Numerical semigroups of genus six and double coverings of curves of genus three

Takeshi Harui • Jiryo Komeda

Received: 26 July 2014 / Accepted: 1 December 2014 / Published online: 17 December 2014
© Springer Science+Business Media New York 2014

Abstract

This is a sequel of previous papers of the authors on Weierstrass semigroups at ramification points of double coverings of algebraic curves of genus three. In this paper they give a list of possible numerical semigroups when the covering curve is of genus six and show that all of such semigroups are actually of double covering type. This result completes a classification of numerical semigroups of double covering type obtained by ramified double coverings of curves of genus three.

Keywords Weierstrass semigroups • Numerical semigroups • Double coverings • Plane quartics

1 Introduction

Notation and Conventions

We denote by \mathbb{N}_{0} the additive monoid of non-negative integers. A submonoid of \mathbb{N}_{0} is called a numerical semigroup if its complement is a finite set. For a numerical semigroup H, a positive integer m is called a gap of H if $m \notin H$. The number of gaps of H is called its genus and is denoted by $g(H)$.

Communicated by Fernando Torres.

[^0]In this paper $a \rightarrow b$ denotes a sequence $a, a+1, a+2, \ldots, b$ of non-negative integers.

A curve always means a projective irreducible curve over an algebraically closed field of characteristic zero and it is assumed to be smooth unless otherwise mentioned. For a curve X, we denote by $X^{(r)}$ the variety of effective divisors of degree r on X.

For a point P on a curve X, the semigroup
$H(P)=\left\{m \in \mathbb{N}_{0} \mid\right.$ there exists a rational function f on X such that $\left.(f)_{\infty}=m P\right\}$
is a numerical semigroup of genus $g(X)$. This is called the Weierstrass semigroup at P. A numerical semigroup H is said to be Weierstrass if there exist a curve X and a point P on X such that $H(P)=H$.

When \tilde{H} is a numerical semigroup, the set $d_{2}(\tilde{H}):=\left\{h \in \mathbb{N}_{0} \mid 2 h \in \tilde{H}\right\}$ is also a numerical semigroup such that
(i) $\tilde{H} \subseteq d_{2}(\tilde{H})$.
(ii) $2 d_{2}(\tilde{H})=\left\{2 h \mid h \in d_{2}(\tilde{H})\right\}=\tilde{H} \cap 2 \mathbb{N}_{0}$.

A numerical semigroup \tilde{H} is said to be of double covering type, or simply $D C$, if there exist a ramified double covering $\pi: X \rightarrow Y$ of curves and a ramification point $\tilde{P} \in X$ such that $\tilde{H}=H(\tilde{P})$. Then it is easy to verify that $d_{2}(\tilde{H})=H(\pi(\tilde{P}))$ and $g(\tilde{H}) \geq 2 g\left(d_{2}(\tilde{H})\right)$ since π has a ramification point. By definition a numerical semigroup of double covering type is Weierstrass.

Is the converse true? That is to say, if \tilde{H} is a numerical semigroup with $d_{2}(\tilde{H})=H$ such that $g(\tilde{H}) \geq 2 g(H)$, then is it of double covering type? This is an interesting and important problem. In this paper we give a complete answer for this problem when $g(\tilde{H})=6$ and $g(H)=3$, which is the last piece for a classification of numerical semigroups of double covering type obtained by a ramified double covering of a curve of genus three.

For the results when $g(H) \leq 2$, see [1,5,7-9] and [4]. In short, we have the affirmative answer for the above problem. Precisely, every numerical semigroup \tilde{H} such that $H=d_{2}(\tilde{H})$ is of genus at most two and $g(\tilde{H}) \geq 2 g(H)$ is known to be DC.

Assume that $g(H)=3$. Then $g(\tilde{H}) \geq 6$ and $H=\langle 2,7\rangle,\langle 3,4\rangle,\langle 3,5,7\rangle$ or $\langle 4,5,6,7\rangle$, all of which are Weierstrass. It is known that \tilde{H} is DC if one of the following holds:
(i) $g(\tilde{H}) \geq 7$ (see [6, Main Theorem] and [9, Examples 3.6 and 3.9] for $g(\tilde{H}) \geq 9$, [2, Theorem 1.2] and [3, Theorem 1.3] for $g(\tilde{H})=8$ and $g(\tilde{H})=7$, respectively).
(ii) $H=\langle 2,7\rangle$ (cf. [7, Main Theorem]).

The main result of this article is the following theorem:
Theorem 1.1 Let H be a numerical semigroup of genus three, i.e., $H=\langle 2,7\rangle,\langle 3,4\rangle$, $\langle 3,5,7\rangle$ or $\langle 4,5,6,7\rangle$. Let \tilde{H} be a numerical semigroup of genus at least six such that $d_{2}(\tilde{H})=H$. Then \tilde{H} is of double covering type.

Noting the previous results mentioned above, we may assume that $g(\tilde{H})=6$ and $H \neq\langle 2,7\rangle$.

Table 1 the classification of \tilde{H}

n	H		
	$\langle 3,4\rangle$	$\langle 3,5,7\rangle$	$\langle 4,5,6,7\rangle$
3	$\langle 3,8,13\rangle$	$\langle 3,7\rangle$	
		$\langle 3,10,11\rangle$	
5		$\langle 5,6,7\rangle$	$\langle 5,7,8,9\rangle$
		$\langle 5,6,9,13\rangle$	$\langle 5,7,8,11\rangle$
			$\langle 5,8,9,11,12\rangle$
7	$\langle 6 \rightarrow 9,11\rangle$	$\langle 6,7,9,10,11\rangle$	$\langle 7 \rightarrow 13\rangle$

2 Numerical semigroups under consideration

Let \tilde{H} be a numerical semigroup of genus six such that $H=d_{2}(\tilde{H})$ is $\langle 3,4\rangle,\langle 3,5,7\rangle$ or $\langle 4,5,6,7\rangle$. Let $\tilde{G}=\mathbb{N}_{0} \backslash \tilde{H}$ be the set of gaps of \tilde{H} and n the minimum odd non-gap of \tilde{H}. First note that $\tilde{G} \supseteq\{1,2,4\}$ and $n \leq 7$. Indeed, if $n \geq 9$ then $\tilde{G} \supseteq\{1 \rightarrow 5,7\}$. In fact equality holds, which implies that $\tilde{H} \supseteq\{6,8,10\}$. Then $H \supseteq\langle 3,4,5\rangle$, a contradiction.

In this section we determine numerical semigroups of our interest according to H and the value of n. See Table 1 for the result.
Case(a) $H=\langle 3,4\rangle$. Note that $\tilde{G} \supseteq\{1,2,4,5,10\}$ in this case. Hence the extra gap is 3 or 7 .

Subcase(a-i) If $n=3$, then $\tilde{G}=\{1,2,4,5,7,10\}$, i.e., $\tilde{H}=\langle 3,8,13\rangle$.
Subcase(a-ii) If $n=7$, then $\tilde{G}=\{1 \rightarrow 5,10\}$, i.e., $\tilde{H}=\langle 6 \rightarrow 9,11\rangle$.
Case(b) $H=\langle 3,5,7\rangle$. Then $\tilde{G} \supseteq\{1,2,4,8\}$.
Subcase(b-i) If $n=3$, then $5 \in \tilde{G}$. If furthermore $7 \in \tilde{H}$ then $\tilde{H} \supseteq\langle 3,7\rangle$, which is in fact an equality since these semigroups have the same genus. Otherwise we see that $\tilde{G}=\{1,2,4,5,7,8\}$, i.e., $\tilde{H}=\langle 3,10,11\rangle$.

Subcase(b-ii) If $n=5$ then $\tilde{G} \supseteq\{1 \rightarrow 4,8\}$. If furthermore $7 \in \tilde{H}$ then $\tilde{H} \supseteq\langle 5,6,7\rangle$, which is in fact an equality since both semigroups have the same genus. Otherwise $\tilde{G}=\{1 \rightarrow 4,7,8\}$, i.e., $\tilde{H}=\langle 5,6,9,13\rangle$.

Subcase(b-iii) If $n=7$ then $\tilde{G}=\{1 \rightarrow 5,8\}$, i.e., $\tilde{H}=\langle 6,7,9,10,11\rangle$.
Case(c) $H=\langle 4,5,6,7\rangle$. Note that $\tilde{G} \supseteq\{1 \rightarrow 4,6\}$.
Subcase(c-i) If $n=5$ then $\tilde{H} \supseteq\langle 5,8,12,14\rangle$, i.e., $\tilde{G} \subseteq\{1 \rightarrow 4,6,7,9,11\}$. Hence the remaining gap is 7,9 or 11. It follows that $\tilde{H}=\langle 5,8,9,11,12\rangle,\langle 5,7,8,11\rangle$ or $\langle 5,7,8,9\rangle$.

Subcase(c-ii) If $n=7$ then $\tilde{G}=\{1 \rightarrow 6\}$, i.e., $\tilde{H}=\langle 7 \rightarrow 13\rangle$.

3 Preliminary results

In this section we recall our method used in [2] and [3], please see these papers for the details. Let H be any Weierstrass semigroup of genus q, \tilde{H} a numerical semigroup of genus g such that $d_{2}(\tilde{H})=H$. Define an integer r by the equation $g=2 q+\frac{n-1}{2}-r$,
where n is the minimum odd element of \tilde{H}. Then $r \geq 0$ and we obtain a sequence of numerical semigroups $\tilde{H}_{0} \subset \tilde{H}_{1} \subset \cdots \subset \tilde{H}_{s}=\tilde{H}$ as follows:
(i) $\tilde{H}_{0}:=2 H+n \mathbb{N}_{0}$.
(ii) For $j=1,2, \ldots, s, \tilde{H}_{j}:=\tilde{H}_{j-1}+\left(n+2 l_{j}\right) \mathbb{N}_{0}$, where $n+2 l_{j}$ is the minimum odd element of \tilde{H} not belonging to \tilde{H}_{j-1}.

Theorem 3.1 ([5, Theorem 2.2]) Let H and \tilde{H} be as above. Take any curve Γ of genus q and a point on Γ such that $H(P)=H$. Assume that there exists an effective divisor $\Delta_{r} \in \Gamma^{(r)}$ satisfying the following conditions:
(C1) Δ_{r} does not contain P.
(C2) $h^{0}\left(\Gamma, \Delta_{r}\right)=1$.
(C3) $h^{0}\left(\Gamma, l_{j} P+\Delta_{r}\right)=h^{0}\left(\Gamma,\left(l_{j}-1\right) P+\Delta_{r}\right)+1$ for $j=1,2, \ldots, s$.
(C4) $\left|n P-2 \Delta_{r}\right|$ has a reduced member not containing P.
Then there exists a double covering $\pi: C \rightarrow \Gamma$ with a ramification point \tilde{P} over P such that $H(\tilde{P})=\tilde{H}$. In particular \tilde{H} is of double covering type.
Remark 3.2 In our case $g(\tilde{H})=6, q=3$ and $r=\frac{n-1}{2}$. Note that (C1) is satisfied if $r=1$ and $\Delta_{1} \neq P$ and (C2) is trivial if $r \leq 2$ and Γ is non-hyperelliptic.

In the rest of this paper \tilde{H} is a numerical semigroup of genus six and $H=d_{2}(\tilde{H})$ is $\langle 3,4\rangle,\langle 3,5,7\rangle$ or $\langle 4,5,6,7\rangle$. Note that there exists a smooth plane quartic Γ with a point P such that $H(P)=H$. For a point Q on Γ, we denote by T_{Q} the tangent line of Γ at Q.

We define a subset $S(\Gamma, P, \tilde{H})$ of $\Gamma^{(r)}$ as follows:
$S(\Gamma, P, \tilde{H}):=\left\{\Delta_{r} \in \Gamma^{(r)} \mid \Delta_{r}\right.$ satisfies the conditions (C1),(C2) and (C3) $\}$.
In our case $r=1,2$ or 3 . To prove Theorem 1.1, it suffices to find an effective divisor $\Delta_{r} \in S(\Gamma, P, \tilde{H})$ satisfying the condition ($C 4$), i.e., $n P-2 \Delta_{r}$ is linearly equivalent to a point on Γ different from P.

4 When $n=3$ and $\tilde{H}=\langle 3,8,13\rangle,\langle 3,7\rangle$ or $\langle 3,10,11\rangle$
We choose a smooth plane quartic Γ with three points Q_{1}, Q_{2} and Q_{3} satisfying the following conditions:
(i) Q_{1} is a hyperflex.
(ii) Q_{2} and Q_{3} are ordinary flexes and both $T_{Q_{2}}$ and $T_{Q_{3}}$ pass through Q_{1}.

In other words

$$
K_{\Gamma} \sim 4 Q_{1} \sim Q_{1}+3 Q_{2} \sim Q_{1}+3 Q_{3} .
$$

(1) For $\tilde{H}=\langle 3,8,13\rangle$ we set $P:=Q_{1}$. Then $H(P)=\langle 3,4\rangle$ and the condition (C3) is the equality

$$
h^{0}\left(\Gamma, 5 P+\Delta_{1}\right)=h^{0}\left(\Gamma, 4 P+\Delta_{1}\right)+1,
$$

which holds for any $\Delta_{1} \in \Gamma$ because both divisors are non-special. Then $\Delta_{1}:=$ Q_{2} belongs to $S(\Gamma, P, \tilde{H})$ and

$$
3 P-2 \Delta_{1} \sim\left(K_{\Gamma}-Q_{1}\right)-2 Q_{2} \sim Q_{2} \neq Q_{1}=P
$$

which implies that \tilde{H} is DC.
(2) For $\tilde{H}=\langle 3,7\rangle$ we set $P:=Q_{2}$. Then $H(P)=\langle 3,5,7\rangle$ and the condition (C3) is the equality

$$
h^{0}\left(\Gamma, 2 P+\Delta_{1}\right)=h^{0}\left(\Gamma, P+\Delta_{1}\right)+1=2,
$$

which holds if and only if Δ_{1} is contained in the divisor of Γ cut out by T_{P}. Hence $\Delta_{1}:=Q_{1}$ belongs to $S(\Gamma, P, \tilde{H})$ and

$$
3 P-2 \Delta_{1} \sim\left(K_{\Gamma}-Q_{1}\right)-2 Q_{1} \sim Q_{1} \neq Q_{2}=P
$$

which shows that \tilde{H} is DC.
(3) For $\tilde{H}=\langle 3,10,11\rangle$ we set $P:=Q_{2}$. Then $H(P)=\langle 3,5,7\rangle$ and the condition (C3) is the equality

$$
h^{0}\left(\Gamma, 3 P+\Delta_{1}\right)=h^{0}\left(\Gamma, 4 P+\Delta_{1}\right)-1=2
$$

which holds if and only if Δ_{1} is not contained in the divisor of Γ cut out by T_{P}. Hence $\Delta_{1}:=Q_{3}$ belongs to $S(\Gamma, P, \tilde{H})$ and

$$
3 P-2 \Delta_{1} \sim\left(K_{\Gamma}-Q_{1}\right)-2 Q_{3} \sim Q_{3} \neq Q_{2}=P,
$$

which implies that \tilde{H} is DC.

5 When $n=5$ and $\tilde{H}=\langle 5,6,7\rangle,\langle 5,6,9,13\rangle,\langle 5,7,8,9\rangle,\langle 5,7,8,11\rangle$ or $\langle 5,8,9,11,12\rangle$
(1) For $\tilde{H}=\langle 5,6,7\rangle$, we choose a smooth plane quartic Γ that has four distinct points P, P^{\prime}, Q_{1} and Q_{2} satisfying the following:
(i) P is an ordinary flex and T_{P} passes through P^{\prime}, i.e., $K_{\Gamma} \sim 3 P+P^{\prime}$. In particular $H:=H(P)=\langle 3,5,7\rangle$.
(ii) $T_{P^{\prime}}$ passes through Q_{1}, i.e., $K_{\Gamma} \sim 2 P^{\prime}+Q_{1}+R$ for some point R on Γ.
(iii) $T_{Q_{2}}$ passes through P and Q_{1}, i.e., $K_{\Gamma} \sim P+Q_{1}+2 Q_{2}$.

Note that R is different from P. The condition (C3) is the equality

$$
h^{0}\left(\Gamma, P+\Delta_{2}\right)=h^{0}\left(\Gamma, \Delta_{2}\right)+1=2
$$

We set $\Delta_{2}:=Q_{1}+Q_{2} \sim K_{\Gamma}-P-Q_{2}$. Then it belongs to $S(\Gamma, P, \tilde{H})$ and

$$
\begin{aligned}
5 P-2 \Delta_{2} & \sim 2 P+\left(K_{\Gamma}-P^{\prime}\right)-2\left(Q_{1}+Q_{2}\right) \\
& \sim 2 P+\left(P+Q_{1}+2 Q_{2}-P^{\prime}\right)-2\left(Q_{1}+Q_{2}\right) \\
& \sim 3 P-P^{\prime}-Q_{1} \\
& \sim\left(K_{\Gamma}-P^{\prime}\right)-P^{\prime}-Q_{1} \\
& \sim R(\neq P),
\end{aligned}
$$

which implies that Δ_{2} satisfies (C4). Hence $\tilde{H}=\langle 5,6,7\rangle$ is DC.
Example 5.1 Let Γ be the plane quartic defined by the polynomial

$$
f(x, y)=x^{4}+2 x^{3} y+y^{4}-x^{3}+4 x^{2} y-y^{3}-8 x y-y^{2}+y .
$$

Then it is smooth and

$$
\begin{aligned}
f(x, 0) & =x^{3}(x-1), \\
f(0, y) & =y(y-1)^{2}(y+1) \quad \text { and } \\
f(x, x-1) & =4 x(x-1)^{2}(x+1) .
\end{aligned}
$$

Hence Γ satisfies the above conditions (i)-(iii) for $P=(0,0), Q_{1}=(0,-1), Q_{2}=$ $(0,1)$ and $P^{\prime}=(1,0)$. In this case $T_{P^{\prime}}$ and $T_{Q_{2}}$ are defined by $y=x-1$ and $x=0$, respectively, and $R=(-1,-2)$.
(2) For $\tilde{H}=\langle 5,6,9,13\rangle$, we choose a smooth plane quartic Γ that has an ordinary flex P and a hyperflex P^{\prime} such that T_{P} passes through P^{\prime}. Then $H:=H(P)=\langle 3,5,7\rangle$ and $K_{\Gamma} \sim 3 P+P^{\prime} \sim 4 P^{\prime}$. The condition (C3) is the equalities

$$
\begin{aligned}
& h^{0}\left(\Gamma, 2 P+\Delta_{2}\right)=h^{0}\left(\Gamma, P+\Delta_{2}\right)+1 \text { and } \\
& h^{0}\left(\Gamma, 4 P+\Delta_{2}\right)=h^{0}\left(\Gamma, 3 P+\Delta_{2}\right)+1
\end{aligned}
$$

Note that the latter is trivial. Consider the pencil $\left|K_{\Gamma}-P\right|$. It induces a covering from $\Gamma \rightarrow \mathbb{P}^{1}$ branched at four points. Let R be its ramification point different from P and P^{\prime}. Then there exists a point $R^{\prime} \in \Gamma$ such that $K_{\Gamma}-P \sim 2 R+R^{\prime}$. Note that $R^{\prime} \neq P$, or else $3 P+P^{\prime} \sim K_{\Gamma} \sim 2 P+2 R$, which implies that $R=P^{\prime}=P$, a contradiction. Then $\Delta_{2}:=P^{\prime}+R$ belongs to $S(\Gamma, P, \tilde{H})$ and

$$
\begin{aligned}
5 P-2 \Delta_{2} & \sim 2 P+\left(K_{\Gamma}-P^{\prime}\right)-2\left(P^{\prime}+R\right) \\
& \sim 2 P+3 P^{\prime}-2\left(P^{\prime}+R\right) \\
& \sim 2 P+P^{\prime}-2 R \\
& \sim\left(K_{\Gamma}-P\right)-2 R \\
& \sim R^{\prime}(\neq P),
\end{aligned}
$$

which implies that Δ_{2} satisfies (C4). Hence $\tilde{H}=\langle 5,6,9,13\rangle$ is DC.
(3) Next we consider the remaining cases: $\tilde{H}=\langle 5,7,8,9\rangle, \tilde{H}=\langle 5,7,8,11\rangle$ and $\tilde{H}=\langle 5,8,9,11,12\rangle$. For these cases, we take a nodal plane quintic Γ_{0} with three nodes $p_{i}(i=1,2,3)$ as its singularities satisfying the following conditions:
(a) Γ_{0} has a total inflection point p.
(b) There exists a line l that is tangent to Γ_{0} at two smooth points, say q_{1} and q_{2}, and does not pass through p.
Let $\varphi: S \rightarrow \mathbb{P}^{2}$ be the composite of the blow-ups at $p_{i}(i=1,2,3), \Gamma$ the strict transform of Γ_{0} and l (resp. e_{i}) the pull-back to S of a line (resp. the exceptional curve corresponding to p_{i}). Then Γ is a non-hyperelliptic curve of genus three.

Set $P:=\varphi^{-1}(p)$ and $Q_{i}:=\varphi^{-1}\left(q_{i}\right)(i=1,2)$. Then $|5 P|$ is a simple net on Γ without base points and $\operatorname{dim}|3 P|=0$ since p is a smooth point of Γ, which implies that $H(P)=\langle 4,5,6,7\rangle$.

It is clear that $\Delta_{2}:=Q_{1}+Q_{2}$ satisfies the conditions (C1) and (C2). Furthermore, from the above conditions (a) and (b) there exists a point $R_{1} \neq P$ on Γ such that $5 P \sim 2 Q_{1}+2 Q_{2}+R_{1}$, or equivalently, $5 P-2 \Delta_{2} \sim R_{1}$. Hence Δ_{2} satisfies (C4) as well.

We can impose any one of the following additional conditions on Γ_{0} :
(c-i) There exists a conic B_{0} passing through all of the six points $p, p_{i}(i=1,2,3)$, q_{1} and q_{2} such that $i\left(B_{0}, \Gamma_{0} ; p\right)=2$.
(c-ii) There exists a conic B_{0} passing through all of the six points $p, p_{i}(i=1,2,3)$, q_{1} and q_{2} such that $i\left(B_{0}, \Gamma_{0} ; p\right)=1$.
(c-iii) There exists no conic passing through all of the six points $p, p_{i}(i=1,2,3)$, q_{1} and q_{2}.
Let B be the strict transform of B_{0} by $\varphi: S \rightarrow \mathbb{P}^{2}$ under the condition (c-i) or (c-ii).
First, for $\tilde{H}=\langle 5,7,8,9\rangle$, we choose Γ_{0} admitting (c-i). By using the adjunction formula we obtain the following:

$$
\left.\left.K_{\Gamma} \sim\left(2 l-\sum_{i=1}^{3} e_{i}\right)\right|_{\Gamma} \sim B\right|_{\Gamma} \sim 2 P+Q_{1}+Q_{2}
$$

Hence $h^{0}\left(\Gamma, P+\Delta_{2}\right)=2=h^{0}\left(\Gamma, \Delta_{2}\right)+1$, which is the condition (C3). Thus $\tilde{H}=\langle 5,7,8,9\rangle$ is DC.

Secondly, for $\tilde{H}=\langle 5,7,8,11\rangle$, we choose Γ_{0} admitting (c-ii). By using the adjunction formula again we obtain the following:

$$
\left.\left.K_{\Gamma} \sim\left(2 l-\sum_{i=1}^{3} e_{i}\right)\right|_{\Gamma} \sim B\right|_{\Gamma} \sim P+Q_{1}+Q_{2}+R_{2}
$$

where R_{2} is a point of Γ different from P. Then

$$
\begin{aligned}
h^{0}\left(\Gamma, P+\Delta_{2}\right) & =h^{0}\left(\Gamma, K_{\Gamma}-R_{2}\right)=2=h^{0}\left(\Gamma, \Delta_{2}\right)+1 \text { and } \\
h^{0}\left(\Gamma, 2 P+\Delta_{2}\right) & =h^{0}\left(\Gamma, K_{\Gamma}-R_{2}+P\right)=2=h^{0}\left(\Gamma, 3 P+\Delta_{2}\right)-1
\end{aligned}
$$

Hence Δ_{2} satisfies (C3). It follows that $\tilde{H}=\langle 5,7,8,11\rangle$ is DC.

Thirdly, for $\tilde{H}=\langle 5,8,9,11,12\rangle$, we choose Γ_{0} admitting (c-iii). Then there exists no canonical divisor of Γ containing $P+Q_{1}+Q_{2}$, which implies that

$$
\begin{aligned}
& h^{0}\left(\Gamma, 2 P+\Delta_{2}\right)=2=h^{0}\left(\Gamma, P+\Delta_{2}\right)+1 \text { and } \\
& h^{0}\left(\Gamma, 3 P+\Delta_{2}\right)=3=h^{0}\left(\Gamma, 2 P+\Delta_{2}\right)+1
\end{aligned}
$$

Hence Δ_{2} satisfies (C3). Thus $\tilde{H}=\langle 5,8,9,11,12\rangle$ is DC.
Remark 5.2 In the above argument we construct desired curves of genus three via nodal plane quintics. However, we can give a concrete pair of a smooth plane quartic and a point on the curve corresponding the numerical semigroup under consideration. For example, consider the smooth plane quartic

$$
\Gamma: X^{3} Y+X^{2} Y Z-X Y^{2} Z+Y^{3} Z-X^{2} Z^{2}-2 Y^{2} Z^{2}+Y Z^{3}=0
$$

and set $P=(0: 1: 1)$. We verify that there exists a double covering of Γ with a ramification point \tilde{P} over P such that $H(\tilde{P})=\langle 5,7,8,9\rangle$ by using Theorem 3.1.

Set $P_{1}=(0: 0: 1), P_{2}=(0: 1: 0), S_{1}=(-1: 1: 1), S_{2}=(1: 1: 1)$, $S_{3}=(1: 0: 0)$ and $\Delta_{2}:=P_{1}+P_{2}$. Note that T_{P} and $T_{P_{2}}$ are defined by $X=0$ and $Z=0$, respectively. Therefore

$$
\begin{aligned}
K_{\Gamma} & \sim \Gamma \cdot T_{P}=2 P+P_{1}+P_{2} \\
& \sim \Gamma \cdot T_{P_{2}}=3 P_{2}+S_{3} \\
& \sim \Gamma \cdot L=P+S_{1}+S_{2}+S_{3},
\end{aligned}
$$

where L is the line defined by $Y-Z=0$. Furthermore, $2 K_{\Gamma} \sim \Gamma . C_{2}=4 P_{1}+2 P_{2}$ $+S_{1}+S_{2}$, where C_{2} is the conic $X^{2}-Y Z=0$. Then

$$
\begin{aligned}
5 P-2 \Delta_{2} & \sim 2\left(K_{\Gamma}-P_{1}-P_{2}\right)+\left(K_{\Gamma}-S_{1}-S_{2}-S_{3}\right)-2 P_{1}-2 P_{2} \\
& \sim 3 K_{\Gamma}-4 P_{1}-4 P_{2}-S_{1}-S_{2}-S_{3} \\
& \sim\left(2 K_{\Gamma}-4 P_{1}-2 P_{2}-S_{1}-S_{2}\right)+\left(K_{\Gamma}-3 P_{2}-S_{3}\right)+P_{2} \\
& \sim P_{2} .
\end{aligned}
$$

Thus Theorem 3.1 shows that there exists a desired double covering.

6 When $n=7$ and $\tilde{H}=\langle 6 \rightarrow 9,11\rangle,\langle 6,7,9,10,11\rangle$ or $\langle 7 \rightarrow 13\rangle$
(1) For $\tilde{H}=\langle 6 \rightarrow 9,11\rangle$, we choose a smooth plane quartic Γ with five points P, Q_{1}, Q_{2}, Q_{3} and R satisfying the following conditions:
(i) P is a hyperflex, i.e., $H(P)=\langle 3,4\rangle$.
(ii) The line $\overline{Q_{1} Q_{2}}$ is tangent to Γ at both Q_{1} and Q_{2}.
(iii) $T_{Q_{3}}$ passes through P and R.

In other words, the relations

$$
K_{\Gamma} \sim 4 P \sim 2 Q_{1}+2 Q_{2} \sim P+2 Q_{3}+R
$$

hold. We set $\Delta_{3}:=Q_{1}+Q_{2}+Q_{3}$. It satisfies the conditions (C1) and (C2), since Q_{1}, Q_{2} and Q_{3} are not collinear by (ii). Furthermore it is clear that

$$
\begin{aligned}
h^{0}\left(\Gamma, P+\Delta_{3}\right) & =2=h^{0}\left(\Gamma, \Delta_{3}\right)+1 \text { and } \\
h^{0}\left(\Gamma, 2 P+\Delta_{3}\right) & =3=h^{0}\left(\Gamma, P+\Delta_{3}\right)+1 .
\end{aligned}
$$

Thus Δ_{3} satisfies (C3) as well. Finally

$$
\begin{aligned}
7 P-2 \Delta_{3} & \sim\left(2 K_{\Gamma}-P\right)-2\left(Q_{1}+Q_{2}+Q_{3}\right) \\
& \sim\left(K_{\Gamma}-2 Q_{1}-2 Q_{2}\right)+\left(K_{\Gamma}-P-2 Q_{3}\right) \\
& \sim R(\neq P)
\end{aligned}
$$

Hence Δ_{3} satisfies (C4), which shows that \tilde{H} is DC.
(2) Secondly, for $\tilde{H}=\langle 6,7,9,10,11\rangle$, we choose a smooth plane quartic Γ with seven points $P, P^{\prime}, Q_{i}(i=1,2,3)$ and $R_{j}(j=1,2)$ satisfying the following conditions:
(i) P, Q_{1} and Q_{2} are ordinary flexes and three tangent lines $T_{P}, T_{Q_{1}}$ and $T_{Q_{2}}$ meets P^{\prime}. In particular $H(P)=\langle 3,5,7\rangle$.
(ii) Four points P, Q_{1}, Q_{2} and R_{1} are collinear.
(iii) $T_{Q_{3}}$ passes through R_{1} and R_{2}.

Then we obtain the relations that
$K_{\Gamma} \sim 3 P+P^{\prime} \sim 3 Q_{1}+P^{\prime} \sim 3 Q_{2}+P^{\prime} \sim P+Q_{1}+Q_{2}+R_{1} \sim 2 Q_{3}+R_{1}+R_{2}$.
Then $\Delta_{3}:=Q_{1}+Q_{2}+Q_{3}$ satisfies the conditions (C1) and (C2), since Q_{1}, Q_{2} and Q_{3} are not collinear by (ii). Furthermore

$$
\begin{aligned}
h^{0}\left(\Gamma, P+\Delta_{3}\right) & =2=h^{0}\left(\Gamma, \Delta_{3}\right)+1 \text { and } \\
h^{0}\left(\Gamma, 2 P+\Delta_{3}\right) & =3=h^{0}\left(\Gamma, P+\Delta_{3}\right)+1
\end{aligned}
$$

hold, which shows that Δ_{3} also satisfies (C3). Finally

$$
\begin{aligned}
7 P-2 \Delta_{3} & \sim 2\left(K_{\Gamma}-P^{\prime}\right)+\left(K_{\Gamma}-Q_{1}-Q_{2}-R_{1}\right)-2\left(Q_{1}+Q_{2}+Q_{3}\right) \\
& \sim 3 K_{\Gamma}-2 P^{\prime}-3 Q_{1}-3 Q_{2}-2 Q_{3}-R_{1} \\
& \sim\left(K_{\Gamma}-3 Q_{1}-P^{\prime}\right)+\left(K_{\Gamma}-3 Q_{2}-P^{\prime}\right)+\left(K_{\Gamma}-2 Q_{3}-R_{1}\right) \\
& \sim R_{2}(\neq P) .
\end{aligned}
$$

Thus Δ_{3} satisfies (C4). Hence $\tilde{H}=\langle 6,7,9,10,11\rangle$ is DC.
(3) In the end, for $\tilde{H}=\langle 7 \rightarrow 13\rangle$, let Γ be a smooth plane quartic without Galois points, P a non-flex of Γ. Then $H(P)=\langle 4,5,6,7\rangle$. It follows from [2, Lemma 3.6(1)]
that $\left|7 P-2 Q_{1}\right|=g_{5}^{2}$ is free from base points for a general point $Q_{1} \in \Gamma$. Thus it gives a nodal plane quintic model Γ_{0} of Γ. Let Q_{2} be a point on Γ different from Q_{1} corresponding to a node of Γ_{0}. Then $\left|7 P-2 Q_{1}-2 Q_{2}\right|=g_{3}^{1}$ is a pencil without base points. It induces a triple covering $\psi: \Gamma \rightarrow \mathbb{P}^{1}$ with at least six ramification points, since Γ has no Galois points. Hence we can choose a ramification point Q_{3} of ψ satisfying the following:
(a) $\psi\left(Q_{3}\right) \neq \psi(P)$.
(b) Q_{3} is distinct from Q_{1} and Q_{2}.
(c) Q_{1}, Q_{2} and Q_{3} are not collinear.

Then $\left|7 P-2 Q_{1}-2 Q_{2}-2 Q_{3}\right|$ consists of a point on Γ different from P by (a). Hence $\Delta_{3}:=Q_{1}+Q_{2}+Q_{3}$ satisfies (C1), (C2) and (C4). It is clear that Δ_{3} also satisfies (C3). Thus $\tilde{H}=\langle 7 \rightarrow 13\rangle$ is DC.

References

1. Garcia, A.: Weights of Weierstrass points in double coverings of curves of genus one or two. Manuscr. Math. 55, 419-432 (1986)
2. Harui, T., Komeda, J.: Numerical semigroups of genus eight and double coverings of curves of genus three. Semigroup Forum 89, 571-581 (2014)
3. Harui, T., Komeda, J.: Numerical semigroups of genus seven and double coverings of curves of genus three. Semigroup Forum. doi:10.1007/s00233-014-9621-0
4. Harui, T., Komeda, J., Ohbuchi, A.: The Weierstrass semigroups on double covers of genus two curves. arXiv:1311.4143
5. Komeda, J.: A numerical semigroup from which the semigroup gained by dividing by two is either \mathbb{N}_{0} or a 2-semigroup or $\langle 3,4,5\rangle$. Res. Rep. Kanagawa Inst. Technol. B-33, 37-42 (2009)
6. Komeda, J.: On Weierstrass semigroups of double coverings of genus three curves. Semigroup Forum 83, 479-488 (2011)
7. Komeda, J., Ohbuchi, A.: Weierstrass points with first non-gap four on a double covering of a hyperelliptic curve II. Serdica Math. J. 34, 771-782 (2008)
8. Oliveira, G., Pimentel, F.L.R.: On Weierstrass semigroups of double covering of genus two curves. Semigroup Forum 77, 152-162 (2008)
9. Oliveira, G., Torres, F., Villanueva, J.: On the weight of numerical semigroups. J. Pure Appl. Algebra 214, 1955-1961 (2010)

[^0]: T. Harui (\boxtimes)

 Department of Core Studies, Kochi University of Technology, Kami, Tosayamada, Kochi 782-8502, Japan
 e-mail: takeshi@cwo.zaq.ne.jp; harui.takeshi@kochi-tech.ac.jp
 J. Komeda

 Department of Mathematics, Center for Basic Education and Integrated Learning, Kanagawa Institute of Technology, Atsugi, Kanagawa 243-0292, Japan
 e-mail: komeda@gen.kanagawa-it.ac.jp

