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1. Introduction

This article is based on my talk on December 18, 2016 and it concerns several
works on automorphism groups of smooth plane curves with outer Galois points.
These are joint works with A. Ohbuchi and partially with K. Miura.

Notation

• Zm: a cyclic group of order m;
• ζm: a primitive m-th root of unity.
• D2m: the dihedral group of order 2m;
• D2m = Q4m = ⟨a, b | a2m = 1, b2 = am, b−1ab = a−1⟩: the binary dihedral
subgroup of SL(2,C) (the dicyclic group of order 4m);

• Q8 = ⟨a, b | a4 = 1, b2 = a2, b−1ab = a−1⟩ = ⟨i, j, k | i2 = j2 = k2 = ijk =
−1⟩: the quaternion group;

• T ≃ A4, O ≃ S4, I ≃ A5: the tetrahedral, octahedral, icosahedral subgroups
of PGL(2,C);

• T ≃ SL(2, 3), O, I ≃ SL(2, 5): the binary tetrahedral, binary octahedral,
binary icosahedral subgroup of SL(2,C);

In this paper

PBD(2, 1) :=


A

α

 ∣∣∣∣∣∣ A ∈ GL(2,C), α ∈ C×


/

C×

=


A

α

 ∣∣∣∣∣∣ A ∈ SL(2,C), α ∈ C×


/

{±E3}

⊂ PGL(3,C)

and ρ : PBD(2, 1) → PGL(2,C) is the natural homomorphism.

Remark 1. The group ID of O is [48, 28], which is not isomorphic to GL(2, 3) (its
group ID is [48, 29]).
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First we state a classification of automorphism groups of smooth plane curves:

Theorem 2. [Ha, Theorem 2.1] Let C be a smooth plane curve of degree d ≥ 4,
G = Aut(C). Then one of the following holds:

(a-i) G fixes a point on C and G is a cyclic group whose order is at most d(d−1).
Furthermore, if d ≥ 5 and |G| = d(d − 1), then C is projectively equivalent
to the curve Y Zd−1 +Xd + Y d = 0.

(a-ii) G fixes a point not lying on C and there exists a commutative diagram

1 → C∗ → PBD(2, 1)
ρ→ PGL(2,C) → 1 (exact)

↪→ ↪→ ↪→

1 → N −→ G −→ G′ → 1 (exact),

where N is a cyclic group whose order is a factor of d and G′ is conjugate to
Zm, D2m, T , O or I, where m is an integer at most d−1. Moreover, if G′ ≃
D2m, then m| d− 2 or N is trivial. In particular |G| ≤ max{2d(d− 2), 60d}.

(b-i) (C,G) is a descendant of Fermat curve Fd : X
d + Y d + Zd = 0. In this case

G ⊂ Aut(Fd). In particular, |G| ≤ 6d2.
(b-ii) (C,G) is a descendant of Klein curve Kd : XY d−1 + Y Zd−1 + ZXd−1 = 0.

In this case G ⊂ Aut(Kd). In particular, |G| ≤ 3(d2 − 3d+ 3) if d ≥ 5. On
the other hand, |G| ≤ 168 if d = 4.

(c) G is conjugate to one of the following subgroups of PGL(3,C): the alternat-
ing group A5 or A6, the Klein group PSL(2, 7), the Hessian group H216 of
order 216 or its subgroup of order 36 or 72. In particular |G| ≤ 360.

In this article we consider smooth curves with outer Galois points. Most of them
correspond to the special case of (a-ii).

We recall basic facts on smooth plane curves with Galois points from [Y].
Let C be a smooth plane curve of degree d ≥ 4 with an outer Galois point P .

Then C has a defining equation of the form Zd = F (X, Y ) and P = (0 : 0 : 1) under
a suitable coordinate system. The polynomial F has no multiple factors.

Throughout this article we assume that C is not isomorphic to Fermat curve.
Then P is the unique outer Galois point (see [Y, Proposition 4’]). In particular G =
Aut(C) fixes P . Hence the case (a-ii) occurs, i.e., G ⊂ PBD(2, 1) and G′ := ρ(G)
is a finite subgroup of PGL(2,C). Furthermore, G′ is one of the following groups:
a cyclic group Zm (m ≤ d − 1), a dihedral group D2m (m | d − 2), the tetrahedral
group T , the octahedral group O or the icosahedral group I.

In this article we assume that G′ is not cyclic, i.e., G′ = D2m, T, O or I. Note
that there exists a natural commutative diagram

1 // C×

≀
��

//

⟲

SL(2,C)× C×

ϖ
����

//

⟲

SL(2,C)

π
����

// 1

1 // C× // PBD(2, 1) ρ
// PGL(2,C) // 1,
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where π and ϖ are natural projections. This diagram induces another commutative
diagram

1 // Zd

≀
��

//

⟲

G̃

ϖ
����

ρ̃ //

⟲

G̃′

π
����

// 1

1 // Zd
// G ρ

// G′ // 1,

where G̃ := ϖ−1(G) and G̃′ := π−1(G′). Then Kerϖ = {±E3}, Ker π = {±E2} and

G̃′ =


D2m (if G′ = D2m)

T (if G′ = T )

O (if G′ = O)

I (if G′ = I).

Furthermore, these groups are presented as follows:

• D2m = Q4m = ⟨a2m, b⟩, where

a2m :=

(
ζ2m 0
0 ζ−1

2m

)
, b :=

(
0 i
i 0

)
.

• T = ⟨a4, b, c⟩, where

a4 =

(
i 0
0 −i

)
, c :=

1√
2

(
ϵ7 ϵ7

ϵ58 ϵ

)
(ϵ is a primitive 8th root of unity).

• O = ⟨a8, b, c⟩, where

a8 =

(
ϵ 0
0 ϵ−1

)
.

• I = ⟨a′, b′, c′⟩, where

a′ := −
(
η3 0
0 η2

)
, b′ :=

(
0 1
−1 0

)
,

c′ :=
1

η2 − η3

(
η + η−1 1

1 −(η + η−1)

)
(η is a primitive 5th root of unity).

2. Defining equations of curves

Our first main result is the following:
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Theorem 3. The polynomial F (X, Y ) is invariant under a subgroup H̃ ⊂ G̃′ and

invariant under G̃′ up to multiplication by k-th roots of unity, where

H̃ =


⟨a2⟩ (if G′ = D2m)

V = Q8 (if G′ = T )

T (if G′ = O)

I (if G′ = I)

(a is one of generators of D2m = Q4m and V is the only normal subgroup of index
three in T ) and

k =



2 (if G′ = D2m and m is even)

4 (if G′ = D2m and m is odd)

3 (if G′ = T )

2 (if G′ = O)

1 (if G′ = I).

Let R0 be the invariant ring of G̃′, i.e., R0 = C[X,Y ]G̃
′
and R the invariant ring

of H̃, i.e., R = C[X,Y ]H̃ . Then F (X,Y ) ∈ R. Note that R0 ⊂ R and R is an
R0-module. It is well known that

R0 = C[X, Y ]G̃
′
=



C[X2m + Y 2m, (XY )2, XY (X2m − Y 2m)]

(if G′ = D2m, m is even)

C[X2m − Y 2m, (XY )2, XY (X2m + Y 2m)]

(if G′ = D2m, m is odd)

C[f, g, h] (if G′ = T )

C[g, f 2, fh] (if G′ = O)

C[u, v, w] (if G′ = I),

where

f = XY (X4 − Y 4), g = X8 + 14X4Y 4 + Y 8,

h = X12 − 33(X8Y 4 +X4Y 8) + Y 12,

deg f = 6, deg g = 8, deg h = 12 and h2 = g3 − 108f 4,

u = XY (X10 + 11X5Y 5 − Y 10),

v = X20 − 228(X15Y 5 −X5Y 15) + 494X10Y 10 + Y 20,

w = X30 + 522(X25Y 5 −X5Y 25)− 10005(X20Y 10 +X10Y 20) + Y 30,

deg u = 12, deg v = 20, degw = 30 and w2 = 1728u5 − v3.

Furthermore, there exist two homogeneous polynomials g1 and g2 of degree 4 such
that g = g1g2 and h = g31. Concretely

g1 = X4 + 2
√
3iX2Y 2 + Y 4, g2 = X4 − 2

√
3iX2Y 2 + Y 4

and 12
√
3if 2 − g31 + g32 = 0 holds.
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The invariant ring R of H̃ is as follows:

R = C[X, Y ]H̃ =


C[Xm, XY, Y m] = C[p, q, r] (if G′ = D2m)

C[f, g1, g2] (if G′ = T )

C[f, g, h] (if G′ = O)

C[u, v, w] (= R0) (if G′ = I),

where p = Xm + Y m, q = Xm − Y m, r = XY .
Our second main result is the following decomposition of R as an R0-module.

Theorem 4. (1) If G′ = D2m (m is odd), T or O then R has a direct sum
decomposition

R = R0 ⊕M1 ⊕M2 ⊕ · · · ⊕Mk−1,

where
• M1 = R0p+R0qr, M2 = R0q +R0pr +R0p

3, M3 = R0r +Rop
2

(if G′ = D2m and m is odd),

• M1 = R0g1 +R0g
2
2, M2 = R0g2 +R0g

2
1 (if G′ = T ),

• M1 = R0f +R0h (if G′ = O).

(2) If G′ = D2m (m is even) then R has the direct sum decomposition

R = R0 ⊕ (R0p+R0qr)⊕ (R0q +R0pr)⊕ (R0r +R0pq).

In each case, the polynomial F (X, Y ) is a homogeneous element of some direct
summand.

Remark 5. In Theorem 4, all polynomials in a direct summand are multiplied by

the same root of unity under the action of each element of G̃′.

Corollary 6. If d is odd, then G′ is dihedral.

For each direct summand in the above theorem, we can choose a homogeneous
polynomial F without multiple factors such that the smooth plane curve C defined
by the equation Zd = F (X,Y ) has an outer Galois point and there exists an exact
sequence

1 → Zd → Aut(C) → G′ → 1.

In general this exact sequence is not split.

3. The structure of automorphism groups: when G′ = I

In the rest of this article we determine the structure of automorphism groups
when G′ is a polyhedral group, i.e., G′ = T,O or I.
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In this section we assume that G′ = I. Recall the commutative diagram

1 // Zd

≀
��

//

⟲

G̃

ϖ
����

ρ̃ //

⟲

I

π
����

// 1

1 // Zd
// G ρ

// I // 1,

where Kerϖ = {±E3} and Ker π = {±E2}.
Let d0 be the odd part of d, i.e., d = 2ed0 (e ≧ 1) and 2 ∤ d0.
Let G̃0 be the subgroup of G̃ generated by(

a′

1

)
,

(
b′

1

)
,

(
c′

1

)
and

1
1

ζ2e

 .

Then it is clear that −E3 ∈ G̃0 and G̃ = Zd0×G̃0. Hence G = G̃/{±E3} ≃ Zd0×G0,

where G0 := G̃0/{±E3}.
The structure of G0 is as follows:

Theorem 7. The group G0 = Z2e
•I is a non-split extension of I by Z2e and it is

an extension of a cyclic group Z2e−1 by I. Precisely

G0 =


I (if e = 1)

I ⋊ Z2 (if e = 2)

I•Z2e−1 (if e ≥ 3).

4. The structure of automorphism groups: when G′ = O

In this section we assume that G′ = O. Recall the commutative diagram

1 // Zd

≀
��

//

⟲

G̃

ϖ
����

ρ̃ //

⟲

O

π
����

// 1

1 // Zd
// G ρ

// O // 1,

where Kerϖ = {±E3} and Ker π = {±E2}.
Let d0 be the odd part of d, i.e., d = 2ed0 (e ≧ 1) and 2 ∤ d0.
Note that F ((X,Y )a8) = µF (X, Y ) (µ = ±1). First we verify that e = 1 or 2

(i.e., 8 ∤ d) if µ = −1.
Suppose that 8 | d. It follows from F ∈ R = C[f, g, h] and F is smooth that

d ≡ 6l + 8m + 12n (mod 24) for some l,m, n ∈ N with n ≤ 1. Since 8 | d, we see
that 8 | 6(l + 2n), which implies that 4 | l + 2n. Thus n = 0 and 4 | l or n = 1 and
l ≥ 2. If the latter is the case, then F is singular. Hence n = 0 and 4 | l, which
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shows that F is invariant under a8, i.e., µ = 1. We put

ν :=


1 (if µ = 1)

i (if µ = −1 and e = 1)

ϵ (if µ = −1 and e = 2).

Furthermore, if µ = 1 and e = 2, then each term of F divided by f 2 or (fh)2. Thus
F is singular. Hence we can exclude the case.

Put

ã :=

(
a8

ν

)
, b̃ :=

(
b

1

)
, c̃ :=

(
c

1

)
and h̃ =

1
1

ζ2e

 .

Let

G̃0 :=

{
⟨ã, b̃, c̃, h̃⟩ (if ν = 1)

⟨ã, b̃, c̃⟩ (if ν = i or ϵ).

Note that h̃ = (ã2c̃−1)9 ∈ G̃0 if ν = i or ϵ. Then it is clear that −E3 ∈ G̃0 and

G̃ = Zd0G̃0. Furthermore, Zd0 ∩ G̃0 = {E3} since the order of (3, 3) elements of Zd0

is odd and that of G̃0 is a power of two. Hence G̃ = Zd × G̃0 and G = G̃/{±E3} ≃
Zd0 ×G0, where G0 := G̃0/{±E3}.

The structure of G0 is as follows:

Theorem 8. The group G0 = Z2e
•O is a non-split extension of O by Z2e and

G0 =


O (if ν = 1 and e = 1)

(((Z2e × Z2)⋊ Z2)⋊ Z3)⋊ Z2 (if ν = 1 and e ≥ 3)

GL(2, 3) = T ⋊ Z2 (if ν = i)

T ⋊ Z4 (if ν = ϵ).

Remark 9. If ν = 1 and e = 3, then G0 is also isomorphic to (T ⋊ Z4)⋊ Z2.

5. The structure of automorphism groups: when G′ = T

In this section we assume that G′ = T . Recall the commutative diagram

1 // Zd

≀
��

//

⟲

G̃

ϖ
����

ρ̃ //

⟲

T

π
����

// 1

1 // Zd
// G ρ

// T // 1,

where Kerϖ = {±E3} and Ker π = {±E2}.
Let d0 be the odd part of d, i.e., d = 2ed0 (e ≧ 1) and 2 ∤ d0. First note that

F ((X, Y )c) = ωF (X,Y ) (ω3 = 1) and ω ̸= 1 since F ∈ C[f, g, h] and G′ = O if
ω = 1. Furthermore, F has a term in C[f, h]g1 or C[f, h]g2, which implies that d ≡ 1
(mod 3).
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Let G̃0 be the subgroup of G̃ generated by(
a4

1

)
,

(
b

1

)
,

(
c

ω

)
and

1
1

ζ2e2

 .

Then it is clear that −E3 ∈ G̃0 and G̃ = Zd0G̃0. Furthermore, Zd∩ G̃0 = {E3} since

the order of (3, 3) elements of Zd0 is 1 or 3 and that of G̃0 is a power of two. Hence

G̃ = Zd × G̃0 and G = G̃/{±E3} ≃ Zd0 ×G0, where G0 := G̃0/{±E3}.
The structure of G0 is as follows:

Theorem 10. The group G0 = Z2e
•T is a non-split extension of T by Z2e and

G0 =

{
T (≃ Q8 ⋊ Z3) (if e = 1)

((Z2e × Z2)⋊ Z2)⋊ Z3 (if e ≥ 2).

Remark 11. When e = 1, the group G0 = T is not isomorphic to ((Z2 × Z2) ⋊
Z2) ⋊ Z3 since V = Q8 is the unique normal subgroup of index three in T and it
does not contain Z2 × Z2 as a normal subgroup.

When e = 2, the group G0 is also isomorphic to T ⋊ Z2.

6. Examples

Example 12. Let C be the plane curve of degree 12 defined by

Z12 = XY (X10 + 11X5Y 5 − Y 10) (= u).

Then G = Aut(C) satisfies the (non-split) exact sequence

1 → Z12 → G → I → 1

and G = Z3 × (I ⋊ Z2).

Example 13. Let C be the plane curve of degree 20 defined by

Z20 = X20 − 228(X15Y 5 −X5Y 15) + 494X10Y 10 + Y 20 (= v).

Then G = Aut(C) satisfies the (non-split) exact sequence

1 → Z20 → G → I → 1

and G = Z5 × (I ⋊ Z2).

Example 14. Let C be the plane curve of degree 30 defined by

Z30 = X30 + 522(X25Y 5 −X5Y 25)− 10005(X20Y 10 +X10Y 20) + Y 30 (= w).

Then G = Aut(C) satisfies the (non-split) exact sequence

1 → Z30 → G → I → 1

and G = Z15 × I.
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Example 15. Let C be the plane curve of degree 32 defined by Z32 = uv. Then
G = Aut(C) satisfies the (non-split) exact sequence

1 → Z32 → G → I → 1

and G = I•Z16.

Example 16. Let C be the sextic curve defined by Z6 = XY (X4 − Y 4). Then
G = Aut(C) satisfies the (non-split) exact sequence

1 → Z6 → G → O → 1

and G = Z3 ×GL(2, 3) (GL(2, 3) ̸≃ O).

Example 17. Let C be the octic curve defined by Z8 = X8 + 14X4Y 4 + Y 8 (= g).
Then G = Aut(C) satisfies the (non-split) exact sequence

1 → Z8 → G → O → 1

and G = (((Z8 × Z2)⋊ Z2)⋊ Z3)⋊ Z2 ≃ (T ⋊ Z4)⋊ Z2.

Example 18. Let C be the plane curve of degree 12 defined by Z12 = X12 −
33(X8Y 4 + X4Y 8) + Y 12 (= h). Then G = Aut(C) satisfies the (non-split) exact
sequence

1 → Z12 → G → O → 1

and G = Z3 × (T ⋊ Z4).

Example 19. Let C be the plane curve of degree 18 defined by Z18 = fh. Then
G = Aut(C) satisfies the (non-split) exact sequence

1 → Z18 → G → O → 1

and G = Z9 ×O.

Example 20. Let C be the plane curve of degree 32 defined by Z32 = gF , where F
is a polynomial of degree 24 in C[f, g, h] such that gF has no multiple factor. Then
G = Aut(C) satisfies the (non-split) exact sequence

1 → Z32 → G → O → 1

and G = (((Z32 × Z2)⋊ Z2)⋊ Z3)⋊ Z2.

Example 21. Let C be the quartic curve defined by Z4 = X4+2
√
3iX2Y 2+Y 4 (=

g1). Then G = Aut(C) satisfies the (non-split) exact sequence

1 → Z4 → G → T → 1

and G = T ⋊ Z2.
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Example 22. Let C be the the plane curve of degree 16 defined by Z16 = g1(g
3
1+g32).

Then G = Aut(C) satisfies the (non-split) exact sequence

1 → Z16 → G → T → 1

and G = ((Z16 × Z2)⋊ Z2)⋊ Z3.
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