**RESEARCH ARTICLE** 



# Numerical semigroups of genus six and double coverings of curves of genus three

Takeshi Harui · Jiryo Komeda

Received: 26 July 2014 / Accepted: 1 December 2014 / Published online: 17 December 2014 © Springer Science+Business Media New York 2014

**Abstract** This is a sequel of previous papers of the authors on Weierstrass semigroups at ramification points of double coverings of algebraic curves of genus three. In this paper they give a list of possible numerical semigroups when the covering curve is of genus six and show that all of such semigroups are actually of double covering type. This result completes a classification of numerical semigroups of double covering type obtained by ramified double coverings of curves of genus three.

**Keywords** Weierstrass semigroups · Numerical semigroups · Double coverings · Plane quartics

#### **1** Introduction

#### **Notation and Conventions**

We denote by  $\mathbb{N}_0$  the additive monoid of non-negative integers. A submonoid of  $\mathbb{N}_0$  is called a *numerical semigroup* if its complement is a finite set. For a numerical semigroup H, a positive integer m is called a *gap* of H if  $m \notin H$ . The number of gaps of H is called its *genus* and is denoted by g(H).

T. Harui (🖂)

Department of Core Studies, Kochi University of Technology, Kami, Tosayamada, Kochi 782-8502, Japan e-mail: takeshi@cwo.zaq.ne.jp; harui.takeshi@kochi-tech.ac.jp

J. Komeda

Department of Mathematics, Center for Basic Education and Integrated Learning, Kanagawa Institute of Technology, Atsugi, Kanagawa 243-0292, Japan e-mail: komeda@gen.kanagawa-it.ac.jp

Communicated by Fernando Torres.

In this paper  $a \rightarrow b$  denotes a sequence a, a + 1, a + 2, ..., b of non-negative integers.

A *curve* always means a projective irreducible curve over an algebraically closed field of characteristic zero and it is assumed to be smooth unless otherwise mentioned. For a curve X, we denote by  $X^{(r)}$  the variety of effective divisors of degree r on X.

For a point P on a curve X, the semigroup

 $H(P) = \{m \in \mathbb{N}_0 \mid \text{there exists a rational function } f \text{ on } X \text{ such that } (f)_{\infty} = mP \}$ 

is a numerical semigroup of genus g(X). This is called the *Weierstrass semigroup* at P. A numerical semigroup H is said to be *Weierstrass* if there exist a curve X and a point P on X such that H(P) = H.

When  $\tilde{H}$  is a numerical semigroup, the set  $d_2(\tilde{H}) := \{h \in \mathbb{N}_0 \mid 2h \in \tilde{H}\}$  is also a numerical semigroup such that

(i)  $\tilde{H} \subseteq d_2(\tilde{H})$ . (ii)  $2d_2(\tilde{H}) = \{2h \mid h \in d_2(\tilde{H})\} = \tilde{H} \cap 2\mathbb{N}_0$ .

A numerical semigroup  $\tilde{H}$  is said to be *of double covering type*, or simply *DC*, if there exist a ramified double covering  $\pi : X \to Y$  of curves and a ramification point  $\tilde{P} \in X$  such that  $\tilde{H} = H(\tilde{P})$ . Then it is easy to verify that  $d_2(\tilde{H}) = H(\pi(\tilde{P}))$  and  $g(\tilde{H}) \ge 2g(d_2(\tilde{H}))$  since  $\pi$  has a ramification point. By definition a numerical semigroup of double covering type is Weierstrass.

Is the converse true? That is to say, if  $\tilde{H}$  is a numerical semigroup with  $d_2(\tilde{H}) = H$  such that  $g(\tilde{H}) \ge 2g(H)$ , then is it of double covering type? This is an interesting and important problem. In this paper we give a complete answer for this problem when  $g(\tilde{H}) = 6$  and g(H) = 3, which is the last piece for a classification of numerical semigroups of double covering type obtained by a ramified double covering of a curve of genus three.

For the results when  $g(H) \leq 2$ , see [1,5,7–9] and [4]. In short, we have the affirmative answer for the above problem. Precisely, every numerical semigroup  $\tilde{H}$  such that  $H = d_2(\tilde{H})$  is of genus at most two and  $g(\tilde{H}) \geq 2g(H)$  is known to be DC.

Assume that g(H) = 3. Then  $g(\tilde{H}) \ge 6$  and  $H = \langle 2, 7 \rangle$ ,  $\langle 3, 4 \rangle$ ,  $\langle 3, 5, 7 \rangle$  or  $\langle 4, 5, 6, 7 \rangle$ , all of which are Weierstrass. It is known that  $\tilde{H}$  is DC if one of the following holds:

(i)  $g(\tilde{H}) \ge 7$  (see [6, Main Theorem] and [9, Examples 3.6 and 3.9] for  $g(\tilde{H}) \ge 9$ , [2, Theorem 1.2] and [3, Theorem 1.3] for  $g(\tilde{H}) = 8$  and  $g(\tilde{H}) = 7$ , respectively).

(ii)  $H = \langle 2, 7 \rangle$  (cf. [7, Main Theorem]).

The main result of this article is the following theorem:

**Theorem 1.1** Let *H* be a numerical semigroup of genus three, i.e.,  $H = \langle 2, 7 \rangle$ ,  $\langle 3, 4 \rangle$ ,  $\langle 3, 5, 7 \rangle$  or  $\langle 4, 5, 6, 7 \rangle$ . Let  $\tilde{H}$  be a numerical semigroup of genus at least six such that  $d_2(\tilde{H}) = H$ . Then  $\tilde{H}$  is of double covering type.

Noting the previous results mentioned above, we may assume that  $g(\tilde{H}) = 6$  and  $H \neq \langle 2, 7 \rangle$ .

| <b>Table 1</b> the classification of $\tilde{H}$ | n | Н                                     |                               |                                    |
|--------------------------------------------------|---|---------------------------------------|-------------------------------|------------------------------------|
|                                                  |   | $\langle 3,4\rangle$                  | $\langle 3, 5, 7 \rangle$     | $\langle 4, 5, 6, 7 \rangle$       |
|                                                  | 3 | (3, 8, 13)                            | (3,7)                         |                                    |
|                                                  |   |                                       | (3, 10, 11)                   |                                    |
|                                                  | 5 |                                       | $\langle 5, 6, 7 \rangle$     | $\langle 5, 7, 8, 9 \rangle$       |
|                                                  |   |                                       | $\langle 5, 6, 9, 13 \rangle$ | $\langle 5, 7, 8, 11 \rangle$      |
|                                                  |   |                                       |                               | $\langle 5,8,9,11,12\rangle$       |
|                                                  | 7 | $\langle 6 \rightarrow 9, 11 \rangle$ | $\langle 6,7,9,10,11\rangle$  | $\langle 7 \rightarrow 13 \rangle$ |

#### 2 Numerical semigroups under consideration

Let  $\tilde{H}$  be a numerical semigroup of genus six such that  $H = d_2(\tilde{H})$  is (3, 4), (3, 5, 7)or (4, 5, 6, 7). Let  $\tilde{G} = \mathbb{N}_0 \setminus \tilde{H}$  be the set of gaps of  $\tilde{H}$  and n the minimum odd non-gap of  $\tilde{H}$ . First note that  $\tilde{G} \supseteq \{1, 2, 4\}$  and  $n \le 7$ . Indeed, if  $n \ge 9$  then  $\tilde{G} \supseteq \{1 \to 5, 7\}$ . In fact equality holds, which implies that  $\tilde{H} \supseteq \{6, 8, 10\}$ . Then  $H \supseteq (3, 4, 5)$ , a contradiction.

In this section we determine numerical semigroups of our interest according to H and the value of n. See Table 1 for the result.

**Case(a)**  $H = \langle 3, 4 \rangle$ . Note that  $\tilde{G} \supseteq \{1, 2, 4, 5, 10\}$  in this case. Hence the extra gap is 3 or 7.

Subcase(a-i) If n = 3, then  $\tilde{G} = \{1, 2, 4, 5, 7, 10\}$ , i.e.,  $\tilde{H} = \langle 3, 8, 13 \rangle$ . Subcase(a-ii) If n = 7, then  $\tilde{G} = \{1 \rightarrow 5, 10\}$ , i.e.,  $\tilde{H} = \langle 6 \rightarrow 9, 11 \rangle$ .

**Case(b)**  $H = \langle 3, 5, 7 \rangle$ . Then  $\tilde{G} \supseteq \{1, 2, 4, 8\}$ .

Subcase(b-i) If n = 3, then  $5 \in \tilde{G}$ . If furthermore  $7 \in \tilde{H}$  then  $\tilde{H} \supseteq \langle 3, 7 \rangle$ , which is in fact an equality since these semigroups have the same genus. Otherwise we see that  $\tilde{G} = \{1, 2, 4, 5, 7, 8\}$ , i.e.,  $\tilde{H} = \langle 3, 10, 11 \rangle$ .

Subcase(b-ii) If n = 5 then  $\tilde{G} \supseteq \{1 \rightarrow 4, 8\}$ . If furthermore  $7 \in \tilde{H}$  then  $\tilde{H} \supseteq \langle 5, 6, 7 \rangle$ , which is in fact an equality since both semigroups have the same genus. Otherwise  $\tilde{G} = \{1 \rightarrow 4, 7, 8\}$ , i.e.,  $\tilde{H} = \langle 5, 6, 9, 13 \rangle$ .

Subcase(b-iii) If n = 7 then  $\tilde{G} = \{1 \rightarrow 5, 8\}$ , i.e.,  $\tilde{H} = \langle 6, 7, 9, 10, 11 \rangle$ .

**Case(c)**  $H = \langle 4, 5, 6, 7 \rangle$ . Note that  $\tilde{G} \supseteq \{1 \rightarrow 4, 6\}$ .

Subcase(c-i) If n = 5 then  $\tilde{H} \supseteq \langle 5, 8, 12, 14 \rangle$ , i.e.,  $\tilde{G} \subseteq \{1 \rightarrow 4, 6, 7, 9, 11\}$ . Hence the remaining gap is 7, 9 or 11. It follows that  $\tilde{H} = \langle 5, 8, 9, 11, 12 \rangle$ ,  $\langle 5, 7, 8, 11 \rangle$  or  $\langle 5, 7, 8, 9 \rangle$ .

Subcase(c-ii) If n = 7 then  $\tilde{G} = \{1 \rightarrow 6\}$ , i.e.,  $\tilde{H} = \langle 7 \rightarrow 13 \rangle$ .

#### **3** Preliminary results

In this section we recall our method used in [2] and [3], please see these papers for the details. Let *H* be any Weierstrass semigroup of genus *q*,  $\tilde{H}$  a numerical semigroup of genus *g* such that  $d_2(\tilde{H}) = H$ . Define an integer *r* by the equation  $g = 2q + \frac{n-1}{2} - r$ ,

where *n* is the minimum odd element of  $\tilde{H}$ . Then  $r \ge 0$  and we obtain a sequence of numerical semigroups  $\tilde{H}_0 \subset \tilde{H}_1 \subset \cdots \subset \tilde{H}_s = \tilde{H}$  as follows:

- (i)  $\tilde{H}_0 := 2H + n\mathbb{N}_0$ .
- (ii) For j = 1, 2, ..., s,  $\tilde{H}_j := \tilde{H}_{j-1} + (n+2l_j)\mathbb{N}_0$ , where  $n + 2l_j$  is the minimum odd element of  $\tilde{H}$  not belonging to  $\tilde{H}_{j-1}$ .

**Theorem 3.1** ([5, Theorem 2.2]) Let H and  $\tilde{H}$  be as above. Take any curve  $\Gamma$  of genus q and a point on  $\Gamma$  such that H(P) = H. Assume that there exists an effective divisor  $\Delta_r \in \Gamma^{(r)}$  satisfying the following conditions:

- (C1)  $\Delta_r$  does not contain *P*.
- (C2)  $h^0(\Gamma, \Delta_r) = 1.$

(C3)  $h^0(\Gamma, l_j P + \Delta_r) = h^0(\Gamma, (l_j - 1)P + \Delta_r) + 1$  for j = 1, 2, ..., s.

(C4)  $|nP - 2\Delta_r|$  has a reduced member not containing *P*.

Then there exists a double covering  $\pi : C \to \Gamma$  with a ramification point  $\tilde{P}$  over P such that  $H(\tilde{P}) = \tilde{H}$ . In particular  $\tilde{H}$  is of double covering type.

*Remark 3.2* In our case  $g(\tilde{H}) = 6$ , q = 3 and  $r = \frac{n-1}{2}$ . Note that (C1) is satisfied if r = 1 and  $\Delta_1 \neq P$  and (C2) is trivial if  $r \leq 2$  and  $\Gamma$  is non-hyperelliptic.

In the rest of this paper  $\tilde{H}$  is a numerical semigroup of genus six and  $H = d_2(\tilde{H})$  is (3, 4), (3, 5, 7) or (4, 5, 6, 7). Note that there exists a smooth plane quartic  $\Gamma$  with a point P such that H(P) = H. For a point Q on  $\Gamma$ , we denote by  $T_Q$  the tangent line of  $\Gamma$  at Q.

We define a subset  $S(\Gamma, P, \tilde{H})$  of  $\Gamma^{(r)}$  as follows:

$$S(\Gamma, P, H) := \{\Delta_r \in \Gamma^{(r)} \mid \Delta_r \text{ satisfies the conditions } (C1), (C2) \text{ and } (C3)\}.$$

In our case r = 1, 2 or 3. To prove Theorem 1.1, it suffices to find an effective divisor  $\Delta_r \in S(\Gamma, P, \tilde{H})$  satisfying the condition (C4), i.e.,  $nP - 2\Delta_r$  is linearly equivalent to a point on  $\Gamma$  different from P.

### 4 When n = 3 and $\tilde{H} = \langle 3, 8, 13 \rangle, \langle 3, 7 \rangle$ or $\langle 3, 10, 11 \rangle$

We choose a smooth plane quartic  $\Gamma$  with three points  $Q_1$ ,  $Q_2$  and  $Q_3$  satisfying the following conditions:

- (i)  $Q_1$  is a hyperflex.
- (ii)  $Q_2$  and  $Q_3$  are ordinary flexes and both  $T_{Q_2}$  and  $T_{Q_3}$  pass through  $Q_1$ .

In other words

$$K_{\Gamma} \sim 4Q_1 \sim Q_1 + 3Q_2 \sim Q_1 + 3Q_3.$$

(1) For  $\tilde{H} = \langle 3, 8, 13 \rangle$  we set  $P := Q_1$ . Then  $H(P) = \langle 3, 4 \rangle$  and the condition (C3) is the equality

$$h^{0}(\Gamma, 5P + \Delta_{1}) = h^{0}(\Gamma, 4P + \Delta_{1}) + 1,$$

which holds for any  $\Delta_1 \in \Gamma$  because both divisors are non-special. Then  $\Delta_1 := Q_2$  belongs to  $S(\Gamma, P, \tilde{H})$  and

$$3P - 2\Delta_1 \sim (K_{\Gamma} - Q_1) - 2Q_2 \sim Q_2 \neq Q_1 = P,$$

which implies that  $\tilde{H}$  is DC.

(2) For  $H = \langle 3, 7 \rangle$  we set  $P := Q_2$ . Then  $H(P) = \langle 3, 5, 7 \rangle$  and the condition (C3) is the equality

$$h^{0}(\Gamma, 2P + \Delta_{1}) = h^{0}(\Gamma, P + \Delta_{1}) + 1 = 2,$$

which holds if and only if  $\Delta_1$  is contained in the divisor of  $\Gamma$  cut out by  $T_P$ . Hence  $\Delta_1 := Q_1$  belongs to  $S(\Gamma, P, \tilde{H})$  and

$$3P - 2\Delta_1 \sim (K_{\Gamma} - Q_1) - 2Q_1 \sim Q_1 \neq Q_2 = P$$
,

which shows that  $\tilde{H}$  is DC.

(3) For  $\hat{H} = \langle 3, 10, 11 \rangle$  we set  $P := Q_2$ . Then  $H(P) = \langle 3, 5, 7 \rangle$  and the condition (C3) is the equality

$$h^{0}(\Gamma, 3P + \Delta_{1}) = h^{0}(\Gamma, 4P + \Delta_{1}) - 1 = 2,$$

which holds if and only if  $\Delta_1$  is not contained in the divisor of  $\Gamma$  cut out by  $T_P$ . Hence  $\Delta_1 := Q_3$  belongs to  $S(\Gamma, P, \tilde{H})$  and

$$3P - 2\Delta_1 \sim (K_{\Gamma} - Q_1) - 2Q_3 \sim Q_3 \neq Q_2 = P,$$

which implies that  $\tilde{H}$  is DC.

## 5 When n = 5 and $\tilde{H} = \langle 5, 6, 7 \rangle$ , $\langle 5, 6, 9, 13 \rangle$ , $\langle 5, 7, 8, 9 \rangle$ , $\langle 5, 7, 8, 11 \rangle$ or $\langle 5, 8, 9, 11, 12 \rangle$

(1) For  $\tilde{H} = \langle 5, 6, 7 \rangle$ , we choose a smooth plane quartic  $\Gamma$  that has four distinct points  $P, P', Q_1$  and  $Q_2$  satisfying the following:

- (i) *P* is an ordinary flex and  $T_P$  passes through *P'*, i.e.,  $K_{\Gamma} \sim 3P + P'$ . In particular  $H := H(P) = \langle 3, 5, 7 \rangle$ .
- (ii)  $T_{P'}$  passes through  $Q_1$ , i.e.,  $K_{\Gamma} \sim 2P' + Q_1 + R$  for some point R on  $\Gamma$ .
- (iii)  $T_{Q_2}$  passes through P and  $Q_1$ , i.e.,  $K_{\Gamma} \sim P + Q_1 + 2Q_2$ .

Note that R is different from P. The condition (C3) is the equality

$$h^{0}(\Gamma, P + \Delta_{2}) = h^{0}(\Gamma, \Delta_{2}) + 1 = 2.$$

We set  $\Delta_2 := Q_1 + Q_2 \sim K_{\Gamma} - P - Q_2$ . Then it belongs to  $S(\Gamma, P, \tilde{H})$  and

$$5P - 2\Delta_2 \sim 2P + (K_{\Gamma} - P') - 2(Q_1 + Q_2)$$
  

$$\sim 2P + (P + Q_1 + 2Q_2 - P') - 2(Q_1 + Q_2)$$
  

$$\sim 3P - P' - Q_1$$
  

$$\sim (K_{\Gamma} - P') - P' - Q_1$$
  

$$\sim R \ (\neq P),$$

which implies that  $\Delta_2$  satisfies (C4). Hence  $\tilde{H} = \langle 5, 6, 7 \rangle$  is DC.

*Example 5.1* Let  $\Gamma$  be the plane quartic defined by the polynomial

$$f(x, y) = x^{4} + 2x^{3}y + y^{4} - x^{3} + 4x^{2}y - y^{3} - 8xy - y^{2} + y.$$

Then it is smooth and

$$f(x, 0) = x^{3}(x - 1),$$
  

$$f(0, y) = y(y - 1)^{2}(y + 1) \text{ and }$$
  

$$f(x, x - 1) = 4x(x - 1)^{2}(x + 1).$$

Hence  $\Gamma$  satisfies the above conditions (i)–(iii) for P = (0, 0),  $Q_1 = (0, -1)$ ,  $Q_2 = (0, 1)$  and P' = (1, 0). In this case  $T_{P'}$  and  $T_{Q_2}$  are defined by y = x - 1 and x = 0, respectively, and R = (-1, -2).

(2) For  $\tilde{H} = \langle 5, 6, 9, 13 \rangle$ , we choose a smooth plane quartic  $\Gamma$  that has an ordinary flex *P* and a hyperflex *P'* such that  $T_P$  passes through *P'*. Then  $H := H(P) = \langle 3, 5, 7 \rangle$  and  $K_{\Gamma} \sim 3P + P' \sim 4P'$ . The condition (C3) is the equalities

$$h^{0}(\Gamma, 2P + \Delta_{2}) = h^{0}(\Gamma, P + \Delta_{2}) + 1$$
 and  
 $h^{0}(\Gamma, 4P + \Delta_{2}) = h^{0}(\Gamma, 3P + \Delta_{2}) + 1.$ 

Note that the latter is trivial. Consider the pencil  $|K_{\Gamma} - P|$ . It induces a covering from  $\Gamma \to \mathbb{P}^1$  branched at four points. Let *R* be its ramification point different from *P* and *P'*. Then there exists a point  $R' \in \Gamma$  such that  $K_{\Gamma} - P \sim 2R + R'$ . Note that  $R' \neq P$ , or else  $3P + P' \sim K_{\Gamma} \sim 2P + 2R$ , which implies that R = P' = P, a contradiction. Then  $\Delta_2 := P' + R$  belongs to  $S(\Gamma, P, \tilde{H})$  and

$$5P - 2\Delta_2 \sim 2P + (K_{\Gamma} - P') - 2(P' + R) \\ \sim 2P + 3P' - 2(P' + R) \\ \sim 2P + P' - 2R \\ \sim (K_{\Gamma} - P) - 2R \\ \sim R' \ (\neq P),$$

which implies that  $\Delta_2$  satisfies (C4). Hence  $\tilde{H} = \langle 5, 6, 9, 13 \rangle$  is DC.

(3) Next we consider the remaining cases:  $\tilde{H} = \langle 5, 7, 8, 9 \rangle$ ,  $\tilde{H} = \langle 5, 7, 8, 11 \rangle$  and  $\tilde{H} = \langle 5, 8, 9, 11, 12 \rangle$ . For these cases, we take a nodal plane quintic  $\Gamma_0$  with three nodes  $p_i$  (i = 1, 2, 3) as its singularities satisfying the following conditions:

- (a)  $\Gamma_0$  has a total inflection point *p*.
- (b) There exists a line *l* that is tangent to Γ<sub>0</sub> at two smooth points, say q<sub>1</sub> and q<sub>2</sub>, and does not pass through p.

Let  $\varphi : S \to \mathbb{P}^2$  be the composite of the blow-ups at  $p_i$  (i = 1, 2, 3),  $\Gamma$  the strict transform of  $\Gamma_0$  and l (resp.  $e_i$ ) the pull-back to S of a line (resp. the exceptional curve corresponding to  $p_i$ ). Then  $\Gamma$  is a non-hyperelliptic curve of genus three.

Set  $P := \varphi^{-1}(p)$  and  $Q_i := \varphi^{-1}(q_i)$  (i = 1, 2). Then |5P| is a simple net on  $\Gamma$  without base points and dim|3P| = 0 since p is a smooth point of  $\Gamma$ , which implies that  $H(P) = \langle 4, 5, 6, 7 \rangle$ .

It is clear that  $\Delta_2 := Q_1 + Q_2$  satisfies the conditions (C1) and (C2). Furthermore, from the above conditions (a) and (b) there exists a point  $R_1 \neq P$  on  $\Gamma$  such that  $5P \sim 2Q_1 + 2Q_2 + R_1$ , or equivalently,  $5P - 2\Delta_2 \sim R_1$ . Hence  $\Delta_2$  satisfies (C4) as well.

We can impose any one of the following additional conditions on  $\Gamma_0$ :

- (c-i) There exists a conic  $B_0$  passing through all of the six points p,  $p_i$  (i = 1, 2, 3),  $q_1$  and  $q_2$  such that  $i(B_0, \Gamma_0; p) = 2$ .
- (c-ii) There exists a conic  $B_0$  passing through all of the six points p,  $p_i$  (i = 1, 2, 3),  $q_1$  and  $q_2$  such that  $i(B_0, \Gamma_0; p) = 1$ .
- (c-iii) There exists no conic passing through all of the six points p,  $p_i$  (i = 1, 2, 3),  $q_1$  and  $q_2$ .

Let *B* be the strict transform of  $B_0$  by  $\varphi : S \to \mathbb{P}^2$  under the condition (c-i) or (c-ii).

First, for  $\hat{H} = \langle 5, 7, 8, 9 \rangle$ , we choose  $\Gamma_0$  admitting (c-i). By using the adjunction formula we obtain the following:

$$K_{\Gamma} \sim \left(2l - \sum_{i=1}^{3} e_i\right)\Big|_{\Gamma} \sim B|_{\Gamma} \sim 2P + Q_1 + Q_2.$$

Hence  $h^0(\Gamma, P + \Delta_2) = 2 = h^0(\Gamma, \Delta_2) + 1$ , which is the condition (C3). Thus  $\tilde{H} = \langle 5, 7, 8, 9 \rangle$  is DC.

Secondly, for  $H = \langle 5, 7, 8, 11 \rangle$ , we choose  $\Gamma_0$  admitting (c-ii). By using the adjunction formula again we obtain the following:

$$K_{\Gamma} \sim \left(2l - \sum_{i=1}^{3} e_i\right)\Big|_{\Gamma} \sim B|_{\Gamma} \sim P + Q_1 + Q_2 + R_2,$$

where  $R_2$  is a point of  $\Gamma$  different from P. Then

$$h^{0}(\Gamma, P + \Delta_{2}) = h^{0}(\Gamma, K_{\Gamma} - R_{2}) = 2 = h^{0}(\Gamma, \Delta_{2}) + 1$$
 and  
 $h^{0}(\Gamma, 2P + \Delta_{2}) = h^{0}(\Gamma, K_{\Gamma} - R_{2} + P) = 2 = h^{0}(\Gamma, 3P + \Delta_{2}) - 1.$ 

Hence  $\Delta_2$  satisfies (C3). It follows that  $\tilde{H} = \langle 5, 7, 8, 11 \rangle$  is DC.

🖉 Springer

Thirdly, for  $\tilde{H} = \langle 5, 8, 9, 11, 12 \rangle$ , we choose  $\Gamma_0$  admitting (c-iii). Then there exists no canonical divisor of  $\Gamma$  containing  $P + Q_1 + Q_2$ , which implies that

$$h^{0}(\Gamma, 2P + \Delta_{2}) = 2 = h^{0}(\Gamma, P + \Delta_{2}) + 1$$
 and  
 $h^{0}(\Gamma, 3P + \Delta_{2}) = 3 = h^{0}(\Gamma, 2P + \Delta_{2}) + 1.$ 

Hence  $\Delta_2$  satisfies (C3). Thus  $\tilde{H} = \langle 5, 8, 9, 11, 12 \rangle$  is DC.

*Remark 5.2* In the above argument we construct desired curves of genus three via nodal plane quintics. However, we can give a concrete pair of a smooth plane quartic and a point on the curve corresponding the numerical semigroup under consideration. For example, consider the smooth plane quartic

$$\Gamma : X^{3}Y + X^{2}YZ - XY^{2}Z + Y^{3}Z - X^{2}Z^{2} - 2Y^{2}Z^{2} + YZ^{3} = 0$$

and set P = (0 : 1 : 1). We verify that there exists a double covering of  $\Gamma$  with a ramification point  $\tilde{P}$  over P such that  $H(\tilde{P}) = \langle 5, 7, 8, 9 \rangle$  by using Theorem 3.1.

Set  $P_1 = (0 : 0 : 1)$ ,  $P_2 = (0 : 1 : 0)$ ,  $S_1 = (-1 : 1 : 1)$ ,  $S_2 = (1 : 1 : 1)$ ,  $S_3 = (1 : 0 : 0)$  and  $\Delta_2 := P_1 + P_2$ . Note that  $T_P$  and  $T_{P_2}$  are defined by X = 0 and Z = 0, respectively. Therefore

$$K_{\Gamma} \sim \Gamma . T_P = 2P + P_1 + P_2$$
  
 
$$\sim \Gamma . T_{P_2} = 3P_2 + S_3$$
  
 
$$\sim \Gamma . L = P + S_1 + S_2 + S_3,$$

where *L* is the line defined by Y - Z = 0. Furthermore,  $2K_{\Gamma} \sim \Gamma C_2 = 4P_1 + 2P_2 + S_1 + S_2$ , where  $C_2$  is the conic  $X^2 - YZ = 0$ . Then

$$5P - 2\Delta_2 \sim 2(K_{\Gamma} - P_1 - P_2) + (K_{\Gamma} - S_1 - S_2 - S_3) - 2P_1 - 2P_2$$
  

$$\sim 3K_{\Gamma} - 4P_1 - 4P_2 - S_1 - S_2 - S_3$$
  

$$\sim (2K_{\Gamma} - 4P_1 - 2P_2 - S_1 - S_2) + (K_{\Gamma} - 3P_2 - S_3) + P_2$$
  

$$\sim P_2.$$

Thus Theorem 3.1 shows that there exists a desired double covering.

#### 6 When n = 7 and $\hat{H} = (6 \rightarrow 9, 11), (6, 7, 9, 10, 11)$ or $(7 \rightarrow 13)$

(1) For  $H = \langle 6 \rightarrow 9, 11 \rangle$ , we choose a smooth plane quartic  $\Gamma$  with five points P,  $Q_1, Q_2, Q_3$  and R satisfying the following conditions:

(i) *P* is a hyperflex, i.e.,  $H(P) = \langle 3, 4 \rangle$ .

(ii) The line  $\overline{Q_1 Q_2}$  is tangent to  $\Gamma$  at both  $Q_1$  and  $Q_2$ .

(iii)  $T_{Q_3}$  passes through P and R.

In other words, the relations

$$K_{\Gamma} \sim 4P \sim 2Q_1 + 2Q_2 \sim P + 2Q_3 + R$$

hold. We set  $\Delta_3 := Q_1 + Q_2 + Q_3$ . It satisfies the conditions (C1) and (C2), since  $Q_1, Q_2$  and  $Q_3$  are not collinear by (ii). Furthermore it is clear that

$$h^{0}(\Gamma, P + \Delta_{3}) = 2 = h^{0}(\Gamma, \Delta_{3}) + 1$$
 and  
 $h^{0}(\Gamma, 2P + \Delta_{3}) = 3 = h^{0}(\Gamma, P + \Delta_{3}) + 1.$ 

Thus  $\Delta_3$  satisfies (C3) as well. Finally

$$7P - 2\Delta_3 \sim (2K_{\Gamma} - P) - 2(Q_1 + Q_2 + Q_3) \\ \sim (K_{\Gamma} - 2Q_1 - 2Q_2) + (K_{\Gamma} - P - 2Q_3) \\ \sim R \ (\neq P).$$

Hence  $\Delta_3$  satisfies (C4), which shows that  $\tilde{H}$  is DC.

(2) Secondly, for  $H = \langle 6, 7, 9, 10, 11 \rangle$ , we choose a smooth plane quartic  $\Gamma$  with seven points  $P, P', Q_i$  (i = 1, 2, 3) and  $R_j$  (j = 1, 2) satisfying the following conditions:

- (i) P,  $Q_1$  and  $Q_2$  are ordinary flexes and three tangent lines  $T_P$ ,  $T_{Q_1}$  and  $T_{Q_2}$  meets P'. In particular  $H(P) = \langle 3, 5, 7 \rangle$ .
- (ii) Four points P,  $Q_1$ ,  $Q_2$  and  $R_1$  are collinear.
- (iii)  $T_{Q_3}$  passes through  $R_1$  and  $R_2$ .

Then we obtain the relations that

$$K_{\Gamma} \sim 3P + P' \sim 3Q_1 + P' \sim 3Q_2 + P' \sim P + Q_1 + Q_2 + R_1 \sim 2Q_3 + R_1 + R_2.$$

Then  $\Delta_3 := Q_1 + Q_2 + Q_3$  satisfies the conditions (C1) and (C2), since  $Q_1$ ,  $Q_2$  and  $Q_3$  are not collinear by (ii). Furthermore

$$h^{0}(\Gamma, P + \Delta_{3}) = 2 = h^{0}(\Gamma, \Delta_{3}) + 1$$
 and  
 $h^{0}(\Gamma, 2P + \Delta_{3}) = 3 = h^{0}(\Gamma, P + \Delta_{3}) + 1$ 

hold, which shows that  $\Delta_3$  also satisfies (C3). Finally

$$7P - 2\Delta_3 \sim 2(K_{\Gamma} - P') + (K_{\Gamma} - Q_1 - Q_2 - R_1) - 2(Q_1 + Q_2 + Q_3)$$
  

$$\sim 3K_{\Gamma} - 2P' - 3Q_1 - 3Q_2 - 2Q_3 - R_1$$
  

$$\sim (K_{\Gamma} - 3Q_1 - P') + (K_{\Gamma} - 3Q_2 - P') + (K_{\Gamma} - 2Q_3 - R_1)$$
  

$$\sim R_2 \ (\neq P).$$

Thus  $\Delta_3$  satisfies (C4). Hence  $\tilde{H} = \langle 6, 7, 9, 10, 11 \rangle$  is DC. (3) In the end, for  $\tilde{H} = \langle 7 \rightarrow 13 \rangle$ , let  $\Gamma$  be a smooth plane quartic without Galois points, *P* a non-flex of  $\Gamma$ . Then  $H(P) = \langle 4, 5, 6, 7 \rangle$ . It follows from [2, Lemma 3.6 (1)] that  $|7P - 2Q_1| = g_5^2$  is free from base points for a general point  $Q_1 \in \Gamma$ . Thus it gives a nodal plane quintic model  $\Gamma_0$  of  $\Gamma$ . Let  $Q_2$  be a point on  $\Gamma$  different from  $Q_1$ corresponding to a node of  $\Gamma_0$ . Then  $|7P - 2Q_1 - 2Q_2| = g_3^1$  is a pencil without base points. It induces a triple covering  $\psi : \Gamma \to \mathbb{P}^1$  with at least six ramification points, since  $\Gamma$  has no Galois points. Hence we can choose a ramification point  $Q_3$  of  $\psi$  satisfying the following:

(a)  $\psi(Q_3) \neq \psi(P)$ .

- (b)  $Q_3$  is distinct from  $Q_1$  and  $Q_2$ .
- (c)  $Q_1$ ,  $Q_2$  and  $Q_3$  are not collinear.

Then  $|7P - 2Q_1 - 2Q_2 - 2Q_3|$  consists of a point on  $\Gamma$  different from P by (a). Hence  $\Delta_3 := Q_1 + Q_2 + Q_3$  satisfies (C1), (C2) and (C4). It is clear that  $\Delta_3$  also satisfies (C3). Thus  $\tilde{H} = \langle 7 \rightarrow 13 \rangle$  is DC.

#### References

- Garcia, A.: Weights of Weierstrass points in double coverings of curves of genus one or two. Manuscr. Math. 55, 419–432 (1986)
- Harui, T., Komeda, J.: Numerical semigroups of genus eight and double coverings of curves of genus three. Semigroup Forum 89, 571–581 (2014)
- Harui, T., Komeda, J.: Numerical semigroups of genus seven and double coverings of curves of genus three. Semigroup Forum. doi:10.1007/s00233-014-9621-0
- Harui, T., Komeda, J., Ohbuchi, A.: The Weierstrass semigroups on double covers of genus two curves. arXiv:1311.4143
- Komeda, J.: A numerical semigroup from which the semigroup gained by dividing by two is either N<sub>0</sub> or a 2-semigroup or (3, 4, 5). Res. Rep. Kanagawa Inst. Technol. B–33, 37–42 (2009)
- Komeda, J.: On Weierstrass semigroups of double coverings of genus three curves. Semigroup Forum 83, 479–488 (2011)
- Komeda, J., Ohbuchi, A.: Weierstrass points with first non-gap four on a double covering of a hyperelliptic curve II. Serdica Math. J. 34, 771–782 (2008)
- Oliveira, G., Pimentel, F.L.R.: On Weierstrass semigroups of double covering of genus two curves. Semigroup Forum 77, 152–162 (2008)
- Oliveira, G., Torres, F., Villanueva, J.: On the weight of numerical semigroups. J. Pure Appl. Algebra 214, 1955–1961 (2010)