo-
nentwise bounded but may be unbounded as a total fluid.

3 Point process with last-arrival-time dependent inten-

sity.

Let N = N(t), t � 0, be a non-decreasing, right-continuous, non-negative integer valued
stochastic process on a measurable space with N(0) = 0 (point process, or counting process),
and for each non-negative integer k define its k-th arrival time τk by

τk = inf{t � 0 | N(t) � k}, k = 1, 2, . . . , and τ0 = 0.(29)

The arrival times τk are non-decreasing in k, because N is non-decreasing, and since N is also
right-continuous, the arrival times are stopping times; if we denote the associated filtration
by Ft = σ[N(s), s � t], then {τk � t} ∈ Ft, t � 0.

Let ω be a non-negative valued bounded continuous function of (s, t) for 0 � s � t, and
for k = 1, 2, . . . assume that

P[ t < τk | Fτk−1
] = exp(−

∫ t

τk−1

ω(τk−1, u) du) on t � τk−1 .(30)

In particular, (30) with k = 1 implies

P[ N(t) = 0 ] = P[ τ1 > t ] = exp(−
∫ t

0

ω(0, u) du), t � 0.(31)
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Note that the function ω has different dependence on the variables from the evaporation
rate function w in the other sections of this paper. (We will relate ω to w by (57) in § 4,
namely, we will introduce an intensity function as a composite function of the evaporation
rate function and a flow.) If ω is independent of the first variable, then (30) implies that
N is the (inhomogeneous) Poisson process with intensity function ω. We are considering a
generalization of the Poisson process such that the intensity function depends on the latest
arrival time.

A process N(t) satisfying (30) can be constructed in terms of a standard Poisson random
measure on [0,∞)2. See [9, §1.2].

Let us turn to basic formulas to be used in this paper. For a continuously differentiable
function f vanishing at ∞, integration by parts and the Fubini’s theorem and (30) imply

∫ ∞

τk−1

f(t) ω(τk−1, t) exp(−
∫ t

τk−1

ω(τk−1, s) ds) dt

=

∫ ∞

τk−1

f ′(t) exp(−
∫ t

τk−1

ω(τk−1, s) ds) dt + f(τk−1)

=

∫ ∞

τk−1

f ′(t) P[ t < τk | Fτk−1
] dt + f(τk−1)

= E[

∫ ∞

τk−1

f ′(t) 1t<τk
dt | Fτk−1

] + f(τk−1)

= E[

∫ τk

τk−1

f ′(t) dt | Fτk−1
] + f(τk−1)

= E[ f(τk) | Fτk−1
], k = 1, 2, . . . .

(32)

Approximating by a series of smooth functions, (32) holds for any f ∈ L0([0,∞)), where
L0([0,∞)) is the space of bounded measurable functions f : [0,∞) → R vanishing at infinity,
equipped with the supremum norm.

For t � t0 put

Ω(t0, t) =

∫ t

t0

ω(t0, u) du,(33)

and define a linear map Aω : L0([0,∞)) → L0([0,∞)) by

(Aωf)(t) =

∫ ∞

t

f(u) ω(t, u) e−Ω(t,u) du.(34)

Then (32) implies

E[ f(τk) | Fτk−1
] = (Aωf)(τk−1), f ∈ L0([0,∞)).(35)

By induction and τ0 = 0 we have

E[ f(τk) ] = E[ E[ · · ·E[ E[ f(τk) | Fτk−1
] | Fτk−2

] · · · | Fτ1 ] ]
= (Ak

ω f)(0)

=

∫
0�u1�u2�···�uk<∞

f(uk)

k∏
i=1

ω(ui−1, ui) e−Ω(ui−1,ui) dui ,

(36)
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where we put u0 = 0 to simplify notations.
For example, by choosing f(u) = 1u�t, (35) implies

P[ τk � t | Fτk−1
] = (1 − e−Ω(τk−1,t)) 1τk−1�t ,(37)

and (36) implies

P[ N(t) � k ] = E[ τk � t ] = (Ak
ωf)(0), k = 1, 2, . . . .(38)

Then (37) and (36) with f(u) = e−Ω(u,t) 1u�t imply

P[ N(t) = k ] = P[ τk � t < τk+1 ]
= E[ 1τk�t (1 − P[ τk+1 � t | Fτk

]) ]

= E[ f(τk) ] = (Ak
ω f)(0), k ∈ Z+, t > 0.

(39)

Hence, as in the last line of (36),

P[ N(t) = k ] = (Ak
ωf)(0)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
0�u1�···
�uk�t

e−Ω(uk ,t)
k∏

i=1

ω(ui−1, ui)e
−Ω(ui−1,ui)dui, k ∈ N,

e−Ω(0,t), k = 0.

(40)

In particular, P[ N(t) � 0 ] = 1 implies a sum rule

e−Ω(0,t)

+

∞∑
k=1

∫
0�u1�u2�···�uk�t

e−Ω(uk,t)

k∏
i=1

ω(ui−1, ui) e−Ω(ui−1,ui) dui

= 1, t > 0,

(41)

where u0 = 0, as in (36).
Similarly, given s and t satisfying 0 � s < t, the probability that there is no arrival in

the interval (s, t] is

P[ N(t) = N(s) ] =
∞∑

k=0

P[ N(t) = N(s) = k ]

=

∞∑
k=0

P[ τk � s, t < τk+1 ]

=
∞∑

k=0

E[ 1τk�s (1 − P[ τk+1 � t | Fτk
]) ]

=

∞∑
k=0

E[ 1τk�s e−Ω(τk ,t) ].

(42)
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With f(u) = 1u�s e−Ω(u,t) in (36), we also have an explicit formula

P[ N(t) = N(s) = k ] = E[ 1τk�s e−Ω(τk ,t) ] = (Ak
ω f)(0)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−Ω(0,t), k = 0,

∫
0�u1�u2�···
�uk�s

e−Ω(uk,t)

k∏
i=1

ω(ui−1, ui)e
−Ω(ui−1,ui)dui, k ∈ N,

(43)

for t � s > 0, where u0 = 0, as in (36). Note that the explicit formula implies that the
quantity P[ N(t) = N(s) ] is C1 in s and t. The following property relates the s and t
dependences of this quantity.

Proposition 2 For k = 1, 2, . . .,

∂

∂t
P[ N(t) = N(s) = k ]

= −
∫ s

0

ω(u, t)
∂

∂u
P[ N(t) = N(u) = k ] du,

0 � s < t.

(44)

�

Proof. First we prove

E[ f(τk) g(τk) 1τk�s ] =

∫ s

0

f(u) Q′(u) du(45)

for locally bounded and measurable f and g such that

Q(s) := E[ g(τk) 1τk�s ](46)

is absolutely continuous with respect to the Lebesgue measure (so that the derivative Q′

almost surely exists). Approximating by a series of smooth functions, it suffices to prove
(45) for f ∈ C1. By Fubini’s theorem and partial integration, and noting that τk > 0 for
k > 0 implies Q(0) = 0,

E[ f(τk) g(τk) 1τk�s ] = E[
(
−

∫ s

τk

f ′(u) du + f(s)
)

g(τk) 1τk�s ]

= f(s) Q(s) −
∫ s

0

f ′(u) E[ 1τk�u g(τk) ] du

= f(s) Q(s) −
∫ s

0

f ′(u) Q(u) du

=

∫ s

0

f(u) Q′(u) du.

Thus (45) is proved.
Now for a positive integer k, let f(u) = ω(u, t) and g(u) = e−Ω(u,t) in (45). Note that for

this choice (43) implies

Q(s) = E[ e−Ω(τk ,t) 1τk�s ] = P[ N(t) = N(s) = k ].
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Then (45) implies

∂

∂t
P[ N(t) = N(s) = k ] = −E[ ω(τk, t) e−Ω(τk,t) 1τk�s ]

= −E[ f(τk) g(τk) 1τk�s ] = −
∫ s

0

f(u) Q′(u) du

= −
∫ s

0

ω(u, t)
∂

∂u
P[ N(t) = N(u) = k ] du,

which proves (44). �

Using (41), (43), and Proposition 2, it is also easy to deduce bounds on the derivatives.

Corollary 3 Put ‖ω‖ = sup
0�s�t�T

|ω(s, t)|. Then

0 � − ∂

∂t
P[ N(t) = N(s) ]

� ‖ω‖ (P[ N(t) = N(s) ] − P[ N(t) = N(0) ]) � ‖ω‖ ,

0 � ∂

∂s
P[ N(t) = N(s) ] � ‖ω‖P[ N(t) = N(s) ] � ‖ω‖ ,

(47)

for 0 � s < t � T . �

So far we prepared basic properties for the probabilities of N(t). We can also find explicit
formula for expectations. As an example, note that for t > s,

E[ N(t) − N(s) ] =

∞∑
k=1

P[ N(t) � N(s) + k ]

=
∞∑

k=1

∞∑
�=0

P[ τk+� � t, τ� � s < τ�+1 ]

=

∞∑
k=1

∞∑
�=0

P[ τk+� � t, τ� � s ] −
∞∑

k=1

∞∑
�′=1

P[ τk+�′−1 � t, τ�′ � s ]

=

∞∑
k=1

∞∑
�=0

P[ τk+� � t, τ� � s ] −
∞∑

k′=0

∞∑
�′=1

P[ τk′+�′ � t, τ�′ � s ]

=
∑
k�1

P[ s < τk � t ].

Applying (36) with f(u) = 1s<u�t, we arrive at

E[ N(t) − N(s) ] =
∞∑

k=1

(Ak
ω f)(0)

=
∞∑

k=1

∫
0�u1�···�uk�t

s<uk

k∏
i=1

ω(ui−1, ui)e
−Ω(ui−1,ui)dui .

(48)

Before closing this section, we note relations of the distribution of the process N with
that of the Poisson process. In contrast to the Poisson process, the process N is in general



12

not of independent increment, i.e., N(t) − N(s) depends in general on {N(u), u � s}. In
fact, (43) depends on the intensity function ω at times before s. We however have a following
Poisson bound for the expectations. In analogy to (33), put

ω̄(t) = max
s∈[0,t]

ω(s, t), Ω̄(t0, t) =

∫ t

t0

ω̄(u)du, t � t0 � 0,(49)

and in analogy to (34), define a linear map Āω : L0([0,∞)) → L0([0,∞)) by

(Āωf)(t) :=

∫ ∞

t

f(u) ω̄(u) e−Ω̄(t,u) du.(50)

Lemma 4 If g ∈ L0([0,∞)) is non-increasing and non-negative valued,

(Ak
ω g)(t) � (Āk

ω g)(t) =

∫ ∞

t

g(s)ω̄(s)
Ω̄(t, s)k−1

(k − 1)!
e−Ω̄(t,s) ds,

holds for all t � 0 and k ∈ N. �

Proof. Note that the definition (49) implies

Ω̄(u, s) � Ω(u, s), s � u � 0.(51)

The definition (34), integration by parts, (51), the assumptions on g, and (50) imply

(Aω g)(t) = g(t) −
∫

s∈[t,∞)

e−Ω(t,s) dg(s) � g(t) −
∫

s∈[t,∞)

e−Ω̄(t,s) dg(s) = (Āω g)(t),

which proves the claim for k = 1.
The proof for general k follows by induction in k. By the definition (50), Āω g is non-

increasing and non-negative valued, and satisfies lim
u→∞

Āω g(u) = 0, if g does. Hence by

induction and the claim for k = 1, we have (Ak
ω g)(u) � (Āk

ω g)(u) for all k and u.
The claimed explicit formula for (Āk

ω g)(u) follows also by induction in k. In fact, noting
Ω̄(u, s) + Ω̄(s, v) = Ω̄(u, v), it follows that

(Āk+1
ω g)(u) =

∫ ∞

u

(Āk
ω g)(s) ω̄(s) e−Ω̄(u,s)ds

=

∫
u�s�v

g(v)ω̄(v)
Ω̄(s, v)k−1

(k − 1)!
e−Ω̄(s,v) ω̄(s) e−Ω̄(u,s) dv ds

=

∫ ∞

u

g(v)ω̄(v)
Ω̄(u, v)k

k!
e−Ω̄(u,v) dv,

which proves the formula. �

Theorem 5 It holds that

E[ N(t) (N(t) − 1) (N(t) − 2) · · · (N(t) − p + 1) ] � (Ω̄(0, t))p,

for all positive integer p and t � 0. �
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Proof. Using an elementary formula

E[ h(N(t)) ] = h(0) +
∑
k�1

(h(k) − h(k − 1)) P[ N(t) � k ]

with h(k) = k(k − 1) · · · (k − p + 1), we have, from (38) with f(u) = 1u�t,

E[ N(t) (N(t) − 1) (N(t) − 2) · · · (N(t) − p + 1) ] = p
∑
k�p

(k − 1)!

(k − p)!
(Ak

ω f)(0).(52)

Note that f(u) = 1u�t is non-increasing and non-negative valued, and satisfies lim
u→∞

f(u) = 0.

Lemma 4 then implies

E[ N(t) (N(t) − 1) (N(t) − 2) · · · (N(t) − p + 1) ]

� p
∑
k�p

(k − 1)!

(k − p)!
(B̄k f)(0) = p

∫ t

0

ω̄(s)Ω̄(0, s)p−1 ds = (Ω̄(0, t))p,

which proves the claim. �

We also remark that various explicit formulas using multiple integeration in this section
reduces to a simple formula when the process N is the Poisson process (with intensity
function depending only on 1 variable as for ω̄(t)) using an elementary formula

∫
0�u1�u2�···�uk�s

k∏
i=1

f(ui)du1 du2 . . . duk =
1

k!

(∫ s

0

f(v)dv
)k

,(53)

valid for any integrable function f : R → R, s � 0, and k = 1, 2, . . ., which can be proved
by induction in k in a similar way as in the proof of Lemma 4. For example, if the intensity
function of N(t) = N̄(t) is ω(s, t) = ω̄(t), then the right hand side of (43) is simplified, using
(53), as

P[ N̄(t) = N̄(s) ] =
(
1 +

∑
k�1

1

k!
Ω(0, s)k

)
e−Ω(0,t) = e−Ω(s,t),

which reproduces a standard result for the Poisson distribution. In the general case of
processes we consider in this paper, such simple relations to Poisson distributions are absent.

4 Flows and construction of solution.

The key quantities for the solution to the functional equations in Theorem 1 are the char-
acteristic curves yC and the associated measure ϕ(dw, γ, t) = µt(dw × [yC(γ, t), 1)). We will
find yC as a unique solution to a non-linear map on a space ΘT of flows, a non-decreasing
function in time t and in initial/boundary points γ ∈ Γ. To simplify the definition of ΘT we
first define a total order 	 on Γ by

s � t, z � y
⇔ (0, T ) 	 (0, t) 	 (0, s) 	 (0, 0) 	 (z, 0) 	 (y, 0) 	 (1, 0).

(54)
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We now define the set of flows ΘT on [0, 1] × [0, T ] by

ΘT := {θ : ∆T → [0, 1] | θ((y0, t0), t0) = y0, (y0, t0) ∈ ΓT ,
continuous, surjective and non-increasing in γ for each t,
non-decreasing in t for each γ }.

(55)

For example,
θ((1, 0), t) = 1, t ∈ [0, T ], θ ∈ ΘT .(56)

Let W , the set of evaporation rates, be as in Theorem 1, and let θ ∈ ΘT . For each w ∈ W
and z ∈ [0, 1) define ω = ωθ,w,z, a non-negative valued continuous function of (s, t) satisfying
0 � s � t � T , by

ωθ,w,z(s, t) =

{
w(θ((z, 0), t), t), if s = 0,
w(θ((0, s), t), t), if s > 0.

(57)

Note that ωθ,w,z is independent of z if s > 0. Let {Nθ,w,z | z ∈ [0, 1), w ∈ W} be a set
of processes, with each Nθ,w,z being a point process N introduced in § 3 with the intensity
function in (30) determined by ω = ωθ,w,z. The quantity in (33) for the choice (57) is

Ωθ,w,z(0, t) =

∫ t

0

w(θ((z, 0), u), u) du,

Ωθ,w(s, t) =

∫ t

s

w(θ((0, s), u), u) du, 0 < s � t.

(58)

Let µ0 be as in Theorem 1, and define a function ϕθ(dw, γ, t) on (γ, t) ∈ ∆T taking values
in the measures on W , by

ϕθ(dw, γ, t) =

∫
z∈[y0,1)

P[ Nθ,w,z(t) = Nθ,w,z(t0) ] µ0(dw × dz),

γ = (y0, t0) ∈ Γ, (γ, t) ∈ ∆T .
(59)

The explicit form for (59) is simple for γ = (y0, 0) ∈ Γi, because Nθ,w,z(0) = 0, and (43) with
k = 0 imply

ϕθ(dw, (y0, 0), t) =

∫
z∈[y0,1)

e−Ωθ,w,z(0,t) µ0(dw × dz).(60)

For ϕθ in (59) define
∂ ϕθ

∂γ
, a measure valued function on ∆T , by

∂ ϕθ

∂γ
(dw, γ, t) =

⎧⎪⎨
⎪⎩

−∂ ϕθ

∂z
(dw, (z, 0), t), if γ = (z, 0) ∈ Γi ,

∂ ϕθ

∂u
(dw, (0, u), t), if γ = (0, u) ∈ Γb .

(61)

We keep non-negativity of the defined measure in determining the sign. Explicit calculation
of the derivative at γ ∈ Γi is straightforward from (60) and (17). The derivative at γ =
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(0, u) ∈ Γb is also calculated explicitly using (43) and (59), which is

∂ ϕθ

∂u
(dw, (0, u), t)

=

∫
z∈[0,1)

(
w(θ((z, 0), u) e−Ωθ,w,z(0,u)

+
∑
k�2

∫
0<u1�u2�···�uk−1�u

w(θ((z, 0), u1) e−Ωθ,w,z(0,u1) du1

k−1∏
i=2

(
w(θ((0, ui−1), ui) e−Ωθ,w(ui−1,ui) dui

)

w(θ((0, uk−1), u) e−Ωθ,w(uk−1,u)
)

e−Ωθ,w(u,t) µ0(dw × dz),

(62)

where we also used the notations (57) and (58) to make the z and u dependence explicit.
Note that w ∈ W are non-negative, hence e−Ωθ,w(u,t) � 1. This and the sum rule (41) (with
the replacements t = u and k = k′ − 1), with (12), (17), and (19) imply

∂ ϕθ

∂u
(W, (0, u), t)

�
∫

B×[0,1)

‖w‖T µ0(dw × dz) =

∫
B

‖w‖T λ(dw) = MW < ∞,

hence,
∂ ϕθ

∂u
is well-defined.

For f : ΓT → R and a Borel subset A ⊂ ΓT , define

∫
A

f(γ) dγ, a line integral on ΓT , by

∫
A

f(γ) dγ =

∫
Ai

f(z, 0) dz +

∫
Ab

f(0, u) du,(63)

where, Ai = {z ∈ [0, 1) | (z, 0) ∈ A} and Ab = {u ∈ [0, T ] | (0, u) ∈ A}, and the integration
in the right hand side of (63) are the standard one dimensional integrations.

Proposition 6 It holds that

0 �
∫

γ′∈Γt

∫
W

‖w‖T

∂ ϕθ

∂γ
(dw, γ′, t) dγ′ � MW e2CW t,(64)

for all t ∈ [0, T ]. �

Remark. Note the extra ‖w‖T in the integrand of (64). We are allowing W to contain un-
bounded functions w, so the finiteness of (64) is harder than that of (62). We use the
condition (13) as well as (12) to prove (64).

Proposition 6 implies, in particular, that the integration (69) introduced later, is uni-
formly bounded in (γ, t) ∈ ∆T and B ∈ B(W ). �
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Proof of Proposition 6. By the definitions (61) and (63),∫
γ′∈Γt

∫
W

‖w‖T

∂ ϕθ

∂γ
(dw, γ′, t) dγ′

= −
∫ 1

0

∫
W

‖w‖T

∂ ϕθ

∂z
(dw, (z, 0), t) dz

+

∫ t

0

∫
W

‖w‖T

∂ ϕθ

∂u
(dw, (0, u), t) du.

(65)

The first term on the right hand side is explicitly calculated using (60) and (17). Using also
e−Ωθ,w,z(0,t) � 1, (19), and (12), we have an estimate

0 � −
∫ 1

0

∫
W

‖w‖T

∂ ϕθ

∂z
(dw, (z, 0), t) dz

=

∫
W×[0,1)

‖w‖T e−Ωθ,w,z(0,t) µ0(dw × dz)

� MW < ∞.

(66)

Next, for t � s � 0 and w ∈ W , put

Ω̃w(s, t) =

∫ t

s

w(1, u) du.(67)

Then the condition (13) and the fact that θ takes values in [0, 1] imply

|w(θ(γ, t), t) − w(1, t)| � CW ,

|Ωθ,w(s, t) − Ω̃w(s, t)| � CW (t − s), and |Ωθ,w,z(0, t) − Ω̃w(0, t)| � CW t,
(γ, t) ∈ ∆T , 0 < s � t, w ∈ W.

(68)

Using (68) and (67) in (62), and then using (17) and (19), we have an estimate∫ t

0

∫
W

‖w‖T

∂ ϕθ

∂u
(dw, (0, u), t) du

�
∫

W

‖w‖T e−Ω̃w(0,t)+CW t

∫ t

0

(w(1, u) + CW )
(
1

+
∑
k�1

∫
0<u1�···�uk�u

k∏
i=1

((w(1, ui) + CW ) dui)
)

du λ(dw).

The estimate is now reduced to that for the Poisson processes. and (53) implies∫ t

0

∫
W

‖w‖T

∂ ϕθ

∂u
(dw, (0, u), t) du

�
∫

W

‖w‖T e−Ω̃w(0,t)+CW t

∫ t

0

eΩ̃w(0,u)+CW u(w(1, u) + CWu) du λ(dw)

=

∫
W

‖w‖T e−Ω̃w(0,t)+CW t
[
eΩ̃w(0,u)+CW u

]u=t

u=0
λ(dw)

� e2CW t

∫
W

‖w‖T λ(dw) � MW e2CW t.

This proves (64). �
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Proposition 7 It holds that

∂ ϕθ

∂t
(B, γ, t) = −

∫
γ�γ′

∫
B

w(θ(γ′, t), t)
∂ ϕθ

∂γ
(dw, γ′, t) dγ′,

(γ, t) ∈ ∆T , B ∈ B(W ),
(69)

where γ 	 γ′ is defined in (54). �

Remark. If W consists of functions with no spatial dependence, namely, if w(y, t) = w(1, t),
then the factor w in the integrand of the right hand side of (69) is constant for γ′ integration,
and we have integration after differentiation, so that the right hand side is simplified as
−w(1, t)ϕθ(B, γ, t), and the equation is solved easily, as remarked below (6) in § 1. �

Proof of Proposition 7. Consider first the case γ = (y0, 0) ∈ Γi . The explicit form (60),
together with the definitions (61), (63), and (17), implies

−
∫

γ�γ′

∫
B

w(θ(γ′, t), t)
∂ ϕθ

∂γ
(dw, γ′, t) dγ′

= −
∫

z∈[y0,1)

∫
B

w(θ((z, 0), t), t) e−Ωθ,w,z(0,t) σ(w, z)λ(dw) dz

= −
∫

z∈[y0,1)

∫
B

w(θ((z, 0), t), t) e−Ωθ,w,z(0,t) µ0(dw × dz)

=
∂ ϕθ

∂t
(B, (y0, 0), t),

which proves (69) for γ ∈ Γi .
To prove (69) for γ ∈ Γb , put, for k ∈ Z+,

ϕ
(k)
θ (dw, (y0, t0), t)

=

∫
z∈[y0,1)

P[ Nθ,w,z(t) = Nθ,w,z(t0) = k ]µ0(dw × dz).
(70)

Then (59) implies

ϕθ =

∞∑
k=0

ϕ
(k)
θ .(71)

We will prove, for γ = (0, t0) ∈ Γb

∂ ϕ
(k)
θ

∂t
(B, γ, t) = −

∫
γ�γ′

∫
B

w(θ(γ′, t), t)
∂ ϕ

(k)
θ

∂γ
(dw, γ′, t) dγ′,

(γ, t) ∈ ∆T , B ∈ B(W ),

(72)

for all k ∈ Z+, where differentiation and integration with respect to γ are defined in ac-
cordance with (61) and (63). Then (71) and (72) prove (69). The changes in the order
of series and integration and differentiation causes no problem, because all the terms and
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integrands are non-negative and the results of summation and integration are bounded by
Proposition 6.

Consider first the case k = 0. Then (43) implies

ϕ
(0)
θ (dw, (y0, t0), t) =

∫
z∈[y0,1)

e−Ωθ,w,z(0,t) µ0(dw × dz).(73)

Note that this is independent of t0. Hence (61) and (17) imply

∂ ϕ
(0)
θ

∂γ
(dw, γ′, t) =

{
e−Ωθ,w,z(0,t)σ(w, z)λ(dw), if γ′ = (z, 0) ∈ Γi,
0, if γ′ = (0, u) ∈ Γb.

(74)

For the case γ = (0, t0) ∈ Γb ,

γ 	 γ′ ⇔ γ′ = (0, u), 0 � u � t0, or γ′ = (z, 0), 0 � z � 1.

The contribution, however, to (63) from the integration along Γb vanishes because the inte-
grand (74) is 0 on Γb. Hence, (74), (63), (17), and (73) imply

∫
γ�γ′

∫
B

w(θ(γ′, t), t)
∂ ϕ

(0)
θ

∂γ
(dw, γ′, t) dγ′

=

∫
z∈[0,1)

∫
B

w(θ((z, 0), t), t) e−Ωθ,w,z(0,t) σ(w, z)λ(dw) dz

=

∫
B×[0,1)

w(θ((z, 0), t), t) e−Ωθ,w,z(0,t) µ0(dw × dz)

= −∂ ϕ
(0)
θ

∂t
(B, γ, t),

which proves (72) for k = 0 and γ ∈ Γb .
To consider the case k > 0 and γ = (0, t0) ∈ Γb, (70), Proposition 2, and (57) imply

∂ ϕ
(k)
θ

∂t
(B, (0, t0), t)

= −
∫

B×[0,1)

∫ t0

0

w(θ(0, u), t), t)

× ∂

∂u
P[ Nθ,w,z(t) = Nθ,w,z(u) = k ] du µ0(dw × dz)

= −
∫ t0

0

∫
w∈B

w(θ(0, u), t), t)
∂ ϕ

(k)
θ

∂u
(dw, (0, u), t) du, 0 < t0 < t.

The contribution to (63) from γ′ ∈ Γi vanishes for the case k > 0 because Nθ,w,z(0) = 0 and
(70) then imply

ϕ
(k)
θ (dw, γ, t) = 0, γ ∈ Γi , t � 0, k = 1, 2, . . . ,(75)

hence (72) is proved for this case. This completes a proof of (72), and (69) follows. �



19

Next put

G(θ)(γ, t) = 1 − ϕθ(W, γ, t)

= 1 −
∫

W×[y0,1)

P[ Nθ,w,z(t) = Nθ,w,z(t0) ]µ0(dw × dz)

= y0 +

∫
W×[0,1)

P[ Nθ,w,z(t) > Nθ,w,z(t0) ] µ0(dw × dz)

γ = (y0, t0) ∈ Γ, (γ, t) ∈ ∆T .

(76)

With (17) and (43), we have an explicit formula

G(θ)((y0, 0), t) = 1 −
∫

W×[y0,1)

e−Ωθ,w,z(0,t) σ(w, z) λ(dw) dz,

γ = (y0, 0) ∈ Γi ,
(77)

and
G(θ)((0, t0), t)

= 1 −
∫

W×[0,1)

e−Ωθ,w,z(0,t) σ(w, z) λ(dw) dz

−
∫

W×[0,1)

∑
k�1

∫
0�u1�···�uk�t0

w(θ((z, 0), u1), u1) e−Ωθ,w,z(0,u1)

×
k∏

i=2

(
w(θ((0, ui−1), ui), ui) e−Ωθ,w(ui−1,ui)

)

× e−Ωθ,w(uk ,t)

k∏
i=1

dui σ(w, z) λ(dw) dz,

γ = (0, t0) ∈ Γb ∩ Γt .

(78)

Using these explicit formula with (18) and (41), we see from (55) that G(θ) ∈ ΘT . Namely,
(76) defines a map

G : ΘT → ΘT(79)

on the set of flows ΘT .

Proposition 8 If θ ∈ ΘT is a fixed point of G in (79), namely, if G(θ) = θ, then ϕθ defined
by (59) uniquely determines for each t ∈ [0, T ] a probability measure µθ,t on W × [0, 1] by
the equation

ϕθ(dw, γ, t) = µθ,t(dw × [θ(γ, t), 1)), (γ, t) ∈ ∆T .(80)

Furthermore, we have a following formula for a change of integration variables:

∫
W×{γ′∈Γt|γ�γ′}

f(w, θ(γ′, t), t)
∂ ϕθ

∂γ
(dw, γ′, t) dγ′

=

∫
W×[θ(γ,t),1]

f(w, z, t) µθ,t(dw × dz),
(81)

for integrable function f : W × [0, 1] × [0, T ] → R. �
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Remark. We are working with a generalization of characteristic curves, for which (γ, t) is a
good coordinate. On the other hand, equation of motions are usually stated in the space time
coordinates (y, t). This proposition relates the representations in these distinct coordinate
systems. �

Proof of Proposition 8. The definition (55) of ΘT implies that θ(·, t) : Γt → [0, 1] is continu-
ous, surjective and non-decreasing. Hence to prove (80) we only need to prove consistency,
namely,

θ(γ, t) = θ(γ′, t) ⇒ ϕθ(B, γ, t) = ϕθ(B, γ′, t), B ∈ B(W ).(82)

If (82) holds, then (80) determines the distribution function µθ,t(B × [y, 1)), y ∈ [0, 1], on
[0, 1], so that µθ,t(B× [a, b]) is determined, and eventually µθ,t is determined as a probability
measure on the product space W × [0, 1].

Assume that θ(γ, t) = θ(γ′, t) for γ = (y0, t0) ∈ Γt and γ′ = (y′
0, t

′
0) ∈ Γt. Since (Γ,	)

is a totally ordered set, we may assume without loss of generality that γ 	 γ′. Then (54)
implies t0 � t′0 � t and y0 � y′

0. Non-decreasing property of the point process Nθ,w,z(t) in t
and monotonicity of measures imply with the definition (59),

ϕθ(B, γ′, t) � ϕθ(B, γ, t), and ϕθ(B
c, γ′, t) � ϕθ(B

c, γ, t),(83)

for any B ∈ B(W ),
On the other hand, the assumption G(θ) = θ and (76) and θ(γ, t) = θ(γ′, t) imply

ϕθ(B, γ, t) + ϕθ(B
c, γ, t) = ϕθ(W, γ, t) = 1 − G(θ)(γ, t) = 1 − θ(γ, t)

= 1 − θ(γ′, t) = ϕθ(B, γ′, t) + ϕθ(B
c, γ′, t).

Hence
ϕθ(B, γ′, t) − ϕθ(B, γ, t) = −(ϕθ(B

c, γ′, t) − ϕθ(B
c, γ, t)).(84)

Combining (83) and (84), we see that (82) holds, which implies (80).
Next to prove (81), we first prove

∫
γ�γ′

∂ ϕθ

∂γ
(B, γ′, t) dγ′ = µθ,t(B × [θ(γ, t), 1)),

(γ, t) ∈ ∆T , B ∈ B(W ).
(85)

In fact, note that (59) implies

ϕθ(B, (1, 0), t) = 0, B ∈ B(W ), t � 0.(86)

Then, if γ = (y0, 0) ∈ Γi , The explicit formula (43), with the definitions (59) (61) (63),
implies ∫

γ�γ′

∂ ϕθ

∂γ
(B, γ′, t) dγ′ = −

∫ 1

y0

∂ ϕθ

∂z
(B, (z, 0), t) dz

= ϕ(B, (y0, 0), t),
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where we used (86) in the last line. If γ = (0, t0) ∈ Γb , the explicit formula (43) similarly
implies ∫

γ�γ′

∂ ϕθ

∂γ
(B, γ′, t) dγ′

= −
∫ 1

0

∂ ϕθ

∂z
(B, (z, 0), t) dz +

∫ t0

0

∂ ϕθ

∂u
(B, (0, u), t) du

= −(ϕθ(B, (1, 0), t) − ϕθ(B, (0, 0), t)) + (ϕθ(B, (0, t0), t) − ϕθ(B, (0, 0), t))
= ϕ(B, (0, t0), t),

hence (85) follows from (80).
Define a measure νθ,t on W × Γt by

νθ,t(dw × dγ) =
∂ ϕθ

∂γ
(dw, γ, t) dγ.

Then (85) implies

νθ,t(B × {γ′ | γ 	 γ′}) = µθ,t(B × [θ(γ, t), 1)), γ ∈ Γt .

This implies that, if we put Xθ,t = (idW , θ), where idW is the identity map on W , then µθ,t

is the image measure of νθ,t with respect to the map Xθ,t : W × Γt → W × [0, 1]:

µθ,t = νθ,t ◦ X−1
θ,t .

Therefore (81) follows. �

Theorem 9 Assume that G in (79) has a fixed point, and denote the fixed point by yC ∈ ΘT ;

yC = G(yC)(87)

Put ϕ = ϕyC
and µt = µyC ,t, where ϕθ and µθ,t are defined by (59) and (80) with θ = yC .

Then the so defined yC and µt satisfy all the properties stated in Theorem 1. �

Remark. With (59) and (80), the theorem implies an expression

µyC ,t(dw × [yC(γ, t), 1))

=

∫
z∈[y0,1)

P[ NyC ,w,z(t) = NyC ,w,z(t0) ] µ0(dw × dz),

γ = (y0, t0) ∈ Γt ,

(88)

for the solution to Theorem 1.
The properties of the solution claimed in Theorem 1 are mostly contained in the previous

propositions and explicit formulas. The remaining point is the Lipschitz continuity of µt:
If w(y, t) = 0 for certain time interval for all w ∈ W , then the characteristic curve yC will
remain constant for the interval, and a small change in y = yC(γ, t) may result in a large
change in γ and hence in µt . It turns out that the situation causes no problem, because
then the change in the quantity ϕ and eventually µt are small in the time interval, hence
continuity follows. �
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Proof of Theorem 9. By definition (76), we have

yC(γ, t) = G(yC)(γ, t) = 1 − ϕyC
(W, γ, t),(89)

for which monotonicity properties stated in Theorem 1 are direct consequences of (59).
Proposition 6 and Proposition 7 with explicit formula (77) and (78), or (59) and (62), imply

that yC and
∂ yC

∂t
is continuous in (γ, t).

Let h : W → R be a measurable function satisfying (20). For (y, t) and (y′, t) in
[0, 1] × [0, T ], choose γ ∈ Γt and γ′ ∈ Γt such that y = yC(γ, t) and y′ = yC(γ′, t). We may
assume γ 	 γ′. Then monotonicity of yC implies y � y′, hence h(w) � 1 and (24) imply

∫
W

h(w)µt(dw × [y, 1)) −
∫

W

h(w)µt(dw × [y′, 1))

=

∫
W

h(w)µt(dw × [y, y′))

� µt(W × [y, y′)) = y′ − y.

Next, for (y, t), (y, t′) ∈ [0, 1] × [0, T ], choose γ ∈ Γt and γ′ ∈ Γt′ such that y = yC(γ, t) and
y = yC(γ′, t′). Then, since, by definition (59), ϕ(B, γ, t) is monotone also in t,

∣∣∣∣
∫

W

h(w)µt(dw × [y, 1)) −
∫

W

h(w)µt′(dw × [y, 1))

∣∣∣∣
=

∣∣∣
∫

W

h(w) (ϕ(dw, γ, t)− ϕ(dw, γ′, t′))
∣∣∣

� |ϕ(W, γ, t) − ϕ(W, γ′, t)| + |ϕ(W, γ′, t) − ϕ(W, γ′, t′)|
= |yC(γ, t) − yC(γ′, t)| + |yC(γ′, t) − yC(γ′, t′)|
= 2|y − yC(γ′, t)|
= 2|yC(γ′, t′) − yC(γ′, t)|
� 2 sup

(γ′′,t′′)∈∆T

∣∣∣∂ yC

∂t
(γ′′, t′′)

∣∣∣ |t′ − t|.

Using Proposition 7, monotonicity, and Proposition 6, with (89), we have

∂ yC

∂t
(γ, t) =

∫
γ�γ′

∫
W

w(yC(γ′, t), t)
∂ ϕ

∂γ
(dw, γ′, t′) dγ′

�
∫

γ′∈Γt

∫
W

‖w‖T

∂ ϕ

∂γ
(dw, γ′, t) dγ′

� MW e2CW t,

which proves (21).
The initial conditions (22) and surjectivity for yC ∈ ΘT is contained in the definition (55)

of ΘT , and the initial condition (17), for for µt is in the definition (59) with Proposition 8.
For t > 0 and B ∈ B(W ), (80), (59), (17), and (19) imply

µt(dw × [0, 1)) = ϕ(dw, (0, t), t) = µ0(dw × [0, 1)) = λ(dw),

which proves (23).
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For (y, t) ∈ [0, 1]× [0, T ] choose γ ∈ Γt such that y = yC(γ, t). Then (80) and (76) imply

µt(W × [y, 1)) = ϕ(W, γ, t) = 1 − G(yC)(γ, t) = 1 − yC(γ, t) = 1 − y

which proves (24).
To prove (25), Proposition 8 implies, for γ = (y0, t0) ∈ Γt ,

µt(dw × [yC(γ, t), 1)) − µt0(dw × [y0, 1)) = ϕ(dw, γ, t) − ϕ(dw, γ, t0),

for which Proposition 7 and (81) further imply

µt(dw × [yC(γ, t), 1)) − µt0(dw × [y0, 1))

= −
∫ t

t0

(∫
γ�γ′

w(yC(γ′, s), s)
∂ ϕ

∂γ
(dw, γ′, s) dγ′

)
ds

= −
∫ t

t0

(∫ 1

yC(γ,s)

w(z, s) µs(dw × dz)
)

ds,

which proves (25). �

5 Fixed point and existence of solution.

In Theorem 9 we assumed existence of a fixed point θ = yC of a map G defined in (76). To
complete a proof of existence of a solution for Theorem 1, we prove that (76) has a fixed
point. In fact, the assumptions (12) and (13) on W imply that that the fixed point is unique.
This is the core of the existence proof for Theorem 1, and we heavily rely on the explicit
formulas (77) and (78).

Theorem 10 The map G : Θ → Θ in (79) has a unique fixed point yC ∈ ΘT , namely,
there is a unique yC which satisfies (87). �

Proof. For t � 0 and θ and θ′ in ΘT define

d(θ′, θ, t) = sup
γ∈Γt

|θ′(γ, t) − θ(γ, t)|.(90)

We first accumulate basic formulas for evaluating ωθ,w,z in (57) and Ωθ,w,z in (58). In the
following lemma, we write Ωθ,w,z(s, t) also for s > 0 in (58) whenever it becomes notationally
simpler, though the quantity is actually independent of z for s > 0. Recall the notation
Ω̃w(s, t) in (67).

Lemma 11 Let θ ∈ ΘT and θ′ ∈ ΘT . Then for (γ, t) ∈ ∆T with γ = (z, s), we have

(i) w(1, t) − CW � w(θ(γ, t), t) � w(1, t) + CW ,

(ii) 0 < e−Ωθ,w,z(s,t) � e−Ω̃w(s,t)+CW (t−s),

(iii) |w(θ′(γ, t), t) − w(θ(γ, t), t)| � CW d(θ′, θ, t),
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(iv) |e−Ωθ′,w,z(s,t) − e−Ωθ,w,z(s,t)| � CW e−Ω̃w(s,t)+CW (t−s)

∫ t

s

d(θ′, θ, v) dv.

�

Proof. The first estimate is an elementary consequence of (13) and the mean value theorem, if
one notes that θ(γ, t) ∈ [0, 1]. This and the definitions (58) and (67), and non-negativity of
w ∈ W leads to the second estimate. With the definition (90), the third estimate is similarly
proved as the first one. The last estimate follows from these estimates and

|e−x′ − e−x| = |e−(x′∨x) − e−(x′∧x)| = e−(x′∧x) (1 − e−|x′−x|)
� e−(x′∧x)|x′ − x|.

�

Lemma 12 It holds that

d(G(θ′), G(θ), t) � 2CW e2CW T
∫ t

0
d(θ′, θ, v) dv,

θ, θ ∈ ΘT , t ∈ [0, T ].
(91)

�

Proof. If γ = (y0, 0) ∈ Γi, then applying Lemma 11 to (77), we have

|G(θ′)(γ, t) − G(θ)(γ, t)|
� CW eCW t

∫
W×[y0,1]

e−Ω̃w(0,t)σ(w, z)λ(dw) dz

∫ t

0

d(θ′, θ, v) dv,

γ ∈ Γi t ∈ [0, T ].

Non-negativity of Ω̃w and (18) and the fact that λ is a probability measure further leads to

sup
γ∈Γi

|G(θ′)(γ, t) − G(θ)(γ, t)| � CW eCW T

∫ t

0

d(θ′, θ, v) dv, t ∈ [0, T ].(92)

The rest of the proof is for the case γ = (0, t0) ∈ Γt ∩ Γb . On applying Lemma 11 to each
term of (78), we use an elementary equality

n∏
i=1

bi −
n∏

i=1

ai =

n∑
j=1

(j−1∏
i=1

bi

)
(bj − aj)

( n∏
i=j+1

ai

)
,(93)

where, and in the following, we adopt a notation

0∏
i=1

bi =
n∏

i=n+1

ai = 1

to simplify the formulas. We apply (93) to the difference of (78) and its analog, with θ
replaced by θ′, where bi’s are the factors depending on θ′, and ai’s the factors depending on
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θ. We then apply the last 2 estimates in Lemma 11 to the factor of the form bi − ai, and
apply the first 2 estimates to other factors. We have

|G(θ′)((0, t0), t) − G(θ)((0, t0), t)| � I1(t0, t) + I2(t0, t),(94)

where
I1(t0, t)

= CWeCW t

∫
W

e−Ω̃w(0,t)
(
1

+
∑
k�1

∫
0�u1�...�uk�t0

k∏
i=1

(w(1, ui) + CW )

k∏
i=1

dui

)
λ(dw)

×
∫ t

0

d(θ′, θ, v) dv,

(95)

and
I2(t0, t)

= CWeCW t

∫
W

e−Ω̃w(0,t) ×
∑
k�1

∫
0�u1�...�uk�t0

k∑
j=1

(
d(θ′, θ, uj)

×
∏

i; 1�i�k, i �=j

(w(1, ui) + CW )
) k∏

i=1

duiλ(dw).

(96)

We apply (53) to (95), to find

I1(t0, t)

= CWeCW t

∫
W

e−Ω̃w(0,t)eΩ̃w(0,t0)+CW t0λ(dw) ×
∫ t

0

d(θ′, θ, v) dv

= CWeCW (t+t0)

∫
W

e−Ω̃w(t0,t)λ(dw)

∫ t

0

d(θ′, θ, v) dv,

� CWe2CW T

∫ t

0

d(θ′, θ, v) dv.

(97)

To evaluate (96), we first change an integration variable uj to v and change the order of
summation for j and k, to find

I2(t0, t)

= CWeCW t

∫
W

e−Ω̃w(0,t)

∫ t0

0

d(θ′, θ, v)

×
(∑

j�1

∫
0�u1�...�uj−1�v

j−1∏
i=1

(w(1, ui) + CW )

j−1∏
i=1

dui

)

×
(∑

k�j

∫
v�uj+1�...�uk�t0

k∏
i=j+1

(w(1, ui) + CW )
k∏

i=j+1

dui

)
λ(dw) dv.
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We apply (53) to the summation in j and to the summation in k, to find

I2(t0, t)

= CWeCW t

∫
W

e−Ω̃w(0,t)

∫ t0

0

d(θ′, θ, v)eΩ̃w(0,v)+CW v

eΩ̃w(v,t0)+CW (t0−v) λ(dw) dv

= CWeCW (t+t0)

∫
W

e−Ω̃w(t0,t) λ(dw) ×
∫ t0

0

d(θ′, θ, v)dv

� CWe2CW T

∫ t

0

d(θ′, θ, v)dv.

(98)

The equations (94), (97), and (98) imply

sup
γ∈Γb∩Γt

|G(θ′)((0, t0), t) − G(θ)((0, t0), t)|

� 2CWe2CW T

∫ t

0

d(θ′, θ, v)dv.
(99)

The equations (90), (92), and (99) finally imply (91). �

Let us continue the proof of Theorem 10.
Define θ0 ∈ ΘT by

θ0((y0, t0), t) = y0 , ((y0, t0), t) ∈ ∆T ,(100)

and define a sequence of flows θk ∈ ΘT , k ∈ Z+, inductively by (100) and

θk+1 = G(θk), k ∈ Z+.(101)

Lemma 12 implies

d(θk+1, θk, t) = d(G(θk), G(θk−1), t) � C

∫ t

0

d(θk, θk−1, v)dv,

t ∈ [0, T ], k = 1, 2, . . . .
(102)

where C = 2CW e2CW T . Iterating, we obtain estimates which, by induction, is seen to have
an expression

d(θk+1, θk, t)

� Ck

∫
0�u1�...�uk�t

d(θ1, θ0, u1)

k∏
i=1

dui

= Ck

∫ t

0

(t − u)k−1

(k − 1)!
d(θ1, θ0, u) du,

t ∈ [0, T ], k ∈ Z+.

(103)

Since θ ∈ ΘT takes values in [0, 1], the definition (90) implies

d(θ′, θ, t) � 1, θ, θ′ ∈ ΘT , t ∈ [0, T ].(104)
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Substituting (104) in (103),

d(θk+1, θk, t) � (C t)k

k!
, k ∈ Z+.(105)

Since the summation in k of the right hand side of (105) converges to eC t,

θk(γ, t) = θ0(γ, t) +
k−1∑
i=0

(θi+1(γ, t) − θi(γ, t))

converges uniformly in (γ, t) ∈ ∆T . Denote the limit as

yC(γ, t) = lim
k→∞

θk(γ, t), (γ, t) ∈ ∆T .(106)

The equations (106), (101), and (105) imply (87). Since θk ∈ ΘT for all k, yC also takes
values in [0, 1], non-decreasing in γ for each t, and non-decreasing in t for each γ. Since the
convergence (106) is uniform in (γ, t), and θk ∈ ΘT are continuous, yC is also continuous.
Also

yC((y0, t0), t0) = y0 , (y0, t0) ∈ ΓT ,

holds.
In particular, yC((0, t), t) = 0 holds, and also (56) implies yC((1, 0), t) = 1, hence with

continuity, yC is surjective in γ for each t. This proves yC ∈ ΘT , namely, existence of a fixed
point of G in ΘT .

Suppose there is another fixed point ỹC ∈ ΘT of G. Then (87) and Lemma 12 imply

d(θ′, θ, t) = d(G(θ′), G(θ), t) � C

∫ t

0

d(θ′, θ, v) dv, t ∈ [0, T ].

where C = 2CW e2CW T . Gronwall’s inequality implies d(θ′, θ, t) = 0, t ∈ [0, T ]. Namely,
θ′ = θ. This proves uniqueness of the fixed point of G. �

6 Uniqueness of the solution.

In previous sections we proved existence of a solution (yC , µt) in Theorem 1. In this section
we complete the proof of Theorem 1 by proving that the solution is unique. Assume that
(yC , µt) and (ỹC, µ̃t) are the pairs which satisfy all the properties stated in Theorem 1.

Fix γ = (y0, t0) ∈ Γ , and let t � t0 . Since by assumption (µt, yC) satisfy equation of
motion (25) with initial and boundary conditions (22) and (23),

µt(dw × [yC(γ, t), 1))
= µt0(dw × [y0, 1))

+

∫ t

t0

∫
z∈[yC(γ,s),1)

(w(1, s) − w(z, s))µs(dw × dz) ds

−
∫ t

t0

w(1, s)µs(dw × [yC(γ, s), 1)) ds, t � t0 .

(107)
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Note that (23) and (12) do not rule out a possibility that µt has an unbounded support
concerning ‖w‖T. Therefore, a direct application of Gronwall type inequalities to the last
term in the right hand side of (107) may lead to divergent expression upon integration with
respect to w. We work around this problem by the following.

Lemma 13

µt(dw × [yC(γ, t), 1)) = e−Ω̃w(t0,t)µt0(dw × [y0, 1))

+

∫ t

t0

e−Ω̃w(s,t)

∫
x∈[yC(γ,s),1)

∂ w

∂z
(x, s)µs(dw × [yC(γ, s), x)) dx ds,

(108)

where Ω̃w(s, t) is as in (67). �

Proof. Iterating (107) and using Fubini’s Theorem, we have

µt(dw × [yC(γ, t), 1))

= µt0(dw × [y0, 1))

k∑
�=0

1

�!
(−Ω̃w(t0, t))

�

+

∫ t

t0

k∑
�=0

1

�!
(−Ω̃w(s, t))�

×
∫

z∈[yC(γ,s),1)

(w(1, s) − w(z, s))µs(dw × dz) ds

−
∫ t

t0

w(1, s)
1

k!
(−Ω̃w(s, t))kµs(dw × [yC(γ, s), 1)) ds,

t � t0 , k = 0, 1, 2, . . . .

(109)

Since w ∈ W are non-negative valued, so are Ω̃w(s, t) for s � t and

0 � Ω̃w(s, t) � ‖w‖T T, 0 � s � t � T.(110)

Taylor’s Theorem and (110) imply

∣∣∣e−Ω̃w(s,t) −
k∑

�=0

1

�!
(Ω̃w(s, t))�

∣∣∣ � 1

(k + 1)!
(‖w‖T T )k+1,

0 � s � t � T, k = 0, 1, 2, . . . .

(111)

Note also that (13) and the mean value theorem imply

|w(1, s) − w(z, s)| � CW , z ∈ [0, 1], s ∈ [0, T ].(112)

Fix a constant M > T (e.g., M = 2T ), and let B ∈ B(W ). Then, monotonicity of
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measures, (109), (110), (111), (112), and (23) imply

∣∣∣
∫

B

e−M ‖w‖Tµt(dw × [yC(γ, t), 1))

−
∫

B

e−M ‖w‖T e−Ω̃w(t0,t)µt0(dw × [y0, 1))

−
∫ t

t0

∫
B

e−M ‖w‖T e−Ω̃w(s,t)

×
∫

z∈[yC(γ,s),1)

(w(1, s) − w(z, s))µs(dw × dz) ds
∣∣∣

� T k+1

(k + 1)!
(1 + CW T + k + 1)

∫
B

e−M ‖w‖T ‖w‖k+1
T λ(dw)

� T k+1

(k + 1)!
(CW T + k + 2) λ(B) sup

x�0

xk+1 e−M x

� T k+1

(k + 1)!
(CW T + k + 2) sup

x�0

xk+1 e−M x,

t � t0 , k = 0, 1, 2, . . . .

(113)

By elementary calculus,

log sup
x�0

xk+1 e−M x = (k + 1) (log
k + 1

M
− 1)

=

∫ k+1

0

log y dy − (k + 1) log M

�
k+1∑
�=1

log � − (k + 1) log M = log
(k + 1)!

Mk+1
.

(114)

Combining (113) and (114), we have

∣∣∣
∫

B

e−M ‖w‖Tµt(dw × [yC(γ, t), 1))

−
∫

B

e−M ‖w‖T e−Ω̃w(t0,t)µt0(dw × [y0, 1))

−
∫ t

t0

∫
B

e−M ‖w‖T e−Ω̃w(s,t)

×
∫

z∈[yC(γ,s),1)

(w(1, s) − w(z, s))µs(dw × dz) ds
∣∣∣

�
( T

M

)k+1

(CW T + k + 2), t � t0 , B ∈ B(W ), k = 0, 1, 2, . . . ,
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which implies, by fixing M > T and considering k → ∞,
∫

B

e−M ‖w‖Tµt(dw × [yC(γ, t), 1))

=

∫
B

e−M ‖w‖T e−Ω̃w(t0,t)µt0(dw × [y0, 1))

+

∫ t

t0

∫
B

e−M ‖w‖T e−Ω̃w(s,t)

×
∫

z∈[yC(γ,s),1)

(w(1, s)− w(z, s))µs(dw × dz) ds,

t � t0 , B ∈ B(W ).

This implies equality as a measure:

µt(dw × [yC(γ, t), 1)) = e−Ω̃w(t0,t)µt0(dw × [y0, 1))

+

∫ t

t0

e−Ω̃w(s,t)

∫
z∈[yC(γ,s),1)

(w(1, s) − w(z, s))µs(dw × dz) ds.
(115)

Using

w(1, s) − w(z, s) =

∫ 1

z

∂ w

∂z
(x, s) dx

with Fubini’s Theorem, we arrive at (108). �

Let us return to the proof of uniqueness in Theorem 1, and suppose there is another pair
(µ̃, ỹC) which satisfies all the properties stated in Theorem 1. Lemma 13 implies that (µ̃t, ỹC)
satisfies an integral equation similar to (108),

µ̃t(dw × [ỹC(γ, t), 1)) = e−Ω̃w(t0,t)µt0(dw × [y0, 1))

+

∫ t

t0

e−Ω̃w(s,t)

∫
x∈[ỹC(γ,s),1)

∂ w

∂z
(x, s)µ̃s(dw × [ỹC(γ, s), x)) dx ds.

(116)

The first term in the right hand side is equal to that of (108), because of the initial and
boundary conditions (23) and (24).

Put

I(t) = sup
h

sup
y∈[0,1)

∣∣∣
∫

W

h(w)µ̃t(dw × [y, 1)) −
∫

W

h(w)µt(dw × [y, 1))
∣∣∣,(117)

and

J(t) = sup
h

sup
γ∈Γt

∣∣∣
∫

W

h(w)µ̃t(dw × [ỹC(γ, t), 1))

−
∫

W

h(w)µt(dw × [yC(γ, t), 1))
∣∣∣,(118)

where the supremum for h in the right hand sides of (117) and (118) are taken over measurable
functions h : W → R satisfying (20). In particular, (26) implies

sup
γ∈Γt

|ỹC(γ, t) − yC(γ, t)| � J(t).(119)
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Fix s and x, and put

h1(w) =
1

CW
h(w) e−Ω̃w(s,t) ∂ w

∂z
(x, s).

Then Ω̃w(s, t) � 0 and (13) imply that h1 : W → R satisfies (20) with h = h1 . The
definitions (117) and (118) then imply

∣∣∣
∫

W

h(w) e−Ω̃w(s,t) ∂ w

∂z
(x, s) µ̃s(dw × [ỹC(γ, s), x))

−
∫

W

h(w) e−Ω̃w(s,t) ∂ w

∂z
(x, s) µs(dw × [yC(γ, s), x))

∣∣∣
� CW

∣∣∣
∫

W

h1(w)µ̃s(dw × [ỹC(γ, s), 1))

−
∫

W

h1(w)µs(dw × [yC(γ, s), 1))
∣∣∣

+ CW

∣∣∣
∫

W

h1(w)µ̃s(dw × [x, 1)) −
∫

W

h1(w)µs(dw × [x, 1))
∣∣∣

� CW (I(s) + J(s)).

(120)

Also, monotonicity of measure implies

∣∣∣
∫

W

h(w) e−Ω̃w(s,t) ∂ w

∂z
(x, s)µ̃s(dw × [ỹC(γ, s), x))

∣∣∣
� CW µ̃s(W × [0, 1]) = CW .

(121)

Substituting (108) and (116) in (118), using (120) and (121), and also (119), we have

J(t) � sup
h

sup
γ∈Γt

∫ t

t0

(∣∣∣
∫ yC(γ,s)

ỹC(γ,s)

CW dx
∣∣∣

+

∫
x∈[yC(γ,s),1)

∣∣∣CW (I(s) + J(s))
∣∣∣ dx

)
ds

� CW sup
h

sup
γ∈Γt

∫ t

t0

(|ỹC(γ, s) − yC(γ, s)| + I(s) + J(s)) ds

�
∫ t

0

(I(s) + 2J(s)) ds.

(122)

Next, since by assumption, for each t, the map γ �→ yC(γ, t) is surjective, we have, from
(117),

I(t) = sup
h

sup
γ∈Γt

∣∣∣
∫

W

h(w)µ̃t(dw × [yC(γ, t), 1))

−
∫

W

h(w)µt(dw × [yC(γ, t), 1))
∣∣∣.(123)

Using Lipschitz continuity (21), the definition (118), and (119), we have

I(t) � sup
h

sup
γ∈Γt

(|ỹC(γ, t) − yC(γ, t)| + J(t)) � 2J(t).(124)
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The inequalities (123) and (124) imply

J(t) � 4

∫ t

0

J(s) ds, t ∈ [0, T ],

which, by Gronwall’s inequality, further implies J(t) = 0, t ∈ [0, T ]. This proves ỹC = yC ,
and also (124) now implies I(t) = 0, t ∈ [0, T ], which proves µ̃t = µt . This completes a proof
of the uniqueness claim in Theorem 1.

A Application of Schauder’s fixed point theorem.

In this section we consider the case where we keep the fundamental condition (12), but
replace the global Lipschitz type condition (13) by a global bound condition on oscillation:

C ′
W := sup

w∈W
sup

(y,t), (y′,t′)∈[0,1]×[0,T ]

|w(y, t)− w(y′, t′)| < ∞,(125)

and consider the existence of fixed points to the map G : ΘT → ΘT defined by the explicit
formula (77) and (78), where the notations are introduced in (18), (19), (14), (15), (16),
(55), and (58). Note that G(θ) ∈ ΘT holds with the weaker assumption (125). This can
be shown directly from the explicit expression (78). The only condition for ΘT perhaps not
obvious from the expression is the range condition G(θ)(γ, t) ∈ [0, 1], which can be shown as
follows. For k = 1, 2, . . . put

Ik =

∫
0�u1�···�uk�t0

w(θ((z, 0), u1), u1) e−Ωθ,w,z(0,u1)

×
k∏

i=2

(
w(θ((0, ui−1), ui), ui) e−Ωθ,w(ui−1,ui)

)

× e−Ωθ,w(uk ,t)
k∏

i=1

dui

and

Jk =

∫
0�u1�···�uk�t0

w(θ((z, 0), u1), u1) e−Ωθ,w,z(0,u1)

×
k∏

i=2

(
w(θ((0, ui−1), ui), ui) e−Ωθ,w(ui−1,ui)

) k∏
i=1

dui .

Note that non-negativity of Ωθ,w implies Ik � Jk. We can perform the uk integration in Jk

to find Jk = Jk−1 − Ik−1, which we can iterate to find

k∑
i=1

Ii = J1 − Jk + Ik � J1 = 1 − e−Ωθ,w,z(0,t0).

Substituting this in (78), and using monotonicity of Ωθ,w,z, (19), and λ(W ) = 1, we have
1 � G(θ)((0, t0), t) � 0. A similar estimate for (77) is straightforward, hence we conclude
G(θ) ∈ ΘT .
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Theorem 14 . Under the conditions (12) and (125), the map G : ΘT → ΘT has a fixed
point. �

Remark. Since the proof relies on Schauder’s fixed point theorem, our proof has no control of
uniqueness of fixed points. �

The map G maps ΘT into itself, and ΘT is a subset of a Banach space (with the supremum
norm) of continuous functions C0(∆T ; [0, 1]) taking values in a finite interval [0, 1] ⊂ R. The
domain ∆T is homeomorphic to a rectangle, since its parameterization in the definition (16)
is homeomorphic to a trapezoid.

The Schauder fixed point theorem states [1, (2.4.3)] that a compact map of a closed
bounded convex set in a Banach space into itself has a fixed point. (The notational corre-
spondence between here and [1, §2.4] is given by X = C0(∆T ; [0, 1]), K = U = ΘT , and
f = G.) We have shown G(ΘT ) ⊂ ΘT at the beginning of this section.

Concerning the required properties for the domain ΘT of the map G, we have noted that
C0(∆T ; [0, 1]) is a bounded set. For a sequence of continuous and monotone functions, the
limit function with respect to the supremum norm also is continuous and monotone, and
since for θ ∈ ΘT , θ((0, t), t) = 0 and θ((1, 0), t) = 1 holds, these properties are also preserved
in the limit. This and continuity imply surjectivity of the limit function. Therefore ΘT is a
closed set. The continuity, monotonicity, the properties θ((0, t), t) = 0 and θ((1, 0), t) = 1
are also preserved by convex linear combination, hence ΘT is also convex. Thus ΘT is a
closed, bounded, convex set.

It remains to prove compactness of G. Since C0(∆T ; [0, 1]) is a bounded set with respect
to the supremum norm, the Arzela-Ascoli theorem implies that it is sufficient to prove (i)
that the map G : ΘT → ΘT is continuous, and (ii) that the functions in the image set
G(ΘT ) are equicontinuous, which we prove in Lemma 16 and Lemma 17, respectively.

Note first that non-negativity of w ∈ W obviously implies

0 < e−Ω̃w(s,t) � 1, s � t,(126)

where Ω̃w(s, t) is as in (67).

Proposition 15 For θ and θ′ in ΘT , and (γ, t) ∈ ∆T with γ = (z, s), we have

(i) w(1, t) − C ′
W � w(θ(γ, t), t) � w(1, t) + C ′

W � ‖w‖T + C ′
W ,

(ii) 0 < e−Ωθ,w,z(s,t) � e−Ω̃w(s,t)+C′
W (t−s),

(iii) |e−Ωθ′,w,z(s,t) − e−Ωθ,w,z(s,t)|

� e−Ω̃w(s,t)+C′
W (t−s)

∫ t

s

|w(θ′(γ, u), u)− w(θ(γ, u), u)| du,

where C ′
W is as in (125), and ‖w‖T is defined by (11). �
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Proof. (125) implies

|w(y, t)− w(1, t)| � C ′
W , w ∈ W, (y, t) ∈ [0, 1] × [0, T ],

which further implies

0 < e−Ωθ,w,z(s,t) � e−
� t

s w(1,u) du+C′
W (t−s),

These estimates imply the first 2 estimates. The last estimate follows from these estimates
and

|e−x′ − e−x| = |e−(x′∨x) − e−(x′∧x)| = e−(x′∧x)| (1 − e−|x′−x|)
� e−(x′∧x)|x′ − x|.

�

Lemma 16 G : ΘT → ΘT is a continuous map. �

Proof. Let θ, θ′ ∈ ΘT , and put (γ, t) ∈ ∆T and γ = (y0, t0).
If γ = (y0, 0) ∈ Γi (t0 = 0), (77), Proposition 15，(126), and (19) imply

sup
y0∈[0,1]

sup
t∈[0,T ]

|G(θ′)((y0, 0), t) − G(θ)((y0, 0), t)|

� sup
y0∈[0,1]

sup
t∈[0,T ]

∫
W×[y0,1)

e−Ω̃w(0,t)+C′
W t

∫ t

0

|w(θ′((z, 0), u), u)− w(θ((z, 0), u), u)| du

× σ(w, z) λ(dw) dz

� T eC′
W T

∫
W×[0,1)

sup
u∈[0,T ]

sup
z∈[0,1]

|w(θ′((z, 0), u), u)

− w(θ((z, 0), u), u)| λ(dw).

(127)

Concerning the rightmost hand side, we have

sup
u∈[0,T ]

sup
z∈[0,1]

|w(θ′((z, 0), u), u)− w(θ((z, 0), u), u)| � 2 ‖w‖T ,

while (12) implies

∫
W×[0,1)

‖w‖T λ(dw) = MW < ∞. Hence the integrand in the right hand

side of (127) is bounded, pointwise in w ∈ W , uniformly in θ′ by an integrable function.
Therefore, thanks to dominated convergence theorem we may interchange the order of inte-
gration and the limit θ′ → θ in the right hand side of (127).

W ⊂ C1([0, 1]×[0, T ]; [0,∞)) and [0, 1]×[0, T ] is compact, hence each w ∈ W is uniformly
continuous. Hence for any ε > 0, there exists δ > 0 such that

(∀y, y′ ∈ [0, 1]; |y′ − y| < δ)(∀u ∈ [0, T ]) |w(y, u)− w(y′, u)| < ε.
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If the supremum norm of θ′ − θ is less than δ we have

sup
u∈[0,T ]

sup
z∈[0,1]

|θ′((z, 0), u) − θ((z, 0), u)| < δ,

which further implies

sup
u∈[0,T ]

sup
z∈[0,1]

|w(θ′((z, 0), u), u)− w(θ((z, 0), u), u)| � ε,

hence (127) implies

lim
θ′→θ

sup
y0∈[0,1]

sup
t∈[0,T ]

|G(θ′)((y0, 0), t) − G(θ)((y0, 0), t)| � T eC′
W T ε.

Since ε > 0 is arbitrary,

lim
θ′→θ

sup
y0∈[0,1]

sup
t∈[0,T ]

|G(θ′)((y0, 0), t) − G(θ)((y0, 0), t)| = 0.(128)

Next if γ = (0, t0) ∈ Γt ∩ Γb (y0 = 0), we proceed as in exact analogy to the proof of
Lemma 12, to find

sup
t∈[0,T ]

sup
t0∈[0,t]

|G(θ′)((0, t0), t) − G(θ)((0, t0), t)|

� T e2C′
W T

∫
W

sup
(γ,u)∈∆T

|w(θ′(γ, u), u) − w(θ(γ, u), u)| λ(dw).

Therefore, as in the same reasoning as we derive (128) from (127),

lim
θ′→θ

sup
t∈[0,T ]

sup
t0∈[0,t]

|G(θ′)((0, t0), t) − G(θ)((0, t0), t)| = 0.(129)

Finally, (128) and (129) imply

lim
θ′→θ

sup
(γ,t)∈∆T

|G(θ′)(γ, t) − G(θ)(γ, t)| = 0,

which proves the continuity of G : Θ → Θ. �

Lemma 17 The functions in the set G(ΘT ) are equicontinuous. �

Proof. We see from elementary calculus using the mean value theorem and triangular inequal-
ity that the following uniform estimates on the derivatives of G(θ) imply equicontinuity: for
t ∈ [0, T ],

0 � ∂

∂y0
G(θ)((y0, 0), t) � 1, y0 ∈ [0, 1],(130)

0 � ∂

∂t
G(θ)((y0, 0), t) � MW + C ′

W , y0 ∈ [0, 1],(131)
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0 � − ∂

∂t0
G(θ)((0, t0), t) � (MW + C ′

W ) e2C′
W T , t0 ∈ [0, t],(132)

0 � ∂

∂t
G(θ)((0, t0), t) � (MW + C ′

W ) e2C′
W T , t0 ∈ [0, t].(133)

The remainder of the proof is devoted to proving these estimates.
To prove (130), differentiate the explicit formula (77) by t0 and use (126) and (18). We

have

0 � ∂

∂y0
G(θ)((y0, 0), t) =

∫
W

e−Ωθ,w,y0
(0,t) σ(w, y0) λ(dw)

�
∫

W

σ(w, y0)λ(dw) = 1,

which proves (130).
To prove (131), differentiate (77) by t, and use (58), Proposition 15, (126), (19), and

(12), to find

0 � ∂

∂t
G(θ)((y0, 0), t)

=

∫
W×[y0,1)

w(θ((z, 0), t), t) e−Ωθ,w,z(0,t) σ(w, z) λ(dw) dz

�
∫

W×[0,1)

(‖w‖T + C ′
W ) σ(w, z) λ(dw) dz = MW + C ′

W ,

which proves (131).
Proofs of (132) and (133) are similar. We differentiate (78) by t0 and t, respectively, and

follow a similar line. The only new point is that we apply (53) in a similar way as in the
proof of Lemma 12. This completes a proof of Lemma 17. �

As discussed in the beginning of this appendix, Lemma 16 and Lemma 17 prove Theo-
rem 14.
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