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Abstract The authors determine all possible numerical semigroups at ramification
points of double coverings of curves when the covered curve is of genus three and the
covering curve is of genus seven, and prove that all of such numerical semigroups are
actually of double covering type.
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1 Introduction

This paper is a sequel of our previous work [2] on numerical semigroups obtained by
double coverings of curves of genus three.

A numerical semigroup is a submonoid of N0, the additive monoid of non-negative
integers, such that its complement is a finite set. The genus g(H) of a numerical
semigroup H is defined as the cardinality of its complement. We denote by a → b a
sequence a, a + 1, a + 2, . . . , b of non-negative integers and 〈n1, n2, . . . , nr 〉 stands
for the numerical semigroup generated by positive integers n1, n2, . . . , nr .

Communicated by Fernando Torres.

T. Harui
Academic Support Center, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015, Japan
e-mail: takeshi@cwo.zaq.ne.jp; kt13459@ns.kogakuin.ac.jp

J. Komeda (B)
Department of Mathematics, Center for Basic Education and Integrated Learning, Kanagawa Institute
of Technology, Atsugi, Kanagawa 243-0292, Japan
e-mail: komeda@gen.kanagawa-it.ac.jp

123



492 T. Harui and J. Komeda

In this paper a curve means a projective, smooth and irreducible curve over an
algebraically closed field of characteristic zero unless otherwise mentioned. We denote
by X (r) the variety of effective divisors of degree r on X . We simply write X instead
of X (1).

For a point P on a curve X , the semigroup

H(P) = {m ∈ N0 | there exists a rational function f on X with ( f )∞ = m P}

is a numerical semigroup of genus g(X). A numerical semigroup H is said to be
Weierstrass if there exist a curve X and a point P on X such that H(P) = H .

For a numerical semigroup H̃ , we define the set d2(H̃) by

d2(H̃) = {h ∈ N0 | 2h ∈ H̃}.

This is also a numerical semigroup.

Definition 1.1 A numerical semigroup H̃ is said to be of double covering type, or
simply DC, if there exists a double covering π : X → Y of curves with a ramification
point P̃ ∈ X such that H̃ = H(P̃).

It is easy to verify that d2(H̃) = H(π(P̃)) and g(H̃) ≥ 2g(d2(H̃)) for the semi-
group of double covering type in the definition.

In this article we are interested in numerical semigroups of genus seven whose
image by the d2 map is of genus three. Let H̃ be such a numerical semigroup of genus
seven, i.e., H := d2(H̃) is of genus three. We shall show that H̃ is DC (see Theorem
1.3 for the precise statement).

Remark 1.2 (1) Every numerical semigroup H̃ such that H = d2(H̃) is of genus at
most two is known to be DC unless H̃ = 〈3, 5, 7〉 (see [4,7–9] and [3] for details).

(2) Every numerical semigroup H̃ such that g(H̃) ≥ 8 and g(H) = 3 is DC (see [5]
and [2]).

Our main result is the following theorem:

Theorem 1.3 Let H be a numerical semigroup of genus three, i.e., H = 〈2, 7〉,
〈3, 4〉, 〈3, 5, 7〉 or 〈4, 5, 6, 7〉. Let H̃ be a numerical semigroup of genus seven such
that d2(H̃) = H. Then H̃ is of double covering type.

The assertion is known to hold if H = 〈2, 7〉 (cf. [7, Main Theorem]). Thus we
shall exclude the case from consideration.

2 Determination of numerical semigroups

In this section we determine the numerical semigroups under consideration. See Table 1
for the result. First we note the following:

Lemma 2.1 Let H̃ be any numerical semigroup.
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Numerical semigroups of genus seven 493

Table 1 The classification of H̃
H

n 〈3, 4〉 〈3, 5, 7〉 〈4, 5, 6, 7〉
3 〈3, 8〉 〈3, 10, 14〉
5 〈5, 6, 9〉 〈5, 7, 8〉

〈5, 6, 13, 14〉 〈5, 8, 9, 12〉
〈5, 8, 11, 12, 14〉

7 〈6 → 9〉 〈6, 7, 9, 10〉 〈7 → 12〉
〈6, 7, 8, 11〉 〈6, 7, 10, 11, 15〉 〈7 → 10, 12, 13〉

〈7, 8, 10 → 13〉
9 〈6, 8, 9, 11, 13〉 〈6, 9, 10, 11, 13, 14〉 〈8 → 15〉

(i) H̃ ⊆ d2(H̃).

(ii) 2d2(H̃) = {2h | h ∈ d2(H̃)} = H̃ ∩ 2N0.

In what follows let H̃ be a numerical semigroup of genus seven such that H =
d2(H̃) is 〈3, 4〉, 〈3, 5, 7〉 or 〈4, 5, 6, 7〉. Let G̃ = N0 \ H̃ be the set of gaps of H̃ and
n the minimum odd non-gap of H̃ . Then it is clear that G̃ ⊇ {1, 2, 4}. Furthermore,
note that n ≤ 9. Indeed, if n ≥ 11 then G̃ ⊇ {1 → 5, 7, 9}. In fact equality holds,
which implies that H̃ ⊇ {6, 8, 10}. Then H ⊇ 〈3, 4, 5〉, a contradiction.

We classify the numerical semigroups of our interest according to H and the value
of n.
Case(a) H = 〈3, 4〉. Note that G̃ ⊇ {1, 2, 4, 5, 10} in this case.
Subcase(a-i) If n = 3, then H̃ ⊇ 〈3, 8〉, which shows that H̃ = 〈3, 8〉.
Subcase(a-ii) If n = 7, then H̃ ⊇ 〈6, 7, 8〉, or equivalently, G̃ ⊆ {1 →
5, 9, 10, 11, 17}. Therefore H̃ contains exactly two elements in {9, 11, 17}. Note that
H̃ must contain 17 since 6 ∈ H̃ . Hence H̃ = 〈6 → 9〉 or 〈6, 7, 8, 11〉 in this case.
Subcase(a-iii) If n = 9, then G̃ ⊇ {1 → 5, 7, 10}. Therefore H̃ = 〈6, 8, 9, 11, 13〉.
Case(b) H = 〈3, 5, 7〉. Then G̃ ⊇ {1, 2, 4, 8}.
Subcase(b-i) If n = 3, then H̃ ⊇ 〈3, 10, 14〉. In fact equality holds, since both semi-
groups have the same genus.
Subcase(b-ii) If n = 5 then H̃ ⊇ 〈5, 6, 14〉, or equivalently, G̃ ⊆ {1 → 4, 7, 8, 9, 13}.
Thus H̃ contains 9 or 13, that is to say, H̃ = 〈5, 6, 9〉 or 〈5, 6, 13, 14〉.
Subcase(b-iii) If n = 7 then H̃ ⊇ 〈6, 7, 10〉. In other words G̃ ⊆ {1 → 5, 8, 9, 11, 15}.
Therefore H̃ contains exactly two elements in {9, 11, 15}. If H̃ contains 9 then H̃ also
contains 15 since 6 ∈ H̃ . It follows that H̃ = 〈6, 7, 9, 10〉 or 〈6, 7, 10, 11, 15〉.
Subcase(b-iv) If n = 9 then G̃ ⊇ {1 → 5, 7, 8}, which is in fact equality. It follows
that H̃ = 〈6, 9, 10, 11, 13, 14〉.
Case(c) H = 〈4, 5, 6, 7〉. Note that G̃ ⊇ {1 → 4, 6}.
Subcase(c-i) If n = 5 then H̃ ⊇ 〈5, 8, 12, 14〉, i.e., G̃ ⊆ {1 → 4, 6, 7, 9, 11}.
Hence there exists another non-gap of H̃ in {7, 9, 11}. It follows that H̃ = 〈5, 7, 8〉,
〈5, 8, 9, 12〉 or 〈5, 8, 11, 12, 14〉.
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Subcase(c-ii) If n = 7 then H̃ ⊇ 〈7, 8, 10, 12〉. Hence G̃ ⊆ {1 → 6, 9, 11, 13}, which
implies that H̃ contains exactly two elements in {9, 11, 13}. Thus H̃ = 〈7 → 12〉,
〈7 → 10, 12, 13〉 or 〈7, 8, 10 → 13〉.
Subcase(c-iii) If n = 9 then G̃ ⊇ {1 → 7}, which shows that H̃ = 〈8 → 15〉.

3 Preliminary results

In this section we show several results on numerical semigroups and curves needed
later.

Let H be any numerical semigroup of genus q and H̃ a numerical semigroup of
genus g with d2(H̃) = H . We consider a subsemigroup H̃0 := 2H + nN0 of H̃ ,
where n is the minimum odd element of H̃ . First we have a trivial inequality for the
genus of H̃ (cf. [2, Lemma 3.1], [9, Lemma 2.4(1)]):

Lemma 3.1 Keep the notation as above. Then g ≤ g(H̃0) = 2q +(n −1)/2. Equality
holds if and only if H̃ = H̃0.

In the rest of this article we fix the following notation for semigroups and curves.
Let H always denote 〈3, 4〉, 〈3, 5, 7〉 or 〈4, 5, 6, 7〉 and H̃ a numerical semigroup of
genus 7 such that d2(H̃) = H . Let n be the minimal odd element of H̃ .

For a point P on a smooth plane quartic, the Weierstrass semigroup H(P) is
〈3, 4〉, 〈3, 5, 7〉 or 〈4, 5, 6, 7〉 according as P is a hyperflex, an ordinary flex or a
non-flex of the quartic. Let � always denote a curve of genus three and P a point on
� such that H(P) = H . Assume that � is non-hyperelliptic and is identified with a
smooth plane quartic unless otherwise stated. Note that the canonical divisor K� is
cut out by a line in P

2.
For an irreducible plane curve X we shall denote the tangent line of X at a point p

by Tp(X), or simply Tp.
First we show a lemma on the freeness of linear systems of degree five on curves

of genus three. For this purpose, we recall three elementary facts on algebraic curves.

Proposition 3.2 Let X be a smooth curve of genus g.

(1) A pencil without base points has at most finitely many non-reduced members.
(2) For a positive integer m and a divisor A on X, there exist at most finitely many

divisors Bi such that m Bi ∼ A for any i and Bi 
∼ B j for i 
= j .
(3) A complete linear system |D| of degree 2g − 1 is free from base points unless

|D| = |K X |+ Q for a point Q ∈ X. In particular, for any point P on X, the linear
system |D| has a reduced member not containing P unless |D| = |K X | + P.

The following observation is very useful for our argument.

Lemma 3.3 Let � be any curve of genus three, E a divisor on � and P a point on �.
Let Sr (r = 1, 2, 3) be an infinite subset of �(r). Assume that h0(�,�r ) = 1 for any
�r ∈ Sr .

(1) If degE = 7, then |E − 2�1| is free from base points except for finitely many
�1 ∈ S1.
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Numerical semigroups of genus seven 495

(2) If r = 2 or 3 and degE = 2r + 5, then |E − 2�r | has a reduced member not
containing P except for finitely many �r ∈ Sr .

Proof (1) We use reduction to absurdity. Suppose that |E − 2�1| has a base point
for infinitely many �1 ∈ S1. Since deg(E − 2�1) = 5, there exists a point P�1

on � such that E − 2�1 ∼ K� + P�1 by Proposition 3.2 (3). Then 2�1 + P�1

is linearly equivalent to a fixed divisor E − K� for infinitely many �1 ∈ S1. In
particular, dim|2�1 + P�1 | ≥ 1. Thus |2�1 + P�1 | = g1

3, a pencil of degree three.
The variable part of g1

3 contains infinitely many non-reduced members of the form
2�1, which contradicts Proposition 3.2 (1).

(2) Let r be two or three. Suppose that there exists an infinite subset S′
r of Sr such that

|E−2�r | does not have a reduced member not containing P for any �r ∈ S′
r . Since

deg(E − 2�r ) = 5, it follows from Proposition 3.2 (3) that E − 2�r ∼ K� + P
for any �r ∈ S′

r . In other words, 2�r is linearly equivalent to a fixed divisor
E − K� − P . Then |�r | is the same linear system for infinitely many �r ∈ S′

r by
virtue of Proposition 3.2 (2). In particular dim|�r | ≥ 1, which conflicts with our
assumption. Thus we finish the proof.

��
Lemma 3.4 Let � be a smooth plane quartic, E a divisor on � and P a point on �.
Let S be an infinite subset of �. If degE = 5 and |E | is free from base points, then
|E − 2Q| has a reduced member not containing P except for finitely many Q ∈ S.

Proof By our assumption |E | = g2
5, which induces a birational morphism ϕ : � →

�0 ⊆ P
2, where �0 = ϕ(�) is a plane quintic. For any point Q ∈ � such that

q = ϕ(Q) is a smooth point of �0, the pull-back of the tangent line of �0 at q cuts
out an effective divisor DQ ∈ |E | of degree five on �. Then DQ − 2Q is reduced and
does not contain P except for finitely many Q ∈ S, since �0 has at most finitely many
bitangents and hyperflexes.

Let H be any Weierstrass semigroup of genus q and H̃ a numerical semigroup of
genus g with d2(H̃) = H . Define an integer r by the equation g = 2q +(n −1)/2−r ,
where n is the minimal odd element of H̃ . Then we obtain a sequence of numerical
semigroups H̃0 ⊆ H̃1 ⊆ · · · ⊆ H̃s = H̃ as follows:

(i) H̃0 := 2H + nN0.
(ii) For j = 1, 2, . . . , s, H̃ j := H̃ j−1 + (n + 2l j )N0, where n + 2l j is the minimal

odd element of H̃ not belonging to H̃ j−1.

Then it is easy to verify that s ≤ r since g(H̃0) = 2q + (n − 1)/2.
To prove Theorem 1.3, it suffices to show the existence of certain effective divisor

on � from the following theorem.

Theorem 3.5 [5, Theorem 2.2] Let H and H̃ be as above. Take any curve � of genus
q and a point on � with H(P) = H. Assume that there exists an effective divisor
�r ∈ �(r) satisfying the following conditions:

(C1) �r does not contain P.
(C2) h0(�,�r ) = 1.
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(C3) h0(�, l j P + �r ) = h0(�, (l j − 1)P + �r ) + 1 for j = 1, 2, . . . , s.
(C4) the linear system |n P − 2�r | has a reduced member not containing P.

Then there exists a smooth curve C admitting a double covering π : C → � whose
branch locus is linearly equivalent to P +�r . In particular π has a ramification point
P̃ over P such that H(P̃) = H̃ , in other words, H̃ is of double covering type.

Though the fourth condition is replaced with the freeness of |n P − 2�r | in [5,
Theorem 2.2], the same proof applies in our situation as well.

Remark 3.6 In our case q = 3 and r = (n − 3)/2. Note that (C1) is satisfied if r ≤ 1
and �1 
= P and (C2) is trivial if r ≤ 1, or r = 2 and � is non-hyperelliptic. If
|n P − 2�r | is free from base points, then (C4) is satisfied.

We define a subset S(�, P, H̃) of �(r) as follows:

S(�, P, H̃) := {�r ∈ �(r) | �r satisfies the conditions (C1), (C2) and (C3)}.

In our case r = 1, 2 or 3. We shall use the following lemma for proving Theorem
1.3 in many cases.

Lemma 3.7 Assume that g = g(H̃) = 7. Further assume that, for a general divisor
D ∈ �(r−1) and a general point Q ∈ �, �r = D + Q belongs to S(�, P, H̃). Then
there exists an effective divisor in S(�, P, H̃) that satisfies the condition (C4). In
particular H̃ is DC.

Proof Consider the divisor E := n P − 2D for a fixed general divisor D ∈ �(r−1).
Note that degE = n − 2(r − 1) = n − 2r + 2 = 5, since g = 7. From Proposition
3.2 (3) we may assume that |E | is free from base points. Then it follows from our
assumption and Lemma 3.4 that, for a general point Q ∈ �, �r := D + Q belongs to
S(�, P, H̃) and |n P − 2�r | = |(E + 2D) − 2(D + Q)| = |E − 2Q| has a reduced
member not containing P , which is nothing but the condition (C4).

We shall prove Theorem 1.3 in the subsequent sections according to the value of
n, the minimal odd element of H̃ .

4 When n = 3 and H̃ = 〈3, 8〉 or 〈3, 10, 14〉

In the following sections we assume that g = 7. In the former (resp. the latter)
case K� ∼ 4P (resp. 3P + P ′ (P ′ 
= P)), which implies that |3P| = |K� − P|
(resp. |K� − P ′|) is free from base points, since K� is very ample. Thus there exists
nothing to prove in these cases.

5 When n = 5 and H̃ = 〈5, 6, 9〉, 〈5, 6, 13, 14〉, 〈5, 7, 8〉, 〈5, 8, 9, 12〉 or
〈5, 8, 11, 12, 14〉

Note that H = 〈3, 5, 7〉 or 〈4, 5, 6, 7〉 by the assumption.
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(1) First consider the case where H̃ = 〈5, 6, 9〉. In this case H = 〈3, 5, 7〉, or equiv-
alently, K� ∼ 3P + P ′ (P ′ 
= P). Hence |3P| = |K − P ′| is free from base
points. We choose a smooth plane quartic � with an ordinary flex P such that
K� ∼ 3P + P ′, where P ′ is a hyperflex, i.e., K� ∼ 4P ′, which implies that
3P ∼ 3P ′. We put �1 := P ′. Then it satisfies (C1), (C2) and (C3) and

5P − 2�1 ∼ 2P + 3P − 2P ′ ∼ 2P + 3P ′ − 2P ′ ∼ 2P + P ′ ∼ K� − P.

Hence |5P−2�1| has no base points. In particular �1 satisfies (C4), which implies
that H̃ = 〈5, 6, 9〉 is DC.

(2) Secondly, consider the case where H̃ = 〈5, 8, 9, 12〉. We take a nodal plane quintic
�0 with three nodes q j ( j = 1, 2, 3) as its singularity satisfying the following
conditions (see Fig. 1):
(i) �0 has a total inflection point p.

(ii) Three points p, q1 and q2 are collinear.
(iii) There exists a smooth non-flex q of �0 on the line pq3 such that the tangent

line Tq is not a bitangent and does not pass through p.
Let ϕ : S → P

2 be the composite of the blow-ups at q j ( j = 1, 2, 3). Then �, the
strict transform of �0, is a smooth curve of genus three. This is non-hyperelliptic,
since it has a g1

3 without base points corresponding to a projection from �0 to P
1

whose center is a node.
Note that KS ∼ −3l +∑3

j=1 e j and � ∼ 5l −2
∑3

j=1 e j , where l is the pull-back
of a line and e j is the pull-back of the exceptional curve corresponding to q j .
We set �1 := Q = ϕ−1(q), which satisfies the conditions (C1) and (C2). By using
the adjunction formula and the above conditions (ii) and (iii) we see that

K� ∼ (� + KS)|� ∼
⎛

⎝2l −
3∑

j=1

e j

⎞

⎠
∣
∣
∣
�

∼ (l − e1 − e2)|� + (l − e3)|�
∼ P + (P + Q + R),

Fig. 1 A nodal plane quintic �0
in (2)

p

q

q1

q2

q3

Γ0
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where R is a point on �. Therefore h0(�, 2P + Q) = h0(�, K� − R) = 2, which
implies the condition (C3).
Furthermore, it follows from the above conditions (i) and (iii) that 5P ∼ 2Q + D
on �, where D is an effective reduced divisor of � of degree three not containing
P . Thus �1 = Q also satisfies (C4). Hence H̃ is DC by virtue of Theorem 3.5.

(3) Thirdly, consider the case where H̃ = 〈5, 7, 8〉. We choose a plane quintic �0 with
a unique triple point q as its only singularity satisfying the following conditions:
(i) �0 has a total inflection point p.

(ii) The tangent line Tp′ of �0 is not a bitangent, where p′ is the remaining inter-
section point of �0 and the line pq .

Note that Tp′ 
= pq , which implies that Tp′ does not pass through p. Let ϕ :
� → �0 be the desingularization of �0. Then � is hyperelliptic, since it has a g1

2
corresponding to the projection from �0 with the center q. Set P := ϕ−1(p) and
P ′ := ϕ−1(p′). Then |P + P ′| = g1

2, in other words, h0(�, P + P ′) = 2 and P
is not a ramification point of the hyperelliptic covering of �, which implies that
H(P) = 〈4, 5, 6, 7〉. Thus �1 := P ′ satisfies the conditions (C1), (C2) and (C3).
Furthermore, it follows from (ii) that 5P ∼ 2P ′ + D for a reduced divisor D of �

of degree three. Note that D does not contain P , since Tp′ does not pass through
p. Hence �1 = P ′ also satisfies the condition (C4), which implies that H̃ is DC.

(4) For the remaining cases where H̃ = 〈5, 6, 13, 14〉 and H̃ = 〈5, 8, 11, 12, 14〉, the
condition (C3) is as follows:

h0(�, 4P + �1) = h0(�, 3P + �1) + 1 if H̃ = 〈5, 6, 13, 14〉 and

h0(�, 3P + �1) = h0(�, 2P + �1) + 1 if H̃ = 〈5, 8, 11, 12, 14〉.

Hence a general �1 ∈ � satisfies the conditions (C1), (C2) and (C3) in each case.
Thus we obtain the assertion that H̃ is DC by virtue of Lemma 3.7.

6 When n = 7 and H̃ =
〈6 → 9〉, 〈6, 7, 8, 11〉, 〈6, 7, 9, 10〉, 〈6, 7, 10, 11, 15〉,
〈7 → 12〉, 〈7 → 10, 12, 13〉 or 〈7, 8, 10 → 13〉

(1) First consider the case where H̃ = 〈6 → 9〉. Then H = 〈3, 4〉, i.e., K� ∼ 4P . We
choose two distinct points Q1 and Q2 on � different from P such that TQ1 passes
through P and Q2, in other words, K� ∼ P + 2Q1 + Q2. Then 3P ∼ 2Q1 + Q2
and the divisor �2 := Q1 + Q2 satisfies (C1) and (C2). Furthermore

h0(�, P + �2) = h0(�, P + Q1 + Q2) = h0(�, K� − Q1) = 2.

Thus �2 satisfies (C3) as well, since h0(�,�2) = 1. In addition, we have the
relation that

7P − 2�2 ∼ 4P + (2Q1 + Q2) − 2(Q1 + Q2) ∼ K − Q2,
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Numerical semigroups of genus seven 499

which implies that |7P − 2�2| is free from base points. In particular �2 satisfies
(C4). Hence H̃ is DC.

(2) Secondly, consider the case where H = 〈3, 5, 7〉 and H̃ = 〈6, 7, 9, 10〉. We can
take a smooth plane quartic � with three different ordinary flexes P , Q1 and Q2
satisfying the following conditions (see Example 6.1):
(i) Three points P, Q1 and Q2 are collinear.

(ii) Three tangent lines TP , TQ1 and TQ2 meet at a point P ′ on �.
Let R be the remaining intersection point of � and the line passing through P , Q1
and Q2. Then we have the following relations:

K� ∼ 3P + P ′ ∼ 3Q1 + P ′ ∼ 3Q2 + P ′ ∼ P + Q1 + Q2 + R.

In particular H := H(P) = 〈3, 5, 7〉 and it is clear that �2 := Q1 + Q2 satisfies
(C1) and (C2). Furthermore

h0(�, P + �2) = h0(�, P + Q1 + Q2) = h0(�, K� − R) = 2.

Thus �2 satisfies (C3), since h0(�,�2) = 1. In addition, we have the relation that

7P − 2�2 ∼ P + 3P + 3P − 2(Q1 + Q2) ∼ P + 3Q1 + 3Q2 − 2(Q1 + Q2)

∼ P + Q1 + Q2 ∼ K� − R,

which implies that |7P − 2�2| is free from base points. In particular �2 satisfies
(C4). Hence H̃ is DC.

Example 6.1 The smooth plane quartic � : x4 −x3 −x2 y+ y3 +2xy− y = 0 satisfies
the above conditions for P = (0, 0), Q1 = (0, 1), Q2 = (0,−1) and P ′ = (1, 0)

(see Fig. 2).

(3) Thirdly, we consider the case where H̃ = 〈7 → 12〉. We can choose a smooth
plane quartic � with five points P, P1, P2, Q1 and Q2 satisfying the following
conditions (see Fig. 3):

Fig. 2 x4 − x3 − x2 y + y3 +
2xy − y = 0

Γ

P

P

Q2

Q1
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Fig. 3 A smooth plane quartic
� in (3)

Γ

P

P1

Q1

P2

Q2

(i) TP passes through P1 and P2.
(ii) Pi (i = 1, 2) is an ordinary flex and TPi passes through Qi .

(iii) The line Q1 Q2 is tangent to � at both Q1 and Q2.
Then we obtain the relations that

K� ∼ 2P + P1 + P2 ∼ 3P1 + Q1 ∼ 3P2 + Q2 ∼ 2Q1 + 2Q2.

Obviously �2 := P1 + P2 satisfies the conditions (C1) and (C2). Furthermore,
h0(�, P +�2) = h0(�, K� − P) = 2, which shows that �2 satisfies (C3). Finally,
we verify that |7P − 2�2| is free from base points. Note that

4P + 2�2 = 2(2P + P1+P2) ∼ (3P1 + Q1) + (3P2 + Q2) = 3�2 + Q1+Q2,

which implies that �2 ∼ 4P − Q1 − Q2. Therefore

7P − 2�2 ∼ 7P − 2(4P − Q1 − Q2) ∼ 2Q1 + 2Q2 − P ∼ K� − P,

which shows that |7P − 2�2| has no base points. Hence H̃ is DC.

(4) Next we consider the case where H̃ = 〈7 → 10, 12, 13〉. We can choose a smooth
plane quartic � with six points P, P1, P2, Q1, Q2 and R satisfying the following
conditions (see Example 6.2):
(i) TP passes through P1 and P2.

(ii) Four points P, Q1, Q2 and R are collinear.
(iii) P1 (resp. Q1) is an ordinary flex and TP1 (resp. TQ1 ) passes through Q2

(resp. P2).
(iv) The line P2 Q2 is a bitangent of �.
Then we have the following relations:

K� ∼ 2P + P1 + P2 ∼ P + Q1 + Q2 + R ∼ 3P1 + Q2

∼ P2 + 3Q1 ∼ 2P2 + 2Q2.

123



Numerical semigroups of genus seven 501

We set �2 := Q1 + Q2. It clearly satisfies the conditions (C1) and (C2). Moreover

h0(�, P + �2) = h0(�, K� − R) = 2 and

h0(�, 2P + �2) = h0(�, K� − R + P) = 2 = h0(�, 3P + �2) − 1.

Thus �2 also satisfies (C3). Finally

7P − 2�2 ∼ 3 · 2P + P − 2(Q1 + Q2)

∼ 3(K� − P1 − P2) + (K� − Q1 − Q2 − R) − 2(Q1 + Q2)

= 4K� − 3P1 − 3P2 − 3Q1 − 3Q2 − R

= (K� − 3P1 − Q2) + (K� − P2 − 3Q1) + (K� − 2P2 − 2Q2)

+ (K� − R)

∼ K� − R,

which implies that |7P − 2�2| is free from base points. Therefore H̃ is DC.

Example 6.2 The smooth plane quartic � : x4 +3xy3 +3x2 y−xy2 + y3 −x2 − y = 0
satisfies the above conditions for P = (0, 0), P1 = (−1, 0), P2 = (1, 0), Q1 =
(0,−1), Q2 = (0, 1) and R = (0 : 1 : 0) (see Fig. 4).

(5) For the remaining cases where H̃ = 〈6, 7, 8, 11〉, 〈6, 7, 10, 11, 15〉 and
〈7, 8, 10 → 13〉, the condition (C3) is as follows:

h0(�, 2P + �2) = h0(�, P + �2) + 1,

h0(�, 4P + �2) = h0(�, 3P + �2) + 1 (only when H̃ = 〈6, 7, 10, 11, 15〉) and

h0(�, 3P + �2) = h0(�, 2P + �2) + 1 (only when H̃ = 〈7, 8, 10 → 13〉)

Γ

P1 P

Q1

Q2

P2

Fig. 4 x4 + 3xy3 + 3x2 y − xy2 + y3 − x2 − y = 0
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The second equality always holds. On the other hand, an effective divisor �2 ∈ �(2)

satisfies the first one (and the third one if H̃ = 〈7, 8, 10 → 13〉) unless �2 is contained
in a divisor of � cut out by a line passing through P . Hence, for two general points
Q1 and Q2 on �, the divisor �2 = Q1 + Q2 ∈ �(2) satisfies (C1), (C2) and (C3).
Thus we conclude from Lemma 3.7 that H̃ is DC in every case.

7 When n = 9 and H̃ = 〈6, 8, 9, 11, 13〉, 〈6, 9, 10, 11, 13, 14〉 or 〈8 → 15〉

In these cases the condition (C3) is as follows:

h0(�, P + �3) = h0(�,�3) + 1 = 2,

h0(�, 2P + �3) = h0(�, P + �3) + 1 = 3 and also

h0(�, 3P + �3) = h0(�, 2P + �3) + 1 = 4 (only when H̃ = 〈8 → 15〉)

Note that the first equality implies the others. Hence, for a general divisor D ∈ �(2)

and a general point Q on �, the divisor �3 = D + Q ∈ �(3) belongs to S(�, P, H̃).
Then it follows from Lemma 3.7 that H̃ is DC in every case.
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