Numerical semigroups of genus seven and double coverings of curves of genus three

Takeshi Harui • Jiryo Komeda

Received: 23 March 2014 / Accepted: 6 June 2014 / Published online: 15 July 2014
© Springer Science+Business Media New York 2014

Abstract

The authors determine all possible numerical semigroups at ramification points of double coverings of curves when the covered curve is of genus three and the covering curve is of genus seven, and prove that all of such numerical semigroups are actually of double covering type.

Keywords Weierstrass semigroups • Numerical semigroups • Double coverings • Plane quartics

1 Introduction

This paper is a sequel of our previous work [2] on numerical semigroups obtained by double coverings of curves of genus three.

A numerical semigroup is a submonoid of \mathbb{N}_{0}, the additive monoid of non-negative integers, such that its complement is a finite set. The genus $g(H)$ of a numerical semigroup H is defined as the cardinality of its complement. We denote by $a \rightarrow b$ a sequence $a, a+1, a+2, \ldots, b$ of non-negative integers and $\left\langle n_{1}, n_{2}, \ldots, n_{r}\right\rangle$ stands for the numerical semigroup generated by positive integers $n_{1}, n_{2}, \ldots, n_{r}$.

[^0]In this paper a curve means a projective, smooth and irreducible curve over an algebraically closed field of characteristic zero unless otherwise mentioned. We denote by $X^{(r)}$ the variety of effective divisors of degree r on X. We simply write X instead of $X^{(1)}$.

For a point P on a curve X, the semigroup

$$
H(P)=\left\{m \in \mathbb{N}_{0} \mid \text { there exists a rational function } f \text { on } X \text { with }(f)_{\infty}=m P\right\}
$$

is a numerical semigroup of genus $g(X)$. A numerical semigroup H is said to be Weierstrass if there exist a curve X and a point P on X such that $H(P)=H$.

For a numerical semigroup \tilde{H}, we define the set $d_{2}(\tilde{H})$ by

$$
d_{2}(\tilde{H})=\left\{h \in \mathbb{N}_{0} \mid 2 h \in \tilde{H}\right\} .
$$

This is also a numerical semigroup.
Definition 1.1 A numerical semigroup \tilde{H} is said to be of double covering type, or simply $D C$, if there exists a double covering $\pi: X \rightarrow Y$ of curves with a ramification point $\tilde{P} \in X$ such that $\tilde{H}=H(\tilde{P})$.

It is easy to verify that $d_{2}(\tilde{H})=H(\pi(\tilde{P}))$ and $g(\tilde{H}) \geq 2 g\left(d_{2}(\tilde{H})\right)$ for the semigroup of double covering type in the definition.

In this article we are interested in numerical semigroups of genus seven whose image by the d_{2} map is of genus three. Let \tilde{H} be such a numerical semigroup of genus seven, i.e., $H:=d_{2}(\tilde{H})$ is of genus three. We shall show that \tilde{H} is DC (see Theorem 1.3 for the precise statement).

Remark 1.2 (1) Every numerical semigroup \tilde{H} such that $H=d_{2}(\tilde{H})$ is of genus at most two is known to be DC unless $\tilde{H}=\langle 3,5,7\rangle$ (see [4,7-9] and [3] for details).
(2) Every numerical semigroup \tilde{H} such that $g(\tilde{H}) \geq 8$ and $g(H)=3$ is DC (see [5] and [2]).

Our main result is the following theorem:
Theorem 1.3 Let H be a numerical semigroup of genus three, i.e., $H=\langle 2,7\rangle$, $\langle 3,4\rangle,\langle 3,5,7\rangle$ or $\langle 4,5,6,7\rangle$. Let \tilde{H} be a numerical semigroup of genus seven such that $d_{2}(\tilde{H})=H$. Then \tilde{H} is of double covering type.

The assertion is known to hold if $H=\langle 2,7\rangle$ (cf. [7, Main Theorem]). Thus we shall exclude the case from consideration.

2 Determination of numerical semigroups

In this section we determine the numerical semigroups under consideration. See Table 1 for the result. First we note the following:

Lemma 2.1 Let \tilde{H} be any numerical semigroup.

Table 1 The classification of \tilde{H}

	H		
n	$\langle 3,4\rangle$	$\langle 3,5,7\rangle$	$\langle 4,5,6,7\rangle$
3	$\langle 3,8\rangle$	$\langle 3,10,14\rangle$	
5		$\langle 5,6,9\rangle$	$\langle 5,7,8\rangle$
		$\langle 5,6,13,14\rangle$	$\langle 5,8,9,12\rangle$
			$\langle 5,8,11,12,14\rangle$
7	$\langle 6 \rightarrow 9\rangle$	$\langle 6,7,9,10\rangle$	$\langle 7 \rightarrow 12\rangle$
	$\langle 6,7,8,11\rangle$	$\langle 6,7,10,11,15\rangle$	$\langle 7 \rightarrow 10,12,13\rangle$
			$\langle 7,8,10 \rightarrow 13\rangle$
9	$\langle 6,8,9,11,13\rangle$	$\langle 6,9,10,11,13,14\rangle$	$\langle 8 \rightarrow 15\rangle$

(i) $\tilde{H} \subseteq d_{2}(\tilde{H})$.
(ii) $2 d_{2}(\tilde{H})=\left\{2 h \mid h \in d_{2}(\tilde{H})\right\}=\tilde{H} \cap 2 \mathbb{N}_{0}$.

In what follows let \tilde{H} be a numerical semigroup of genus seven such that $H=$ $d_{2}(\tilde{H})$ is $\langle 3,4\rangle,\langle 3,5,7\rangle$ or $\langle 4,5,6,7\rangle$. Let $\tilde{G}=\mathbb{N}_{0} \backslash \tilde{H}$ be the set of gaps of \tilde{H} and n the minimum odd non-gap of \tilde{H}. Then it is clear that $\tilde{G} \supseteq\{1,2,4\}$. Furthermore, note that $n \leq 9$. Indeed, if $n \geq 11$ then $\tilde{G} \supseteq\{1 \rightarrow 5,7,9\}$. In fact equality holds, which implies that $\tilde{H} \supseteq\{6,8,10\}$. Then $H \supseteq\langle 3,4,5\rangle$, a contradiction.

We classify the numerical semigroups of our interest according to H and the value of n.
Case(a) $H=\langle 3,4\rangle$. Note that $\tilde{G} \supseteq\{1,2,4,5,10\}$ in this case.
Subcase(a-i) If $n=3$, then $\tilde{H} \supseteq\langle 3,8\rangle$, which shows that $\tilde{H}=\langle 3,8\rangle$.
Subcase(a-ii) If $n=7$, then $\tilde{H} \supseteq\langle 6,7,8\rangle$, or equivalently, $\tilde{G} \subseteq\{1 \rightarrow$ $5,9,10,11,17\}$. Therefore \tilde{H} contains exactly two elements in $\{9,11,17\}$. Note that \tilde{H} must contain 17 since $6 \in \tilde{H}$. Hence $\tilde{H}=\langle 6 \rightarrow 9\rangle$ or $\langle 6,7,8,11\rangle$ in this case.
Subcase(a-iii) If $n=9$, then $\tilde{G} \supseteq\{1 \rightarrow 5,7,10\}$. Therefore $\tilde{H}=\langle 6,8,9,11,13\rangle$.
Case(b) $H=\langle 3,5,7\rangle$. Then $\tilde{G} \supseteq\{1,2,4,8\}$.
Subcase(b-i) If $n=3$, then $\tilde{H} \supseteq\langle 3,10,14\rangle$. In fact equality holds, since both semigroups have the same genus.
Subcase(b-ii) If $n=5$ then $\tilde{H} \supseteq\langle 5,6,14\rangle$, or equivalently, $\tilde{G} \subseteq\{1 \rightarrow 4,7,8,9,13\}$. Thus \tilde{H} contains 9 or 13 , that is to say, $\tilde{H}=\langle 5,6,9\rangle$ or $\langle 5,6,13,14\rangle$.
Subcase(b-iii) If $n=7$ then $\tilde{H} \supseteq\langle 6,7,10\rangle$. In other words $\tilde{G} \subseteq\{1 \rightarrow 5,8,9,11,15\}$. Therefore \tilde{H} contains exactly two elements in $\{9,11,15\}$. If \tilde{H} contains 9 then \tilde{H} also contains 15 since $6 \in \tilde{H}$. It follows that $\tilde{H}=\langle 6,7,9,10\rangle$ or $\langle 6,7,10,11,15\rangle$.
Subcase(b-iv) If $n=9$ then $\tilde{G} \supseteq\{1 \rightarrow 5,7,8\}$, which is in fact equality. It follows that $\tilde{H}=\langle 6,9,10,11,13,14\rangle$.
Case(c) $H=\langle 4,5,6,7\rangle$. Note that $\tilde{G} \supseteq\{1 \rightarrow 4,6\}$.
Subcase(c-i) If $n=5$ then $\tilde{H} \supseteq\langle 5,8,12,14\rangle$, i.e., $\tilde{G} \subseteq\{1 \rightarrow 4,6,7,9,11\}$.
Hence there exists another non-gap of \tilde{H} in $\{7,9,11\}$. It follows that $\tilde{H}=\langle 5,7,8\rangle$, $\langle 5,8,9,12\rangle$ or $\langle 5,8,11,12,14\rangle$.

Subcase(c-ii) If $n=7$ then $\tilde{H} \supseteq\langle 7,8,10,12\rangle$. Hence $\tilde{G} \subseteq\{1 \rightarrow 6,9,11,13\}$, which implies that \tilde{H} contains exactly two elements in $\{9,11,13\}$. Thus $\tilde{H}=\langle 7 \rightarrow 12\rangle$, $\langle 7 \rightarrow 10,12,13\rangle$ or $\langle 7,8,10 \rightarrow 13\rangle$.
Subcase(c-iii) If $n=9$ then $\tilde{G} \supseteq\{1 \rightarrow 7\}$, which shows that $\tilde{H}=\langle 8 \rightarrow 15\rangle$.

3 Preliminary results

In this section we show several results on numerical semigroups and curves needed later.

Let H be any numerical semigroup of genus q and \tilde{H} a numerical semigroup of genus g with $d_{2}(\tilde{H})=H$. We consider a subsemigroup $\tilde{H}_{0}:=2 H+n \mathbb{N}_{0}$ of \tilde{H}, where n is the minimum odd element of \tilde{H}. First we have a trivial inequality for the genus of \tilde{H} (cf. [2, Lemma 3.1], [9, Lemma 2.4(1)]):

Lemma 3.1 Keep the notation as above. Then $g \leq g\left(\tilde{H}_{0}\right)=2 q+(n-1) / 2$. Equality holds if and only if $\tilde{H}=\tilde{H}_{0}$.

In the rest of this article we fix the following notation for semigroups and curves. Let H always denote $\langle 3,4\rangle,\langle 3,5,7\rangle$ or $\langle 4,5,6,7\rangle$ and \tilde{H} a numerical semigroup of genus 7 such that $d_{2}(\tilde{H})=H$. Let n be the minimal odd element of \tilde{H}.

For a point P on a smooth plane quartic, the Weierstrass semigroup $H(P)$ is $\langle 3,4\rangle,\langle 3,5,7\rangle$ or $\langle 4,5,6,7\rangle$ according as P is a hyperflex, an ordinary flex or a non-flex of the quartic. Let Γ always denote a curve of genus three and P a point on Γ such that $H(P)=H$. Assume that Γ is non-hyperelliptic and is identified with a smooth plane quartic unless otherwise stated. Note that the canonical divisor K_{Γ} is cut out by a line in \mathbb{P}^{2}.

For an irreducible plane curve X we shall denote the tangent line of X at a point p by $T_{p}(X)$, or simply T_{p}.

First we show a lemma on the freeness of linear systems of degree five on curves of genus three. For this purpose, we recall three elementary facts on algebraic curves.

Proposition 3.2 Let X be a smooth curve of genus g.
(1) A pencil without base points has at most finitely many non-reduced members.
(2) For a positive integer m and a divisor A on X, there exist at most finitely many divisors B_{i} such that $m B_{i} \sim A$ for any i and $B_{i} \nsim B_{j}$ for $i \neq j$.
(3) A complete linear system $|D|$ of degree $2 g-1$ is free from base points unless $|D|=\left|K_{X}\right|+Q$ for a point $Q \in X$. In particular, for any point P on X, the linear system $|D|$ has a reduced member not containing P unless $|D|=\left|K_{X}\right|+P$.

The following observation is very useful for our argument.
Lemma 3.3 Let Γ be any curve of genus three, E a divisor on Γ and P a point on Γ. Let $S_{r}(r=1,2,3)$ be an infinite subset of $\Gamma^{(r)}$. Assume that $h^{0}\left(\Gamma, \Delta_{r}\right)=1$ for any $\Delta_{r} \in S_{r}$.
(1) If $\operatorname{deg} E=7$, then $\left|E-2 \Delta_{1}\right|$ is free from base points except for finitely many $\Delta_{1} \in S_{1}$.
(2) If $r=2$ or 3 and $\operatorname{deg} E=2 r+5$, then $\left|E-2 \Delta_{r}\right|$ has a reduced member not containing P except for finitely many $\Delta_{r} \in S_{r}$.

Proof (1) We use reduction to absurdity. Suppose that $\left|E-2 \Delta_{1}\right|$ has a base point for infinitely many $\Delta_{1} \in S_{1}$. Since $\operatorname{deg}\left(E-2 \Delta_{1}\right)=5$, there exists a point $P_{\Delta_{1}}$ on Γ such that $E-2 \Delta_{1} \sim K_{\Gamma}+P_{\Delta_{1}}$ by Proposition 3.2 (3). Then $2 \Delta_{1}+P_{\Delta_{1}}$ is linearly equivalent to a fixed divisor $E-K_{\Gamma}$ for infinitely many $\Delta_{1} \in S_{1}$. In particular, $\operatorname{dim}\left|2 \Delta_{1}+P_{\Delta_{1}}\right| \geq 1$. Thus $\left|2 \Delta_{1}+P_{\Delta_{1}}\right|=g_{3}^{1}$, a pencil of degree three. The variable part of g_{3}^{1} contains infinitely many non-reduced members of the form $2 \Delta_{1}$, which contradicts Proposition 3.2 (1).
(2) Let r be two or three. Suppose that there exists an infinite subset S_{r}^{\prime} of S_{r} such that $\left|E-2 \Delta_{r}\right|$ does not have a reduced member not containing P for any $\Delta_{r} \in S_{r}^{\prime}$. Since $\operatorname{deg}\left(E-2 \Delta_{r}\right)=5$, it follows from Proposition 3.2 (3) that $E-2 \Delta_{r} \sim K_{\Gamma}+P$ for any $\Delta_{r} \in S_{r}^{\prime}$. In other words, $2 \Delta_{r}$ is linearly equivalent to a fixed divisor $E-K_{\Gamma}-P$. Then $\left|\Delta_{r}\right|$ is the same linear system for infinitely many $\Delta_{r} \in S_{r}^{\prime}$ by virtue of Proposition 3.2 (2). In particular $\operatorname{dim}\left|\Delta_{r}\right| \geq 1$, which conflicts with our assumption. Thus we finish the proof.

Lemma 3.4 Let Γ be a smooth plane quartic, E a divisor on Γ and P a point on Γ. Let S be an infinite subset of Γ. If $\operatorname{deg} E=5$ and $|E|$ is free from base points, then $|E-2 Q|$ has a reduced member not containing P except for finitely many $Q \in S$.

Proof By our assumption $|E|=g_{5}^{2}$, which induces a birational morphism $\varphi: \Gamma \rightarrow$ $\Gamma_{0} \subseteq \mathbb{P}^{2}$, where $\Gamma_{0}=\varphi(\Gamma)$ is a plane quintic. For any point $Q \in \Gamma$ such that $q=\varphi(Q)$ is a smooth point of Γ_{0}, the pull-back of the tangent line of Γ_{0} at q cuts out an effective divisor $D_{Q} \in|E|$ of degree five on Γ. Then $D_{Q}-2 Q$ is reduced and does not contain P except for finitely many $Q \in S$, since Γ_{0} has at most finitely many bitangents and hyperflexes.

Let H be any Weierstrass semigroup of genus q and \tilde{H} a numerical semigroup of genus g with $d_{2}(\tilde{H})=H$. Define an integer r by the equation $g=2 q+(n-1) / 2-r$, where n is the minimal odd element of \tilde{H}. Then we obtain a sequence of numerical semigroups $\tilde{H}_{0} \subseteq \tilde{H}_{1} \subseteq \cdots \subseteq \tilde{H}_{s}=\tilde{H}$ as follows:
(i) $\tilde{H}_{0}:=2 H+n \mathbb{N}_{0}$.
(ii) For $j=1,2, \ldots, s, \tilde{H}_{j}:=\tilde{H}_{j-1}+\left(n+2 l_{j}\right) \mathbb{N}_{0}$, where $n+2 l_{j}$ is the minimal odd element of \tilde{H} not belonging to \tilde{H}_{j-1}.
Then it is easy to verify that $s \leq r$ since $g\left(\tilde{H}_{0}\right)=2 q+(n-1) / 2$.
To prove Theorem 1.3, it suffices to show the existence of certain effective divisor on Γ from the following theorem.

Theorem 3.5 [5, Theorem 2.2] Let H and \tilde{H} be as above. Take any curve Γ of genus q and a point on Γ with $H(P)=H$. Assume that there exists an effective divisor $\Delta_{r} \in \Gamma^{(r)}$ satisfying the following conditions:
(C1) Δ_{r} does not contain P.
(C2) $h^{0}\left(\Gamma, \Delta_{r}\right)=1$.
(C3) $h^{0}\left(\Gamma, l_{j} P+\Delta_{r}\right)=h^{0}\left(\Gamma,\left(l_{j}-1\right) P+\Delta_{r}\right)+1$ for $j=1,2, \ldots, s$.
(C4) the linear system $\left|n P-2 \Delta_{r}\right|$ has a reduced member not containing P.
Then there exists a smooth curve C admitting a double covering $\pi: C \rightarrow \Gamma$ whose branch locus is linearly equivalent to $P+\Delta_{r}$. In particular π has a ramification point \tilde{P} over P such that $H(\tilde{P})=\tilde{H}$, in other words, \tilde{H} is of double covering type.

Though the fourth condition is replaced with the freeness of $\left|n P-2 \Delta_{r}\right|$ in [5, Theorem 2.2], the same proof applies in our situation as well.

Remark 3.6 In our case $q=3$ and $r=(n-3) / 2$. Note that (C1) is satisfied if $r \leq 1$ and $\Delta_{1} \neq P$ and (C2) is trivial if $r \leq 1$, or $r=2$ and Γ is non-hyperelliptic. If $\left|n P-2 \Delta_{r}\right|$ is free from base points, then (C4) is satisfied.

We define a subset $S(\Gamma, P, \tilde{H})$ of $\Gamma^{(r)}$ as follows:
$S(\Gamma, P, \tilde{H}):=\left\{\Delta_{r} \in \Gamma^{(r)} \mid \Delta_{r}\right.$ satisfies the conditions (C1), (C2) and (C3) $\}$.

In our case $r=1,2$ or 3 . We shall use the following lemma for proving Theorem 1.3 in many cases.

Lemma 3.7 Assume that $g=g(\tilde{H})=7$. Further assume that, for a general divisor $D \in \Gamma^{(r-1)}$ and a general point $Q \in \Gamma, \Delta_{r}=D+Q$ belongs to $S(\Gamma, P, \tilde{H})$. Then there exists an effective divisor in $S(\Gamma, P, \tilde{H})$ that satisfies the condition (C4). In particular \tilde{H} is $D C$.

Proof Consider the divisor $E:=n P-2 D$ for a fixed general divisor $D \in \Gamma^{(r-1)}$. Note that $\operatorname{deg} E=n-2(r-1)=n-2 r+2=5$, since $g=7$. From Proposition 3.2 (3) we may assume that $|E|$ is free from base points. Then it follows from our assumption and Lemma 3.4 that, for a general point $Q \in \Gamma, \Delta_{r}:=D+Q$ belongs to $S(\Gamma, P, \tilde{H})$ and $\left|n P-2 \Delta_{r}\right|=|(E+2 D)-2(D+Q)|=|E-2 Q|$ has a reduced member not containing P, which is nothing but the condition (C4).

We shall prove Theorem 1.3 in the subsequent sections according to the value of n, the minimal odd element of \tilde{H}.

4 When $n=3$ and $\tilde{H}=\langle 3,8\rangle$ or $\langle 3,10,14\rangle$

In the following sections we assume that $g=7$. In the former (resp. the latter) case $K_{\Gamma} \sim 4 P\left(\right.$ resp. $3 P+P^{\prime}\left(P^{\prime} \neq P\right)$), which implies that $|3 P|=\left|K_{\Gamma}-P\right|$ (resp. $\left.\left|K_{\Gamma}-P^{\prime}\right|\right)$ is free from base points, since K_{Γ} is very ample. Thus there exists nothing to prove in these cases.

5 When $n=5$ and $\tilde{H}=\langle 5,6,9\rangle,\langle 5,6,13,14\rangle,\langle 5,7,8\rangle,\langle 5,8,9,12\rangle$ or $\langle 5,8,11,12,14\rangle$

Note that $H=\langle 3,5,7\rangle$ or $\langle 4,5,6,7\rangle$ by the assumption.
(1) First consider the case where $\tilde{H}=\langle 5,6,9\rangle$. In this case $H=\langle 3,5,7\rangle$, or equivalently, $K_{\Gamma} \sim 3 P+P^{\prime}\left(P^{\prime} \neq P\right)$. Hence $|3 P|=\left|K-P^{\prime}\right|$ is free from base points. We choose a smooth plane quartic Γ with an ordinary flex P such that $K_{\Gamma} \sim 3 P+P^{\prime}$, where P^{\prime} is a hyperflex, i.e., $K_{\Gamma} \sim 4 P^{\prime}$, which implies that $3 P \sim 3 P^{\prime}$. We put $\Delta_{1}:=P^{\prime}$. Then it satisfies (C1), (C2) and (C3) and

$$
5 P-2 \Delta_{1} \sim 2 P+3 P-2 P^{\prime} \sim 2 P+3 P^{\prime}-2 P^{\prime} \sim 2 P+P^{\prime} \sim K_{\Gamma}-P
$$

Hence $\left|5 P-2 \Delta_{1}\right|$ has no base points. In particular Δ_{1} satisfies (C 4), which implies that $\tilde{H}=\langle 5,6,9\rangle$ is DC.
(2) Secondly, consider the case where $\tilde{H}=\langle 5,8,9,12\rangle$. We take a nodal plane quintic Γ_{0} with three nodes $q_{j}(j=1,2,3)$ as its singularity satisfying the following conditions (see Fig. 1):
(i) Γ_{0} has a total inflection point p.
(ii) Three points p, q_{1} and q_{2} are collinear.
(iii) There exists a smooth non-flex q of Γ_{0} on the line $\overline{p q_{3}}$ such that the tangent line T_{q} is not a bitangent and does not pass through p.
Let $\varphi: S \rightarrow \mathbb{P}^{2}$ be the composite of the blow-ups at $q_{j}(j=1,2,3)$. Then Γ, the strict transform of Γ_{0}, is a smooth curve of genus three. This is non-hyperelliptic, since it has a g_{3}^{1} without base points corresponding to a projection from Γ_{0} to \mathbb{P}^{1} whose center is a node.
Note that $K_{S} \sim-3 l+\sum_{j=1}^{3} e_{j}$ and $\Gamma \sim 5 l-2 \sum_{j=1}^{3} e_{j}$, where l is the pull-back of a line and e_{j} is the pull-back of the exceptional curve corresponding to q_{j}. We set $\Delta_{1}:=Q=\varphi^{-1}(q)$, which satisfies the conditions (C1) and (C2). By using the adjunction formula and the above conditions (ii) and (iii) we see that

$$
\begin{aligned}
\left.K_{\Gamma} \sim\left(\Gamma+K_{S}\right)\right|_{\Gamma} & \left.\sim\left(2 l-\sum_{j=1}^{3} e_{j}\right)\right|_{\Gamma} \\
& \left.\sim\left(l-e_{1}-e_{2}\right)\right|_{\Gamma}+\left.\left(l-e_{3}\right)\right|_{\Gamma} \\
& \sim P+(P+Q+R),
\end{aligned}
$$

Fig. 1 A nodal plane quintic Γ_{0} in (2)

where R is a point on Γ. Therefore $h^{0}(\Gamma, 2 P+Q)=h^{0}\left(\Gamma, K_{\Gamma}-R\right)=2$, which implies the condition (C3).
Furthermore, it follows from the above conditions (i) and (iii) that $5 P \sim 2 Q+D$ on Γ, where D is an effective reduced divisor of Γ of degree three not containing P. Thus $\Delta_{1}=Q$ also satisfies (C4). Hence \tilde{H} is DC by virtue of Theorem 3.5.
(3) Thirdly, consider the case where $\tilde{H}=\langle 5,7,8\rangle$. We choose a plane quintic Γ_{0} with a unique triple point q as its only singularity satisfying the following conditions:
(i) Γ_{0} has a total inflection point p.
(ii) The tangent line $T_{p^{\prime}}$ of Γ_{0} is not a bitangent, where p^{\prime} is the remaining intersection point of Γ_{0} and the line $\overline{p q}$.
Note that $T_{p^{\prime}} \neq \overline{p q}$, which implies that $T_{p^{\prime}}$ does not pass through p. Let φ : $\Gamma \rightarrow \Gamma_{0}$ be the desingularization of Γ_{0}. Then Γ is hyperelliptic, since it has a g_{2}^{1} corresponding to the projection from Γ_{0} with the center q. Set $P:=\varphi^{-1}(p)$ and $P^{\prime}:=\varphi^{-1}\left(p^{\prime}\right)$. Then $\left|P+P^{\prime}\right|=g_{2}^{1}$, in other words, $h^{0}\left(\Gamma, P+P^{\prime}\right)=2$ and P is not a ramification point of the hyperelliptic covering of Γ, which implies that $H(P)=\langle 4,5,6,7\rangle$. Thus $\Delta_{1}:=P^{\prime}$ satisfies the conditions (C1), (C2) and (C3). Furthermore, it follows from (ii) that $5 P \sim 2 P^{\prime}+D$ for a reduced divisor D of Γ of degree three. Note that D does not contain P, since $T_{p^{\prime}}$ does not pass through p. Hence $\Delta_{1}=P^{\prime}$ also satisfies the condition (C4), which implies that \tilde{H} is DC.
(4) For the remaining cases where $\tilde{H}=\langle 5,6,13,14\rangle$ and $\tilde{H}=\langle 5,8,11,12,14\rangle$, the condition (C3) is as follows:

$$
\begin{array}{ll}
h^{0}\left(\Gamma, 4 P+\Delta_{1}\right)=h^{0}\left(\Gamma, 3 P+\Delta_{1}\right)+1 & \text { if } \tilde{H}=\langle 5,6,13,14\rangle \text { and } \\
h^{0}\left(\Gamma, 3 P+\Delta_{1}\right)=h^{0}\left(\Gamma, 2 P+\Delta_{1}\right)+1 & \text { if } \tilde{H}=\langle 5,8,11,12,14\rangle .
\end{array}
$$

Hence a general $\Delta_{1} \in \Gamma$ satisfies the conditions (C1), (C2) and (C3) in each case. Thus we obtain the assertion that \tilde{H} is DC by virtue of Lemma 3.7.

6 When $n=7$ and $\tilde{H}=$

$\langle 6 \rightarrow 9\rangle,\langle 6,7,8,11\rangle,\langle 6,7,9,10\rangle,\langle 6,7,10,11,15\rangle$,
$\langle 7 \rightarrow 12\rangle,\langle 7 \rightarrow 10,12,13\rangle$ or $\langle 7,8,10 \rightarrow 13\rangle$
(1) First consider the case where $\tilde{H}=\langle 6 \rightarrow 9\rangle$. Then $H=\langle 3,4\rangle$, i.e., $K_{\Gamma} \sim 4 P$. We choose two distinct points Q_{1} and Q_{2} on Γ different from P such that $T_{Q_{1}}$ passes through P and Q_{2}, in other words, $K_{\Gamma} \sim P+2 Q_{1}+Q_{2}$. Then $3 P \sim 2 Q_{1}+Q_{2}$ and the divisor $\Delta_{2}:=Q_{1}+Q_{2}$ satisfies (C1) and (C2). Furthermore

$$
h^{0}\left(\Gamma, P+\Delta_{2}\right)=h^{0}\left(\Gamma, P+Q_{1}+Q_{2}\right)=h^{0}\left(\Gamma, K_{\Gamma}-Q_{1}\right)=2 .
$$

Thus Δ_{2} satisfies (C3) as well, since $h^{0}\left(\Gamma, \Delta_{2}\right)=1$. In addition, we have the relation that

$$
7 P-2 \Delta_{2} \sim 4 P+\left(2 Q_{1}+Q_{2}\right)-2\left(Q_{1}+Q_{2}\right) \sim K-Q_{2}
$$

which implies that $\left|7 P-2 \Delta_{2}\right|$ is free from base points. In particular Δ_{2} satisfies (C4). Hence \tilde{H} is DC.
(2) Secondly, consider the case where $H=\langle 3,5,7\rangle$ and $\tilde{H}=\langle 6,7,9,10\rangle$. We can take a smooth plane quartic Γ with three different ordinary flexes P, Q_{1} and Q_{2} satisfying the following conditions (see Example 6.1):
(i) Three points P, Q_{1} and Q_{2} are collinear.
(ii) Three tangent lines $T_{P}, T_{Q_{1}}$ and $T_{Q_{2}}$ meet at a point P^{\prime} on Γ.

Let R be the remaining intersection point of Γ and the line passing through P, Q_{1} and Q_{2}. Then we have the following relations:

$$
K_{\Gamma} \sim 3 P+P^{\prime} \sim 3 Q_{1}+P^{\prime} \sim 3 Q_{2}+P^{\prime} \sim P+Q_{1}+Q_{2}+R
$$

In particular $H:=H(P)=\langle 3,5,7\rangle$ and it is clear that $\Delta_{2}:=Q_{1}+Q_{2}$ satisfies (C1) and (C2). Furthermore

$$
h^{0}\left(\Gamma, P+\Delta_{2}\right)=h^{0}\left(\Gamma, P+Q_{1}+Q_{2}\right)=h^{0}\left(\Gamma, K_{\Gamma}-R\right)=2
$$

Thus Δ_{2} satisfies (C3), since $h^{0}\left(\Gamma, \Delta_{2}\right)=1$. In addition, we have the relation that

$$
\begin{aligned}
7 P-2 \Delta_{2} & \sim P+3 P+3 P-2\left(Q_{1}+Q_{2}\right) \sim P+3 Q_{1}+3 Q_{2}-2\left(Q_{1}+Q_{2}\right) \\
& \sim P+Q_{1}+Q_{2} \sim K_{\Gamma}-R,
\end{aligned}
$$

which implies that $\left|7 P-2 \Delta_{2}\right|$ is free from base points. In particular Δ_{2} satisfies (C4). Hence \tilde{H} is DC.

Example 6.1 The smooth plane quartic $\Gamma: x^{4}-x^{3}-x^{2} y+y^{3}+2 x y-y=0$ satisfies the above conditions for $P=(0,0), Q_{1}=(0,1), Q_{2}=(0,-1)$ and $P^{\prime}=(1,0)$ (see Fig. 2).
(3) Thirdly, we consider the case where $\tilde{H}=\langle 7 \rightarrow 12\rangle$. We can choose a smooth plane quartic Γ with five points P, P_{1}, P_{2}, Q_{1} and Q_{2} satisfying the following conditions (see Fig. 3):

Fig. $2 x^{4}-x^{3}-x^{2} y+y^{3}+$ $2 x y-y=0$

Fig. 3 A smooth plane quartic Γ in (3)

(i) T_{P} passes through P_{1} and P_{2}.
(ii) $P_{i}(i=1,2)$ is an ordinary flex and $T_{P_{i}}$ passes through Q_{i}.
(iii) The line $\overline{Q_{1} Q_{2}}$ is tangent to Γ at both Q_{1} and Q_{2}.

Then we obtain the relations that

$$
K_{\Gamma} \sim 2 P+P_{1}+P_{2} \sim 3 P_{1}+Q_{1} \sim 3 P_{2}+Q_{2} \sim 2 Q_{1}+2 Q_{2}
$$

Obviously $\Delta_{2}:=P_{1}+P_{2}$ satisfies the conditions (C1) and (C2). Furthermore, $h^{0}\left(\Gamma, P+\Delta_{2}\right)=h^{0}\left(\Gamma, K_{\Gamma}-P\right)=2$, which shows that Δ_{2} satisfies (C3). Finally, we verify that $\left|7 P-2 \Delta_{2}\right|$ is free from base points. Note that
$4 P+2 \Delta_{2}=2\left(2 P+P_{1}+P_{2}\right) \sim\left(3 P_{1}+Q_{1}\right)+\left(3 P_{2}+Q_{2}\right)=3 \Delta_{2}+Q_{1}+Q_{2}$,
which implies that $\Delta_{2} \sim 4 P-Q_{1}-Q_{2}$. Therefore

$$
7 P-2 \Delta_{2} \sim 7 P-2\left(4 P-Q_{1}-Q_{2}\right) \sim 2 Q_{1}+2 Q_{2}-P \sim K_{\Gamma}-P
$$

which shows that $\left|7 P-2 \Delta_{2}\right|$ has no base points. Hence \tilde{H} is DC.
(4) Next we consider the case where $\tilde{H}=\langle 7 \rightarrow 10,12,13\rangle$. We can choose a smooth plane quartic Γ with six points $P, P_{1}, P_{2}, Q_{1}, Q_{2}$ and R satisfying the following conditions (see Example 6.2):
(i) T_{P} passes through P_{1} and P_{2}.
(ii) Four points P, Q_{1}, Q_{2} and R are collinear.
(iii) P_{1} (resp. Q_{1}) is an ordinary flex and $T_{P_{1}}$ (resp. $T_{Q_{1}}$) passes through Q_{2} (resp. P_{2}).
(iv) The line $\overline{P_{2} Q_{2}}$ is a bitangent of Γ.

Then we have the following relations:

$$
\begin{aligned}
K_{\Gamma} & \sim 2 P+P_{1}+P_{2} \sim P+Q_{1}+Q_{2}+R \sim 3 P_{1}+Q_{2} \\
& \sim P_{2}+3 Q_{1} \sim 2 P_{2}+2 Q_{2} .
\end{aligned}
$$

We set $\Delta_{2}:=Q_{1}+Q_{2}$. It clearly satisfies the conditions (C1) and (C2). Moreover

$$
\begin{aligned}
h^{0}\left(\Gamma, P+\Delta_{2}\right) & =h^{0}\left(\Gamma, K_{\Gamma}-R\right)=2 \text { and } \\
h^{0}\left(\Gamma, 2 P+\Delta_{2}\right) & =h^{0}\left(\Gamma, K_{\Gamma}-R+P\right)=2=h^{0}\left(\Gamma, 3 P+\Delta_{2}\right)-1
\end{aligned}
$$

Thus Δ_{2} also satisfies (C3). Finally

$$
\begin{aligned}
7 P-2 \Delta_{2} & \sim 3 \cdot 2 P+P-2\left(Q_{1}+Q_{2}\right) \\
& \sim 3\left(K_{\Gamma}-P_{1}-P_{2}\right)+\left(K_{\Gamma}-Q_{1}-Q_{2}-R\right)-2\left(Q_{1}+Q_{2}\right) \\
& =4 K_{\Gamma}-3 P_{1}-3 P_{2}-3 Q_{1}-3 Q_{2}-R \\
& =\left(K_{\Gamma}-3 P_{1}-Q_{2}\right)+\left(K_{\Gamma}-P_{2}-3 Q_{1}\right)+\left(K_{\Gamma}-2 P_{2}-2 Q_{2}\right) \\
& +\left(K_{\Gamma}-R\right) \\
& \sim K_{\Gamma}-R,
\end{aligned}
$$

which implies that $\left|7 P-2 \Delta_{2}\right|$ is free from base points. Therefore \tilde{H} is DC.
Example 6.2 The smooth plane quartic $\Gamma: x^{4}+3 x y^{3}+3 x^{2} y-x y^{2}+y^{3}-x^{2}-y=0$ satisfies the above conditions for $P=(0,0), P_{1}=(-1,0), P_{2}=(1,0), Q_{1}=$ $(0,-1), Q_{2}=(0,1)$ and $R=(0: 1: 0)$ (see Fig. 4).
(5) For the remaining cases where $\tilde{H}=\langle 6,7,8,11\rangle,\langle 6,7,10,11,15\rangle$ and $\langle 7,8,10 \rightarrow 13\rangle$, the condition (C3) is as follows:
$h^{0}\left(\Gamma, 2 P+\Delta_{2}\right)=h^{0}\left(\Gamma, P+\Delta_{2}\right)+1$,
$h^{0}\left(\Gamma, 4 P+\Delta_{2}\right)=h^{0}\left(\Gamma, 3 P+\Delta_{2}\right)+1 \quad($ only when $\tilde{H}=\langle 6,7,10,11,15\rangle)$ and $h^{0}\left(\Gamma, 3 P+\Delta_{2}\right)=h^{0}\left(\Gamma, 2 P+\Delta_{2}\right)+1 \quad($ only when $\tilde{H}=\langle 7,8,10 \rightarrow 13\rangle)$

Fig. $4 x^{4}+3 x y^{3}+3 x^{2} y-x y^{2}+y^{3}-x^{2}-y=0$

The second equality always holds. On the other hand, an effective divisor $\Delta_{2} \in \Gamma^{(2)}$ satisfies the first one (and the third one if $\tilde{H}=\langle 7,8,10 \rightarrow 13\rangle$) unless Δ_{2} is contained in a divisor of Γ cut out by a line passing through P. Hence, for two general points Q_{1} and Q_{2} on Γ, the divisor $\Delta_{2}=Q_{1}+Q_{2} \in \Gamma^{(2)}$ satisfies (C 1), (C 2) and (C 3). Thus we conclude from Lemma 3.7 that \tilde{H} is DC in every case.

7 When $n=9$ and $\tilde{H}=\langle 6,8,9,11,13\rangle,\langle 6,9,10,11,13,14\rangle$ or $\langle 8 \rightarrow 15\rangle$
In these cases the condition (C3) is as follows:

$$
\begin{aligned}
h^{0}\left(\Gamma, P+\Delta_{3}\right) & =h^{0}\left(\Gamma, \Delta_{3}\right)+1=2 \\
h^{0}\left(\Gamma, 2 P+\Delta_{3}\right) & =h^{0}\left(\Gamma, P+\Delta_{3}\right)+1=3 \quad \text { and also } \\
h^{0}\left(\Gamma, 3 P+\Delta_{3}\right) & =h^{0}\left(\Gamma, 2 P+\Delta_{3}\right)+1=4 \quad(\text { only when } \tilde{H}=\langle 8 \rightarrow 15\rangle)
\end{aligned}
$$

Note that the first equality implies the others. Hence, for a general divisor $D \in \Gamma^{(2)}$ and a general point Q on Γ, the divisor $\Delta_{3}=D+Q \in \Gamma^{(3)}$ belongs to $S(\Gamma, P, \tilde{H})$. Then it follows from Lemma 3.7 that \tilde{H} is DC in every case.

References

1. Garcia, A.: Weights of Weierstrass points in double coverings of curves of genus one or two. Manuscripta Math. 55, 419-432 (1986)
2. Harui, T., Komeda, J.: Numerical semigroups of genus eight and double coverings of curves of genus three, to appear in Semigroup Forum
3. Harui, T., Komeda, J., Ohbuchi, A.: The Weierstrass semigroups on double covers of genus two curves, preprint
4. Komeda, J.: A numerical semigroup from which the semigroup gained by dividing by two is either \mathbb{N}_{0} or a 2-semigroup or $\langle 3,4,5\rangle$. Res. Rep. Kanagawa Inst. Technol. B-33, 37-42 (2009)
5. Komeda, J.: On Weierstrass semigroups of double coverings of genus three curves. Semigroup Forum 83, 479-488 (2011)
6. Komeda, J., Ohbuchi, A.: Weierstrass points with first non-gap four on a double covering of a hyperelliptic curve. Serdica Math. J. 30, 43-54 (2004)
7. Komeda, J., Ohbuchi, A.: Weierstrass points with first non-gap four on a double covering of a hyperelliptic curve II. Serdica Math. J. 34, 771-782 (2008)
8. Oliveira, G., Pimentel, F.L.R.: On Weierstrass semigroups of double covering of genus two curves. Semigroup Forum 77, 152-162 (2008)
9. Oliveira, G., Torres, F., Villanueva, J.: On the weight of numerical semigroups. J. Pure Appl. Algebra 214, 1955-1961 (2010)

[^0]: Communicated by Fernando Torres.
 T. Harui

 Academic Support Center, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015, Japan e-mail: takeshi@cwo.zaq.ne.jp; kt13459@ns.kogakuin.ac.jp
 J. Komeda (\boxtimes)

 Department of Mathematics, Center for Basic Education and Integrated Learning, Kanagawa Institute of Technology, Atsugi, Kanagawa 243-0292, Japan
 e-mail: komeda@gen.kanagawa-it.ac.jp

