
ON SMOOTH PLANE CURVES WHOSE AUTOMORPHISM
GROUP HAS FIXED POINTS

TAKESHI HARUI

This article is based on my talk on December 16, 2017. The main result is a
classification of automorphism groups of smooth plane curves with fixed points in
the projective plane. This is a joint work with A. Ohbuchi and it is a generalization
of my previous talk in 2016.

1. Introduction

Notation

• Zm: a cyclic group of order m;
• ζm: a primitive m-th root of unity.
• D2m = ⟨a, b | am = b2 = 1, bab−1 = a−1⟩: the dihedral group of order 2m;
• D2m = Q4m = ⟨a, b | a2m = 1, b2 = am, bab−1 = a−1⟩: the binary dihedral
subgroup of SL(2,C) (the dicyclic group of order 4m);

• Q8 = ⟨a, b | a4 = 1, b2 = a2, bab−1 = a−1⟩ = ⟨i, j, k | i2 = j2 = k2 = ijk =
−1⟩: the quaternion group;

• T ≃ A4, O ≃ S4, I ≃ A5: the tetrahedral, octahedral, icosahedral subgroups
of PGL(2,C);

• T ≃ SL(2, 3), O, I ≃ SL(2, 5): the binary tetrahedral, binary octahedral,
binary icosahedral subgroup of SL(2,C).

In this article

PBD(2, 1) :=


 A 0

0
0 0 α

 ∣∣∣∣∣∣ A ∈ GL(2,C), α ∈ C×


/

C×

=


 A 0

0
0 0 α

 ∣∣∣∣∣∣ A ∈ SL(2,C), α ∈ C×


/

{±E3}

⊂ PGL(3,C)

and ρ : PBD(2, 1) → PGL(2,C) is the natural homomorphism.

First we recall a classification of automorphism groups of smooth plane curves:
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Theorem 1. Let C be a smooth plane curve of degree d ≥ 4, G a subgroup of
Aut(C). Then one of the following holds:

(a-i) G fixes a point on C and G is a cyclic group whose order is at most
d(d−1). Furthermore, if d ≥ 5 and |G| = d(d−1), then C is projectively
equivalent to the curve Y Zd−1 +Xd + Y d = 0.

(a-ii) G fixes a point not lying on C and there exists a commutative diagram

1 → C∗ → PBD(2, 1)
ρ→ PGL(2,C) → 1 (exact)

↪→ ↪→ ↪→

1 → Zn −→ G −→ G′ → 1 (exact),

where n is a factor of d and G′ is conjugate to Zm, D2m (m ≤ d − 1),
T , O or I. Furthermore, if n ̸= 1 and G′ ≃ D2m then m | d − 2. In
particular |G| ≤ max{2d(d− 2), 60d}.

(b-i) (C,G) is a descendant of Fermat curve Fd : Xd + Y d + Zd = 0. In this
case G ⊂ Aut(Fd). In particular, |G| ≤ 6d2.

(b-ii) (C,G) is a descendant of Klein curve Kd : XY d−1+Y Zd−1+ZXd−1 = 0.
In this case G ⊂ Aut(Kd). In particular, |G| ≤ 3(d2 − 3d + 3) if d ≥ 5.
On the other hand, |G| ≤ 168 if d = 4.

(c) G is conjugate to one of the following subgroups of PGL(3,C): the alter-
nating group A5 or A6, the Klein group PSL(2, 7), the Hessian group
H216 of order 216 or its subgroup of order 36 or 72. In particular
|G| ≤ 360.

In this article we consider the case (a-ii). Let P is a fixed point of G. By the
commutative diagram above, we may assume that P = (0 : 0 : 1), G is a subgroup
of PBD(2, 1) and Zn is generated by a projective reflection [1, 1, ζn]. If n = 1 then
G = G′, whose structure is well known. Thus we assume that n ≥ 2. When
G = Aut(C), such a point P is called a quasi Galois point of order n for C.

Remark 1. Put G[Q] := {σ ∈ Aut(C) | πQ ◦ σ = πQ } for Q ∈ P2, where
πQ : C → P1 is the projection with center Q. Then

Q is quasi Galois point for C ⇐⇒
def

|G[Q]| ≥ 2.

If |G[Q]| = d then Q is called a Galois point for C (see [Y] for details).

Since [1, 1, ζn] acts on C, the curve C has a defining equation of the form

Zd +
k∑

j=1

Fj(X,Y )Zd−jn = 0,

where k = d/n and Fj(X,Y ) is a homogeneous polynomial of degree jn. We formally
set F0(X,Y ) := 1.
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Remark 2. Since GP = {σ ∈ G | σ(P ) = P } = Zn, we see that gcd{ d − jn |
Fj ̸= 0, j = 0, 1, . . . , k − 1 } = n. Hence

gcd{ k − j | Fj ̸= 0, j = 0, 1, . . . , k − 1 } = 1

holds.

Note that there exists a natural commutative diagram

1 // C×

≀
��

//

⟲

SL(2,C)× C×

ϖ
����

//

⟲

SL(2,C)

π
����

// 1

1 // C× // PBD(2, 1) ρ
// PGL(2,C) // 1,

where π and ϖ are natural projections. This diagram induces another commutative
diagram

1 // Zn

≀
��

//

⟲

G̃

ϖ
����

ρ̃ //

⟲

G̃′

π
����

// 1

1 // Zn
// G ρ

// G′ // 1,

where G̃ := ϖ−1(G) and G̃′ := π−1(G′). Then Kerϖ = {±E3}, Ker π = {±E2} and

G̃′ =



Z2m (if G′ = Zm)

D2m (if G′ = D2m)

T (if G′ = T )

O (if G′ = O)

I (if G′ = I).

Furthermore, G̃′ is presented as follows.

• Z2m generated by

a2m :=

(
ζ2m 0
0 ζ−1

2m

)
.

• D2m = Q4m = ⟨a, b | a2m = b4 = 1, bab−1 = a−1⟩, where

a := a2m, b :=

(
0 i
i 0

)
.

For T ,O we put

s := a4 =

(
i 0
0 −i

)
, t :=

1√
2

(
ϵ −ϵ
ϵ−1 ϵ−1

)
and u := a8 =

(
ϵ 0
0 ϵ−1

)
(ϵ is a primitive 8th root of unity).

Then

T = ⟨s, t | s2 = t3 = (st−1)3⟩, O = ⟨t, u | (tu)2 = t3 = u4⟩.
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Furthermore, put u′ = tut−1. Then V = ⟨u, u′⟩ ≃ Q8 is the only normal subgroup
of index three in T .

Finally

I = ⟨v, w | v2 = (w−1v)3 = w5⟩,
where

v :=
1

η2 − η3

(
η + η−1 1

1 −(η + η−1)

)
, w :=

(
−η 0
0 −η−1

)
(η is a primitive 5th root of unity).

2. Defining equations and automorphism groups of curves

In what follows, we assume that G′ is not cyclic.
The special linear group SL(2,C) naturally acts on C[X,Y ], i.e., A ∈ SL(2,C)

induces a homomorphism F (X,Y ) 7→ F ((X, Y )A).

Theorem 2. Every Fj(X, Y ) (j = 1, 2, . . . , k) is invariant under a subgroup

H̃ ⊂ G̃′ and invariant under G̃′ up to multiplication by l-th roots of unity, where

H̃ =


⟨a2⟩ (if G′ = D2m)

⟨u, u′⟩ = V ≃ Q8 (if G′ = T )

⟨s, t⟩ = T (if G′ = O)

I (if G′ = I),

and

l =



2 (if G′ = D2m and m is even)

4 (if G′ = D2m and m is odd)

3 (if G′ = T )

2 (if G′ = O)

1 (if G′ = I).

Let R0 be the invariant ring of G̃′, i.e., R0 = C[X,Y ]G̃
′
and R the invariant ring

of H̃, i.e., R = C[X, Y ]H̃ . Then Fj(X, Y ) ∈ R (j = 1, 2, . . . , k). Note that R0 ⊂ R
and R is R0-module. It is well known that

R0 = C[X, Y ]G̃
′
=



C[X2m + Y 2m, (XY )2, XY (X2m − Y 2m)]

(if G′ = D2m, m is even)

C[X2m − Y 2m, (XY )2, XY (X2m + Y 2m)]

(if G′ = D2m, m is odd)

C[f, g, h] (if G′ = T )

C[g, f 2, fh] (if G′ = O)

C[θ1, θ2, θ3] (if G′ = I),
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where

f = XY (X4 − Y 4), g = X8 + 14X4Y 4 + Y 8,

h = X12 − 33(X8Y 4 +X4Y 8) + Y 12,

deg f = 6, deg g = 8, deg h = 12 and h2 = g3 − 108f 4,

θ1 = XY (X10 + 11X5Y 5 − Y 10),

θ2 = X20 − 228(X15Y 5 −X5Y 15) + 494X10Y 10 + Y 20,

θ3 = X30 + 522(X25Y 5 −X5Y 25) − 10005(X20Y 10 +X10Y 20) + Y 30,

deg θ1 = 12, deg θ2 = 20, deg θ3 = 30 and θ23 = 1728θ51 − θ32.

Furthermore g = g1g2, where

g1 = X4 + 2
√
3iX2Y 2 + Y 4, g2 = X4 − 2

√
3iX2Y 2 + Y 4.

Then h = g31 +6
√
3if 2 ∈ C[f, g1, g2] and 12

√
3if 2−g31 +g32 = 0 holds. The structure

of R = C[X, Y ]H̃ is also well-known:

R = C[X, Y ]H̃ =


C[Xm, XY, Y m] = C[p, q, r] (if G′ = D2m)

C[f, g1, g2] (if G′ = T )

C[f, g, h] (if G′ = O)

C[θ1, θ2, θ3] (= R0) (if G′ = I),

where p = Xm + Y m, q = Xm − Y m and r = XY . This implies the following fact.

Lemma 3. The order n is even unless G′ = D2m and m is odd.

Proof. If Fj ̸= 0 then degFj = jn is even unless G′ = D2m and m is odd, since every
nonzero polynomial in R is of even degree. In particular d = degFk is even. Hence
gcd{ d− jn | Fj ̸= 0, j = 0, 1, . . . , k } = n is also even. □

In the end of this section, we state a classification of G. First we consider a special
case.

Proposition 4. If n is odd, then G′ = D2m and m is odd. In this case G =
Zn ×D2m.

Proof. First it follows from Lemma 3 that G′ = D2m and m is odd. Furthermore m
and n are coprime, since m and n are both odd, m | d− 2 and n | d. Then Zn and
G/Zn = D2m have coprime orders, which implies that G = Zn ×D2m. □

In what follows we assume that n is even.
To determine the structure of the group G, we consider a group character on G.

Let A be a matrix in G̃′. Then there exists α ∈ C× such that ϖ((A,α)) ∈ G and
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α is unique up to multiplication by n-th roots of unity. Thus we obtain a group
homomorphism

χ̃ : G̃′ → C× (A 7→ αn).

Lemma 5. The image of the generators of G̃′ under χ̃ is as follows.

(1) If G′ = D2m and m is even, then χ̃(a) = ±1 and χ̃(b) = ±1.
(2) If G′ = D2m and m is odd, then χ̃(a) = 1 and χ̃(b) = ±1.
(3) If G′ = T , then χ̃(s) = 1 and χ̃(t) = ω is a primitive third root of unity.
(4) If G′ = O, then χ̃(t) = 1 and χ̃(u) = ±1.
(5) If G′ = I, then χ̃ = 1.

When G′ ̸= T , let n0 be the odd part of n, i.e., n = 2en0 (e ≥ 1, 2 ∤ n0). When
G′ = T , put n = 2e3e

′
n0, where e ≥ 1, e′ ≥ 0 and 2, 3 ∤ n0. Put the following

numbers:

κ̃ =

1
1

ζ2e

 ∈ Zn

and

(1) µ1 :=

{
1 (if χ̃(a) = 1)

ζ2e+1 (if χ̃(a) = −1)
, µ2 :=

{
1 (if χ̃(b) = 1)

ζ2e+1 (if χ̃(b) = −1)

(G′ = D2m and m is even)

(2) µ :=

{
1 (if χ̃(b) = 1)

ζ2e+1 (if χ̃(b) = −1)
(G′ = D2m and m is odd)

(3) ν := ζ3e′+1 (G′ = T )

(4) λ :=

{
1 (if χ̃(u) = 1)

ζ2e+1 (if χ̃(u) = −1)
(G′ = O)

Then G̃ contains a subgroup G̃0 generated by the following elements and κ̃.

(1)

(
a

µ1

)
and

(
b

µ2

)
(G′ = D2m and m is even)

(2)

(
a

1

)
and

(
b

µ

)
(G′ = D2m and m is odd)

(3)

(
s

1

)
and

(
t

ν

)
(G′ = T )

(4)

(
t

1

)
and

(
u

λ

)
(G′ = O)

(5)

(
v

1

)
and

(
w

1

)
(G′ = I)
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Set G0 = G̃0/{±E3}. Then G = Zn0 ×G0. Thus it suffices to classify the structure
of G0, which is given by the following theorems.

Theorem 6. When G′ = D2m and m is even, the group G0 = Z2e
•D2m is a

non-split extension of D2m by Z2e.

(i) If 4 | m then e = 1 and

G0 ≃


D2m = Q4m (if µ1 = µ2 = 1)

D4m (if µ1 = 1 and µ2 = i)

Z2m ⋊ Z2 (if µ1 = i).

(ii) If 4 ∤ m and e = 1 then

G0 ≃


Zm/2 ⋊Q8 (if µ1 = µ2 = 1)

D4m (if µ1 = 1 and µ2 = i)

(Zm × Z2)⋊ Z2 (if µ1 = i).

(iii) If 4 ∤ m and e ≥ 2 then

G0 ≃


(Z2e−1m × Z2)⋊ Z2 (if µ1 = µ2 = 1)

(Zm/2 ⋊ Z2e+1)⋊ Z2 (if µ1 = 1 and µ2 = ζ2e+1)

Z2em ⋊ Z2 (if µ1 = ζ2e+1).

Theorem 7. When G′ = D2m and m is odd, the group G0 = Z2e•D2m is an
extension of D2m by Z2e. Furthermore,

G0 =


Zm ⋊ Z4 (if e = 1 and µ = 1)

D4m (if e = 1 and µ = ζ2e+1)

Z2e ×D2m (if e ≥ 2 and µ = 1)

Zm ⋊ Z2e+1 (if e ≥ 2 and µ = ζ2e+1).

Theorem 8. When G′ = T , the group G0 = Z2e
•T is a non-split extension of

T by Z2e and

G0 =

{
Q8 ⋊ Z3e

′+1 (if e = 1)

((Z2e × Z2)⋊ Z2)⋊ Z3e
′+1 (if e ≥ 2).

Remark 3. If e = 1 and e′ = 0 then G0 ≃ T .
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Theorem 9. When G′ = O, the group G0 = Z2e
•O is a non-split extension of

O by Z2e and

G0 =



O (if e = 1 and λ = 1)

GL(2, 3) = T ⋊ Z2 (if λ = i)

(((Z2e × Z2)⋊ Z2)⋊ Z3)⋊ Z2 (if e ≥ 2 and λ = 1)

T ⋊ Z4 (if λ = ϵ)

T •Z2e = Z2e
•S4 (if λ = ζ2e+1 (e ≥ 3)).

Theorem 10. When G′ = I, the group G0 = Z2e
•I is a non-split extension of

I by Z2e and it is an extension of a cyclic group Z2e−1 by I. Precisely

G0 =


I (if e = 1)

I ⋊ Z2 (if e = 2)

I •Z2e−1 (if e ≥ 3).

3. Examples

Example 1. Let C be the plane curve of degree 10 defined by

Z10 = XY (X8 + Y 8).

Then G = Aut(C) satisfies the non-split exact sequence

1 → Z10 → G → D16 → 1

and G = Z80 ⋊ Z2.

Example 2. Let C be the plane curve of degree 15 defined by

Z15 = XY (X13 + Y 13).

Then G = Aut(C) satisfies the split exact sequence

1 → Z15 → G → D26 → 1,

in other words, G = Z15 ×D26.
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Example 3. Let C be the plane curve of degree 16 defined by

Z16 = XY (X14 + Y 14).

Then G = Aut(C) satisfies the non-split exact sequence

1 → Z16 → G → D28 → 1

and G = Z224 ⋊ Z2.

Example 4. Let C be the plane curve of degree 16 defined by

Z16 = XY (X14 +X7Y 7 + Y 14).

Then G = Aut(C) satisfies the split exact sequence

1 → Z16 → G → D14 → 1,

in other words, G = Z16 ×D14.

Example 5. Let C be the plane curve of degree 16 defined by

Z16 +X4Y 4Z8 +XY (X14 +X7Y 7 + Y 14) = 0.

Then G = Aut(C) satisfies the split exact sequence

1 → Z8 → G → D14 → 1,

in other words, G = Z8 ×D14.

Example 6. Let C be the plane curve of degree 32 defined by

Z32 +X3Y 3(X10 + Y 10)Z16 +XY (X30 + Y 30) = 0.

Then G = Aut(C) satisfies the split exact sequence

1 → Z16 → G → D10 → 1,

in other words, G = Z16 ×D10.

Example 7. Let C be the quartic curve defined by Z4 = X4+2
√
3iX2Y 2+Y 4 (=

g1). Then G = Aut(C) satisfies the (non-split) exact sequence

1 → Z4 → G → T → 1
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and G = T ⋊ Z2.

Example 8. Let C be the the plane curve of degree 16 defined by Z16 = g1(g
3
1+

g32). Then G = Aut(C) satisfies the (non-split) exact sequence

1 → Z16 → G → T → 1

and G = ((Z16 × Z2)⋊ Z2)⋊ Z3.

Example 9. Let C be the sextic curve defined by Z6 = XY (X4 − Y 4). Then
G = Aut(C) satisfies the (non-split) exact sequence

1 → Z6 → G → O → 1

and G = Z3 ×GL(2, 3).

Example 10. Let C be the octic curve defined by Z8 = X8+14X4Y 4+Y 8 (= g).
Then G = Aut(C) satisfies the (non-split) exact sequence

1 → Z8 → G → O → 1

and G = (((Z8 × Z2)⋊ Z2)⋊ Z3)⋊ Z2 ≃ (T ⋊ Z4)⋊ Z2.

Example 11. Let C be the plane curve of degree 12 defined by Z12 = X12 −
33(X8Y 4+X4Y 8)+Y 12 (= h). Then G = Aut(C) satisfies the (non-split) exact
sequence

1 → Z12 → G → O → 1

and G = Z3 × (T ⋊ Z4).
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Example 12. Let C be the plane curve of degree 18 defined by Z18 = fh. Then
G = Aut(C) satisfies the (non-split) exact sequence

1 → Z18 → G → O → 1

and G = Z9 ×O.

Example 13. Let C be the plane curve of degree 32 defined by Z32 = gF , where
F is a polynomial of degree 24 in C[f, g, h] such that gF has no multiple factor.
Then G = Aut(C) satisfies the (non-split) exact sequence

1 → Z32 → G → O → 1

and G = (((Z32 × Z2)⋊ Z2)⋊ Z3)⋊ Z2.

Example 14. Let C be the plane curve of degree 24 defined by

Z24 + f 2Z12 + F24 = 0,

where F24 is a general polynomial of degree 24 in C[f, g, h]. Then G = Aut(C)
satisfies the non-split exact sequence

1 → Z12 → G → O → 1

and G = Z3 × ((((Z4 × Z2)⋊ Z2)⋊ Z3)⋊ Z2).

Example 15. Let C be the plane curve of degree 12 defined by

Z12 = XY (X10 + 11X5Y 5 − Y 10) (= θ1).

Then G = Aut(C) satisfies the (non-split) exact sequence

1 → Z12 → G → I → 1

and G = Z3 × (I ⋊ Z2).

Example 16. Let C be the plane curve of degree 20 defined by

Z20 = X20 − 228(X15Y 5 −X5Y 15) + 494X10Y 10 + Y 20 (= θ2).
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Then G = Aut(C) satisfies the (non-split) exact sequence

1 → Z20 → G → I → 1

and G = Z5 × (I ⋊ Z2).

Example 17. Let C be the plane curve of degree 30 defined by

Z30 = X30 + 522(X25Y 5 −X5Y 25)− 10005(X20Y 10 +X10Y 20) + Y 30 (= θ3).

Then G = Aut(C) satisfies the (non-split) exact sequence

1 → Z30 → G → I → 1

and G = Z15 × I.

Example 18. Let C be the plane curve of degree 32 defined by Z32 = θ1θ2.
Then G = Aut(C) satisfies the non-split exact sequence

1 → Z32 → G → I → 1

and G = I •Z16.
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