ON SMOOTH PLANE CURVES WHOSE AUTOMORPHISM GROUP HAS FIXED POINTS

TAKESHI HARUI

This article is based on my talk on December 16, 2017. The main result is a classification of automorphism groups of smooth plane curves with fixed points in the projective plane. This is a joint work with A. Ohbuchi and it is a generalization of my previous talk in 2016.

1. Introduction

Notation

- \mathbb{Z}_{m} : a cyclic group of order m;
- ζ_{m} : a primitive m-th root of unity.
- $D_{2 m}=\left\langle a, b \mid a^{m}=b^{2}=1, b a b^{-1}=a^{-1}\right\rangle$: the dihedral group of order $2 m$;
- $\bar{D}_{2 m}=Q_{4 m}=\left\langle a, b \mid a^{2 m}=1, b^{2}=a^{m}, b a b^{-1}=a^{-1}\right\rangle$: the binary dihedral subgroup of $S L(2, \mathbb{C})$ (the dicyclic group of order $4 m$);
- $Q_{8}=\left\langle a, b \mid a^{4}=1, b^{2}=a^{2}, b a b^{-1}=a^{-1}\right\rangle=\langle i, j, k| i^{2}=j^{2}=k^{2}=i j k=$ $-1\rangle$: the quaternion group;
- $T \simeq A_{4}, O \simeq S_{4}, I \simeq A_{5}$: the tetrahedral, octahedral, icosahedral subgroups of $\operatorname{PGL}(2, \mathbb{C})$;
- $\bar{T} \simeq S L(2,3), \bar{O}, \bar{I} \simeq S L(2,5)$: the binary tetrahedral, binary octahedral, binary icosahedral subgroup of $S L(2, \mathbb{C})$.

In this article

$$
\left.\left.\left.\begin{array}{rl}
\operatorname{PBD}(2,1) & :=\left\{\left.\left(\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right) \right\rvert\, A\right.
\end{array}\right) \mid A \in G L(2, \mathbb{C}), \alpha \in \mathbb{C}^{\times}\right\} / \mathbb{C}^{\times}\right\}
$$

and $\rho: \operatorname{PBD}(2,1) \rightarrow P G L(2, \mathbb{C})$ is the natural homomorphism.
First we recall a classification of automorphism groups of smooth plane curves:

[^0]Theorem 1. Let C be a smooth plane curve of degree $d \geq 4, G$ a subgroup of Aut (C). Then one of the following holds:
(a-i) G fixes a point on C and G is a cyclic group whose order is at most $d(d-1)$. Furthermore, if $d \geq 5$ and $|G|=d(d-1)$, then C is projectively equivalent to the curve $Y Z^{d-1}+X^{d}+Y^{d}=0$.
(a-ii) G fixes a point not lying on C and there exists a commutative diagram

$$
\begin{array}{ccccll}
1 \rightarrow & \mathbb{C}^{*} \rightarrow & \operatorname{PBD}(2,1) & \xrightarrow{\rho} P G L(2, \mathbb{C}) \rightarrow 1 & \text { (exact) } \\
& \uparrow & \uparrow & & \uparrow & \\
1 \rightarrow & \mathbb{Z}_{n} & \longrightarrow & G & \longrightarrow & G^{\prime} \rightarrow 1
\end{array} \text { (exact), }
$$

where n is a factor of d and G^{\prime} is conjugate to $\mathbb{Z}_{m}, D_{2 m}(m \leq d-1)$, T, O or I. Furthermore, if $n \neq 1$ and $G^{\prime} \simeq D_{2 m}$ then $m \mid d-2$. In particular $|G| \leq \max \{2 d(d-2), 60 d\}$.
(b-i) (C, G) is a descendant of Fermat curve $F_{d}: X^{d}+Y^{d}+Z^{d}=0$. In this case $G \subset \operatorname{Aut}\left(F_{d}\right)$. In particular, $|G| \leq 6 d^{2}$.
(b-ii) (C, G) is a descendant of Klein curve $K_{d}: X Y^{d-1}+Y Z^{d-1}+Z X^{d-1}=0$. In this case $G \subset \operatorname{Aut}\left(K_{d}\right)$. In particular, $|G| \leq 3\left(d^{2}-3 d+3\right)$ if $d \geq 5$. On the other hand, $|G| \leq 168$ if $d=4$.
(c) G is conjugate to one of the following subgroups of $P G L(3, \mathbb{C})$: the alternating group A_{5} or A_{6}, the Klein group $\operatorname{PSL}(2,7)$, the Hessian group H_{216} of order 216 or its subgroup of order 36 or 72 . In particular $|G| \leq 360$.

In this article we consider the case (a-ii). Let P is a fixed point of G. By the commutative diagram above, we may assume that $P=(0: 0: 1), G$ is a subgroup of $\operatorname{PBD}(2,1)$ and \mathbb{Z}_{n} is generated by a projective reflection $\left[1,1, \zeta_{n}\right]$. If $n=1$ then $G=G^{\prime}$, whose structure is well known. Thus we assume that $n \geq 2$. When $G=\operatorname{Aut}(C)$, such a point P is called a quasi Galois point of order n for C.

Remark 1. Put $G[Q]:=\left\{\sigma \in \operatorname{Aut}(C) \mid \pi_{Q} \circ \sigma=\pi_{Q}\right\}$ for $Q \in \mathbb{P}^{2}$, where $\pi_{Q}: C \rightarrow \mathbb{P}^{1}$ is the projection with center Q. Then

$$
Q \text { is quasi Galois point for } C \underset{\text { def }}{\Longleftrightarrow}|G[Q]| \geq 2
$$

If $|G[Q]|=d$ then Q is called a Galois point for C (see $[\mathrm{Y}$ for details).
Since $\left[1,1, \zeta_{n}\right]$ acts on C, the curve C has a defining equation of the form

$$
Z^{d}+\sum_{j=1}^{k} F_{j}(X, Y) Z^{d-j n}=0
$$

where $k=d / n$ and $F_{j}(X, Y)$ is a homogeneous polynomial of degree $j n$. We formally set $F_{0}(X, Y):=1$.

Remark 2. Since $G_{P}=\{\sigma \in G \mid \sigma(P)=P\}=\mathbb{Z}_{n}$, we see that $\operatorname{gcd}\{d-j n \mid$ $\left.F_{j} \neq 0, j=0,1, \ldots, k-1\right\}=n$. Hence

$$
\operatorname{gcd}\left\{k-j \mid F_{j} \neq 0, j=0,1, \ldots, k-1\right\}=1
$$

holds.
Note that there exists a natural commutative diagram

where π and ϖ are natural projections. This diagram induces another commutative diagram

where $\widetilde{G}:=\varpi^{-1}(G)$ and $\widetilde{G}^{\prime}:=\pi^{-1}\left(G^{\prime}\right)$. Then $\operatorname{Ker} \varpi=\left\{ \pm E_{3}\right\}$, $\operatorname{Ker} \pi=\left\{ \pm E_{2}\right\}$ and

$$
\widetilde{G^{\prime}}= \begin{cases}\mathbb{Z}_{2 m} & \left(\text { if } G^{\prime}=\mathbb{Z}_{m}\right) \\ \bar{D}_{2 m} & \left(\text { if } G^{\prime}=D_{2 m}\right) \\ \bar{T} & \left(\text { if } G^{\prime}=T\right) \\ \bar{O} & \left(\text { if } G^{\prime}=O\right) \\ \bar{I} & \left(\text { if } G^{\prime}=I\right)\end{cases}
$$

Furthermore, $\widetilde{G^{\prime}}$ is presented as follows.

- $\mathbb{Z}_{2 m}$ generated by

$$
a_{2 m}:=\left(\begin{array}{cc}
\zeta_{2 m} & 0 \\
0 & \zeta_{2 m}^{-1}
\end{array}\right) .
$$

- $\bar{D}_{2 m}=Q_{4 m}=\left\langle a, b \mid a^{2 m}=b^{4}=1, b a b^{-1}=a^{-1}\right\rangle$, where

$$
a:=a_{2 m}, \quad b:=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) .
$$

For \bar{T}, \bar{O} we put

$$
s:=a_{4}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad t:=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\epsilon & -\epsilon \\
\epsilon^{-1} & \epsilon^{-1}
\end{array}\right) \quad \text { and } \quad u:=a_{8}=\left(\begin{array}{cc}
\epsilon & 0 \\
0 & \epsilon^{-1}
\end{array}\right)
$$

(ϵ is a primitive 8 th root of unity).
Then

$$
\bar{T}=\left\langle s, t \mid s^{2}=t^{3}=\left(s t^{-1}\right)^{3}\right\rangle, \quad \bar{O}=\left\langle t, u \mid(t u)^{2}=t^{3}=u^{4}\right\rangle .
$$

Furthermore, put $u^{\prime}=t u t^{-1}$. Then $\bar{V}=\left\langle u, u^{\prime}\right\rangle \simeq Q_{8}$ is the only normal subgroup of index three in \bar{T}.

Finally

$$
\bar{I}=\left\langle v, w \mid v^{2}=\left(w^{-1} v\right)^{3}=w^{5}\right\rangle
$$

where

$$
v:=\frac{1}{\eta^{2}-\eta^{3}}\left(\begin{array}{cc}
\eta+\eta^{-1} & 1 \\
1 & -\left(\eta+\eta^{-1}\right)
\end{array}\right), \quad w:=\left(\begin{array}{cc}
-\eta & 0 \\
0 & -\eta^{-1}
\end{array}\right)
$$

(η is a primitive 5 th root of unity).

2. Defining equations and automorphism groups of curves

In what follows, we assume that G^{\prime} is not cyclic.
The special linear group $S L(2, \mathbb{C})$ naturally acts on $\mathbb{C}[X, Y]$, i.e., $A \in S L(2, \mathbb{C})$ induces a homomorphism $F(X, Y) \mapsto F((X, Y) A)$.

Theorem 2. Every $F_{j}(X, Y)(j=1,2, \ldots, k)$ is invariant under a subgroup $\widetilde{H} \subset \widetilde{G}^{\prime}$ and invariant under \widetilde{G}^{\prime} up to multiplication by l-th roots of unity, where

$$
\widetilde{H}=\left\{\begin{array}{l}
\left\langle a^{2}\right\rangle \quad\left(\text { if } G^{\prime}=D_{2 m}\right) \\
\left\langle u, u^{\prime}\right\rangle=\bar{V} \simeq Q_{8} \quad\left(\text { if } G^{\prime}=T\right) \\
\langle s, t\rangle=\bar{T} \quad\left(\text { if } G^{\prime}=O\right) \\
\bar{I} \quad\left(\text { if } G^{\prime}=I\right),
\end{array}\right.
$$

and

$$
l= \begin{cases}2 & \left(\text { if } G^{\prime}=D_{2 m} \text { and } m \text { is even }\right) \\ 4 & \left(\text { if } G^{\prime}=D_{2 m} \text { and } m \text { is odd }\right) \\ 3 & \left(\text { if } G^{\prime}=T\right) \\ 2 & \left(\text { if } G^{\prime}=O\right) \\ 1 & \left(\text { if } G^{\prime}=I\right) .\end{cases}
$$

Let R_{0} be the invariant ring of $\widetilde{G^{\prime}}$, i.e., $R_{0}=\mathbb{C}[X, Y]^{\widetilde{G}^{\prime}}$ and R the invariant ring of \widetilde{H}, i.e., $R=\mathbb{C}[X, Y]^{\widetilde{H}}$. Then $F_{j}(X, Y) \in R(j=1,2, \ldots, k)$. Note that $R_{0} \subset R$ and R is R_{0}-module. It is well known that

$$
R_{0}=\mathbb{C}[X, Y]^{\widetilde{G^{\prime}}}=\left\{\begin{array}{c}
\mathbb{C}\left[X^{2 m}+Y^{2 m},(X Y)^{2}, X Y\left(X^{2 m}-Y^{2 m)}\right]\right. \\
\quad\left(\text { if } G^{\prime}=D_{2 m}, m \text { is even }\right) \\
\mathbb{C}\left[X^{2 m}-Y^{2 m},(X Y)^{2}, X Y\left(X^{2 m}+Y^{2 m)}\right]\right. \\
\quad\left(\text { if } G^{\prime}=D_{2 m}, m \text { is odd }\right) \\
\left.\mathbb{C}[f, g, h] \quad \text { (if } G^{\prime}=T\right) \\
\mathbb{C}\left[g, f^{2}, f h\right] \quad\left(\text { if } G^{\prime}=O\right) \\
\mathbb{C}\left[\theta_{1}, \theta_{2}, \theta_{3}\right] \quad\left(\text { if } G^{\prime}=I\right),
\end{array}\right.
$$

where

$$
\begin{aligned}
& f=X Y\left(X^{4}-Y^{4}\right), \quad g=X^{8}+14 X^{4} Y^{4}+Y^{8} \\
& \quad h=X^{12}-33\left(X^{8} Y^{4}+X^{4} Y^{8}\right)+Y^{12}, \\
& \quad \operatorname{deg} f=6, \quad \operatorname{deg} g=8, \quad \operatorname{deg} h=12 \quad \text { and } \quad h^{2}=g^{3}-108 f^{4} \\
& \theta_{1}=X Y\left(X^{10}+11 X^{5} Y^{5}-Y^{10)}\right. \\
& \theta_{2}=X^{20}-228\left(X^{15} Y^{5}-X^{5} Y^{15)}+494 X^{10} Y^{10}+Y^{20}\right. \\
& \theta_{3}=X^{30}+522\left(X^{25} Y^{5}-X^{5} Y^{25)}-10005\left(X^{20} Y^{10}+X^{10} Y^{20)}+Y^{30}\right.\right. \\
& \operatorname{deg} \theta_{1}=12, \quad \operatorname{deg} \theta_{2}=20, \quad \operatorname{deg} \theta_{3}=30 \quad \text { and } \quad \theta_{3}^{2}=1728 \theta_{1}^{5}-\theta_{2}^{3}
\end{aligned}
$$

Furthermore $g=g_{1} g_{2}$, where

$$
g_{1}=X^{4}+2 \sqrt{3} i X^{2} Y^{2}+Y^{4}, \quad g_{2}=X^{4}-2 \sqrt{3} i X^{2} Y^{2}+Y^{4}
$$

Then $h=g_{1}^{3}+6 \sqrt{3} i f^{2} \in \mathbb{C}\left[f, g_{1}, g_{2}\right]$ and $12 \sqrt{3} i f^{2}-g_{1}^{3}+g_{2}^{3}=0$ holds. The structure of $R=\mathbb{C}[X, Y]^{\widetilde{H}}$ is also well-known:

$$
R=\mathbb{C}[X, Y]^{\widetilde{H}}=\left\{\begin{array}{l}
\mathbb{C}\left[X^{m}, X Y, Y^{m}\right]=\mathbb{C}[p, q, r] \quad\left(\text { if } G^{\prime}=D_{2 m}\right) \\
\mathbb{C}\left[f, g_{1}, g_{2}\right] \quad\left(\text { if } G^{\prime}=T\right) \\
\mathbb{C}[f, g, h] \quad\left(\text { if } G^{\prime}=O\right) \\
\mathbb{C}\left[\theta_{1}, \theta_{2}, \theta_{3}\right] \quad\left(=R_{0}\right) \quad\left(\text { if } G^{\prime}=I\right)
\end{array}\right.
$$

where $p=X^{m}+Y^{m}, q=X^{m}-Y^{m}$ and $r=X Y$. This implies the following fact.

Lemma 3. The order n is even unless $G^{\prime}=D_{2 m}$ and m is odd.

Proof. If $F_{j} \neq 0$ then $\operatorname{deg} F_{j}=j n$ is even unless $G^{\prime}=D_{2 m}$ and m is odd, since every nonzero polynomial in R is of even degree. In particular $d=\operatorname{deg} F_{k}$ is even. Hence $\operatorname{gcd}\left\{d-j n \mid F_{j} \neq 0, j=0,1, \ldots, k\right\}=n$ is also even.

In the end of this section, we state a classification of G. First we consider a special case.

Proposition 4. If n is odd, then $G^{\prime}=D_{2 m}$ and m is odd. In this case $G=$ $\mathbb{Z}_{n} \times D_{2 m}$.

Proof. First it follows from Lemma 3 that $G^{\prime}=D_{2 m}$ and m is odd. Furthermore m and n are coprime, since m and n are both odd, $m \mid d-2$ and $n \mid d$. Then \mathbb{Z}_{n} and $G / \mathbb{Z}_{n}=D_{2 m}$ have coprime orders, which implies that $G=\mathbb{Z}_{n} \times D_{2 m}$.

In what follows we assume that n is even.
To determine the structure of the group G, we consider a group character on G. Let A be a matrix in \widetilde{G}^{\prime}. Then there exists $\alpha \in \mathbb{C}^{\times}$such that $\varpi((A, \alpha)) \in G$ and
α is unique up to multiplication by n-th roots of unity. Thus we obtain a group homomorphism

$$
\tilde{\chi}: \widetilde{G}^{\prime} \rightarrow \mathbb{C}^{\times}\left(A \mapsto \alpha^{n}\right)
$$

Lemma 5. The image of the generators of $\widetilde{G^{\prime}}$ under $\widetilde{\chi}$ is as follows.
(1) If $G^{\prime}=D_{2 m}$ and m is even, then $\widetilde{\chi}(a)= \pm 1$ and $\widetilde{\chi}(b)= \pm 1$.
(2) If $G^{\prime}=D_{2 m}$ and m is odd, then $\widetilde{\chi}(a)=1$ and $\widetilde{\chi}(b)= \pm 1$.
(3) If $G^{\prime}=T$, then $\widetilde{\chi}(s)=1$ and $\widetilde{\chi}(t)=\omega$ is a primitive third root of unity.
(4) If $G^{\prime}=O$, then $\widetilde{\chi}(t)=1$ and $\widetilde{\chi}(u)= \pm 1$.
(5) If $G^{\prime}=I$, then $\widetilde{\chi}=1$.

When $G^{\prime} \neq T$, let n_{0} be the odd part of n, i.e., $n=2^{e} n_{0}\left(e \geq 1,2 \nmid n_{0}\right)$. When $G^{\prime}=T$, put $n=2^{e} 3^{e^{\prime}} n_{0}$, where $e \geq 1, e^{\prime} \geq 0$ and $2,3 \nmid n_{0}$. Put the following numbers:

$$
\widetilde{\kappa}=\left(\begin{array}{ccc}
1 & & \\
& 1 & \\
& & \zeta_{2^{e}}
\end{array}\right) \in \mathbb{Z}_{n}
$$

and
(1) $\mu_{1}:=\left\{\begin{array}{ll}1 & (\text { if } \widetilde{\chi}(a)=1) \\ \zeta_{2^{e+1}} & (\text { if } \widetilde{\chi}(a)=-1)\end{array} \quad, \mu_{2}:= \begin{cases}1 & (\text { if } \widetilde{\chi}(b)=1) \\ \zeta_{2^{e+1}} & (\text { if } \widetilde{\chi}(b)=-1)\end{cases}\right.$

$$
\left(G^{\prime}=D_{2 m} \text { and } m \text { is even }\right)
$$

(2) $\mu:=\left\{\begin{array}{ll}1 & (\text { if } \widetilde{\chi}(b)=1) \\ \zeta_{2^{e+1}} & (\text { if } \widetilde{\chi}(b)=-1)\end{array} \quad\left(G^{\prime}=D_{2 m}\right.\right.$ and m is odd $)$
(3) $\nu:=\zeta_{3 e^{\prime}+1} \quad\left(G^{\prime}=T\right)$
(4) $\lambda:=\left\{\begin{array}{ll}1 & (\text { if } \widetilde{\chi}(u)=1) \\ \zeta_{2^{e+1}} & (\text { if } \widetilde{\chi}(u)=-1)\end{array} \quad\left(G^{\prime}=O\right)\right.$

Then \widetilde{G} contains a subgroup \widetilde{G}_{0} generated by the following elements and $\widetilde{\kappa}$.
(1) $\left(\begin{array}{ll}a & \\ & \mu_{1}\end{array}\right)$ and $\left(\begin{array}{ll}b & \\ & \mu_{2}\end{array}\right) \quad\left(G^{\prime}=D_{2 m}\right.$ and m is even $)$
(2) $\left(\begin{array}{ll}a & \\ & 1\end{array}\right)$ and $\left(\begin{array}{ll}b & \\ & \mu\end{array}\right) \quad\left(G^{\prime}=D_{2 m}\right.$ and m is odd $)$
(3) $\left(\begin{array}{ll}s & \\ & 1\end{array}\right)$ and $\left(\begin{array}{ll}t & \\ & \nu\end{array}\right) \quad\left(G^{\prime}=T\right)$
(4) $\left(\begin{array}{ll}t & \\ & 1\end{array}\right)$ and $\left(\begin{array}{ll}u & \\ & \lambda\end{array}\right) \quad\left(G^{\prime}=O\right)$
(5) $\left(\begin{array}{ll}v & \\ & 1\end{array}\right)$ and $\left(\begin{array}{ll}w & \\ & 1\end{array}\right) \quad\left(G^{\prime}=I\right)$

ON SMOOTH PLANE CURVES WHOSE AUTOMORPHISM GROUP HAS FIXED POINTS 7
Set $G_{0}=\widetilde{G}_{0} /\left\{ \pm E_{3}\right\}$. Then $G=\mathbb{Z}_{n_{0}} \times G_{0}$. Thus it suffices to classify the structure of G_{0}, which is given by the following theorems.

Theorem 6. When $G^{\prime}=D_{2 m}$ and m is even, the group $G_{0}=\mathbb{Z}_{2^{e}}{ }^{\bullet} D_{2 m}$ is a non-split extension of $D_{2 m}$ by $\mathbb{Z}_{2^{e}}$.
(i) If $4 \mid m$ then $e=1$ and

$$
G_{0} \simeq\left\{\begin{array}{l}
\bar{D}_{2 m}=Q_{4 m} \quad\left(\text { if } \mu_{1}=\mu_{2}=1\right) \\
D_{4 m} \quad\left(\text { if } \mu_{1}=1 \text { and } \mu_{2}=i\right) \\
\mathbb{Z}_{2 m} \rtimes \mathbb{Z}_{2} \quad\left(\text { if } \mu_{1}=i\right) .
\end{array}\right.
$$

(ii) If $4 \nmid m$ and $e=1$ then

$$
G_{0} \simeq\left\{\begin{array}{l}
\mathbb{Z}_{m / 2} \rtimes Q_{8} \quad\left(\text { if } \mu_{1}=\mu_{2}=1\right) \\
\left.D_{4 m} \quad \text { (if } \mu_{1}=1 \text { and } \mu_{2}=i\right) \\
\left(\mathbb{Z}_{m} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2} \quad\left(\text { if } \mu_{1}=i\right)
\end{array}\right.
$$

(iii) If $4 \nmid m$ and $e \geq 2$ then

$$
G_{0} \simeq\left\{\begin{array}{l}
\left(\mathbb{Z}_{2^{e-1} m} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2} \quad\left(\text { if } \mu_{1}=\mu_{2}=1\right) \\
\left.\left(\mathbb{Z}_{m / 2} \rtimes \mathbb{Z}_{2^{e+1}}\right) \rtimes \mathbb{Z}_{2} \quad \text { (if } \mu_{1}=1 \text { and } \mu_{2}=\zeta_{2^{e+1}}\right) \\
\mathbb{Z}_{2^{e} m} \rtimes \mathbb{Z}_{2} \quad\left(\text { if } \mu_{1}=\zeta_{2^{e+1}}\right) .
\end{array}\right.
$$

Theorem 7. When $G^{\prime}=D_{2 m}$ and m is odd, the group $G_{0}=\mathbb{Z}_{2^{e}} \bullet D_{2 m}$ is an extension of $D_{2 m}$ by $\mathbb{Z}_{2^{e}}$. Furthermore,

$$
G_{0}=\left\{\begin{array}{l}
\mathbb{Z}_{m} \rtimes \mathbb{Z}_{4} \quad(\text { if } e=1 \text { and } \mu=1) \\
D_{4 m} \quad\left(\text { if } e=1 \text { and } \mu=\zeta_{2^{e+1}}\right) \\
\mathbb{Z}_{2^{e}} \times D_{2 m} \quad(\text { if } e \geq 2 \text { and } \mu=1) \\
\mathbb{Z}_{m} \rtimes \mathbb{Z}_{2^{e+1}} \quad\left(\text { if } e \geq 2 \text { and } \mu=\zeta_{2^{e+1}}\right)
\end{array}\right.
$$

Theorem 8. When $G^{\prime}=T$, the group $G_{0}=\mathbb{Z}_{2}{ }^{\bullet} T$ is a non-split extension of T by $\mathbb{Z}_{2^{e}}$ and

$$
G_{0}=\left\{\begin{array}{l}
Q_{8} \rtimes \mathbb{Z}_{3^{e^{\prime}+1}} \quad(\text { if } e=1) \\
\left(\left(\mathbb{Z}_{2^{e}} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{3^{e^{\prime}+1}} \quad(\text { if } e \geq 2)
\end{array}\right.
$$

Remark 3. If $e=1$ and $e^{\prime}=0$ then $G_{0} \simeq \bar{T}$.

Theorem 9. When $G^{\prime}=O$, the group $G_{0}=\mathbb{Z}_{2^{e}} \bullet O$ is a non-split extension of O by $\mathbb{Z}_{2^{e}}$ and

$$
G_{0}=\left\{\begin{array}{l}
\bar{O} \quad(\text { if } e=1 \text { and } \lambda=1) \\
G L(2,3)=\bar{T} \rtimes \mathbb{Z}_{2} \quad(\text { if } \lambda=i) \\
\left(\left(\left(\mathbb{Z}_{2^{e}} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{2} \quad(\text { if } e \geq 2 \text { and } \lambda=1) \\
\bar{T} \rtimes \mathbb{Z}_{4} \quad(\text { if } \lambda=\epsilon) \\
\bar{T} \bullet \mathbb{Z}_{2^{e}}=\mathbb{Z}_{2^{e}} \bullet S_{4} \quad\left(\text { if } \lambda=\zeta_{2^{e+1}} \quad(e \geq 3)\right) .
\end{array}\right.
$$

Theorem 10. When $G^{\prime}=I$, the group $G_{0}=\mathbb{Z}_{2} e^{\bullet} I$ is a non-split extension of I by $\mathbb{Z}^{2^{e}}$ and it is an extension of a cyclic group $\mathbb{Z}_{2^{e-1}}$ by \bar{I}. Precisely

$$
G_{0}=\left\{\begin{array}{l}
\bar{I} \quad(\text { if } e=1) \\
\bar{I} \rtimes \mathbb{Z}_{2} \quad(\text { if } e=2) \\
\bar{I} \bullet \mathbb{Z}_{2^{e-1}} \quad(\text { if } e \geq 3)
\end{array}\right.
$$

3. Examples

Example 1. Let C be the plane curve of degree 10 defined by

$$
Z^{10}=X Y\left(X^{8}+Y^{8}\right)
$$

Then $G=\operatorname{Aut}(C)$ satisfies the non-split exact sequence

$$
1 \rightarrow \mathbb{Z}_{10} \rightarrow G \rightarrow D_{16} \rightarrow 1
$$

and $G=\mathbb{Z}_{80} \rtimes \mathbb{Z}_{2}$.

Example 2. Let C be the plane curve of degree 15 defined by

$$
Z^{15}=X Y\left(X^{13}+Y^{13}\right)
$$

Then $G=\operatorname{Aut}(C)$ satisfies the split exact sequence

$$
1 \rightarrow \mathbb{Z}_{15} \rightarrow G \rightarrow D_{26} \rightarrow 1
$$

in other words, $G=\mathbb{Z}_{15} \times D_{26}$.

Example 3. Let C be the plane curve of degree 16 defined by

$$
Z^{16}=X Y\left(X^{14}+Y^{14}\right)
$$

Then $G=\operatorname{Aut}(C)$ satisfies the non-split exact sequence

$$
1 \rightarrow \mathbb{Z}_{16} \rightarrow G \rightarrow D_{28} \rightarrow 1
$$

and $G=\mathbb{Z}_{224} \rtimes \mathbb{Z}_{2}$.

Example 4. Let C be the plane curve of degree 16 defined by

$$
Z^{16}=X Y\left(X^{14}+X^{7} Y^{7}+Y^{14}\right)
$$

Then $G=\operatorname{Aut}(C)$ satisfies the split exact sequence

$$
1 \rightarrow \mathbb{Z}_{16} \rightarrow G \rightarrow D_{14} \rightarrow 1
$$

in other words, $G=\mathbb{Z}_{16} \times D_{14}$.

Example 5. Let C be the plane curve of degree 16 defined by

$$
Z^{16}+X^{4} Y^{4} Z^{8}+X Y\left(X^{14}+X^{7} Y^{7}+Y^{14}\right)=0
$$

Then $G=\operatorname{Aut}(C)$ satisfies the split exact sequence

$$
1 \rightarrow \mathbb{Z}_{8} \rightarrow G \rightarrow D_{14} \rightarrow 1
$$

in other words, $G=\mathbb{Z}_{8} \times D_{14}$.

Example 6. Let C be the plane curve of degree 32 defined by

$$
Z^{32}+X^{3} Y^{3}\left(X^{10}+Y^{10}\right) Z^{16}+X Y\left(X^{30}+Y^{30}\right)=0
$$

Then $G=\operatorname{Aut}(C)$ satisfies the split exact sequence

$$
1 \rightarrow \mathbb{Z}_{16} \rightarrow G \rightarrow D_{10} \rightarrow 1
$$

in other words, $G=\mathbb{Z}_{16} \times D_{10}$.

Example 7. Let C be the quartic curve defined by $Z^{4}=X^{4}+2 \sqrt{3} i X^{2} Y^{2}+Y^{4}(=$ g_{1}). Then $G=\operatorname{Aut}(C)$ satisfies the (non-split) exact sequence

$$
1 \rightarrow \mathbb{Z}_{4} \rightarrow G \rightarrow T \rightarrow 1
$$

and $G=\bar{T} \rtimes \mathbb{Z}_{2}$.

Example 8. Let C be the the plane curve of degree 16 defined by $Z^{16}=g_{1}\left(g_{1}^{3}+\right.$ g_{2}^{3}). Then $G=\operatorname{Aut}(C)$ satisfies the (non-split) exact sequence

$$
1 \rightarrow \mathbb{Z}_{16} \rightarrow G \rightarrow T \rightarrow 1
$$

and $G=\left(\left(\mathbb{Z}_{16} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{3}$.

Example 9. Let C be the sextic curve defined by $Z^{6}=X Y\left(X^{4}-Y^{4}\right)$. Then $G=\operatorname{Aut}(C)$ satisfies the (non-split) exact sequence

$$
1 \rightarrow \mathbb{Z}_{6} \rightarrow G \rightarrow O \rightarrow 1
$$

and $G=\mathbb{Z}_{3} \times G L(2,3)$.

Example 10. Let C be the octic curve defined by $Z^{8}=X^{8}+14 X^{4} Y^{4}+Y^{8}(=g)$. Then $G=\operatorname{Aut}(C)$ satisfies the (non-split) exact sequence

$$
1 \rightarrow \mathbb{Z}_{8} \rightarrow G \rightarrow O \rightarrow 1
$$

and $G=\left(\left(\left(\mathbb{Z}_{8} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{2} \simeq\left(\bar{T} \rtimes \mathbb{Z}_{4}\right) \rtimes \mathbb{Z}_{2}$.

Example 11. Let C be the plane curve of degree 12 defined by $Z^{12}=X^{12}-$ $33\left(X^{8} Y^{4}+X^{4} Y^{8}\right)+Y^{12}(=h)$. Then $G=\operatorname{Aut}(C)$ satisfies the (non-split) exact sequence

$$
1 \rightarrow \mathbb{Z}_{12} \rightarrow G \rightarrow O \rightarrow 1
$$

and $G=\mathbb{Z}_{3} \times\left(\bar{T} \rtimes \mathbb{Z}_{4}\right)$.

Example 12. Let C be the plane curve of degree 18 defined by $Z^{18}=f h$. Then $G=\operatorname{Aut}(C)$ satisfies the (non-split) exact sequence

$$
1 \rightarrow \mathbb{Z}_{18} \rightarrow G \rightarrow O \rightarrow 1
$$

and $G=\mathbb{Z}_{9} \times \bar{O}$.

Example 13. Let C be the plane curve of degree 32 defined by $Z^{32}=g F$, where F is a polynomial of degree 24 in $\mathbb{C}[f, g, h]$ such that $g F$ has no multiple factor. Then $G=\operatorname{Aut}(C)$ satisfies the (non-split) exact sequence

$$
1 \rightarrow \mathbb{Z}_{32} \rightarrow G \rightarrow O \rightarrow 1
$$

and $G=\left(\left(\left(\mathbb{Z}_{32} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{2}$.

Example 14. Let C be the plane curve of degree 24 defined by

$$
Z^{24}+f^{2} Z^{12}+F_{24}=0
$$

where F_{24} is a general polynomial of degree 24 in $\mathbb{C}[f, g, h]$. Then $G=\operatorname{Aut}(C)$ satisfies the non-split exact sequence

$$
1 \rightarrow \mathbb{Z}_{12} \rightarrow G \rightarrow O \rightarrow 1
$$

and $G=\mathbb{Z}_{3} \times\left(\left(\left(\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{2}\right)$.

Example 15. Let C be the plane curve of degree 12 defined by

$$
Z^{12}=X Y\left(X^{10}+11 X^{5} Y^{5}-Y^{10}\right)\left(=\theta_{1}\right)
$$

Then $G=\operatorname{Aut}(C)$ satisfies the (non-split) exact sequence

$$
1 \rightarrow \mathbb{Z}_{12} \rightarrow G \rightarrow I \rightarrow 1
$$

and $G=\mathbb{Z}_{3} \times\left(\bar{I} \rtimes \mathbb{Z}_{2}\right)$.

Example 16. Let C be the plane curve of degree 20 defined by

$$
Z^{20}=X^{20}-228\left(X^{15} Y^{5}-X^{5} Y^{15}\right)+494 X^{10} Y^{10}+Y^{20}\left(=\theta_{2}\right) .
$$

Then $G=\operatorname{Aut}(C)$ satisfies the (non-split) exact sequence

$$
1 \rightarrow \mathbb{Z}_{20} \rightarrow G \rightarrow I \rightarrow 1
$$

and $G=\mathbb{Z}_{5} \times\left(\bar{I} \rtimes \mathbb{Z}_{2}\right)$.

Example 17. Let C be the plane curve of degree 30 defined by

$$
Z^{30}=X^{30}+522\left(X^{25} Y^{5}-X^{5} Y^{25}\right)-10005\left(X^{20} Y^{10}+X^{10} Y^{20}\right)+Y^{30}\left(=\theta_{3}\right)
$$

Then $G=\operatorname{Aut}(C)$ satisfies the (non-split) exact sequence

$$
1 \rightarrow \mathbb{Z}_{30} \rightarrow G \rightarrow I \rightarrow 1
$$

and $G=\mathbb{Z}_{15} \times \bar{I}$.

Example 18. Let C be the plane curve of degree 32 defined by $Z^{32}=\theta_{1} \theta_{2}$. Then $G=\operatorname{Aut}(C)$ satisfies the non-split exact sequence

$$
1 \rightarrow \mathbb{Z}_{32} \rightarrow G \rightarrow I \rightarrow 1
$$

and $G=\bar{I} \cdot \mathbb{Z}_{16}$.

References

[Ha] T. Harui, Automorphism groups of smooth plane curves, arXiv:math/1306.5842.
[Y] H. Yoshihara, Function field theory of plane curves by dual curves, J. Algebra 239, no. 1 (2001), 340-355.

[^0]: Kochi University of Technology
 E-mail address: harui.takeshi@kochi-tech.ac.jp, takeshi@cwo.zaq.ne.jp.
 Date: October 29, 2018.

