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Abstract The authors determine all possible numerical semigroups at ramification
points of double coverings of curves when the covered curve is of genus three and
the covering curve is of genus eight. Moreover, it is shown that all of such numerical
semigroups are actually of double covering type.
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1 Introduction

A numerical semigroup is a submonoid of N0, the additive monoid of non-negative
integers, such that its complement is a finite set. The genus g(H) of a numerical
semigroup H is defined by g(H) = |N0\H |. We denote by a → b a sequence
a, a + 1, a + 2, . . . , b of non-negative integers and 〈n1, n2, . . . , nr 〉 stands for the
numerical semigroup generated by the positive integers n1, n2, . . . , nr .

In this paper a curve means a projective, smooth and irreducible curve over an
algebraically closed field of characteristic zero unless otherwise mentioned. We denote
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572 T. Harui, J. Komeda

by X (r) the variety of effective divisors of degree r on X . We simply write X instead
of X (1).

For a point P on a curve X , the semigroup

H(P) = {m ∈ N0 | there exists a rational function f on X with( f )∞ = m P}

is a numerical semigroup of genus g(X). A numerical semigroup H is said to be
Weierstrass if there exist a curve X and a point P on X such that H(P) = H .

For a numerical semigroup H̃ , we define the set d2(H̃) by

d2(H̃) = {h ∈ N0 | 2h ∈ H̃}.

This is also a numerical semigroup.

Definition 1.1 A numerical semigroup H̃ is said to be of double covering type, or
simply DC, if there exists a double covering π : X → Y of curves with a ramification
point P̃ ∈ X such that H̃ = H(P̃).

It is easy to verify that d2(H̃) = H(π(P̃)) and g(H̃) ≥ 2g(d2(H̃)) for the semi-
group of double covering type in the definition. A numerical semigroup of double
covering type is Weierstrass.

It is an interesting and important problem to determine whether a given numerical
semigroup is Weierstrass, or moreover, of double covering type or not. Let H̃ be a
numerical semigroup with d2(H̃) = H . In this article we shall show that H̃ is DC if
g(H) = 3 and g(H̃) = 8 (see Theorem 1.2 for the precise statement).

First we briefly collect the results when g(H) ≤ 3.
If g(H) = 0, i.e., H = N0 then 2 ∈ H̃ . In this case H̃ appears as a Weierstrass

semigroup of a ramification point of a hyperelliptic covering ([3, Proposition 2.2]).
If g(H) = 1, 2 then H̃ is DC unless H̃ = 〈3, 5, 7〉, which is clearly not DC. (see

[5, Main Theorem], [3, Theorem 3.5, Theorem 4.11], [2, Theorem 1], [1, Lemma 7,
Lemma 9] and also [6, Theorem 4.1, Theorem 4.3] when g(H̃) is large).

If g(H) = 3 then some partial results are already known (see [4, Main Theorem]
and also [7, Example 3.5, Example 3.6, Example 3.9]) when g(H̃) is large.

In general our problem can be treated by a systematic method if the genus of H̃ is
large with respect to that of d2(H̃). Indeed, it is proved in [4, Main Theorem] that a
semigroup H̃ with g(d2(H̃)) = 3 is DC if g(H̃) ≥ 9. Unfortunately, the argument in
[4] is not directly applicable to the cases of lower genera. Thus we treat such cases
separately according to the genus of the semigroup H̃ .

Back to our situation, let H be a numerical semigroup of genus three. Then H =
〈2, 7〉, 〈3, 4〉, 〈3, 5, 7〉 or 〈4, 5, 6, 7〉. Each of them is Weierstrass. More precisely, for
a curve � of genus three and a point P on �, H(P) is determined as follows:

If� is hyperelliptic, then the Weierstrass semigroup H(P) is 〈2, 7〉 (resp. 〈4, 5, 6, 7〉)
when P is a ramification point (resp. a non-ramification point) of the hyperelliptic cov-
ering from � to P

1.
If � is non-hyperelliptic, we identify � with a smooth plane quartic. Then H(P)

is 〈3, 4〉, 〈3, 5, 7〉 or 〈4, 5, 6, 7〉 according as P is a hyperflex, an ordinary flex or a
non-flex of �.
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Numerical semigroups of genus eight and double coverings 573

The following is the main result of this article:

Theorem 1.2 Let H be a numerical semigroup of genus three, i.e., H = 〈2, 7〉,
〈3, 4〉, 〈3, 5, 7〉 or 〈4, 5, 6, 7〉. Let H̃ be a numerical semigroup of genus eight such
that d2(H̃) = H. Then H̃ is of double covering type.

For H = 〈2, 7〉 the assertion follows from [5, Main Theorem]. Thus we shall
exclude it from consideration.

2 Determination of numerical semigroups

To begin with, we determine all numerical semigroups under consideration. See Table 1
for the result of the argument below.

First of all we recall the following basic facts on numerical semigroup:

Lemma 2.1 Let H̃ be any numerical semigroup.

(i) H̃ ⊂ d2(H̃).
(ii) 2d2(H̃) = {2h | h ∈ d2(H̃)} = H̃ ∩ 2N0.

In what follows let H̃ be a numerical semigroup of genus eight such that H = d2(H̃)

is 〈3, 4〉, 〈3, 5, 7〉 or 〈4, 5, 6, 7〉. Let G̃ = N0\H̃ be the complement of H̃ and n the
minimum odd element of H̃ . Then we obtain two facts:

Claim. The following hold.

(i) G̃ ⊃ {1 → 4}.
(ii) 5 ≤ n ≤ 11.

Proof of the claim (i) It is a direct consequence of Lemma 2.1 that G̃ � 1, 2 and 4.
Suppose that 3 ∈ H̃ . If H = 〈3, 4〉 or 〈4, 5, 6, 7〉 then H̃ ⊃ 〈3, 8〉, which implies
that g(H̃) ≤ g(〈3, 8〉) = 7, a contradiction. In the same way, if H = 〈3, 5, 7〉 then
H̃ ⊃ 〈3, 10, 14〉, which implies that g(H̃) ≤ g(〈3, 10, 14〉) = 7, a contradiction
again. It follows that 3 ∈ G̃.

(ii) If n ≥ 13, then G̃ ⊃ {1 → 5, 7, 9, 11}. Comparing the numbers of elements
in these sets, we see that G̃ = {1 → 5, 7, 9, 11}. Then, however, H̃ � 6, 8 and
10, which implies that H ⊃ 〈3, 4, 5〉. In particular g(H) ≤ g(〈3, 4, 5〉) = 2, a
contradiction. �

We divide our cases according to H and the value of n.
Case(a) H = 〈3, 4〉. First observe that G̃ ⊃ {1 → 5, 10} from Claim (i) and Lemma
2.1. In particular n = 7, 9 or 11.
Subcase(a–i) If n = 7, then H̃ ⊃ 〈6, 7, 8〉, namely, G̃ ⊂ {1 → 5, 9, 10, 11, 17}.
Hence H̃ contains exactly one element in {9, 11, 17}. Then H̃ must contain 17 since
6, 8 ∈ H̃ . Thus H̃ = 〈6, 7, 8, 17〉 in this case.
Subcase(a–ii) If n = 9, then H̃ ⊃ 〈6, 8, 9〉 or equivalently, G̃ ⊂ {1 →
5, 7, 10, 11, 13, 19}. Therefore H̃ contains two elements in {11, 13, 19}. It follows
that H̃ = 〈6, 8, 9, 11〉 or 〈6, 8, 9, 13〉.
Subcase(a–iii) If n = 11, then G̃ ⊃ {1 → 5, 7, 9, 10}. Comparing the numbers of
elements in these sets, we see that G̃ = {1 → 5, 7, 9, 10}, i.e., H̃ = 〈6, 8, 11, 13, 15〉.
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Table 1 The classification of H̃
H̃

n H = 〈3, 4〉 H = 〈3, 5, 7〉 H = 〈4, 5, 6, 7〉
5 〈5, 6, 14〉 〈5, 8, 12, 14〉
7 〈6, 7, 8, 17〉 〈6, 7, 10, 11〉 〈7 → 10, 12〉

〈6, 7, 10, 15〉 〈7, 8, 10, 11, 12〉
〈7, 8, 10, 12, 13〉

9 〈6, 8, 9, 11〉 〈6, 9, 10, 11, 14〉 〈8 → 14〉
〈6, 8, 9, 13〉 〈6, 9, 10, 13, 14, 17〉 〈8 → 12, 14, 15〉

〈8 → 10, 12 → 15〉
11 〈6, 8, 11, 13, 15〉 〈6, 10, 11, 13, 14, 15〉 〈8, 10 → 15, 17〉

Case(b) H = 〈3, 5, 7〉. Note that G̃ ⊃ {1 → 4, 8} in this case.
Subcase(b–i) If n = 5 then H̃ ⊃ 〈5, 6, 14〉. We see that H̃ = 〈5, 6, 14〉 by comparing
the genera of these numerical semigroups.
Subcase(b–ii) If n = 7 then H̃ ⊃ 〈6, 7, 10〉. In other words G̃ ⊂ {1 → 5, 8, 9, 11, 15}.
Hence H̃ contains exactly one element in {9, 11, 15}. If H̃ contains 9 then H̃ also
contains 15 since 6 ∈ H̃ . It follows that H̃ = 〈6, 7, 10, 11〉 or 〈6, 7, 10, 15〉.
Subcase(b–iii) If n = 9 then H̃ ⊃ 〈6, 9, 10, 14〉, namely, G̃ ⊂ {1 →
5, 7, 8, 11, 13, 17}. Therefore H̃ contains exactly two elements in {11, 13, 17}. Fur-
thermore, if 11 is a non-gap then 17 is also a non-gap since 6 ∈ H̃ . Thus H̃ =
〈6, 9, 10, 11, 14〉 or H̃ = 〈6, 9, 10, 13, 14, 17〉.
Subcase(b–iv) If n = 11 then G̃ ⊃ {1 → 5, 7, 8, 9}, which implies that G̃ = {1 →
5, 7, 8, 9} by comparing the numbers of elements in these sets. That is to say, H̃ =
〈6, 10, 11, 13, 14, 15〉.
Case(c) H = 〈4, 5, 6, 7〉. Note that G̃ ⊃ {1 → 4, 6} by virtue of Claim and an easy
observation.
Subcase(c–i) If n = 5 then H̃ ⊃ 〈5, 8, 12, 14〉. In fact H̃ = 〈5, 8, 12, 14〉 since both
of these numerical semigroups are of genus eight.
Subcase(c–ii) If n = 7 then H̃ ⊃ 〈7, 8, 10, 12〉. Hence G̃ ⊂ {1 → 6, 9, 11, 13},
which implies that there exists an extra non-gap belonging to {9, 11, 13}. Thus H̃ =
〈7 → 10, 12〉, 〈7, 8, 10, 11, 12〉 or 〈7, 8, 10, 12, 13〉.
Subcase(c–iii) If n = 9 then H̃ ⊃ 〈8, 9, 10, 12, 14〉, namely, G̃ ⊂ {1 →
7, 11, 13, 15}. Hence there exists exactly one gap in {11, 13, 15}, which implies that
H̃ = 〈8 → 14〉, 〈8 → 12, 14, 15〉 or 〈8, 9, 10, 12 → 15〉.
Subcase(c–iv) If n = 11 then G̃ ⊂ {1 → 7, 9}. In fact G̃ = {1 → 7, 9} since these
two sets has the same cardinality. Hence H̃ = 〈8, 10 → 15, 17〉.

3 Preliminary results

In the rest of this article we show that every numerical semigroup in Table 1 is of double
covering type. In this section we show several results on numerical semigroups and
curves needed later.
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Numerical semigroups of genus eight and double coverings 575

Let H be any Weierstrass semigroup of genus q, H̃ a numerical semigroup of genus
g with d2(H̃) = H . We consider a subsemigroup H̃0 := 2H + nN0 of H̃ , where n is
the minimum odd element of H̃ .

Lemma 3.1 Keep the notation as above. Then g ≤ g(H̃0) = 2q + (n − 1)/2.

Proof We only have to verify that g(H̃0) = 2q + (n − 1)/2. Let G (resp. G̃0) be the
complement of H (resp. H̃0). It is easy to show that

G̃0 ∩ 2N0 = 2G and G̃0 ∩ (n + 2N0) = n + 2G.

Thus the number of even elements of G̃0 and that of odd elements of G̃0 greater than
n are equal to q respectively. Furthermore, the rest of elements of G̃0 are the positive
odd integer less than n. Hence g(H̃0) = 2q + (n − 1)/2. �
Remark 3.2 Claim (ii) and Lemma 3.1 are particular cases of a more general result
(see, for example, [7, Lemma 2.4]).

Define a non-negative integer r by the equation g = 2q + (n − 1)/2 − r . Then we
obtain a sequence of numerical semigroups H̃0 ⊂ H̃1 ⊂ · · · ⊂ H̃s = H̃ inductively by
setting H̃ j := H̃ j−1 + (n +2l j )N0 for j = 1, 2, . . . , s, where n +2l j is the minimum
odd element of H̃ not belonging to H̃ j−1. Then it is easy to verify that s ≤ r since
g(H̃0) = 2q + (n − 1)/2.

To prove Theorem 1.2, it suffices to show the existence of certain effective divisor
on a curve because of the following theorem.

Theorem 3.3 ([4, Theorem 2.2]) Take any curve � of genus q and a point P on �

with H(P) = H. Assume that there exists an effective divisor �r ∈ �(r) satisfying
the following conditions:

(C1) �r does not contain P.
(C2) h0(�,�r ) = 1.
(C3) h0(�, l j P + �r ) = h0(�, (l j − 1)P + �r ) + 1 for j = 1, 2, . . . , s.
(C4) the linear system |n P − 2�r | has a reduced member not containing P.

Then there exists a double covering π : C → � with a ramification point P̃ over P
such that H(P̃) = H̃ , in other words, H̃ is of double covering type.

Though the fourth condition is replaced with the freeness of |n P − 2�r | in [4,
Theorem 2.2], the same proof applies under our assumption as well.

Remark 3.4 In our case q = 3 and g = 8, which implies that r = (n − 5)/2. Note
that (C1) is satisfied if r = 1 and �1 �= P and (C2) is trivial if r = 1, or r = 2 and �

is non-hyperelliptic. If |n P − 2�r | is free from base points, then (C4) is satisfied.

In the rest of this article we fix the following notation for semigroups and curves.
Let H always denote 〈3, 4〉, 〈3, 5, 7〉 or 〈4, 5, 6, 7〉, H̃ a numerical semigroup of genus
eight such that d2(H̃) = H unless otherwise mentioned. Let n be the minimum odd
element of H̃ .
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Let � be a curve of genus three, P a point on � such that H(P) = H . Note that
we can take a hyperelliptic curve as � only when H = 〈4, 5, 6, 7〉. Assume that �

is non-hyperelliptic unless otherwise stated. Thus � is identified with a smooth plane
quartic. Let TP denote the tangent line of � at P .

First we show a lemma on the property of linear systems of degree five on �. For
this purpose, we recall three elementary facts on algebraic curves.

Proposition 3.5 Let X be a curve of genus g ≥ 2.

(1) A pencil on X without base points has at most finitely many non-reduced members.
(2) For a positive integer m and a divisor A on X, there exist at most finitely many

divisors Bi such that m Bi ∼ A for any i and Bi �∼ B j for i �= j .
(3) A complete linear system |D| of degree 2g−1 on X is free from base points unless

|D| = |K X |+ Q for a point Q ∈ X. In particular, for any point P on X, the linear
system |D| has a reduced member not containing P unless |D| = |K X | + P.

The following observation is very useful for our argument.

Lemma 3.6 Let � be any curve of genus three, E a divisor on � and P a point on �.
Let Sr (r = 1, 2, 3) be an infinite subset of �(r). Assume that h0(�,�r ) = 1 for any
�r ∈ Sr if r = 2 or 3.

(1) If degE = 7, then |E − 2�1| is free from base points except for finitely many
�1 ∈ S1.

(2) If r = 2 or 3 and degE = 2r + 5, then |E − 2�r | has a reduced member not
containing P except for finitely many �r ∈ Sr .

Proof We use reduction to absurdity.

(1) Suppose that |E − 2�1| has a base point for infinitely many �1 ∈ S1. Since
deg(E −2�1) = 5, there exists a point P�1 on � such that E −2�1 ∼ K� + P�1

by Proposition 3.5 (3). Then 2�1 + P�1 is linearly equivalent to a fixed divisor
E − K� for infinitely many �1 ∈ S1. In particular, dim|2�1 + P�1 | ≥ 1.
Thus |2�1 + P�1 | = g1

3, a pencil of degree three. The variable part of the g1
3

has infinitely many members containing non-reduced divisors of the form 2�1,
which contradicts Proposition 3.5 (1).

(2) Let r be two or three. Suppose that there exists an infinite subset Tr of Sr such that
|E − 2�r | does not have a reduced member not containing P for any �r ∈ Tr .
Since deg(E − 2�r ) = 5, it follows from Proposition 3.5 (3) that E − 2�r ∼
K� + P for any �r ∈ Tr . In other words, 2�r is linearly equivalent to a fixed
divisor E − K� − P . Then |�r | is the same linear system for infinitely many
�r ∈ Tr by virtue of Proposition 3.5 (2). In particular dim|�r | ≥ 1, which
conflicts with our assumption. Thus we finish the proof. �

We define a subset S(�, P, H̃) of �(r) as follows:

S(�, P, H̃) := {�r ∈ �(r) | �r satisfies the conditions

(C1), (C2) and (C3) in Theorem 3.3}.

In our case 0 ≤ r ≤ 3. We shall use the following lemma for proving Theorem 1.2
in many cases.
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Lemma 3.7 If S(�, P, H̃) is an infinite set, then there exists an effective divisor
�r ∈ S(�, P, H̃) that satisfies the condition (C4). In particular H̃ is of double
covering type.

Proof Note that deg(n P − 2�r ) = n − 2r = 5 since g = 8. By virtue of Lemma 3.6
there exists an effective divisor �r ∈ S(�, P, H̃) such that |n P − 2�r | has a reduced
member not containing P , which is nothing but the condition (C4). �

We shall prove Theorem 1.2 in the subsequent sections according to the value of n,
the minimum odd element of H̃ . By virtue of the above lemma, we only have to show
that S(�, P, H̃) is infinite. When the set is finite, we find a certain effective divisor on
� satisfying the four conditions in Theorem 3.3 by ad hoc arguments.

4 The cases where n = 5

Note that r = 0 and (H, H̃) = (〈3, 5, 7〉, 〈5, 6, 14〉) or (〈4, 5, 6, 7〉, 〈5, 8, 12, 14〉).
Then the conditions (C1), (C2) and (C3) are trivial. Thus it is enough to show that
|5P| is free from base points.

Suppose that |5P| has a base point. Then it is P , which implies that dim|4P| =
dim|5P| ≥ 5 − 3 = 2. Hence |4P| is the canonical linear system of �. Then H =
H(P) = 〈3, 4〉, which contradicts our assumption. It follows that |5P| has no base
points.

5 The cases where n = 7

In this case r = 1.

(1) Assume that H = 〈3, 4〉. Then H̃ = 〈6, 7, 8, 17〉. The condition (C3) is nothing
but the equality h0(�, 5P + �1) = h0(�, 4P + �1) + 1, which holds for any
�1 ∈ �. With Remark 3.4 we see that S(�, P, H̃) = �\{P}. This is infinite,
hence it follows from Lemma 3.7 that H̃ is DC.

(2) Assume that H = 〈3, 5, 7〉. Then K� ∼ 3P+P ′ (P ′ �= P) and H̃ = 〈6, 7, 10, 11〉
or 〈6, 7, 10, 15〉.

First consider the case where H̃ = 〈6, 7, 10, 11〉. In this case we choose as � a general
plane quartic. Then it is smooth and has no hyperflexes.

The condition (C3) is the equality h0(�, 2P + �1) = h0(�, P + �1) + 1 = 2,
which is satisfied if and only if �1 = P or P ′. Thus S(�, P, H̃) = {P ′} holds. We
only have to show that �1 = P ′ satisfies (C4). Suppose, on the contrary, that the linear
system |7P − 2P ′| does not have a reduced member not containing P . Then, using
Proposition 3.5 (3), we obtain the relation that

7P − 2P ′ ∼ K� + P ∼ 4P + P ′,

which implies that 3P ∼ 3P ′. Then 4P ′ ∼ 3P + P ′ ∼ K� , that is to say, P ′ is a
hyperflex of �. This contradicts our assumption. Thus we complete the proof in this
case.
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Secondly consider the case where H̃ = 〈6, 7, 10, 15〉. Then the condition (C3) is
the equality h0(�, 4P + �1) = h0(�, 3P + �1) + 1, which is true if and only if
h0(�, 3P + �1) = 2, or equivalently, �1 �= P ′. Hence S(�, P, H̃) = �\{P, P ′} by
Remark 3.4. This is infinite, hence it follows from Lemma 3.7 that H̃ is DC.

(3) Finally assume that H = 〈4, 5, 6, 7〉. Then H̃ = 〈7 → 10, 12〉, 〈7, 8, 10, 11, 12〉
or 〈7, 8, 10, 12, 13〉.

First consider the case where H̃ = 〈7 → 10, 12〉. In this case we choose as � a
hyperelliptic curve of genus three. Take a general point P ∈ �. Then there exists a
unique point P ′( �= P) on � such that P + P ′ ∈ g1

2. Then H(P) = 〈4, 5, 6, 7〉 holds
and K� ∼ 2(P + P ′).

It is clear that �1 := P ′ satisfies the conditions (C1) and (C2). It also satisfies
the condition (C3), which is nothing but the trivial equality that h0(�, P + P ′) =
h0(�, P ′) + 1 = 2.

Finally we verify the condition (C4). Suppose that �1 fails to satisfy (C4). It follows
from Proposition 3.5 (3) that 7P − 2P ′ ∼ K� + P ∼ 2(P + P ′) + P , which implies
that 4(P − P ′) ∼ 0. By virtue of Proposition 3.5 (2), there exist infinitely many
Pi ’s such that Pi − P ′

i is linearly equivalent one another, where Pi + P ′
i ∈ g1

2. Then
Pi − P ′

i ∼ Pj − P ′
j , which implies that |Pi + P ′

j | = |Pj + P ′
i | = g1

2. Hence Pi = Pj

holds, a contradiction. Thus we conclude that �1 satisfies (C4), which implies that H̃
is DC by Theorem 3.3.

For the remaining cases let � be a smooth plane quartic and we choose a non-flex
P ∈ � such that TP is not a bitangent. Then K� ∼ 2P + P ′ + P ′′, where P ′ and P ′′
are distinct points different from P .

Consider the case where H̃ = 〈7, 8, 10, 11, 12〉. The condition (C3) is the equality
h0(�, 2P +�1) = h0(�, P +�1)+1 = 2, which is satisfied if and only if 2P +�1 ≤
K� , in other words, �1 = P ′ or P ′′. Then we only have to prove that either �1 = P ′
or �1 = P ′′ satisfies the condition (C4). Suppose, on the contrary, that neither of
linear systems |7P − 2P ′| and |7P − 2P ′′| has a reduced member not containing P .
Then, by virtue of Proposition 3.5 (3), we obtain the relation that

7P − 2P ′ ∼ 7P − 2P ′′ ∼ K� + P,

which implies that 2P ′ ∼ 2P ′′ holds. Since P ′ �= P ′′ by our assumption, |2P ′| is a
pencil, a contradiction. Thus we finish the proof.

Lastly, consider the case where H̃ = 〈7, 8, 10, 12, 13〉. The condition (C3) is the
equality h0(�, 3P + �1) = h0(�, 2P + �1) + 1, which is satisfied if �1 �= P ′, P ′′
since h0(�, 3P + �1) = 2 always holds. With Remark 3.4 we see that S(�, P, H̃) =
�\{P ′, P ′′}. This is infinite, hence it follows from Lemma 3.7 that H̃ is DC.

6 The cases where n = 9

In this case r = 2.

(1) Assume that H = 〈3, 4〉. Note that K� ∼ 4P . By Table 1, H̃ = 〈6, 8, 9, 11〉 or
〈6, 8, 9, 13〉.
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In the former case the condition (C3) is the equality h0(�, P +�2) = h0(�,�2)+
1 = 2, or equivalently, �2 is contained in a divisor of � cut out by a line passing
through P . A general line passing through P meets � at other three distinct points,
any two of which constitute an effective divisor of � of degree two satisfying (C1),
(C2) and (C3). Thus the set S(�, P, H̃) is infinite. Hence H̃ is DC by virtue of Lemma
3.7.

In the latter case the condition (C3) is the equality h0(�, 2P + �2) = h0(�, P +
�2) + 1. Hence a general member �2 ∈ �(2) satisfies the conditions (C1), (C2) and
(C3). Thus S(�, P, H̃) is infinite, which implies that H̃ is DC from Lemma 3.7 again.

(2) Assume that H = 〈3, 5, 7〉. Then K� ∼ 3P + P ′ (P ′ �= P). By Table 1,
H̃ = 〈6, 9, 10, 11, 14〉 or 〈6, 9, 10, 13, 14, 17〉.

In the former case, the condition (C3) is the equality h0(�, P +�2) = h0(�,�2)+
1 = 2, or equivalently, �2 is contained in a divisor of � cut out by a line passing through
P . Then we can show that the set S(�, P, H̃ ) is infinite and conclude that H̃ is DC
by the same argument as in (1).

In the latter case, the condition (C3) is as follows:

h0(�, 2P + �2) = h0(�, P + �2) + 1, h0(�, 4P + �2) = h0(�, 3P + �2) + 1.

The first equality is satisfied if h0(�, P + �2) = 1. The second one always holds.
It follows that a general divisor �2 ∈ �(2) satisfies conditions (C1), (C2) and (C3).
Therefore S(�, P, H̃) is infinite again. Thus we conclude that H̃ is DC from Lemma
3.7.

(3) Lastly assume that H = 〈4, 5, 6, 7〉. Then K� ∼ 2P + P ′ + P ′′ (P ′, P ′′ �= P)
for some P ′, P ′′ ∈ �. By Table 1, H̃ = 〈8 → 14〉, 〈8 → 12, 14, 15〉 or 〈8 →
10, 12 → 15〉.

In the first case, we choose as P a general point on �. Then TP is not a bitangent,
i.e., P ′ �= P ′′. The condition (C3) is as follows:

h0(�, P + �2) = h0(�,�2) + 1 = 2, h0(�, 2P + �2)=h0(�, P + �2) + 1=3,

which implies that �2 = P ′ + P ′′. It satisfies three conditions (C1), (C2) and (C3).
We verify that it also satisfies the condition (C4). Suppose that |9P −2(P ′+ P ′′)| does
not have a reduced member not containing P . Using Proposition 3.5 (3) we obtain the
relation

9P − 2(P ′ + P ′′) ∼ K� + P ∼ 3P + P ′ + P ′′,

which implies that

6P ∼ 3(P ′ + P ′′) ∼ 3(K� − 2P) ∼ 3K� − 6P.

Hence 3K� ∼ 12P for a general point P . This is impossible by Proposition 3.5 (2).
Thus we complete the proof.
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In the second case, where H̃ = 〈8 → 12, 14, 15〉, the condition (C3) is as follows:

h0(�, P + �2) = h0(�,�2) + 1 = 2, h0(�, 3P + �2) = h0(�, 2P + �2) + 1.

The former equality implies that �2 is contained in a divisor of � cut out by a line
passing through P . The latter one implies that h0(�, 2P + �2) = 2, or equivalently,
�2 is not contained in the divisor of � cut out by TP . Note that a general line passing
through P cuts out a reduced divisor of degree four, from which we can take a reduced
divisor �2 ∈ S(�, P, H̃). Thus the set S(�, P, H̃) is infinite. Hence we conclude that
H̃ is DC using Lemma 3.7.

In the end, consider the case where H̃ = 〈8 → 10, 12 → 15〉. The condition (C3)
is as follows:

h0(�, 2P + �2) = h0(�, P + �2) + 1, h0(�, 3P + �2) = h0(�, 2P + �2) + 1.

Both of them are satisfied if �2 is not contained in a divisor of � cut out by a line passing
through P , since then h0(�, P+�2) = 1, h0(�, 2P+�2) = 2 and h0(�, 3P+�2) =
3. Thus a general divisor �2 of �(2) satisfies (C1), (C2) and (C3). Hence the set
S(�, P, H̃) is infinite again, which implies that H̃ is DC from Lemma 3.7.

7 The cases where n = 11

In this case r = 3. By Table 1 H̃ = 〈6, 8, 11, 13, 15〉, 〈6, 10, 11, 13, 14, 15〉 or
H̃ = 〈8, 10 → 15, 17〉. Under the condition (C2), the condition (C3) is as follows:

h0(�, P + �3) = h0(�,�3) + 1 = 2,

h0(�, 2P + �3) = h0(�, P + �3) + 1 = 3 and also

h0(�, 3P + �3) = h0(�, 2P + �3) + 1 = 4 when H̃ = 〈8, 10 → 15, 17〉.

All of them hold for any �3 ∈ �(3) if h0(�,�3) = 1. Hence a general divisor
�3 ∈ �(3) satisfies (C1), (C2) and (C3). Thus the set S(�, P, H̃) is infinite. Hence H̃
is DC in these cases by virtue of Lemma 3.7.
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