ON SMOOTH PLANE CURVES WHOSE AUTOMORPHISM **GROUP HAS FIXED POINTS**

TAKESHI HARUI

This article is based on my talk on December 16, 2017. The main result is a classification of automorphism groups of smooth plane curves with fixed points in the projective plane. This is a joint work with A. Ohbuchi and it is a generalization of my previous talk in 2016.

1. INTRODUCTION

Notation

- \mathbb{Z}_m : a cyclic group of order m;
- ζ_m : a primitive *m*-th root of unity.
- $\overline{D}_{2m} = \langle a, b \mid a^m = b^2 = 1, bab^{-1} = a^{-1} \rangle$: the dihedral group of order 2m; $\overline{D}_{2m} = Q_{4m} = \langle a, b \mid a^{2m} = 1, b^2 = a^m, bab^{-1} = a^{-1} \rangle$: the binary dihedral subgroup of $SL(2,\mathbb{C})$ (the dicyclic group of order 4m);
- $Q_8 = \langle a, b \mid a^4 = 1, b^2 = a^2, bab^{-1} = a^{-1} \rangle = \langle i, j, k \mid i^2 = j^2 = k^2 = ijk = ijk = ijk$ -1: the quaternion group;
- $T \simeq A_4, O \simeq S_4, I \simeq A_5$: the tetrahedral, octahedral, icosahedral subgroups of $PGL(2,\mathbb{C})$;
- $\overline{T} \simeq SL(2,3), \ \overline{O}, \ \overline{I} \simeq SL(2,5)$: the binary tetrahedral, binary octahedral, binary icosahedral subgroup of $SL(2, \mathbb{C})$.

In this article

$$PBD(2,1) := \left\{ \begin{pmatrix} A & 0\\ 0 & 0 & \alpha \end{pmatrix} \middle| A \in GL(2,\mathbb{C}), \alpha \in \mathbb{C}^{\times} \right\} \middle/ \mathbb{C}^{\times}$$
$$= \left\{ \begin{pmatrix} A & 0\\ 0 & 0 & \alpha \end{pmatrix} \middle| A \in SL(2,\mathbb{C}), \alpha \in \mathbb{C}^{\times} \right\} \middle/ \{\pm E_3\}$$
$$\subset PGL(3,\mathbb{C})$$

and $\rho: \text{PBD}(2,1) \to PGL(2,\mathbb{C})$ is the natural homomorphism.

First we recall a classification of automorphism groups of smooth plane curves:

KOCHI UNIVERSITY OF TECHNOLOGY

E-mail address: harui.takeshi@kochi-tech.ac.jp, takeshi@cwo.zaq.ne.jp. Date: October 29, 2018.

Theorem 1. Let C be a smooth plane curve of degree $d \ge 4$, G a subgroup of Aut(C). Then one of the following holds:

- (a-i) G fixes a point on C and G is a cyclic group whose order is at most d(d-1). Furthermore, if $d \ge 5$ and |G| = d(d-1), then C is projectively equivalent to the curve $YZ^{d-1} + X^d + Y^d = 0$.
- (a-ii) G fixes a point not lying on C and there exists a commutative diagram

$$1 \to \mathbb{C}^* \to \text{PBD}(2, 1) \xrightarrow{\rho} PGL(2, \mathbb{C}) \to 1 \quad (\text{exact})$$
$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$1 \to \mathbb{Z}_n \longrightarrow G \longrightarrow G' \to 1 \quad (exact),$$

where n is a factor of d and G' is conjugate to \mathbb{Z}_m , D_{2m} $(m \leq d-1)$, T, O or I. Furthermore, if $n \neq 1$ and $G' \simeq D_{2m}$ then $m \mid d-2$. In particular $|G| \leq \max\{2d(d-2), 60d\}$.

- (b-i) (C,G) is a descendant of Fermat curve $F_d: X^d + Y^d + Z^d = 0$. In this case $G \subset \operatorname{Aut}(F_d)$. In particular, $|G| \leq 6d^2$.
- (b-ii) (C, G) is a descendant of Klein curve $\overline{K}_d : XY^{d-1} + YZ^{d-1} + ZX^{d-1} = 0$. In this case $G \subset \operatorname{Aut}(K_d)$. In particular, $|G| \leq 3(d^2 - 3d + 3)$ if $d \geq 5$. On the other hand, $|G| \leq 168$ if d = 4.
 - (c) G is conjugate to one of the following subgroups of $PGL(3, \mathbb{C})$: the alternating group A_5 or A_6 , the Klein group PSL(2,7), the Hessian group H_{216} of order 216 or its subgroup of order 36 or 72. In particular $|G| \leq 360$.

In this article we consider the case (a-ii). Let P is a fixed point of G. By the commutative diagram above, we may assume that P = (0:0:1), G is a subgroup of PBD(2,1) and \mathbb{Z}_n is generated by a projective reflection $[1,1,\zeta_n]$. If n = 1 then G = G', whose structure is well known. Thus we assume that $n \geq 2$. When $G = \operatorname{Aut}(C)$, such a point P is called a *quasi Galois point of order* n for C.

Remark 1. Put $G[Q] := \{ \sigma \in \operatorname{Aut}(C) \mid \pi_Q \circ \sigma = \pi_Q \}$ for $Q \in \mathbb{P}^2$, where $\pi_Q \colon C \to \mathbb{P}^1$ is the projection with center Q. Then

Q is quasi Galois point for $C \iff |G[Q]| \ge 2$.

If |G[Q]| = d then Q is called a *Galois point* for C (see [Y] for details).

Since $[1, 1, \zeta_n]$ acts on C, the curve C has a defining equation of the form

$$Z^{d} + \sum_{j=1}^{k} F_{j}(X, Y) Z^{d-jn} = 0,$$

where k = d/n and $F_j(X, Y)$ is a homogeneous polynomial of degree jn. We formally set $F_0(X, Y) := 1$.

Remark 2. Since $G_P = \{ \sigma \in G \mid \sigma(P) = P \} = \mathbb{Z}_n$, we see that $gcd\{d - jn \mid F_j \neq 0, j = 0, 1, ..., k - 1 \} = n$. Hence $gcd\{k - j \mid F_j \neq 0, j = 0, 1, ..., k - 1 \} = 1$

$$gcd\{k-j \mid F_j \neq 0, j = 0, 1, \dots, k-1\} = 1$$

holds.

Note that there exists a natural commutative diagram

$$\begin{split} 1 & \longrightarrow \mathbb{C}^{\times} & \longrightarrow SL(2,\mathbb{C}) \times \mathbb{C}^{\times} & \longrightarrow SL(2,\mathbb{C}) & \longrightarrow 1 \\ & & \downarrow^{\wr} & & \bigcirc & \downarrow^{\pi} \\ 1 & \longrightarrow \mathbb{C}^{\times} & \longrightarrow \mathrm{PBD}(2,1) & \xrightarrow{\rho} PGL(2,\mathbb{C}) & \longrightarrow 1, \end{split}$$

where π and ϖ are natural projections. This diagram induces another commutative diagram

$$1 \longrightarrow \mathbb{Z}_n \longrightarrow \widetilde{G} \xrightarrow{\widetilde{\rho}} \widetilde{G}' \longrightarrow 1$$
$$\downarrow^{\wr} \quad \circlearrowright \quad \downarrow^{\varpi} \quad \circlearrowright \quad \downarrow^{\pi}$$
$$1 \longrightarrow \mathbb{Z}_n \longrightarrow G \xrightarrow{\rho} G' \longrightarrow 1,$$

where $\widetilde{G} := \varpi^{-1}(G)$ and $\widetilde{G}' := \pi^{-1}(G')$. Then Ker $\varpi = \{\pm E_3\}$, Ker $\pi = \{\pm E_2\}$ and

$$\widetilde{G'} = \begin{cases} \mathbb{Z}_{2m} & \text{(if } G' = \mathbb{Z}_m) \\ \overline{D}_{2m} & \text{(if } G' = D_{2m}) \\ \overline{T} & \text{(if } G' = T) \\ \overline{O} & \text{(if } G' = O) \\ \overline{I} & \text{(if } G' = I). \end{cases}$$

Furthermore, $\widetilde{G'}$ is presented as follows.

• \mathbb{Z}_{2m} generated by

•
$$\overline{D}_{2m} = Q_{4m} = \langle a, b \mid a^{2m} = b^4 = 1, bab^{-1} = a^{-1} \rangle$$
, where
 $a := a_{2m}, \quad b := \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$

For $\overline{T}, \overline{O}$ we put

$$s := a_4 = \begin{pmatrix} i & 0\\ 0 & -i \end{pmatrix}, \quad t := \frac{1}{\sqrt{2}} \begin{pmatrix} \epsilon & -\epsilon\\ \epsilon^{-1} & \epsilon^{-1} \end{pmatrix} \quad \text{and} \quad u := a_8 = \begin{pmatrix} \epsilon & 0\\ 0 & \epsilon^{-1} \end{pmatrix}$$

(ϵ is a primitive 8th root of unity).

Then

$$\overline{T} = \langle s, t \mid s^2 = t^3 = (st^{-1})^3 \rangle, \quad \overline{O} = \langle t, u \mid (tu)^2 = t^3 = u^4 \rangle.$$

4 ON SMOOTH PLANE CURVES WHOSE AUTOMORPHISM GROUP HAS FIXED POINTS

Furthermore, put $u' = tut^{-1}$. Then $\overline{V} = \langle u, u' \rangle \simeq Q_8$ is the only normal subgroup of index three in \overline{T} .

Finally

$$\overline{I} = \langle v, w \mid v^2 = (w^{-1}v)^3 = w^5 \rangle$$

where

$$v := \frac{1}{\eta^2 - \eta^3} \begin{pmatrix} \eta + \eta^{-1} & 1\\ 1 & -(\eta + \eta^{-1}) \end{pmatrix}, \quad w := \begin{pmatrix} -\eta & 0\\ 0 & -\eta^{-1} \end{pmatrix}$$

(η is a primitive 5th root of unity).

2. Defining equations and automorphism groups of curves

In what follows, we assume that G' is not cyclic.

The special linear group $SL(2, \mathbb{C})$ naturally acts on $\mathbb{C}[X, Y]$, i.e., $A \in SL(2, \mathbb{C})$ induces a homomorphism $F(X, Y) \mapsto F((X, Y)A)$.

Theorem 2. Every $F_j(X,Y)$ (j = 1, 2, ..., k) is invariant under a subgroup $\widetilde{H} \subset \widetilde{G}'$ and invariant under \widetilde{G}' up to multiplication by *l*-th roots of unity, where

$$\widetilde{H} = \begin{cases} \langle a^2 \rangle & (\text{if } G' = D_{2m}) \\ \langle u, u' \rangle = \overline{V} \simeq Q_8 & (\text{if } G' = T) \\ \langle s, t \rangle = \overline{T} & (\text{if } G' = O) \\ \overline{I} & (\text{if } G' = I), \end{cases}$$

and

$$l = \begin{cases} 2 & \text{(if } G' = D_{2m} \text{ and } m \text{ is even}) \\ 4 & \text{(if } G' = D_{2m} \text{ and } m \text{ is odd}) \\ 3 & \text{(if } G' = T) \\ 2 & \text{(if } G' = O) \\ 1 & \text{(if } G' = I). \end{cases}$$

Let R_0 be the invariant ring of $\widetilde{G'}$, i.e., $R_0 = \mathbb{C}[X,Y]^{\widetilde{G'}}$ and R the invariant ring of \widetilde{H} , i.e., $R = \mathbb{C}[X,Y]^{\widetilde{H}}$. Then $F_j(X,Y) \in R$ (j = 1, 2, ..., k). Note that $R_0 \subset R$ and R is R_0 -module. It is well known that

$$R_{0} = \mathbb{C}[X,Y]^{\widetilde{G'}} = \begin{cases} \mathbb{C}[X^{2m} + Y^{2m}, (XY)^{2}, XY(X^{2m} - Y^{2m})] \\ (\text{if } G' = D_{2m}, m \text{ is even}) \\ \mathbb{C}[X^{2m} - Y^{2m}, (XY)^{2}, XY(X^{2m} + Y^{2m})] \\ (\text{if } G' = D_{2m}, m \text{ is odd}) \\ \mathbb{C}[f, g, h] \quad (\text{if } G' = T) \\ \mathbb{C}[g, f^{2}, fh] \quad (\text{if } G' = O) \\ \mathbb{C}[\theta_{1}, \theta_{2}, \theta_{3}] \quad (\text{if } G' = I), \end{cases}$$

where

$$\begin{aligned} f &= XY(X^4 - Y^4), \quad g = X^8 + 14X^4Y^4 + Y^8, \\ h &= X^{12} - 33(X^8Y^4 + X^4Y^8) + Y^{12}, \\ \deg f &= 6, \quad \deg g = 8, \quad \deg h = 12 \quad \text{and} \quad h^2 = g^3 - 108f^4, \end{aligned}$$

$$\begin{aligned} \theta_1 &= XY(X^{10} + 11X^5Y^5 - Y^{10}), \\ \theta_2 &= X^{20} - 228(X^{15}Y^5 - X^5Y^{15}) + 494X^{10}Y^{10} + Y^{20}, \\ \theta_3 &= X^{30} + 522(X^{25}Y^5 - X^5Y^{25}) - 10005(X^{20}Y^{10} + X^{10}Y^{20}) + Y^{30}, \\ \deg \theta_1 &= 12, \quad \deg \theta_2 = 20, \quad \deg \theta_3 = 30 \quad \text{and} \quad \theta_3^2 &= 1728\theta_1^5 - \theta_2^3. \end{aligned}$$

Furthermore $g = g_1 g_2$, where

$$g_1 = X^4 + 2\sqrt{3}iX^2Y^2 + Y^4, \quad g_2 = X^4 - 2\sqrt{3}iX^2Y^2 + Y^4.$$

Then $h = g_1^3 + 6\sqrt{3}if^2 \in \mathbb{C}[f, g_1, g_2]$ and $12\sqrt{3}if^2 - g_1^3 + g_2^3 = 0$ holds. The structure of $R = \mathbb{C}[X, Y]^{\tilde{H}}$ is also well-known:

$$R = \mathbb{C}[X, Y]^{\tilde{H}} = \begin{cases} \mathbb{C}[X^m, XY, Y^m] = \mathbb{C}[p, q, r] & \text{(if } G' = D_{2m}) \\ \mathbb{C}[f, g_1, g_2] & \text{(if } G' = T) \\ \mathbb{C}[f, g, h] & \text{(if } G' = O) \\ \mathbb{C}[\theta_1, \theta_2, \theta_3] & (= R_0) & \text{(if } G' = I), \end{cases}$$

where $p = X^m + Y^m$, $q = X^m - Y^m$ and r = XY. This implies the following fact.

Lemma 3. The order n is even unless $G' = D_{2m}$ and m is odd.

Proof. If $F_j \neq 0$ then deg $F_j = jn$ is even unless $G' = D_{2m}$ and m is odd, since every nonzero polynomial in R is of even degree. In particular $d = \deg F_k$ is even. Hence $\gcd\{d - jn \mid F_j \neq 0, j = 0, 1, \dots, k\} = n$ is also even.

In the end of this section, we state a classification of G. First we consider a special case.

Proposition 4. If n is odd, then $G' = D_{2m}$ and m is odd. In this case $G = \mathbb{Z}_n \times D_{2m}$.

Proof. First it follows from Lemma 3 that $G' = D_{2m}$ and m is odd. Furthermore m and n are coprime, since m and n are both odd, $m \mid d - 2$ and $n \mid d$. Then \mathbb{Z}_n and $G/\mathbb{Z}_n = D_{2m}$ have coprime orders, which implies that $G = \mathbb{Z}_n \times D_{2m}$.

In what follows we assume that n is even.

To determine the structure of the group G, we consider a group character on G. Let A be a matrix in \widetilde{G}' . Then there exists $\alpha \in \mathbb{C}^{\times}$ such that $\varpi((A, \alpha)) \in G$ and

6 ON SMOOTH PLANE CURVES WHOSE AUTOMORPHISM GROUP HAS FIXED POINTS

 α is unique up to multiplication by n-th roots of unity. Thus we obtain a group homomorphism

$$\widetilde{\chi}: \widetilde{G}' \to \mathbb{C}^{\times} \ (A \mapsto \alpha^n).$$

Lemma 5. The image of the generators of G' under χ̃ is as follows.
(1) If G' = D_{2m} and m is even, then χ̃(a) = ±1 and χ̃(b) = ±1.
(2) If G' = D_{2m} and m is odd, then χ̃(a) = 1 and χ̃(b) = ±1.
(3) If G' = T, then χ̃(s) = 1 and χ̃(t) = ω is a primitive third root of unity.
(4) If G' = O, then χ̃(t) = 1 and χ̃(u) = ±1.
(5) If G' = I, then χ̃ = 1.

When $G' \neq T$, let n_0 be the odd part of n, i.e., $n = 2^e n_0$ $(e \ge 1, 2 \nmid n_0)$. When G' = T, put $n = 2^e 3^{e'} n_0$, where $e \ge 1, e' \ge 0$ and $2, 3 \nmid n_0$. Put the following numbers:

$$\widetilde{\kappa} = \begin{pmatrix} 1 & & \\ & 1 & \\ & & \zeta_{2^e} \end{pmatrix} \in \mathbb{Z}_n$$

and

$$\begin{array}{l} (1) \ \mu_{1} := \begin{cases} 1 & (\text{if } \widetilde{\chi}(a) = 1) \\ \zeta_{2^{e+1}} & (\text{if } \widetilde{\chi}(a) = -1) \end{cases} , \ \mu_{2} := \begin{cases} 1 & (\text{if } \widetilde{\chi}(b) = 1) \\ \zeta_{2^{e+1}} & (\text{if } \widetilde{\chi}(b) = -1) \end{cases} \\ (G' = D_{2m} \text{ and } m \text{ is even}) \end{aligned} , \ \mu_{2} := \begin{cases} 1 & (\text{if } \widetilde{\chi}(b) = 1) \\ \zeta_{2^{e+1}} & (\text{if } \widetilde{\chi}(b) = -1) \end{cases} \\ (G' = D_{2m} \text{ and } m \text{ is odd}) \end{aligned}$$
$$(3) \ \nu := \zeta_{3^{e'+1}} & (G' = T) \end{aligned} , \ \mu_{2} := \begin{cases} 1 & (\text{if } \widetilde{\chi}(b) = -1) \\ \zeta_{2^{e+1}} & (\text{if } \widetilde{\chi}(b) = -1) \end{cases} \\ (G' = D_{2m} \text{ and } m \text{ is odd}) \end{aligned}$$
$$(4) \ \lambda := \begin{cases} 1 & (\text{if } \widetilde{\chi}(u) = 1) \\ \zeta_{2^{e+1}} & (\text{if } \widetilde{\chi}(u) = -1) \end{cases} \\ (G' = O) \end{cases}$$

Then \widetilde{G} contains a subgroup \widetilde{G}_0 generated by the following elements and $\widetilde{\kappa}$.

(1)
$$\begin{pmatrix} a \\ \mu_1 \end{pmatrix}$$
 and $\begin{pmatrix} b \\ \mu_2 \end{pmatrix}$ $(G' = D_{2m} \text{ and } m \text{ is even})$
(2) $\begin{pmatrix} a \\ 1 \end{pmatrix}$ and $\begin{pmatrix} b \\ \mu \end{pmatrix}$ $(G' = D_{2m} \text{ and } m \text{ is odd})$
(3) $\begin{pmatrix} s \\ 1 \end{pmatrix}$ and $\begin{pmatrix} t \\ \nu \end{pmatrix}$ $(G' = T)$
(4) $\begin{pmatrix} t \\ 1 \end{pmatrix}$ and $\begin{pmatrix} u \\ \lambda \end{pmatrix}$ $(G' = O)$
(5) $\begin{pmatrix} v \\ 1 \end{pmatrix}$ and $\begin{pmatrix} w \\ 1 \end{pmatrix}$ $(G' = I)$

Set $G_0 = \tilde{G}_0 / \{\pm E_3\}$. Then $G = \mathbb{Z}_{n_0} \times G_0$. Thus it suffices to classify the structure of G_0 , which is given by the following theorems.

 $\begin{array}{l} \text{Theorem 6. When } G' = D_{2m} \ and \ m \ is \ even, \ the \ group \ G_0 = \mathbb{Z}_{2^e} \bullet D_{2m} \ is \ a \\ non-split \ extension \ of \ D_{2m} \ by \ \mathbb{Z}_{2^e}. \\ (i) \ If \ 4 \mid m \ then \ e = 1 \ and \\ G_0 \simeq \begin{cases} \overline{D}_{2m} = Q_{4m} \quad (\text{if } \mu_1 = \mu_2 = 1) \\ D_{4m} \quad (\text{if } \mu_1 = 1 \ \text{and } \mu_2 = i) \\ \mathbb{Z}_{2m} \rtimes \mathbb{Z}_2 \quad (\text{if } \mu_1 = i). \end{cases} \\ (ii) \ If \ 4 \nmid m \ and \ e = 1 \ then \\ G_0 \simeq \begin{cases} \mathbb{Z}_{m/2} \rtimes Q_8 \quad (\text{if } \mu_1 = \mu_2 = 1) \\ D_{4m} \quad (\text{if } \mu_1 = 1 \ \text{and } \mu_2 = i) \\ (\mathbb{Z}_m \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2 \quad (\text{if } \mu_1 = i). \end{cases} \\ (iii) \ If \ 4 \nmid m \ and \ e \ge 2 \ then \\ G_0 \simeq \begin{cases} (\mathbb{Z}_{2^{e-1}m} \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2 \quad (\text{if } \mu_1 = \mu_2 = 1) \\ (\mathbb{Z}_{m/2} \rtimes \mathbb{Z}_{2^{e+1}}) \rtimes \mathbb{Z}_2 \quad (\text{if } \mu_1 = 1 \ \text{and } \mu_2 = \xi_{2^{e+1}}) \end{cases} \end{cases} \\ G_0 \simeq \begin{cases} (\mathbb{Z}_{2^{e-1}m} \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2 \quad (\text{if } \mu_1 = \mu_2 = 1) \\ (\mathbb{Z}_{m/2} \rtimes \mathbb{Z}_{2^{e+1}}) \rtimes \mathbb{Z}_2 \quad (\text{if } \mu_1 = 1 \ \text{and } \mu_2 = \xi_{2^{e+1}}) \end{cases} \end{cases} \end{cases}$

Theorem 7. When $G' = D_{2m}$ and m is odd, the group $G_0 = \mathbb{Z}_{2^e} \cdot D_{2m}$ is an extension of D_{2m} by \mathbb{Z}_{2^e} . Furthermore,

$$G_{0} = \begin{cases} \mathbb{Z}_{m} \rtimes \mathbb{Z}_{4} & \text{(if } e = 1 \text{ and } \mu = 1) \\ D_{4m} & \text{(if } e = 1 \text{ and } \mu = \zeta_{2^{e+1}}) \\ \mathbb{Z}_{2^{e}} \times D_{2m} & \text{(if } e \ge 2 \text{ and } \mu = 1) \\ \mathbb{Z}_{m} \rtimes \mathbb{Z}_{2^{e+1}} & \text{(if } e \ge 2 \text{ and } \mu = \zeta_{2^{e+1}}). \end{cases}$$

Theorem 8. When G' = T, the group $G_0 = \mathbb{Z}_{2^e} \cdot T$ is a non-split extension of T by \mathbb{Z}_{2^e} and

$$G_0 = \begin{cases} Q_8 \rtimes \mathbb{Z}_{3^{e'+1}} & \text{(if } e = 1) \\ ((\mathbb{Z}_{2^e} \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2) \rtimes \mathbb{Z}_{3^{e'+1}} & \text{(if } e \ge 2) \end{cases}$$

Remark 3. If e = 1 and e' = 0 then $G_0 \simeq \overline{T}$.

Theorem 9. When G' = O, the group $G_0 = \mathbb{Z}_{2^e} \circ O$ is a non-split extension of O by \mathbb{Z}_{2^e} and $G_0 = \begin{cases} \overline{O} & (\text{if } e = 1 \text{ and } \lambda = 1) \\ GL(2,3) = \overline{T} \rtimes \mathbb{Z}_2 & (\text{if } \lambda = i) \\ (((\mathbb{Z}_{2^e} \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2) \rtimes \mathbb{Z}_3) \rtimes \mathbb{Z}_2 & (\text{if } e \ge 2 \text{ and } \lambda = 1) \\ \overline{T} \rtimes \mathbb{Z}_4 & (\text{if } \lambda = \epsilon) \\ \overline{T} \circ \mathbb{Z}_{2^e} = \mathbb{Z}_{2^e} \circ S_4 & (\text{if } \lambda = \zeta_{2^{e+1}} \ (e \ge 3)). \end{cases}$

Theorem 10. When G' = I, the group $G_0 = \mathbb{Z}_{2^e} \cdot I$ is a non-split extension of I by \mathbb{Z}^{2^e} and it is an extension of a cyclic group $\mathbb{Z}_{2^{e-1}}$ by \overline{I} . Precisely

$$G_0 = \begin{cases} \overline{I} & (\text{if } e = 1) \\ \overline{I} \rtimes \mathbb{Z}_2 & (\text{if } e = 2) \\ \overline{I} \bullet \mathbb{Z}_{2^{e-1}} & (\text{if } e \ge 3) \end{cases}$$

3. Examples

Example 1. Let *C* be the plane curve of degree 10 defined by $Z^{10} = XY(X^8 + Y^8).$ Then $G = \operatorname{Aut}(C)$ satisfies the non-split exact sequence $1 \to \mathbb{Z}_{10} \to G \to D_{16} \to 1$ and $G = \mathbb{Z}_{80} \rtimes \mathbb{Z}_2.$

Example 2. Let C be the plane curve of degree 15 defined by $Z^{15} = XY(X^{13} + Y^{13}).$ Then $G = \operatorname{Aut}(C)$ satisfies the split exact sequence $1 \to \mathbb{Z}_{15} \to G \to D_{26} \to 1,$ in other words, $G = \mathbb{Z}_{15} \times D_{26}.$ **Example 3.** Let C be the plane curve of degree 16 defined by $Z^{16} = XY(X^{14} + Y^{14}).$

Then $G = \operatorname{Aut}(C)$ satisfies the non-split exact sequence

 $1 \to \mathbb{Z}_{16} \to G \to D_{28} \to 1$

and $G = \mathbb{Z}_{224} \rtimes \mathbb{Z}_2$.

Example 4. Let C be the plane curve of degree 16 defined by $Z^{16} = XY(X^{14} + X^7Y^7 + Y^{14}).$ Then G = Aut(C) satisfies the split exact sequence

 $1 \to \mathbb{Z}_{16} \to G \to D_{14} \to 1,$

in other words, $G = \mathbb{Z}_{16} \times D_{14}$.

Example 5. Let *C* be the plane curve of degree 16 defined by $Z^{16} + X^4 Y^4 Z^8 + XY(X^{14} + X^7 Y^7 + Y^{14}) = 0.$ Then *G* = Aut(*C*) satisfies the split exact sequence $1 \to \mathbb{Z}_8 \to G \to D_{14} \to 1,$ in other words, $G = \mathbb{Z}_8 \times D_{14}.$

Example 6. Let *C* be the plane curve of degree 32 defined by $Z^{32} + X^3Y^3(X^{10} + Y^{10})Z^{16} + XY(X^{30} + Y^{30}) = 0.$ Then *G* = Aut(*C*) satisfies the split exact sequence $1 \to \mathbb{Z}_{16} \to G \to D_{10} \to 1,$ in other words, $G = \mathbb{Z}_{16} \times D_{10}.$

Example 7. Let C be the quartic curve defined by $Z^4 = X^4 + 2\sqrt{3}iX^2Y^2 + Y^4$ (= g_1). Then $G = \operatorname{Aut}(C)$ satisfies the (non-split) exact sequence

$$1 \to \mathbb{Z}_4 \to G \to T \to 1$$

and $G = \overline{T} \rtimes \mathbb{Z}_2$.

Example 8. Let C be the plane curve of degree 16 defined by $Z^{16} = g_1(g_1^3 + g_2^3)$. Then $G = \operatorname{Aut}(C)$ satisfies the (non-split) exact sequence

$$1 \to \mathbb{Z}_{16} \to G \to T \to 1$$

and $G = ((\mathbb{Z}_{16} \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2) \rtimes \mathbb{Z}_3.$

Example 9. Let C be the sextic curve defined by $Z^6 = XY(X^4 - Y^4)$. Then $G = \operatorname{Aut}(C)$ satisfies the (non-split) exact sequence

$$1 \to \mathbb{Z}_6 \to G \to O \to 1$$

and $G = \mathbb{Z}_3 \times GL(2,3)$.

Example 10. Let C be the octic curve defined by $Z^8 = X^8 + 14X^4Y^4 + Y^8 (= g)$. Then $G = \operatorname{Aut}(C)$ satisfies the (non-split) exact sequence

$$1 \to \mathbb{Z}_8 \to G \to O \to 1$$

and $G = (((\mathbb{Z}_8 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2) \rtimes \mathbb{Z}_3) \rtimes \mathbb{Z}_2 \simeq (\overline{T} \rtimes \mathbb{Z}_4) \rtimes \mathbb{Z}_2.$

Example 11. Let C be the plane curve of degree 12 defined by $Z^{12} = X^{12} - 33(X^8Y^4 + X^4Y^8) + Y^{12} (= h)$. Then G = Aut(C) satisfies the (non-split) exact sequence

$$1 \to \mathbb{Z}_{12} \to G \to O \to 1$$

and $G = \mathbb{Z}_3 \times (\overline{T} \rtimes \mathbb{Z}_4)$.

Example 12. Let C be the plane curve of degree 18 defined by $Z^{18} = fh$. Then G = Aut(C) satisfies the (non-split) exact sequence

$$1 \to \mathbb{Z}_{18} \to G \to O \to 1$$

and $G = \mathbb{Z}_9 \times \overline{O}$.

Example 13. Let C be the plane curve of degree 32 defined by $Z^{32} = gF$, where F is a polynomial of degree 24 in $\mathbb{C}[f, g, h]$ such that gF has no multiple factor. Then $G = \operatorname{Aut}(C)$ satisfies the (non-split) exact sequence

$$1 \to \mathbb{Z}_{32} \to G \to O \to 1$$

and $G = (((\mathbb{Z}_{32} \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2) \rtimes \mathbb{Z}_3) \rtimes \mathbb{Z}_2.$

Example 14. Let C be the plane curve of degree 24 defined by $Z^{24} + f^2 Z^{12} + F_{24} = 0,$

where F_{24} is a general polynomial of degree 24 in $\mathbb{C}[f, g, h]$. Then $G = \operatorname{Aut}(C)$ satisfies the non-split exact sequence

$$1 \to \mathbb{Z}_{12} \to G \to O \to 1$$

and $G = \mathbb{Z}_3 \times ((((\mathbb{Z}_4 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2) \rtimes \mathbb{Z}_3) \rtimes \mathbb{Z}_2).$

Example 15. Let *C* be the plane curve of degree 12 defined by $Z^{12} = XY(X^{10} + 11X^5Y^5 - Y^{10}) (= \theta_1).$ Then *G* = Aut(*C*) satisfies the (non-split) exact sequence $1 \to \mathbb{Z}_{12} \to G \to I \to 1$ and $G = \mathbb{Z}_3 \times (\overline{I} \rtimes \mathbb{Z}_2).$

Example 16. Let *C* be the plane curve of degree 20 defined by $Z^{20} = X^{20} - 228(X^{15}Y^5 - X^5Y^{15}) + 494X^{10}Y^{10} + Y^{20} (= \theta_2).$ Then $G = \operatorname{Aut}(C)$ satisfies the (non-split) exact sequence $1 \to \mathbb{Z}_{20} \to G \to I \to 1$ and $G = \mathbb{Z}_5 \times (\overline{I} \rtimes \mathbb{Z}_2).$

Example 17. Let *C* be the plane curve of degree 30 defined by $Z^{30} = X^{30} + 522(X^{25}Y^5 - X^5Y^{25}) - 10005(X^{20}Y^{10} + X^{10}Y^{20}) + Y^{30} (= \theta_3).$ Then $G = \operatorname{Aut}(C)$ satisfies the (non-split) exact sequence $1 \to \mathbb{Z}_{30} \to G \to I \to 1$ and $G = \mathbb{Z}_{15} \times \overline{I}.$

Example 18. Let C be the plane curve of degree 32 defined by $Z^{32} = \theta_1 \theta_2$. Then $G = \operatorname{Aut}(C)$ satisfies the non-split exact sequence

$$1 \to \mathbb{Z}_{32} \to G \to I \to 1$$

and $G = \overline{I} \bullet \mathbb{Z}_{16}$.

References

- [Ha] T. Harui, Automorphism groups of smooth plane curves, arXiv:math/1306.5842.
- [Y] H. Yoshihara, Function field theory of plane curves by dual curves, J. Algebra 239, no. 1 (2001), 340–355.