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A B S T R A C T   

Phase diagrams obtained from first-principles have the potential to reduce time and expense by guiding 
experimental investigations for materials design applications. However, simply substituting all experimental data 
with calculated single phase quantities alone has generally shown limited success in the standard CALPHAD 
modelling of binary or multicomponent systems. In this work, the solid aluminium-nickel system is described 
using Bragg-Williams-Gorsky approximations in combination with order-disorder partitioning models, where all 
parameters are obtained directly from first-principles calculation without optimisation considering any phase 
diagram data. The resulting phase diagram reproduces all major features of the experimentally known phase 
diagram at a practical application level. This work demonstrates that by careful consideration of the Gibbs en
ergy models and the accuracy of the first-principles calculation, it is possible to obtain a first-principles CAL
PHAD-type thermodynamic description without conventional optimisation based on experimental data.   

1. Introduction 

Experimental investigations for thermodynamics-based phase dia
gram studies are time-consuming and expensive, and many important 
techniques that are key for determining certain material properties, such 
as calorimetry, have begun to fade into obscurity as experimental setups 
become few and far between. The time, money, and skillsets needed to 
conduct thorough phase diagram investigations experimentally rarely 
exist in a modern academic climate, and as such, evaluations of phase 
diagrams are usually conducted using experimental data that is many 
decades old. In terms of experimental data, it is certainly not a truism 
that old is necessarily bad and new is necessarily good, however, 
improved experimental technologies have enhanced our knowledge of 
impurity levels, reduced uncertainties in measurement, and allowed 
measurement of properties that were previously not possible to consider, 
all of which are important for phase diagram evaluations. Furthermore, 
modern literature has the advantage of usually having a far more 
consistent standard of documentation, which is unfortunately often 
untrue of older studies, and consequently evaluating experimental data 
for a careful phase diagram assessment takes significant time bela
bouring each and every data point. 

By contrast, in recent decades first-principles calculations have 

continued to improve, with certain calculations being possible with the 
same, or smaller uncertainty than experimental measurements of the 
same property [1], and methods being continually improved and vali
dated. Such calculations are important for various databasing efforts 
such as the Materials Genome Initiative [2], which allow the combina
tion of high-throughput calculations and materials informatics ap
proaches to design potential new materials at the prediction stage. 

Although calculations at the forefront of our abilities, for instance 
temperature dependent thermodynamic properties including even 
anharmonic vibrational contributions [3], are still time-consuming and 
computationally expensive, such calculations are becoming more and 
more tractable every day [4]. First-principles calculations have shown 
some success in predicting phase diagrams for simple systems for many 
years, using a variety of techniques [5]. However, the use of 
first-principles calculations in thermodynamics-based descriptions that 
can be easily extended to describe multicomponent systems, as in the 
CALPHAD approach, has been mostly limited to enhancing descriptions 
alongside experimental data. Where first-principles calculations have 
been used without experimental data, the results have often failed to 
reproduce physical features, which may be attributed to the wealth of 
approximations used in approaches usually applied using experimental 
data [6]. 
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In this paper, the aluminium-nickel system is used as an example to 
demonstrate that by making full use of available calculation and ther
modynamic modelling techniques, is it possible to produce a physically 
meaningful and highly quantitative thermodynamic description of a 
fairly complex solid system using only first-principles calculations of 
thermodynamic quantities as data. Aluminium-nickel was chosen as the 
prototype system as it has been very extensively studied and displays 
several common phase diagram features that can be challenging to 
model. These include a variety of invariant reactions, order-disorder 
transitions, and varying degrees of solubility. It is shown that with a 
CALPHAD-type description populated with only first-principles data, it 
is possible to correctly predict phase boundaries and ordering behaviour 
for a variety of solid-based phases of different structure types. 

2. The Al-Ni system 

Many versions of the experimental and calculated phase diagram of 
the aluminium-nickel system are available. It is generally accepted that 
the following condensed phases are present:  

• Liquid  
• γ-Al (disordered face-centred cubic (fcc) A1), γ-Ni (fcc A1) at the Al- 

and Ni-rich ends.  
• γ’-AlNi3 (ordered fcc L12 phase) with a narrow range of solubility 

both above and below stoichiometry 
• AlNi (ordered body-centred cubic (bcc) B2 phase) with a wide ho

mogeneity region in both the Al-rich and Ni-rich range 
• Al3Ni2 (D513 hexagonal ordered phase) with a narrow range of sta

bility, mostly on the Al-rich side  
• Al3Ni (D011) stable as a line compound  
• Al3Ni5 (often labelled with Pearson symbol oC16 or oS16), stable 

with limited solubility 

The Al4Ni3 phase has also been reported in several studies [7,8] 
although it has not been included in most experimental and CALPHAD 
phase diagrams. In this work, all of the above solid phases were 
considered, including Al4Ni3. The stoichiometric composition, Struk
turbericht, Pearson symbol, space group, and prototypes for each phase 
are given in Table 1. 

Of the many CALPHAD-type assessments made of this system, the 
most commonly used are based on the assessment of Al-Ni by Ansara 
et al. [9] which models the order-disorder transformation in the fcc 
phases with either two or four sublattices. Dupin et al. [10] made re
visions to this model to adjust the ordering in the fcc and bcc phases. The 
assessment from Dupin et al. is shown alongside experimental data upon 
which it is based in Fig. 1. 

The aluminium-nickel system has also been very widely studied from 
a theoretical perspective. Recent first-principles investigations from 

Goiri and Van der Ven [25] considered the phase stability of various 
compounds in this system, and van de Walle et al. [26] considered the 
application of high-throughput calculations to CALPHAD phase dia
grams, including some consideration of the short range ordering in the 
fcc phases of the aluminium-nickel system. Another recent work from 
Bhattacharyya et al. [27] demonstrates a first-principles phase field 
method (PFM) for the aluminium-nickel system that can be used to 
determine the phase boundaries and hence produce the phase diagram. 
Older first-principles calculations of the phase diagram includes work 
from Pasturel et al. [28] that uses linear muffin-tin orbitals total energy 
(LMTO) calculations in combination with cluster variation method 
(CVM) calculations. Although each of these approaches has drawbacks, 
be it an inability to fully reproduce the phase diagram, limitations in 
accuracy, or computational expense, the rich history of investigation in 
this system provides vast insight that was used to inform the calculations 
done in this work. 

3. Gibbs energy models 

Conventional CALPHAD modelling uses the Bragg-Williams [29] 
point approximation of configurational entropy to describe ideal solu
tion mixing, and any deviations from the ideal solution behaviour are 
contained within the excess energy terms that are generally para
meterised considering experimental data. However, using only 
first-principles calculations, such excess energy terms are difficult to 
obtain. The Bragg-Williams configurational entropy approximation is 
known to be insufficient to describe the real case, for example in over
estimating order-disorder transition temperatures and by excluding any 
short range ordering [30]. Methods such as the CVM [31] have been 
used to include higher order cluster contributions to the configurational 
entropy, which have been shown to improve the theoretical description 
[28]. However, in real multicomponent systems, the CVM truncation 
required to provide sufficient accuracy is often computationally infea
sible and cannot be easily used directly in computational thermody
namic software. Instead, Kusoffsky et al. [32] demonstrated that using 
the Bragg-Williams-Gorsky (BWG) pair interaction model [29,33] to 
obtain reciprocal interaction parameters creates an approximation to 
the short range ordering behaviour in the fcc system, approximating the 
Gibbs energy from an equivalent CVM calculation in the tetrahedron 
approximation. 

Table 1 
Phases that were considered in this calculation of the Al-Ni phase diagram.  

Phase Stoichiometric 
composition  
(at.% Ni) 

Strukturbericht Pearson  
Symbol 

Space 
Group 

Prototype 

γ-Al 0 A1 cF4 Fm3m  Cu 

Al3Ni 25 D011 oP16 Pnma Fe3C 
Al3Ni2 40 D513 hP5 P3m1  Al3Ni2 

Al4Ni3 42.9   Ia3d Ni4Ga3 

β-AlNi 50 B2 cP2 Pm3m  CsCl 

Al3Ni5 62.5  oC16/oS16 Cmmm Ga3Pt5 

γ’-AlNi3 75 L12 cP4 Pm3m  AuCu3 

γ-Ni 100 A1 cF4 Fm3m  Cu 

Liquid       

Fig. 1. The CALPHAD phase diagram from Dupin et al. [10], based on exper
imental and calculated thermodynamic and phase diagram data [11–24]. 
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In this work the stable A1, L12, B2, and D513 phases, and metastable 
L10, D03, B32, and A2 phases are considered via the use of the energy of 
each structure in a pair approximation according to the BWG model to 
obtain reciprocal interaction parameters within a four substitutional 
sublattice order-disorder partitioning model framework. 

3.1. Four substitutional sublattice order-disorder partitioning model 

The order-disorder partitioning model has been widely used to 
separately describe ordered and corresponding disordered phases that 
are intrinsically connected by means of an ordering energy. This ensures 
that the ordered phase is consistent with the disordered (random solu
tion) phase when certain sublattice occupation conditions are met. In 
the usual application of this model, the parameters of the ordered and 
disordered phases are simultaneously optimised considering all avail
able thermodynamic and phase diagram data relating to both phases, 
where there may not be data relating to both phases available at all 
points in temperature and composition space. However in this work, the 
energy of the fully ordered end-members and the disordered phase are 
independently specified at all compositions and temperatures directly 
from calculated data. The interaction parameters of the disordered 
phases are obtained directly from calculations, and the interaction pa
rameters of the ordered phases are also obtained directly from the 
calculated Gibbs energies via the BWG pair models without any con
ventional optimisation considering experimental thermodynamic or 
phase boundary data. To implement the order-disorder partitioning 
model in this way, it is necessary to extract the ordering energy which 
parameterises the ordered phase relative to the disordered phase. As 
there is no simultaneous optimisation of different phases in this work, 
the relations of the model parameters to the calculated Gibbs energy of a 
specific ordered sublattice configuration and the calculated Gibbs en
ergy of the disordered phase at the same overall composition must be 
obtained for the specific descriptions used. This means taking into ac
count the number of interaction parameters in the subregular solution 
model used for the disordered phase and the BWG model used to provide 
the interaction parameters of the ordered phase as functions of the end- 
member Gibbs energies. As the authors are not aware of such a deriva
tion in the published literature, a step-by-step description of this process 
of obtaining these relations to exactly parameterise both the ordered and 
disordered phase in the four-sublattice order-disorder partitioning 
model is provided as a supplementary document to enhance the 
description in this paper. 

3.1.1. Face-centred cubic phases 
The fcc disordered solid solution phase can be described using a 

single sublattice model (Al,Ni). The Gibbs energy was described as a 
function of the molar fraction of species i, xi, where i may be Al or Ni. As 
this is a molar quantity, the sum of the molar fraction of each species 
must sum to unity. 

The end-members of this sublattice model are the pure Al and Ni, 
which have an A1-type structure. The Gibbs energy of the disordered 
phase may therefore be written as a substitutional solution model in 
terms of the Gibbs energy of these end-members, ◦Gfcc− A1

i , 

Gfcc:dis
m (xi) =

∑

i
xi

∘Gfcc:A1
i + RT

∑

i
xiln(xi) +

∑

i

∑

j>i
xixjLfcc:dis

i,j (1)  

where Lfcc:dis
i,j are binary interaction parameters which have a tempera

ture and composition dependence described by a Redlich-Kister poly
nomial as 

Lfcc:dis
i,j =

∑

ν

(
xi − xj

)ν⋅ νLfcc:dis
i,j (2)  

where ν indicates the order of the Redlich-Kister polynomial and νLfcc:dis
i,j 

is a polynomial in temperature. 

Within the BWG pair approximation model derived by Kusoffsky 
et al. [32], the energy of each ordered phase is related to the interaction 
energies via an approximation of the unlike bond energies. The 
fcc crystal may be split into equivalent four sublattices which 
may be represented using a four-sublattice model 
(Al,Ni)1 /

4(Al,Ni)1 /

4(Al,Ni)1 /

4(Al,Ni)1 /

4. The four-sublattice model has the 
possible sublattice occupation ordered end-members (where each sub
lattice is singularly occupied) fcc-Al (A1), Al3Ni (L12), AlNi (L10), AlNi3 
(L12), and fcc-Ni (A1). The sublattice construction is shown in more 
detail in Appendix A. The sublattice site occupations defining the A1, 
L12, and L10 structures are shown in Table 2, where the white atoms 
indicate one atomic species in a binary system, and the grey atoms 
indicate the other. For each case, each species may be either Al or Ni, 
although in the case of the L10 structure, it is equivalent by symmetry 
regardless of which species occupies the white and grey sites. 

In order to describe the phase, two compositional quantities are used. 
As well as the overall molar fraction of species i, xi, the site fraction y(s)i 
of species i on sublattice s is also required. The site fractions of each 
species i on each sublattice s must also sum to unity. 

These quantities can be related by 

xi =
1
4
∑

s
y(s)i (3) 

The disordered case, y(1)
i = y(2)

i = y(3)
i = y(4)

i = xi, is equivalent to the 
single sublattice case in the disordered phase. Various other ordered 
structures may exist based on the fcc lattice, but using only the four- 
sublattice model, they do not appear as end-members. One example of 
this is the fcc structure often referred to as the F’ phase, which has the 
condition y(1)

i = y(2)
i ∕= y(3)

i ∕= y(4)
i . This phase appears in the fcc phase 

diagram based on the four-sublattice model ([32,34]), but cannot be 
represented as an end-member phase with a binary four-sublattice 
model and so is not considered here. It is worth noting that by using 
greater numbers of sublattices within the symmetry of the crystal 
structure, further ordered phases may be considered in the same way. 

A model is used where it is assumed that there is some energy dif
ference between ordered and disordered fcc phases, the ordering energy. 
In the order-disorder partitioning model, the Gibbs energy of the fcc 
phase in a given sublattice configuration, Gfcc

m (y(s)i ), is represented as the 
energy of the disordered phase at that composition plus the molar 
ordering energy, ΔGfcc:ord(4SL)

m (y(s)i ), 

Gfcc
m

(
y(s)i

)
=Gfcc:dis

m (xi) + ΔGfcc:ord(4SL)
m

(
y(s)i

)
(4)  

where 

ΔGfcc:ord(4SL)
m

(
y(s)i

)
=Gfcc:ord(4SL)

m

(
y(s)i

)
− Gfcc:ord(4SL)

m

(
y(s)i = xi

)
(5) 

Table 2 
The ordered end-members that are possible with a four-sublattice description of 
an fcc phase. The sublattice conditions are defined according to the site occu
pation probabilities, y(n)

i , of a species i on each sublattice n.  

Strukturbericht Formula Sublattice 
condition  

No. unlike 1nn 
bonds per 
tetrahedron 

A1 Al/Ni y(1)i = y(2)i =

y(3)i = y(4)i  

0 

L12 Al3Ni/ 
AlNi3 

y(1)i = y(2)i =

y(3)i ∕= y(4)i  

3 

L10 AlNi y(1)i = y(2)i ∕=

y(3)i = y(4)i  

4  
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These are combined to give 

Gfcc
m

(
y(s)i

)
=Gfcc:dis

m

(
xi
)
+Gfcc:ord(4SL)

m

(
y(s)i

)
− Gfcc:ord(4SL)

m

(
y(s)i = xi

)
(6) 

When the phase is disordered, the molar ordering energy 
ΔGfcc:ord(4SL)

m (y(s)
i ), or the contribution to the Gibbs energy due to 

ordering, is zero. 
The Gibbs ordering energy of a phase with a given sublattice 

configuration can be written with a four-sublattice regular solution 
model as 

Gfcc:ord(4SL)
m

(
y(s)i

)
=

∑

i

∑

j

∑

k

∑

l
y(1)i y(2)j y(3)k y(4)l Gfcc:ord(4SL)

i:j:k:l

+
1
4

RT
∑

s

∑

i
y(s)i ln y(s)i

+
∑

i

∑

j>i

∑

k≥i

∑

l>k

∑

m

∑

n
y(s)i y(s)j y(r)k y(r)l y(t)m y(u)n Lfcc:ord(4SL)

i,j:k,l:m:n

+
∑

i

∑

j>i

∑

k

∑

l

∑

m
y(s)i y(s)j y(r)k y(t)l y(u)m Lfcc:ord(4SL)

i,j:k:l:m

(7)  

where the first term describes the mechanical mixing of the stoichio
metric end-members in the four-sublattice model described above, and 
is the composition weighted sum of the Gibbs ordering energy Gfcc:ord(4SL)

i:j:k:l 

of the ordered end-members ijkl, where the Gibbs energies are given 
relative to the pure elements in the fcc-A1 state. The y(s)i ln y(s)i term 
represents the ideal configurational entropy contribution to the Gibbs 
energy based on the four-sublattice model, and the Lfcc:ord(4SL) terms 
represent the interaction parameters that give a contribution to the 
Gibbs energy depending on the composition. In this notation, species 
separated by a comma (e.g. i, j) are mixing on a sublattice, and each 
sublattice is separated by a colon. The energy contribution arising from 
the reciprocal four-sublattice parameters Lfcc:ord(4SL)

i,j:k,l:m:n may be considered a 
first approximation to a contribution to the Gibbs energy due to short 
range ordering [35]. 

As all four sublattices are equivalent by crystallographic symmetry, 
there are various permutations of the Gibbs energy of the end-member 
occupations. 

Gfcc:ord(4SL)
A1− A4

= Gfcc:ord(4SL)
A:A:A:A (8)  

Gfcc:ord(4SL)
L12 − A3B = Gfcc:ord(4SL)

A:A:A:B = Gfcc:ord(4SL)
A:A:B:A = … (9)  

Gfcc:ord(4SL)
L10 − A2B2

= Gfcc:ord(4SL)
A:A:B:B = Gfcc:ord(4SL)

A:B:A:B = … (10)  

where the same relations may be used for the other L12 and A1 com
pounds Gfcc:ord(4SL)

L12 − AB3 
and Gfcc:ord(4SL)

A1− B4
. 

Following Kusoffsky et al. [32], Abe and Shimono [34], and Lindahl 
et al. [36], it is further assumed that the ordering energy in a compound 
is described well when considered as arising from the formation of its 
unlike nearest-neighbour bonds. This assumption is common in CAL
PHAD modelling where all energies are given with reference to 
elemental reference states. Therefore from the tetrahedron construction 
the fully ordered structures mentioned above are considered in terms of 
the number of unlike first nearest neighbour (1nn) bonds. 

If the energy of the A-B bond is ufcc
AB, a general expression for the 

energy of these intermediate compounds with reference to the A1 states 
may be written as 

Gfcc:ord(4SL)
L12 − A3B = 3ufcc

AB + 3αfcc (11)  

Gfcc:ord(4SL)
L10 − A2B2

= 4ufcc
AB (12)  

Gfcc:ord(4SL)
L12 − AB3

= 3ufcc
AB + 3βfcc (13)  

where αfcc and βfcc are parameters representing the asymmetry of the A- 
B system that may occur due to higher-order interactions not considered 
in this pair model. If total energies of these three ordered compounds are 
known relative to the pure elements in their fcc state, all of the pa
rameters in this model may be obtained. 

Reciprocal interaction parameters defined by Kusoffsky et al. [32] 
are used to relate the Gibbs energies for the end-members above to the 
1nn interaction energy, Lfcc:ord(4SL)

i,j:k,l:m:n , where the subscript denotes the in

teractions described by that interaction parameter. Lfcc:ord(4SL)
i,j:k,l:m:n therefore 

describes the simultaneous interaction of i and j on one sublattice and k 
and l on another, while the third and fourth sublattices are occupied by 
species m and n respectively. An approximation is made whereby such 
interaction energy is equivalent to the A-B bond energy ufcc

AB as such 
reciprocal interaction always changes the number of unlike bonds by 
one. This term represents mixing among first nearest neighbour atoms, 
and can be obtained from the Gfcc:ord(4SL)

i:j:k:l . Following Kusoffsky et al. [32], 
it is also assumed that all interaction parameters with simultaneous 
interactions on two sites are equivalent and independent of the occu
pation of the other two sites, e.g. 

Lfcc:ord(4SL)
i,j:k,l:m:n = Lfcc:ord(4SL)

A,B:A,B:*:* (14)  

where * represents any possible constituent. 
A corresponding approximation may also be made for the 2nn 

interaction parameters where vfcc
AB corresponds to the second nearest 

neighbour A-B bond energy, equivalent to the switching of atoms be
tween the same sublattice site in neighbouring tetrahedra. The inter
action parameter Lfcc:ord(4SL)

i,j:k:l:m (mixing on a single sublattice) is equivalent 
to this second nearest neighbour interaction. As in the previous case, as 
Kusoffsky et al. [32], it is assumed that the interaction energy is inde
pendent of the species occupying the other sublattices. These terms are 
not assigned values in this model, as the short range ordering in the 
ordered phases can be described in a first approximation by the recip
rocal interaction parameters only [35], with further interactions 
accounted for by the interaction parameters for the disordered part, 
Lfcc:dis

i,j [32]. Therefore, it is assumed that all interaction parameters with 
interaction on a single site are equivalent and equal to zero: 

Lfcc:ord(4SL)
i,j:k:l:m = 0 (15) 

In the fcc four substitutional sublattice order-disorder model, a Gibbs 
energy contribution due to ordering is added to the disordered phase to 
create the total energy. The Gfcc:ord(4SL)

A1− A4
, Gfcc:ord(4SL)

L12 − A3B , etc, are the parameters 
of the four-sublattice description, and represent the contribution due to 
ordering of a fully ordered phase in the particular sublattice configu
ration, which is distinct from both the energy of the ordered phase 

Gfcc:ord(4SL)
m

(
y(s)

i

)
at a particular fractional site occupancy, and the energy 

of the disordered phase, Gfcc:dis
m (xi) at a given overall composition. 

Therefore Gfcc:ord(4SL)
A1− A4 

and Gfcc:ord(4SL)
A1− B4 

are necessarily 0, as required for the 
description of the ordering contribution to the Gibbs energy. 
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Within this formalism it is possible to separately describe the ordered 
and disordered phases with various end-member energies and interac
tion parameters. In such cases as this study, where the required Gibbs 
energy functions are available from first-principles for both the ordered 
and disordered phases, one must be careful to correctly include such 
energies in the database. 

From equation (6), the total energy of the fully ordered phases 
Gfcc

m (y(s)i ) at the xA values and sublattice configurations being considered 
(end members of the four-sublattice model where each sublattice is fully 
occupied by a single species) is therefore  

where the notation 
(

y(s)A := L12; xA = 3
4

)

indicates that the sublattice 

population fulfils the condition of the L12 phase as given in Table 2, 
while the overall composition is xA = 3

4. The ordering contribution under 
these conditions when fully ordered are the parameters included in the 

model e.g. Gfcc:ord(4SL)
m

(

y(s)A := L12; xA = 3
4

)

= Gfcc:ord(4SL)
L12 − A3B . This may be 

rearranged to express the parameters of the four sublattice order- 
disorder partitioning model as a function of the ordering energy of the 
fully ordered phases as  

where Mfcc represents the matrix connecting the total energies of the 
ordered end-member phases and the total energies of the disordered 
phase at various compositions (which may both be calculated from first- 
principles) to the parameters in the four-sublattice order-disorder 
model. Mfcc is dependent on the choice of models used, e.g. the number 
of interaction parameters in the disordered phase, and the relation be
tween the end-member energies and the four sublattice interaction 
parameters. 

Therefore, if the total energies of the ordered and disordered phase 
are known from first-principles or assessment, the parameters for the 
model may be obtained by inverting matrix Mfcc . 

In the case derived from the Bragg-Williams-Gorsky model where 

Lfcc:ord(4SL)
A,B:A,B:*:* =

1
4

Gfcc:ord(4SL)
L10 − A2B2

(18)  

and  

Lfcc:ord(4SL)
A,B:*:*:* = 0 (19) 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Gfcc
m

(
y(s)A := A1; xA = 1

)

Gfcc
m

(

y(s)A := L12; xA =
3
4

)

Gfcc
m

(

y(s)A := L10; xA =
1
2

)

Gfcc
m

(

y(s)A := L12; xA =
1
4

)

Gfcc
m

(
y(s)A := A1; xA = 0

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Gfcc:dis
m (xA = 1)

Gfcc:dis
m

(

xA =
3
4

)

Gfcc:dis
m

(

xA =
1
2

)

Gfcc:dis
m

(

xA =
1
4

)

Gfcc:dis
m (xA = 0)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Gfcc:ord(4SL)
m

(
y(s)A := A1; xA = 1

)

Gfcc:ord(4SL)
m

(

y(s)A := L12; xA =
3
4

)

Gfcc:ord(4SL)
m

(

y(s)A := L10; xA =
1
2

)

Gfcc:ord(4SL)
m

(

y(s)A := L12; xA =
1
4

)

Gfcc:ord(4SL)
m

(
y(s)A := A1; xA = 0

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Gfcc:ord(4SL)
m

(
y(s)A = xA = 1

)

Gfcc:ord(4SL)
m

(

y(s)A = xA =
3
4

)

Gfcc:ord(4SL)
m

(

y(s)A = xA =
1
2

)

Gfcc:ord(4SL)
m

(

y(s)A = xA =
1
4

)

Gfcc:ord(4SL)
m

(
y(s)A = xA = 0

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16)   

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Gfcc
m

(
y(s)A := A1; xA = 1

)

Gfcc
m

(

y(s)A := L12; xA =
3
4

)

Gfcc
m

(

y(s)A := L10; xA =
1
2

)

Gfcc
m

(

y(s)A := L12; xA =
1
4

)

Gfcc
m

(
y(s)A := A1; xA = 0

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Gfcc:dis
m (xA = 1)

Gfcc:dis
m

(

xA =
3
4

)

Gfcc:dis
m

(

xA =
1
2

)

Gfcc:dis
m

(

xA =
1
4

)

Gfcc:dis
m (xA = 0)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Mfcc

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Gfcc:ord(4SL)
A1− A4

Gfcc:ord(4SL)
L12 − A3B

Gfcc:ord(4SL)
L10 − A2B2

Gfcc:ord(4SL)
L12 − AB3

Gfcc:ord(4SL)
A1− B4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(17)   
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the matrix Mfcc is   

3.1.2. Body-centred cubic phases 
The above inverted matrix method of assigning parameters 

describing both the ordered and disordered phases directly from first- 
principles calculations is applied to the bcc four substitutional sub
lattice order-disorder model as derived by Abe and Shimono [34] in a 
similar way to the fcc phase described in Section 3.1.1. 

A similar pair approximation is applied to tetrahedron structures 
representing bcc phases, but while fcc phases have a single lattice 
parameter defining the volume, the asymmetry of the a and c lattice 
parameter in the conventional bcc unit cell means that the six bonds 
within the tetrahedron are of either 1nn and 2nn type, and the bonds 
between equivalent sites on neighbouring tetrahedra are of third nearest 
neighbour (3nn) type. The sublattice construction is described in more 
detail in Appendix A. The end-member ordered phases for the bcc four- 
sublattice model are Al (A2), Al3Ni (D03), AlNi (B2), AlNi (B32), AlNi3 
(D03), and Ni (A2). The sublattice site occupation conditions defining 
each phase are given in Table 3, where as before, one species is repre
sented by white atoms, and another by grey. 

The end-member energies relative to the pure elements in the A2 
structure can be written: 

Gbcc:ord(4SL)
D03 − A3B = 2ubcc

AB + 1.5vbcc
AB + ωbcc

1 (21)  

Gbcc:ord(4SL)
B2− A2B2

= 4ubcc
AB (22)  

Gbcc:ord(4SL)
B32− A2B2

= 2ubcc
AB + 3vbcc

AB (23)  

Gbcc:ord(4SL)
D03 − AB3

= 2ubcc
AB + 1.5vbcc

AB + ωbcc
2 (24)  

where, ubcc
AB and vbcc

AB are the 1nn and 2nn bond energy respectively, and 
as for the fcc case, parameters ωbcc

1 and ωbcc
2 are introduced to account 

for the asymmetry that may occur due to higher order interactions. 

Reciprocal interaction parameters for the four-sublattice order-dis
order partitioning model may be defined using these 1nn and 2nn bond 
energies such as in the fcc case, although not via a simple linear relation 
[34]. To consider the permutations of the interaction parameters, it is 
important to remember that not all sites are equivalent, and therefore for 
the case of simultaneous interaction on two sublattices, it is significant 
which two sublattices are involved in the exchange. The sublattices may 
be separated into two pairs of equivalent sublattices: the first two sub
lattices and the second two sublattices. If there is simultaneous inter
action on two sublattices in the same pair, is it related to the second 
nearest neighbour interaction parameter Lbcc:ord(4SL)

A,B:A,B:i:j (where the other 
sites are occupied by species i and j). If there is simultaneous interaction 
on two sublattices that are not in the same set, it is related to the first 
nearest neighbour interaction parameter Lbcc:ord(4SL)

A,B:i:A,B:j . The 3nn interaction 

parameter Lbcc:ord(4SL)
A,B:i:j:k (interaction on a single sublattice site) may addi

tionally related to the 3nn A-B bond energy but was not assigned a value 
in this model. 

Abe and Shimono [34] consider the effect of short range ordering in 
the 1nn and 2nn shell and obtain approximate expressions for the 1nn 
and 2nn reciprocal interaction parameters as a function of the 1nn and 
2nn bond energy, 

Lbcc:ord(4SL)
A,B:∗:A,B:∗ =

1
2
ubcc

AB ≤ 0 (25)  

Lbcc:ord(4SL)
A,B:A,B:∗:∗ =

3
(
vbcc

AB

)2

4ubcc
AB

≤ 0 (26)  

Table 3 
The ordered end-members that are possible with a four-sublattice description of a bcc phase.  

Strukturbericht Formula Sublattice condition  No. unlike 1nn bonds per tetrahedron No. unlike 2nn bonds per tetrahedron 

A2 Al/Ni y(1)i = y(2)i = y(3)i = y(4)i  
0 0 

B2 AlNi y(1)i = y(2)i ∕= y(3)i = y(4)i  
4 0 

B32 AlNi y(1)i = y(3)i ∕= y(2)i = y(4)i  
2 2 

D03 Al3Ni/AlNi3 y(1)i ∕= y(2)i = y(3)i = y(4)i  
2 1  

Mfcc =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0

−

(
3
4

)4

1 − 4
(

3
4

)3(1
4

)

− 6
(

3
4

)2(1
4

)2

−
1
4

[

6
(

3
4

)4(1
4

)2

+ 12
(

3
4

)3(1
4

)3

+ 6
(

3
4

)2(1
4

)4
]

− 4
(

3
4

)(
1
4

)3

−

(
1
4

)4

−

(
1
2

)4

− 4
(

1
2

)4

1 − 6
(

1
2

)4

− 24
(

1
4

)(
1
2

)6

− 4
(

1
2

)4

−

(
1
2

)4

−

(
1
4

)4

− 4
(

1
4

)3(3
4

)

− 6
(

1
4

)2(3
4

)2

−
1
4

[

6
(

1
4

)4(3
4

)2

+ 12
(

1
4

)3(3
4

)3

+ 6
(

1
4

)2(3
4

)4
]

1 − 4
(

1
4

)(
3
4

)3

−

(
3
4

)4

0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(20)   
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that may be used. 
As the procedure is very similar to the fcc case, the definition of the 

four sublattice order-disorder model is not repeated here. In the bcc 
case, as all four sublattices are not equivalent, there are two ordered 
phases with 50% composition, B2 and B32. Both of these phases are 
represented within the model. If the total energy of the ordered and 
disordered phase are known from first-principles or assessment, the 
parameters for the model may be obtained by inverting matrix Mbcc 

which relates the four-sublattice model parameters to the ordering en
ergy of each fully ordered phase represented by the sublattice model as  

where the Gbcc
m represent the calculable molar Gibbs energy of the end- 

member ordered phases with particular composition and sublattice 
configuration, Gbcc:dis

m represent the molar energy of the disordered 
phase at a particular composition, and Mbcc depends on the four- 
sublattice 1nn and 2nn interaction parameters of the ordering energies. 

However, in separating the known ordering and disordered contri
butions to the Gibbs energy within the four substitutional sublattice 
order-disorder model, with the approximations for the first and second 
nearest neighbour interaction energies provided by Abe and Shimono 
[34] (equations (25) and (26)), it is not possible to exactly specify both 
the energy of the ordered phases and disordered phase because the 
four-sublattice interaction parameters cannot be expressed as linear 
combinations of the Gibbs energies. The approximation from Abe and 
Shimono is intended to describe the interaction parameters of the or
dered phase when a symmetrical approximation for the disordered 
phase is used. However, Lindahl et al. [36] found that it was effective to 
introduce interaction energies in the ordered phases implicitly by use of 
an asymmetric disordered phase description, where the interaction 

parameters of the ordering energy that are added to the contributions 
from the disordered phase assume ideality. In the order-disorder parti
tioning model, the interactions of the phases described by four sub
lattices have energy and interaction energy contributions from both the 
disordered part and the ordering energy part. Therefore the total 
reciprocal interaction energy (which may be considered an approxi
mation to the energy contribution due to short range ordering [35]) has 
a finite value if the disordered phase is non-ideal, even if the ordering 
energy contribution to the reciprocal interaction parameters is zero. As 
the disordered phase is described from first-principles calculations in 
this work, the non-ideal interactions may be described by the contri

butions from the disordered phase at all temperatures. The exact 
knowledge of this energy, which may not be typically experimentally 
known, allows use of the inverted matrix approach which approximates 
the reciprocal interaction parameter contribution from the ordering 
energy as zero. 

The composition dependence of the Gibbs energy of the B2 phase was 
found to be very similar when described only from the disordered inter
action parameters compared to when described using the reciprocal 
interaction parameters derived by Abe and Shimono [34] without the 
exact description of the disordered phase. Both models found that the 
contribution to the Gibbs energy of the B2 phase from the reciprocal in
teractions was very small and did not significantly affect the phase diagram 
topology. The agreement between these two models allows the conclusion 
that, at least in this case, an approximation of the effects of short range 
ordering in the ordered phases may be described with the order-disorder 
partitioning model via the interactions in the disordered phase. 

With this assumption that all four-sublattice interaction parameters 
for the order-disorder partitioning model can be set as zero, the matrix 
Mbcc is given by 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Gbcc:ord(4SL)
A2− A4

Gbcc:ord(4SL)
D03 − A3B

Gbcc:ord(4SL)
B2− A2B2

Gbcc:ord(4SL)
B32− A2B2

Gbcc:ord(4SL)
D03 − AB3

Gbcc:ord(4SL)
A2− B4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎛

⎝Mbcc

⎞

⎠

− 1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Gbcc
m

(
y(s)A := A2; xA = 1

)

Gbcc
m

(

y(s)A := D03; xA =
3
4

)

Gbcc
m

(

y(s)A := B2; xA =
1
2

)

Gbcc
m

(

y(s)A := B32; xA =
1
2

)

Gbcc
m

(

y(s)A := D03; xA =
1
4

)

Gbcc
m

(
y(s)A := A2; xA = 0

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Gbcc:dis
m (xA = 1)

Gbcc:dis
m

(

xA =
3
4

)

Gbcc:dis
m

(

xA =
1
2

)

Gbcc:dis
m

(

xA =
1
2

)

Gbcc:dis
m

(

xA =
1
4

)

Gbcc:dis
m (xA = 0)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(27)   

Mbcc =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0

−

(
3
4

)4

1 − 4
(

3
4

)3(1
4

)

− 2
(

3
4

)2(1
4

)2

− 4
(

3
4

)2(1
4

)2

− 4
(

3
4

)(
1
4

)3

−

(
1
4

)4

−

(
1
2

)4

− 4
(

1
2

)4

1 − 2
(

1
2

)4

− 4
(

1
2

)4

− 4
(

1
2

)4

−

(
1
2

)4

−

(
1
2

)4

− 4
(

1
2

)4

− 2
(

1
2

)4

1 − 4
(

1
2

)4

− 4
(

1
2

)4

−

(
1
2

)4

−

(
1
4

)4

− 4
(

1
4

)3(3
4

)

− 2
(

1
4

)2(3
4

)2

− 4
(

1
4

)2(3
4

)2

1 − 4
(

1
4

)(
3
4

)3

−

(
3
4

)4

0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(28)   
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3.2. Hexagonal (D513) phase 

The hexagonal D513 phase was modelled with two substitutional 
sublattices (Al,Ni)3(Al,Ni)2 based on the Wagner-Schottky defect model 
[37], where the Gibbs energy may be expressed as a function of the 
fractional site occupancy of species i on sublattice s, 

GD513
m

(
y(s)i

)
=

∑

i

∑

j
y(1)i y(2)j

∘GD513
i:j +

1
2

RT
∑

s

∑

i
y(s)i ln

(
y(s)i

)

+
∑

i

∑

j>i

∑

k
y(s)i y(s)j y(t)k LD513

i,j:k +
∑

i

∑

j>i

∑

k≥i

∑

l>k
y(s)i y(s)j y(t)k y(t)l LD513

i,j:k,l

(29)  

where the sum of the site fractions of each sublattice sum to unity and 
the site fraction on each sublattice is related to the overall composition 
xi by 

xi =
1
2
∑

s
y(s)i (30) 

In the model used in this work, the reciprocal interaction parameter, 
LD513

i,j:k,l is neglected, and the interaction parameters LD513
i,j:k are expanded 

with a Redlich-Kister polynomial 

LD513
i,j:k =

∑

ν

(
yi − yj

)ν⋅ νLD513
i,j:k (31)  

where ν indicates the order of the Redlich-Kister polynomial and νLD513
i,j:k is 

a polynomial in temperature. 
The D513 structure was considered within a BWG framework to 

introduce a 1nn interaction parameter obtained from the 1nn bond en
ergy. The end-members of this sublattice model are Al, Al3Ni2, Al2Ni3, 
and Ni, all in the D513 structure. The A3B2 and A2B3 compounds have 
five unlike 1nn A-B bonds per five atom unit cell. 

The calculated energy of the A3B2 compound was used to determine 
the energy of each A-B bond uD513

AB in the Al-rich case, and the energy of 
the A2B3 compound was used to determine the energy of the A-B bond 
vD513

AB in the Ni-rich case. 

∘GD513
A3B2

−
3
5

∘GD513
A3A2

−
2
5

∘GD513
B3B2

= 5uD513
AB (32)  

∘GD513
A2B3

−
2
5

∘GD513
A3A2

−
3
5

∘GD513
B3B2

= 5vD513
AB (33) 

The 1nn interaction energies affecting each compound were there
fore introduced for the Al-rich and Ni-rich cases as being directly 
equivalent to the 1nn bond energies as 

LD513
A:A,B = LD513

A,B:B = uD513
AB (34)  

LD513
B:A,B = LD513

A,B:A = vD513
AB (35)  

3.3. Line compounds 

The D011, Al3Ni5, and Al4Ni3 phases were modelled as stoichiometric 
line compounds. For these AlxNiy compounds, the sublattice model 
(Al)x(Ni)y was employed. The single end-member of the sublattice 
model, ∘GAlxNiy

m (T), was calculated for each of the three stoichiometric 
compounds and used directly in the thermodynamic database. 

3.4. Liquid 

The liquid description was taken from Ansara et al. [9] and Dupin 
et al. [10], where a single sublattice substitutional solution model, such 
as was used for the fcc and bcc disordered solid solution phases, was 
employed. 

Gliquid
m (xi)=

∑

i
xi

∘Gliquid
i +RT

∑

i
xiln(xi) +

∑

i

∑

j>i
xixjLliquid

i,j (36)  

where the excess energy is expanded with a fourth order Redlich-Kister 
polynomial 

Lliquid
i,j =

∑

ν=0

4 (
xi − xj

)ν⋅ νLliquid
i,j (37)  

with 

νLliquid
i,j = νA+νBT (38)  

where νA and νB are constant coefficients. 

4. First-principles calculations 

4.1. Computational details 

First-principles calculations were performed for solid ordered end- 
member phases and disordered fcc and bcc solid solution phases. Cal
culations considering the liquid phase directly were not performed and 
in the results shown the liquid description from Dupin et al. [10] is used 
to provide a point of comparison with the experiment-based phase di
agram. The solid-only phase diagram, using only calculated data, is also 
shown in Section 5. The crystal structures for the ordered phases were 
produced from the known prototypes. Special Quasirandom Structures 
(SQS) [38] provide a structure that may be considered as an approxi
mation of the disordered state. The disordered fcc and bcc phases were 
modelled using SQS which can be generated at various compositions by 
the mcsqs code in the ATAT package [39]. In this work, SQS for fcc and 
bcc were considered at intermediate composition intervals of 12.5% 
across the composition range of 0–100 at.%Ni (12.5, 25, 37.5, 50, 62.5, 
75, 87.5 at.% Ni). The SQS at 25, 50, and 75 at.% Ni were adopted from 
Wolverton [40] and Jiang et al. [41] in which their supercells contain 16 
atoms. The remaining SQS supercells were generated as part of this 
work, consisting of 64 atoms. 

The total Gibbs energy, Gtotal(T), can be expressed as the summation 
of the energy of electrons at 0 K and the contributions of the various 
finite temperature effects, 

Gtotal(T)=GGS(0 K)+Gvib(T) + Gel(T) (39)  

where GGS(0 K) is the ground state (GS) energy at 0 K, Gvib(T) is the 
thermal vibrational contribution, and Gel(T) is the thermal electronic 
contribution. 

To obtain the GS energy of each ordered phase, GGS(0K), spin- 
polarised DFT calculations were performed using the Projector 
Augmented Wave (PAW) method [42] as implemented in the Vienna Ab 
initio Software Package (VASP) [43–45]. The Generalized Gradient 
Approximation and the Perdew-Burke-Ernzerhof pseudopotential 
(GGA-PBE) [46,47] were used in treating the exchange and correlation 
energy. An energy cutoff wavefunction was set up at 560 eV and a 
Monkhorst-Pack mesh [48] of more than 5000 k-points per unit cell was 
used. All ordered structures were fully relaxed until all force components 
were smaller than 0.002 eV/Å. 

Both the vibrational free energy and thermal electronic energy were 
calculated using the same procedure as Wang et al. [49] and Arroyave 
et al. [50] for compounds in the Al-Ni system, with the Alloy Theoretic 
Automated Toolkit (ATAT) package [51]. 

To obtain the temperature dependent thermal vibrational Gibbs en
ergy, Gvib(T), phonon calculations up to 2000 K were performed within 
the quasiharmonic approximation using the supercell approximation 
method. The phonon density of states (DOS) was used to fit the Birch- 
Murnaghan equation of state (EOS). A minimum of four volumes were 
generated for each structure, and at each volume, different supercells 
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with their corresponding atomic position perturbations were con
structed for interatomic force constant calculations. Afterwards, 
dynamical matrices were built and phonon frequencies and density were 
obtained by diagonalising the dynamical matrices. The vibrational free 
energy contributions at each volume, Fvib(T), were then calculated 
directly from the phonon frequencies and density of states with 

Fvib(T)= kBT
∫ ∞

0
ln
[

2sinh
(

hν
2kBT

)]

g(ν)dν (40)  

where ν are the frequencies of the allowed modes of oscillations, g(ν) is 
the phonon DOS, h is the Planck constant and kB is the Boltzmann 
constant [50]. 

The thermal electronic free energy, Fel, is calculated from the 
configurational entropy between the electrons excited to the states 
above the Fermi energy, εF, and the electrons that remain below the 
Fermi energy. This thermal electronic entropy is calculated from the 
electronic DOS, n(ε,V), which is a function of energy ε and volume V, 
and the Fermi distribution function, f, with 

Sel(V,T)= − kBN
∫

n(ε,V)[f ln f +(1 − f )ln(1 − f )]dε (41) 

Since 

Eel(V, T)=
∫

n(ε,V)f εdε −
∫ εF

n(ε,V)εdε (42)  

the thermal electronic free energy can be obtained using 

Fel =Eel − TSel (43) 

The Helmholtz free energy F(V,T) is obtained by combining each of 
the above contributions with 

F(V,T)=E0 K(V)+Fvib(V,T) + Fel(V,T) (44) 

The energies are considered at various volumes, and the total free 
energy can therefore be minimised with respect to volume at each 
temperature to obtain the equilibrium volume at each temperature, 
V*(T). Therefore the temperature dependent Helmholtz free energy 
becomes 

F(T)=E(V*(T))+Fvib(V*(T),T) + Fel(V*(T), T) (45) 

At atmospheric pressure, the PV term in the Gibbs energy can be 
neglected, and the Helmholtz free energy is used as Gtotal(T) in the phase 
diagram calculations. 

For the disordered phases, the Debye-Grüneisen model was used to 
obtain the temperature dependence of the thermal vibrational Gibbs 
energy contribution due to the prohibitive computational cost of per
forming phonon calculations for such low symmetry structures. The 
Debye-Grüneisen model has been widely used to obtain the finite tem
perature contribution to the Gibbs energy for SQS compounds such as by 
Lieser et al. [52] and Liu et al. [53], and has been shown to reproduce 
the experimental data well for the Al-Ni system [54]. According to 
Moruzzi et al. [55], the conventional Debye-Grüneisen model contains a 
system-specific scaling parameter (with the value of 0.617 obtained for 
several non-magnetic metals) based on an assumption of the relation
ship between the sound velocity and the bulk modulus. Nowadays, it is 
possible to determine the value of this parameter for specific system 
using the Debye temperature calculated from the 0 K phonon spectrum, 
as in the work of Shang et al. [54]. In this work, a value of 0.67 was 
calculated for this parameter for the Al-Ni system. 

4.2. Ordered phases 

The ground state Gibbs energies of formation of all ordered phases 
with reference to fcc Al and fcc Ni are shown in Fig. 2. 

A consequence of using the Compound Energy Formalism (CEF) 
sublattice description is that all end-members must be carefully assigned 
temperature dependent polynomial Gibbs energies, even if they are 
metastable. In conventional CALPHAD descriptions, such metastable 
compound energies are designated approximate values by extrapolation 
or estimation [56], and any deviation of the real case from the resulting 
ideal solution of phases is swept into the excess energy term, where 
parameters (that do not directly correspond to any physical properties) 
are optimised considering the experimental information to give a 
adequate description. First-principles calculations of metastable 
end-members often contradict the widely used estimates for elemental 
stabilities [57,58], and there are significant challenges faced in calcu
lating the temperature dependence of such energies in the case of a 
phase being dynamically unstable [59]. 

Most of the required end-members for this system were both 
dynamically and thermodynamically stable, but some lacked either 
dynamic and/or thermodynamic stability. Thermodynamic instability is 
not a problem when performing first-principles calculations, as it only 
indicates stability relative to a chosen stable elemental state. However, 
phonon calculations for dynamically unstable phases result in imaginary 
phonon frequencies that prevent the calculation of any temperature- 
dependent properties. For some of the metastable end-member com
pounds required for this system, there was a temperature range where 

Fig. 2. Calculated Gibbs energies of formation at 0 K, of all ordered phases 
considered in this work, relative to fcc Al and Ni. 

Fig. 3. Calculated Gibbs energies of formation of all ordered phases considered 
in this work, between 0 K and 2000 K, relative to fcc Al and Ni at each 
temperature. 
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they were unstable. 
The dynamically unstable end-members D03–Al3Ni and B32–AlNi 

(bcc phases), and pure Al and Ni in the D513 structure had a very small 
DOS contribution from imaginary phonon frequencies. There are tech
niques that can sometimes be used to eliminate imaginary phonon fre
quencies [59], but they were not applied in this case. Since the 
contribution to the DOS from the imaginary frequencies was small, the 
imaginary modes in the phonon DOS were ignored for the dynamically 
unstable phases mentioned above as has been done by Mantina et al. 
[60,61]. 

The Gibbs energies for all the ordered phases, obtained by phonon 
calculations, are shown in Fig. 3. 

To be used in a thermodynamic database, the calculated data for 
each end-member must usually be fit to a function of temperature. The 
polynomial form of the temperature dependence of the Gibbs energy has 
long been a topic of heated discussion in the CALPHAD community, 
particularly with regards to fitting from 0 K to high temperature [62]. 
Direct least-squares fitting of conventional G(T) functions (such as the 
kind recommended by Dinsdale [63]) cannot well reproduce calculated 
Gibbs energy data without manual optimisation and compromise even 
in a limited temperature range (such as 298 K to the melting point of the 
pure elements). Other Gibbs energy models exist that allow modelling of 
the whole temperature range (such as Chen and Sundman [64], and 
Roslyakova et al. [65]), but as segmented models, they have the disad
vantage that it is challenging to avoid discontinuities, as well as 
requiring some degree of manual optimisation rather than direct fitting. 

This work is a theoretical exploration of the ability to calculate a 
phase diagram from first-principles Gibbs energy data. With this in 
mind, a very simple quadratic G(T) model (constant Cp) was chosen in 
this work as it can reproduce the calculated data well across the full 
temperature range (0–2000 K). While such a database will not correctly 
reproduce thermodynamic functions dependent on the derivatives of the 
Gibbs energy (such as entropy and heat capacity), the phase boundaries 
are appropriately determined. A high quality fit of the calculated Gibbs 
energy data to a recommended model (such as Chen and Sundman [64]) 
could theoretically reproduce both the calculated phase diagram ob
tained in this work, as well as the thermodynamic functions that may be 
obtained by taking careful numerical derivatives of the calculated data. 
However, as this work aims only to reproduce the phase diagram with 

the minimum manual optimisation of parameters, the simplified Gibbs 
energy model applied here was deemed sufficient. 

All of the end-member Gibbs energies were fitted directly to a second 
order polynomial function between 0 K and 2000 K using a least-squares 
method and directly imported into the thermodynamic database (tdb) 
file used to perform the phase diagram calculation. The calculated pure 
element energies were used in the database in place of the SGTE pure 
element energies [63] for consistency and to allow calculation of the 
phase diagram down to 0 K. However, the SGTE descriptions for Al and 
Ni were reproduced well by the first-principles calculations, and there 
are no visible changes to the calculated phase diagram above 298 K 
when SGTE end member energies are used in place of the calculated 
pure element energies. Recent development of third generation CAL
PHAD databases, such as used in assessments such as by Dinsdale et al. 
[66], may allow future use of SGTE pure element descriptions at low 
temperature. The interaction parameters describing the excess energy of 
the ordered phases were all obtained directly from the end-member 
parameters according to the BWG model described above. All parame
ters for each phase were fitted directly to the calculated first-principles 
thermodynamic data for that phase without any optimisation consid
ering the phase boundaries or data relating to other phases. 

4.3. Disordered phases 

The disordered solid solution phases were considered via SQS cal
culations at several compositions. As SQS naturally have very low 
symmetry, it becomes highly computationally expensive to perform 
phonon calculations to determine the vibrational contribution to the 
Gibbs energy [67] and therefore calculations of the vibrational contri
bution to the Gibbs energy for the fcc and bcc SQS were performed using 
the Debye-Grüneisen model. However, the Debye-Grüneisen model is 
known to have a lower accuracy than phonon calculations [54], and 
cannot be used with full confidence at very high temperatures in some 
systems. Referring to the comparison of Debye-Grüneisen model calcu
lations and phonon calculations for the stable ordered phases, A1-Ni and 
L12-AlNi3 from Shang et al. [54], phonon calculations in the quasi
harmonic approximation were performed for fcc SQS at 25%, 50%, and 
75% Ni for comparison and validation, and based on these calculations 
data below 1500 K were used in fitting the Gibbs energies used in the 
database. 

It is not desirable to use data obtained partially from phonon cal
culations and partly from the Debye-Grüneisen model as data calculated 

Fig. 4. Gibbs energy of the disordered fcc phase as a function of composition, 
shown at 500 K temperature intervals between 0 K and 1500 K. The Gibbs 
energy is given with reference to the fcc (A1) end-members at that temperature. 
The points show the data calculated from first-principles and the lines show the 
fitted Gibbs energy. The interaction parameters were determined directly from 
the excess energy at xNi = 0.625, 0.75, and 0.875 with no further optimisation. 
During the fitting procedure, priority was given to reproducing the calculated 
data on the Ni-rich side as that is the range of stability of the disordered 
fcc phase. 

Fig. 5. Gibbs energy of the disordered bcc phase as a function of composition 
with reference to fcc Al and Ni, shown at 500 K temperature intervals between 
0 K and 1500 K. The points show the data calculated from first-principles and 
the lines show the fitted Gibbs energy. The interaction parameters were 
determined directly from the excess energy at xNi = 0.25, 0.5, and 0.75 with no 
further optimisation. 
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using the same method may incur cancellation of errors while data from 
different calculation sources may be inherently incompatible. As such 
only data from the Debye-Grüneisen model describing the mixing of the 
disordered phases was used in the final tdb, with data from the phonon 
calculations at some compositions used for comparison. 

The calculations of the Gibbs energy at various temperature and 
composition points were used to fit a Gibbs energy model as shown in 
equations (1) and (2). In order to minimise the impact of the offset be
tween energies calculated using phonon calculations and the Debye- 
Grüneisen model, Gdis

m (xi) was initially considered using only data from 
the Debye-Grüneisen model, where ∘Gi is used directly and Ldis

i,j are fitted. 
Then, the Ldis

i,j were used in the database in combination with ∘Gi taken 
directly from the phonon calculations. There was reasonable agreement 
between the Ldis

i,j parameters obtained using the fcc phonon calculations 

at various compositions and those obtained using the Debye-Grüneisen 
model at the same compositions. 

Unlike the end-member phonon calculations that were fitted with a 
quadratic Gibbs energy function in temperature, it was found that a first 
order polynomial better reproduced the data calculated with the Debye- 
Grüneisen model, which were fitted between 0 K and 1500 K. 

Fitting the disordered phase data to the temperature and composi
tion parameterised model may be done in a variety of ways before being 
included in the database. Exact (direct) fitting of the excess energy of the 
disordered phase to the interaction parameters may be done but requires 
a large number of parameters and generally results in overfitting. 
Generally, such parameters are fitted as a compromise between the 
thermodynamic data relating to the disordered phase and the known 
phase boundaries. In this work, the calculated Gibbs energy as a function 
of temperature and composition was fitted directly to three intermediate 
compositions with a second order Redlich-Kister polynomial with co
efficients given by low-order polynomials in temperature. This direct 
fitting is in contrast to the usual optimisation method where the phase 
boundaries are also considered in fitting the parameters of the phase. To 
correspond with the fitting of three intermediate compositions, the 
excess energy was considered using a Redlich-Kister polynomial of 
second order. To avoid overfitting of the data, the number of parameters 
used to describe the excess energy was kept as low as possible. The fitted 
disordered description for the fcc and bcc phases are shown compared to 
calculated data at several temperatures in Figs. 4 and 5 respectively. 

For the disordered fcc solid solution phase, the interaction parame
ters were fitted giving priority to the Ni-rich data where the phase is 
stable. In Fig. 4 it can be seen that the calculated data do not exactly fit a 
smooth continuous curve at each temperature, and the calculated en
ergies at xNi = 0.5 appears relatively too stable. These data are the 
calculated from SQS, and the structure was fully relaxed during the DFT 
calculation. When using fully relaxed SQS calculations, the symmetry is 
naturally distorted from the ideal lattice because of size mismatch be
tween atoms along with other factors [68]. This occurs to a different 
extent in each structure. In the xNi = 0.5 case, the energy stabilisation 
from full relaxation (compared to symmetry preserving volume relaxa
tion) was greater than in other structures. Based on an analysis of the 
radial distribution function of relaxed and unrelaxed structures, it was 
found that while the other fcc structures had preserved symmetry during 
relaxation, the xNi = 0.5 has lost its fcc character. Therefore it is 
concluded that the xNi = 0.5 calculation is not a good representation of 
the fcc solid solution phase, and it is excluded from the fitting procedure. 

Fig. 6. The CALPHAD phase diagram from Dupin et al. [10], based on exper
imental and calculated thermodynamic and phase diagram data. 

Fig. 7. The phase diagram obtained in this work, where the solid phase de
scriptions were obtained directly from first-principles calculation of thermo
dynamic properties, and the liquid description is taken directly from Dupin 
et al. [10]. 

Fig. 8. Solid phase diagram obtained in this work using only first-principles 
data as input. 
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For the disordered bcc solid solution phase, examination of the radial 
distribution function showed that the bcc symmetry was lost during full 
relaxation of the SQS. Therefore data was calculated using volume 
relaxation only, and compositions across the full composition range 
(xNi = 0.25, 0.5, 0.75) were used in the fitting to the Redlich-Kister 
polynomial. 

The fitting of the disordered phase data has a significant effect on the 
phase boundaries in the resulting diagram. If, as is conventionally done, 
the experimental phase diagram data was simultaneously considered 
alongside the calculated Gibbs energy data, it would surely be possible 
to reasonably reproduce both the experimental phase boundaries and 
the calculated Gibbs energies. Optimisation considering experimental 
knowledge in this way may fit Gibbs energies that also include contri
butions that are not being considered in this work, such as the effects of 
short range ordering from higher order clusters beyond the pair 
approximation. However, in this work, only the calculated thermody
namic data for the phase being optimised in the BWG pair framework 
was considered. 

5. Results and discussion 

The phase diagram from the assessment by Dupin et al. [10] is shown 
in Fig. 6, and the phase diagram obtained using only first-principles data 
to describe the solid phases is shown in Fig. 7. All phase diagrams were 
calculated using the Thermo-Calc software package [69]. As no 
first-principles calculations were performed for the liquid phase, the 
liquid description from Dupin et al. is borrowed for comparison and used 
in this phase diagram. The assessed phase diagram from Dupin et al. 
[10] can be seen in Fig. 1 to reproduce the experimental phase diagram 
data well. All of the primary features of the experimentally-known phase 
diagram are reproduced by the phase diagram based on first-principles 
calculations in Fig. 7. The solid-only phase diagram is shown in Fig. 8 
with the same temperature scale, however this cannot be compared with 
the equivalent metastable phase diagram from Dupin et al.’s experi
mentally based CALPHAD assessment as the high temperature extrap
olations of the solid phases in the assessment from Dupin et al. are not 
well behaved. 

The peritectic temperatures of the D011 and D513 phases are pre
dicted with good agreement with experimental studies [11,12]. The 
CALPHAD phase diagram from Ansara et al. [9] (and also Dupin et al. 
[10]) has invariant reaction temperatures at 1123.6 K and 1410.3 K for 
the D011 and D513 phase respectively. This first-principles phase dia
gram in this work has the same reactions at 1008.8 K and 1324.7 K. The 
solubility of the D513 phase is also predicted with good agreement with 
the experiment-based phase diagram. The Al3Ni5 phase is stable to a 
higher temperature than is experimentally observed and has a different 
invariant reaction type, but this is attributed to the modelling of the bcc 
phases with which it is in equilibrium. The fcc phases (A1 and L12) are 
present correctly, reproducing most of the topological features. The 
A1-Ni phase has solubility in agreement with experiment, and no solu
bility of the A1-Al phase is present. In the CALPHAD assessment from 
Dupin et al., following experimental investigation, the L12-AlNi3 γ’ 
phase does not melt congruently, but has an L12+B2⇌ liquid eutectic 
reaction at 1642.2 K and 74.6 at.%Ni and an L12⇌ A1+liquid peritectic 
reaction at 1643.3 K and 75.6 at.%Ni. Although these invariants are at 
approximately the correct temperature in the first-principles phase di
agram (1783.2 K and 1790.8 K), the exact topology is not correctly 
predicted. This is attributed to the use of the liquid phase description 
from Dupin et al. that was optimised considering different solid de
scriptions. Furthermore, inaccuracies in the bcc and fcc phases may be 
attributed to the use of interaction parameters with temperature 
dependence obtained from the Debye-Grüneisen model in place of 
phonon calculations that have a higher-accuracy at these high 
temperatures. 

5.1. Liquidus 

Comparing the experimentally-based and calculated phase diagrams 
in Figs. 6 and 7, it can be seen that the congruent melting temperature of 
the B2 phase relative to the liquid description from Ansara et al. and 
Dupin et al. [9,10] is higher than in the experimentally based phase 
diagram, at 2457 K compared to 1953 K. At first glance, this seems to 
suggest that the B2 Gibbs energy function derived from first-principles 
methods does not provide an adequate description. However, in the 
CALPHAD approach, in the absence of vast quantities of reliable 
experimental data pertaining to the liquid phase, the excess parameters 
describing the non-ideal mixing of liquid elements are often fitted 
considering experimentally known liquidus and solidus phase bound
aries. Although neither Ansara et al. nor Dupin et al. give great detail of 
the process by which they arrived at the optimised parameters, by 
considering the available experimental information reported it is prob
able that the determination of the liquid parameters must have been 
done considering the known phase boundaries. This means that the 
liquid description is contingent on the solid phase descriptions from 
Ansara et al. or Dupin et al. to reproduce a physically correct phase 
diagram, rather than being independently determined. As the phase 
descriptions calculated from first-principles data in this work are not 
identical to the descriptions obtained via optimisation of parameters 
considering experimental data by Ansara et al. or Dupin et al., the same 
liquid description cannot be expected to produce a phase diagram with 
the same liquidus and solidus temperatures. While the description 
calculated in this work can only be used below the solidus, including the 
liquid phase from the assessed description from Dupin et al. as done in 
Fig. 7 can illustrate how significant the adjustments to the liquid pa
rameters ought to be to obtain a description that reproduces the full 
condensed phase diagram. 

5.2. Stability of L21 phase 

In the phase diagram obtained from only first-principles data, the 
wide Ni-rich bcc solubility is present, but rather than being an extended 
B2 region as seen in the experimentally based CALPHAD phase diagram 
from Dupin et al. [10], there is a narrower B2 region and a second order 
phase boundary separating a binary L21 Heusler phase region further 
away from the ideal B2 stoichiometry (with sublattice condition y(1)i =

y(2)i ∕= y(3)i ∕= y(4)i ). This second order phase transition is marked 
approximately with a dashed line in the phase diagrams in Figs. 7 and 8. 
The bcc solubility is largely determined by the fitting of the disordered 
bcc phase. In this composition range, B2 and binary L21 are challenging 
to distinguish experimentally. As such, it is possible that the 

Fig. 9. Site occupancy of the B2 phase at 1500 K as modelled by Ansara 
et al. [9]. 
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experimentally determined B2 region was mischaracterised. However, 
the stability of the L21 phase could also be an artefact of the fitting 
procedure, or a result of the use of the Debye-Grüneisen model to obtain 
the temperature dependence of the Gibbs energy of the disordered 
phase. At 1500 K, the L21 phase is stable compared to the B2 phase by 
1.5 kJ/mol at the Ni-rich solubility limit, with decreasing relative sta
bility towards the B2/L21 phase boundary. This energy difference is 
within the uncertainty of the calculated data at this temperature, so 
conclusions cannot be drawn regarding the ordering behaviour, but the 
similarity of the energies of these two phases means that they can 
describe a representative phase diagram topology of an ordered bcc 
phase. 

5.3. Al-rich B2 solubility 

While the phase diagram produced in this work reproduces the 
general experimentally determined topology of the nickel-rich ordered 
bcc phases seen in the experimentally-based assessment from Dupin 
et al. in Fig. 6, it can clearly be seen in the calculated first-principles 
phase diagram in Fig. 7 that the B2 single phase region does not 
reproduce the experimentally seen aluminium-rich solubility of the B2 
phase. In the phase diagram calculated in this work, where the 
description of the bcc phases comes only from first-principles calcula
tions of ordered phases, there is very limited solubility on the Al-rich 
side. 

As has been experimentally seen in the Al-Ni system [70] and has 
been modelled by Ansara et al. [9] (and then used by Dupin et al. [10]), 
the solubility of the B2 phase is facilitated by a different mechanism in 
the Al-rich and Ni-rich regions. In the work by Ansara et al., a three 
sublattice model (Al,Ni,Va)1 /

2(Al,Ni,Va)1 /

2(Va)3 was used to model the 
B2 phase. The site occupancy for each constituent on each sublattice in 
the B2 phase at 1500 K, as modelled by Ansara et al., is shown in Fig. 9. 
In the Al-rich region, the solubility is primarily facilitated by vacancies 
on the second sublattice with almost no Al occupancy on that sublattice, 
while in the Ni-rich region, it is primarily facilitated by Al and Ni sub
stitution on the first sublattice, with almost no vacancies present on 
either sublattice. 

In this work, no vacancies were considered in the order-disorder 
partition model used for the bcc phases. The simplified model used 
correctly predicts that Al and Ni substitutions on each sublattice 

facilitate the Ni-rich solubility, and that such substitutions do not pro
duce a wide solubility region. However, without including vacancies in 
the sublattice model, there is no alternative mechanism to produce the 
desired Al-rich homogeneity range. As such, this solubility range cannot 
be expected to be reproduced in these calculations, and thus this feature 
is excluded from the comparison. 

5.4. Magnetism 

In the simplified model created in this work, the effects of magnetism 
were not directly considered with a magnetic term in the Gibbs energy 
expression. Pure nickel and nickel-rich compounds such as the γ’ phase 
(AlNi3-L12) are known to be magnetic, which is visible in a physical 
feature on the experiment-based phase diagram in Fig. 6 on the 
boundary between the Ni-rich L12 phase and A1-Ni. Without direct 
consideration of the contribution to the Gibbs energy due to magnetism 
via specific physical models, such feature is very difficult to reproduce. 
In the first-principles calculations used in this work, spin polarisation 
was used for magnetic phases, so that the magnetism of the end-member 
phases was treated implicitly. However, it can be seen that the variation 
of the magnetic contribution with composition is not as experimentally 
observed, and the L12-A1 boundary in this first-principles only phase 
diagram in Fig. 7 is smooth and continuous. 

5.5. Stability of Al4Ni3 

The ambiguity regarding the Al4Ni3 phase has lead to its exclusion 
from some phase diagrams. In the calculated phase diagram in this work, 
the Al4Ni3 phase appears as a stable phase from the ground state up to 
880 K. This is consistent with the experimental investigations regarding 
this phase [7] and the transition temperature of 853 K in the experi
mental phase diagram from Urrutia et al. [8]. The Al4Ni3 phase appears 
in competition with the D513 phase and the ordered B2 phase. While the 
Al4Ni3 phase appears on the Al-Ni convex hull at low temperature, as 
shown in Fig. 2, because the substoichiometric extension of the B2 phase 
due to vacancies is not modelled in this work, this cannot be said to 
conclusively demonstrate the prediction that the Al4Ni3 phase is stable 
at higher temperatures. However, considering the experimentally 
observed solubility of the B2 phase, it would not be expected to fully 
destabilise any precipitation of the Al4Ni3 phase. 

Fig. 10. Calculated enthalpy of formation of solid phases with respect to fcc Al 
and fcc Ni from this work at various temperatures (lines) compared with 
experimental measurements (points) [72–76]. 

Fig. 11. Calculated partial molar Gibbs energy of aluminum and nickel with 
respect to fcc Al and fcc Ni at several temperatures (lines) compared with 
experimental measurements (points) [77–81]. 
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5.6. Thermodynamic properties 

As well as considering the topology of the phase diagram, a com
parison with the experimental thermodynamic data may also be made. 
Fig. 10 shows the calculated heat content from this work at various 
temperatures compared with experimental measurements. It can be seen 
that the experimental data is reproduced within the range of scatter. The 
aluminum-rich side is better reproduced by the calculations in this work 
than by the assessment from Ansara et al. [9]. This was similarly seen in 
an assessment of the Al-Ni phase diagram by Chen et al. [71] incorpo
rating first-principles insights. 

Fig. 11 shows the partial Gibbs energy of aluminum and nickel 
calculated in this work compared with experimental measurements at 
various temperatures. Within this temperature range, the liquid phase is 
present at some compositions, so only a rough comparison can be made 
using the borrowed liquid description that is not optimised considering 
the solid phases. Despite this, it can be seen that the experimental data is 
reproduced reasonably within the scatter, with a similar degree of 
agreement to the assessment from Ansara et al. [9]. The major dis
crepancies concern the B2 phase, where the aluminum-rich side was not 
modelled in this work. 

6. Conclusions 

In recent years, the use of first-principles calculations in CALPHAD 
assessments has become standard practice, but complex features and 
disordered phases have generally meant that first-principles calculations 
alone have not been able to fully substitute all experimental data when 
used in the conventional way. This work attempts to harness various 
sublattice modelling and cluster approximation techniques to fully 
parameterise a thermodynamic description of the solid phases in the 
aluminium-nickel system directly from first-principles calculations of 
the Gibbs energy. 

DFT and phonon calculations were performed for ordered phases, 
and SQS were used alongside the Debye-Grüneisen model to consider 
the disordered phases. Four substitutional sublattice order-disorder 
partitioning models were used together with the Bragg-Williams- 
Gorsky model to include an energy contribution that mimics the effect 
of short range ordering. The Gibbs energy functions were obtained 
entirely through direct fitting to the calculated first-principles single 
phase data, without considering any experimental thermodynamic or 
phase diagram information. The liquid phase was not modelled in this 
work, and so the liquid description was borrowed from the widely-used 
assessment from Dupin et al. [10]. The resulting phase diagram predicts 
all major features such as the stable phases and ranges of solubility of the 
experimentally known phase diagram. 

As the liquid description was optimised considering a different set of 
solid phase Gibbs energy functions by Dupin et al., the liquidus is not 
fully reproduced, however, its topological similarity indicates good 
agreement between the previously assessed Gibbs energies and the ones 

calculated in this work. Unlike the assessment from Dupin et al., the 
first-principles phase diagram predicts the stability of an Al4Ni3 phase 
that has been intermittently experimentally observed but generally not 
considered as one of the stable phases in this system. The first-principles 
phase diagram also predicts that the wide Ni-rich solubility of the or
dered bcc phase has a second order phase transition from B2 to L21 far 
from the B2 stoichiometry, which may give some insight into the bcc 
ordering. Vacancies were not considered as a constituent in the bcc 
phases therefore no Al-rich solubility is present. No specific magnetic 
features were considered in this work. 

Using the aluminium-nickel system as a prototype, this work dem
onstrates that it is possible to obtain a CALPHAD phase diagram for a 
solid system at a practical application level using only first-principles 
calculations as input, that may be used both to consider unknown sys
tems and for materials informatics explorations. Such a diagram could 
be used alongside preliminary experimental investigations to guide 
future experiments, potentially saving significant time and expense. 
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Appendix A 

Four-sublattice construction for the fcc phases 

As described by Kusoffsky et al., each of the four sublattices is a cubic sublattice of the fcc cell, which form four corners of a tetrahedron in the unit 
cell. This is shown in Fig. 12. By the crystallographic symmetry of the fcc lattice, each site on the tetrahedron must be equivalent, and the bond length 
between each atom in the tetrahedron must be equal and of first nearest neighbour (1nn) type. The next nearest neighbour (2nn) for each atom is its 
equivalent site on the next tetrahedron. In Fig. 12, some of the 1nn bonds are indicated with dashed lines, and some 2nn bonds are shown with solid 
lines. Each sublattice is equivalent and therefore contains a quarter of the atoms per mole. Therefore, the four-sublattice model used to describe the 
various ordered fcc-based structures is (Al,Ni)1 /

4(Al,Ni)1 /

4(Al,Ni)1 /

4(Al,Ni)1 /

4. 
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Fig. 12. The fcc crystal structure indicating the sites of the four symmetrically equivalent sublattices. 1nn bonds are shown with dashed lines, and 2nn bonds with 
solid lines. 

The four-sublattice model has the possible sublattice occupation ordered end-members (where each sublattice is singularly occupied) fcc-Al (A1), 
Al3Ni (L12), AlNi (L10), AlNi3 (L12), and fcc-Ni (A1). The energy of each fully ordered compound with respect to the pure elements in the disordered 
state is considered in terms of the unlike 1nn bond energy by counting the number of equivalent 1nn bonds in each structure. 

Four-sublattice construction for the bcc phases 

A similar tetrahedron construction was used by Abe and Shimono [34] to represent the bcc phases, but while fcc phases have a single lattice 
parameter defining the volume, the asymmetry of the a and c lattice parameter in the conventional bcc unit cell means that the six bonds within the 
tetrahedron are of either 1nn and 2nn type, and the bonds between equivalent sites on neighbouring tetrahedra are of third nearest neighbour (3nn) 
type. 

Fig. 13 Shows an example of the 1nn and 2nn bonds in the bcc unit cell.

434

343

343

434
12

Fig. 13. The bcc crystal structure, indicating the sites of the four sublattices. The four sublattice sites make a repeating tetrahedron structure. The 1nn bonds in the 
tetrahedron are marked with dashed lines, and the 2nn bonds are marked with dotted lines. The solid lines mark the cubic cell, and do not correspond to the 
3nn bonds. 

The crystal structure may be separated into two pairs of equivalent sublattices, each containing a quarter of the atoms. The four sublattice model is 
therefore (Al,Ni)1 /

4(Al,Ni)1 /
4(Al,Ni)1 /

4(Al,Ni)1 /
4. The presence of 1nn and 2nn bonds within the tetrahedron construction arising from the asymmetry of 

the bcc sublattice results in two different possible ordering configurations in an equiatomic binary compound. The end-member ordered phases for the 
bcc four-sublattice model are therefore Al (A2), Al3Ni (D03), AlNi (B2), AlNi (B32), AlNi3 (D03), and Ni (A2). 

Following Abe and Shimono [34] and Lindahl et al. [36], a pair interaction model is constructed to relate the reciprocal interaction parameters to 
the energies of the end-member compounds within a four substitutional sublattice order-disorder partitioning model. It is again assumed that all 
ordering energy in the compound relative to the end-members comes from the unlike bonds. From Lindahl et al., the number of bonds may be averaged 
over the number of tetrahedra that share the bond, so as to avoid double counting any bonds [36]. Each 1nn bond is shared by six tetrahedra, each 2nn 
bond is shared by four tetrahedra, and each tetrahedron contains four atoms shared between 24 tetrahedra. Therefore the Gibbs energy of each of the 
end-members ijkl for the above model, Gbcc:ord(4SL)

i:j:k:l , can be expressed in terms of the number of 1nn bonds, x, and 2nn bonds, y as 

Gbcc:ord(4SL)
i:j:k:l =

x
6u

bcc
AB + y

4v
bcc
AB

4
24

= x⋅ubcc
AB +

3
2

y⋅vbcc
AB (46)  

where ubcc
AB and vbcc

AB are the 1nn and 2nn bond energy respectively. 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.calphad.2020.102008. 
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