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AUTOMORPHISM GROUPS OF SMOOTH PLANE CURVES
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Abstract

The author classifies finite groups acting on smooth plane curves of degree at least

four. Furthermore, he gives an upper bound for the order of automorphism groups of

smooth plane curves and determines the exceptional cases in terms of defining equations.

This paper also contains a simple proof of the uniqueness of smooth plane curves with

the full automorphism group of maximum order for each degree.

1. Background and Introduction

This paper consists of six sections. Their contents are as follows:
1. Introduction
2. Main theorems
3. Preliminary results used for proving main theorems
4–6. Proof of main theorems
In this paper we study automorphism groups of smooth plane curves. They

are classically well understood for rational and elliptic curves. Thus we study
plane curves of degree at least four and consider the following problems:

Problem. (1) Classify automorphism groups of smooth plane curves.
(2) Give a sharp upper bound for the order of automorphism groups of such

curves.
(3) Determine smooth plane curves with the group of automorphisms of

large order.

We shall give an answer for each problem in Theorem 2.3, Theorem 2.5 and
Theorem 2.7 respectively. These are the main results of this article.

There are many examples of smooth plane curves whose group of automor-
phisms are completely known, such as Fermat curves ([16]). In the joint works
with Komeda, Kato and Ohbuchi, the author gave a classification of smooth
plane curves with automorphisms of certain type ([8], [7]).
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However, there has been no general result on the structure of automorphism
groups of plane curves, even if they are smooth, as long as the author knows.

Theorem 2.3, roughly speaking, states that smooth plane curves are divided
into five kinds by their full automorphism group. Curves of the first kind are
smooth plane curves whose full automorphism group is cyclic. The second
kind consists of curves whose full automorphism group is the central extension
of a finite subgroup of Möbius group PGLð2;CÞ ¼ AutðP1Þ by a cyclic group.
Curves of the third (resp. the fourth) kind are descendants of Fermat (resp. Klein)
curves (see Section 2 for the definition of this concept). For curves of the fifth
kind, their full automorphism group is isomorphic to a primitive subgroup of
PGLð3;CÞ. It seems surprising that a smooth plane curve is a descendant of
Fermat curve or Klein curve unless its full automorphism group is primitive or
has a fixed point in the plane.

There are several by-products of Theorem 2.3 on automorphism groups of
smooth plane curves. We obtain, for example, a sharp upper bound of the order
of such groups in Theorem 2.5. For smooth plane curves, it is natural to expect
that there exists a stronger upper bound of the order of their automorphism
groups than Hurwitz’s one. Indeed, we show that the order of the full auto-
morphism group of a smooth plane curve of degree d0 4; 6 is at most 6d 2, which
is attained only by Fermat curves. Moreover, a smooth plane curve with the full
automorphism group of maximum order is unique up to projective equivalence
for each degree.

Our third main result, Theorem 2.7, is a classification of smooth plane curves
with automorphism groups of large order in terms of defining equations.

In the end of this section, we mention several works on automorphism
groups of plane curves related to ours.

Remark 1.1. (1) The group of automorphisms of an algebraic curve defined
over the complex number field is an old subject of research in algebraic geometry
and there are many works on the order of the group of automorphisms. Among
others, Hurwitz [9] gave an universal upper bound (see Theorem 3.1 for the
precise statement). It is an application of Riemann-Hurwitz formula. Follow-
ing the same line, Oikawa [15] proved another (and possibly better) upper bound
for the order of automorphism groups with invariant subsets. Later Arakawa
[1] proceeded further with a similar method (see Theorem 3.2 for their works).
Their results are very useful for our study on smooth plane curves.

(2) For plane curves, Yoshihara [18] defined Galois points and studied their
fundamental properties. They are deeply related to their automorphism groups.
For example, Miura [14] studied a relation between Galois points and Cremona
transformations. Recently, Fukasawa, Miura and Takahashi [6] generalized the
notion to quasi-Galois points. These works shows that (quasi-)Galois points are
also useful for studying automorphism groups of plane curves.

(3) For singular plane curves, Bradley and D’Souza [3] gave rough upper
bounds for the order of their automorphism groups and collineation groups in
terms of their degree and the number of singularities.
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2. Main results

First of all, we note a simple fact on automorphism groups of smooth plane
curves and introduce several concepts. Let G be a group of automorphisms of
a smooth plane curve C of degree at least four. Then G is naturally considered
as a subgroup of PGLð3;CÞ ¼ AutðP2Þ. For an element s A G represented by
a matrix A A GLð3;CÞ and a homogeneous polynomial F ðX ;Y ;ZÞ, we define
ðA�FÞðX ;Y ;ZÞ ¼ F ððX ;Y ;ZÞ tAÞ. By abuse of notation, we also write A�F as
s�F if there is no harms.

Let Fd be Fermat curve X d þ Y d þ Zd ¼ 0 of degree d. In this article we
denote by Kd the smooth plane curve defined by the equation XY d�1 þ YZd�1 þ
ZX d�1 ¼ 0, which is called Klein curve of degree d.

We introduce the following notions:

Definition 2.1. For a non-zero monomial cX iY jZk we define its exponent
as maxfi; j; kg. For a homogeneous polynomial F , the core of F is defined as
the sum of all terms of F with the greatest exponent. A term of F is said to be
low if it does not belong to the core of F .

Definition 2.2. Let C0 be a smooth plane curve of degree at least four.
Then a pair ðC;GÞ of a smooth plane curve C and a subgroup G � AutðCÞ is
said to be a descendant of C0 if C is defined by a homogeneous polynomial whose
core is a defining polynomial of C0 and G acts on C0 in a suitable coordinate
system. We simply call C a descendant of C0 if ðC;AutðCÞÞ is a descendant
of C0.

In this article, we denote by PBDð2; 1Þ the subgroup of PGLð3;CÞ that
consists of all elements representable by a 3� 3 complex matrix A of the
form

0
A
0

0

0 0 a

0
B@

1
CA ðA 0 is a regular 2� 2 matrix; a A C�Þ:

There exists a natural group homomorphism r : PBDð2; 1Þ ! PGLð2;CÞ
ð½A� 7! ½A 0�Þ, where ½M� denotes the equivalence class of a matrix M. Using
these concepts we state our first main result as follows:

Theorem 2.3. Let C be a smooth plane curve of degree db 4, G a subgroup
of AutðCÞ. Then one of the following holds:

(a-i) G fixes a point on C and G is a cyclic group whose order is at most
dðd � 1Þ. Furthermore, if db 5 and jGj ¼ dðd � 1Þ, then C is projec-
tively equivalent to the curve YZd�1 þ X d þ Y d ¼ 0.

(a-ii) G fixes a point not lying on C and there exists a commutative
diagram
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1 ���! C� ���! PBDð2; 1Þ ���!r PGLð2;CÞ ���! 1 ðexactÞx??
U

x??
U

x??
U

1 N G G 0 1 ðexactÞ;���! �������! ���������! ������!
where N is a cyclic group whose order is a factor of d and G 0 is a
subgroup of PGLð2;CÞ, i.e., a cyclic group Zm, a dihedral group D2m,
the tetrahedral group A4, the octahedral group S4 or the icosahedral
group A5. Furthermore, ma d � 1 and if G 0FD2m then m j d � 2 or
N is trivial. In particular jGjamaxf2dðd � 2Þ; 60dg.

(b-i) ðC;GÞ is a descendant of Fermat curve Fd : X d þ Y d þ Zd ¼ 0. In this
case jGja 6d 2.

(b-ii) ðC;GÞ is a descendant of Klein curve Kd : XY d�1 þ YZd�1 þ ZX d�1 ¼
0. In this case jGja 3ðd 2 � 3d þ 3Þ if db 5. On the other hand,
jGja 168 if d ¼ 4.

(c) G is conjugate to a finite primitive subgroup of PGLð3;CÞ, namely, the
icosahedral group A5, the Klein group PSLð2; 7Þ, the alternating group
A6, the Hessian group H216 of order 216 or its subgroup of order 36 or
72. In particular jGja 360.

We make some remarks on this theorem.

Remark 2.4. (1) In cases (a-i) and (a-ii), G fixes a point, say P. In fact G
also fixes a line not passing through P, which follows from Theorem 3.11.

(2) A point P in P2 is called a Galois point for C if the projection pP from C
to a line with center P is a Galois covering. A Galois point P for C is said to be
inner (resp. outer) if P A C (resp. P B C). In the case (a-ii), if jNj ¼ d then the
fixed point of G is an outer Galois point for C.

(3) The Klein group in the case (c) is the full automorphism group of Klein
quartic and the alternating group A6 is that of Wiman sextic (see Theorem 2.5).
The Hessian group of order 216 is generated by the four elements hi ði ¼ 1; 2;
3; 4Þ represented by the following matrices:

0 1 0

0 0 1

1 0 0

0
B@

1
CA;

1 0 0

0 o 0

0 0 o2

0
B@

1
CA;

1 1 1

1 o o2

1 o2 o

0
B@

1
CA and

1 0 0

0 o 0

0 0 o

0
B@

1
CA;

where o is a primitive third root of unity. This group is the full automorphism
group of a smooth plane sextic (see Remark 2.6 (2)). Its primitive subgroups of
order 36 and 72 are respectively equal to hh1; h2; h3i and hh1; h2; h3; ui, where
u ¼ h�11 h24h1.

As a corollary of Theorem 2.3, we obtain a sharp upper bound for the
order of automorphism groups of smooth plane curves and classify the extremal
cases.
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Theorem 2.5. Let C be a smooth plane curve of degree db 4. Then
jAutðCÞja 6d 2 except the following cases:

(i) d ¼ 4 and C is projectively equivalent to Klein quartic XY 3 þ YZ3 þ ZX 3

¼ 0. In this case AutðCÞ is the Klein group PSLð2; 7Þ, which is of order
168.

(ii) d ¼ 6 and C is projectively equivalent to Wiman sextic

10X 3Y 3 þ 9X 5Z þ 9Y 5Z � 45X 2Y 2Z2 � 135XYZ4 þ 27Z6 ¼ 0:

In this case AutðCÞ is equal to A6, a simple group of order 360.
Furthermore, for any d0 6, the equality jAutðCÞj ¼ 6d 2 holds if and only if C
is projectively equivalent to Fermat curve Fd : X d þ Y d þ Zd ¼ 0, in which case
AutðCÞ is a semidirect product of S3 acting on Z2

d . In particular, for each db 4,
there exists a unique smooth plane curve with the full group of automorphisms of
maximum order up to projective equivalence.

Remark 2.6. (1) It is classically known that Klein quartic has the Klein
group PSLð2; 7Þ as its group of automorphisms (see [2]). For the sextic in the
above theorem, Wiman [17] proved that its group of automorphisms is isomor-
phic to A6. In [4] it is shown that Wiman sextic is the only smooth plane sextic
whose full automorphism group has the maximum order 360. In Section 6 we
give a simple proof on the uniqueness of Klein quartic (resp. Wiman sextic) as a
smooth plane curve of degree four (resp. six) with the group of automorphisms
of maximum order.

(2) When d ¼ 6, the smooth plane sextic defined by the equation

X 6 þ Y 6 þ Z6 � 10ðX 3Y 3 þ Y 3Z3 þ Z3X 3Þ ¼ 0

also satisfies jAutðCÞj ¼ 216 ¼ 63. In this case AutðCÞ is equal to the Hessian
group of order 216, therefore this curve is not a descendant of Fermat curve.

As another by-product of Theorem 2.3, we also give a stronger upper bound
for the order of automorphism groups of smooth plane curves and classify the
exceptional cases when db 60:

Theorem 2.7. Let C be a smooth plane curve of degree db 60. Then
jAutðCÞja d 2 unless C is projectively equivalent to one of the following curves:

(i) Fermat curve Fd : X d þ Y d þ Zd ¼ 0 ðjAutðFdÞj ¼ 6d 2Þ.
(ii) Klein curve Kd : XY d�1 þ YZd�1 þ ZX d�1 ¼ 0 ðjAutðKdÞj ¼ 3ðd 2 �

3d þ 3ÞÞ.
(iii) the smooth plane curve defined by the equation

Zd þ XY ðX d�2 þ Y d�2Þ ¼ 0;

in which case jAutðCÞj ¼ 2dðd � 2Þ.
(iv) a descendant of Fermat curve defined by the equation

X 3m þ Y 3m þ Z3m � 3lX mY mZm ¼ 0;
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where d ¼ 3m and l is a non-zero number with l3 0 1. In this case
jAutðCÞj ¼ 2d 2.

(v) a descendant of Fermat curve defined by the equation

X 2m þ Y 2m þ Z2m þ lðXmY m þ Y mZm þ ZmX mÞ ¼ 0;

where d ¼ 2m and l0 0;�1;G2. In this case jAutðCÞj ¼ 6m2 ¼
ð3=2Þd 2.

3. Preliminary results

Notation and Conventions
We identify a regular matrix with the projective transformation represented

by the matrix if no confusion occurs. When a planar projective transformation
preserves a smooth plane curve, it is also identified with the automorphism
obtained by its restriction to the curve.

We denote by ½H1ðX ;Y ;ZÞ;H2ðX ;Y ;ZÞ;H3ðX ;Y ;ZÞ� a planar projective
transformation defined by ðX : Y : ZÞ 7! ðH1ðX ;Y ;ZÞ : H2ðX ;Y ;ZÞ : H3ðX ;Y ;
ZÞÞ, where H1, H2 and H3 are homogeneous linear polynomials.

A planar projective transformation of finite order is called a projective
reflection or simply a reflection if it is written in the form ½X ;Y ; zZ� in a suitable
coordinate system, where z is a root of unity. A non-trivial reflection fixes a
unique line pointwise and a unique point not lying the line. They are respec-
tively called its axis and center.

A triangle means a set of three non-concurrent lines. Each line is called an
edge of the triangle.

The line defined by the equation X ¼ 0 (resp. Y ¼ 0 and Z ¼ 0) will be
denoted by L1 (resp. L2 and L3). We also denote by P1 (resp. P2 and P3) the
point ð1 : 0 : 0Þ (resp. ð0 : 1 : 0Þ and ð0 : 0 : 1Þ).

For a positive integer m, we denote by Zm (resp. Zr
m) a cyclic group of order

m (resp. the direct product of r copies of Zm).
In this section C denotes a smooth irreducible projective curve of genus

gb 2 defined over the field of complex numbers. Then the full group of its
automorphisms is a finite group and we have a famous upper bound of its order,
which is known as Hurwitz bound (see [9]):

Theorem 3.1. Let G be a subgroup of AutðCÞ. Then jGja 84ðg� 1Þ.
More precisely,

jGj
g� 1

¼ 84; 48; 40; 36; 30 or
132

5
or

jGj
g� 1

a 24:

Oikawa [15] and Arakawa [1] gave possibly stronger upper bounds under
the assumption that G fixes finite subsets of C (not necessarily pointwise). The
following theorem is an application of Riemann-Hurwitz formula:
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Theorem 3.2 ([15, Theorem 1], [1, Theorem 3]). Let G be a subgroup of
AutðCÞ.

(1) (Oikawa’s inequality) If G fixes a finite subset S of C, i.e., GS ¼ S, with
jSj ¼ kb 1, then jGja 12ðg� 1Þ þ 6k.

(2) (Arakawa’s inequality) If G fixes three distinct finite subsets Si ði ¼ 1;
2; 3Þ of C with jSij ¼ ki b 1, then jGja 2ðg� 1Þ þ k1 þ k2 þ k3.

As an application of the former inequality, we can determine the full auto-
morphism groups of Fermat curves and Klein curves. For Fermat curves,
Tzermias [16] verified Weil’s assertion on the structure of AutðFdÞ that the group
is a semidirect product of S3 acting on Z2

d in characteristic zero. We give
another proof of this fact.

Proposition 3.3. Let d be an integer with db 4. Then the full group of
automorphisms of Fermat curve Fd is generated by four transformations ½zX ;Y ;Z�,
½X ; zY ;Z�, ½Y ;Z;X � and ½Y ;X ;Z�, where z is a primitive d-th root of unity. It is
isomorphic to a semidirect product of S3 acting on Z2

d , in other words, there exists
a split short exact sequence of groups

1! Z2
d ! AutðFdÞ ! S3 ! 1:

In particular jAutðFdÞj ¼ 6d 2.

Proof. Let H be the subgroup of AutðFdÞ generated by four transforma-
tions ½zX ;Y ;Z�, ½X ; zY ;Z�, ½Y ;Z;X � and ½Y ;X ;Z�. This is a semidirect product
of S3 acting on Z2

d . In particular we have the inequality jAutðFdÞjb jHj ¼ 6d 2.
Thus it su‰ces to verify that jAutðFdÞja 6d 2.

Recall that Fermat curve Fd has exactly 3d total inflection points. They
constitute a subset of Fd fixed by its full group of automorphisms. Hence it
follows from Oikawa’s inequality that

jAutðFdÞja 12ðg� 1Þ þ 6 � 3d ¼ 6d 2;

where g ¼ ðd � 1Þðd � 2Þ=2 is the genus of Fd . r

We note the following fact on Fermat curves for later use.

Lemma 3.4. Assume that db 4. Then the order of each element of AutðFdÞ
is at most 2d.

Proof. Any element of AutðFdÞ is written as ½aX ; bY ;Z�, ½aY ; bZ;X � or
½aY ; bX ;Z�, where a and b are d-th roots of unity. Each of them has order at
most d, 3 or 2d respectively. r

Proposition 3.5. If db 5 then the full group of automorphisms of Klein
curve

Kd : XY d�1 þ YZd�1 þ ZX d�1 ¼ 0
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is generated by two transformations ½x�ðd�2ÞX ; xY ;Z� and ½Y ;Z;X �, where x is a
primitive ðd 2 � 3d þ 3Þ-rd root of unity. It is isomorphic to a semidirect product
of Z3 acting on Zd 2�3dþ3, in other words, there exists a split short exact sequence
of groups

1! Zd 2�3dþ3 ! AutðKdÞ ! Z3 ! 1:

In particular jAutðKdÞj ¼ 3ðd 2 � 3d þ 3Þ.

Proof. Let H be the subgroup of AutðKdÞ generated by two transforma-
tions ½Y ;Z;X � and ½x�ðd�2ÞX ; xY ;Z�, where x is a primitive ðd 2 � 3d þ 3Þ-rd root
of unity. This is a semidirect product of Z3 acting on Zd 2�3dþ3. In particular
jAutðKdÞj is a multiple of jHj ¼ 3ðd 2 � 3d þ 3Þ.

It remains to show that jAutðKdÞja 3ðd 2 � 3d þ 3Þ. Kato proved that
Klein curve Kd has exactly three ðd � 3Þ-inflection points P1 ¼ ð1 : 0 : 0Þ, P2 ¼
ð0 : 1 : 0Þ and P3 ¼ ð0 : 0 : 1Þ (see [10, Lemma 2.3]). They constitute a subset
of Kd fixed by its full group of automorphisms. It follows from Oikawa’s
inequality that

jAutðKdÞja 12ðg� 1Þ þ 6 � 3 ¼ 6ðd 2 � 3d þ 3Þ;
where g ¼ ðd � 1Þðd � 2Þ=2 is the genus of Kd . Hence it is su‰cient to verify
that AutðKdÞ is of odd order.

Suppose that Kd has an involution i. Then it fixes at least one ðd � 3Þ-
inflection point. Without loss of generality, we may assume that i fixes P3.
Then it also fixes the tangent line L2 : Y ¼ 0 to Kd at P3, the set of the remain-
ing two ðd � 3Þ-inflection points fP1;P2g and the set fL1;L3g. Therefore i ¼
½aX ; bY ;Z� (ða; bÞ ¼ ð1;�1Þ; ð�1; 1Þ or ð�1;�1Þ) or ½gY ; gX ;Z� ðg ¼G1Þ. It is
easy to check that such an involution does not fix Kd . Hence Kd has no involu-
tion, or equivalently, AutðKdÞ is of odd order. r

The following is a well-known classical result (see [12, Chapter III Proposi-
tion 3.1]):

Proposition 3.6. If a subgroup G of AutðCÞ fixes a point on C, then G is
cyclic.

For smooth plane curves, we have an upper bound for the order of cyclic
groups of their automorphisms. First we note a simple observation on projective
transformations.

Lemma 3.7. Let s be a non-trivial planar projective transformation of finite
order. Then it is represented by a diagonal matrix in a suitable coordinate system.
Furthermore, the following hold:

(i) If s is a reflection, then its fixed points consist of its center and all points
on its axis. In particular, every triangle whose set of vertices is pointwise
fixed by s contains its center as a vertex.
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(ii) If s is not a reflection, then it fixes exactly three points. In particular,
there exists a unique triangle whose set of vertices is pointwise fixed
by s.

Proof. Let A be a matrix representing s. Then An ¼ lE for some nb 1
and l A C�. In particular the minimal polynomial of A has no multiple roots,
which implies that A is diagonalizable. Hence s is represented by a diagonal
matrix in a suitable coordinate system.

The claim (i) follows from the definition of a reflection. For the claim (ii),
we may assume that s ¼ ½aX ; bY ;Z� ða; b A C�Þ. If s is not a reflection, then
a; b0 1 and a0 b. Thus the fixed points of s are ð1 : 0 : 0Þ, ð0 : 1 : 0Þ and
ð0 : 0 : 1Þ. r

By using this lemma we show the following.

Lemma 3.8. Let C be a smooth plane curve of degree d, G a cyclic subgroup
of AutðCÞ. Then jGja dðd � 1Þ. Furthermore, if G is generated by a reflection
with center P, then jGj is a factor of d � 1 (resp. d ) if P A C (resp. P B C). The
equality jGj ¼ d � 1 (resp. jGj ¼ d ) holds if and only if P is an inner (resp. outer)
Galois point for C and G is the Galois group at the point.

Proof. Let s be a generator of G and g ¼ ðd � 1Þðd � 2Þ=2 the genus of
C. We may assume that s is represented by a diagonal matrix. Then G fixes
each of three lines L1 : X ¼ 0, L2 : Y ¼ 0 and L3 : Z ¼ 0 and each of three points
P1 ¼ ð1 : 0 : 0Þ, P2 ¼ ð0 : 1 : 0Þ and P3 ¼ ð0 : 0 : 1Þ. Set Si :¼ C \ Li for i ¼ 1; 2
and 3 and V :¼ fP1;P2;P3g. Each Si is a non-empty subset of C of order at
most d and is fixed by G.

There are three cases according to the intersection of C and V .

Case (a) jC \ V jb 2. We may assume that P1;P2 A C. Then at least one
of the three sets S1nfP2g, S2nfP1g and S3nfP1;P2g is a non-empty subset of C
of order at most d � 1 and is fixed by G. Hence it follows from Arakawa’s
inequality that

jGja 2ðg� 1Þ þ 1þ 1þ d � 1 ¼ dðd � 2Þ þ 1 < dðd � 1Þ:

Case (b) jC \ V j ¼ 1. We may assume that P1 A C and P2;P3 B C. Then
either S2nfP1g or S3nfP1g is a non-empty subset of C of order at most d � 1 and
is fixed by G. Note that G also fixes fP1g and S1, each of which is distinct from
the above sets. By using Arakawa’s inequality again

jGja 2ðg� 1Þ þ ðd � 1Þ þ 1þ d ¼ dðd � 1Þ:

Case (c) C and V are disjoint. Then we may assume that C is defined
by a homogeneous polynomial whose core is X d þ Y d þ Zd . Take a diagonal
matrix diagða; b; 1Þ representing s. Since s fixes the monomial X d þ Y d þ Zd
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up to a constant, we see that ad ¼ b d ¼ 1, which implies that sd ¼ 1, i.e., jGj is a
factor of d.

Assume that s is a reflection. Then we may assume that s ¼ ½X ;Y ; zZ�,
where z is a root of unity. Its center is P3 and its axis is L3. Let p : C ! C=G
be the quotient map, pP3

: C ! P1 the projection with center P3 ðpP3
ððX : Y : ZÞÞ

¼ ðX : YÞÞ. Then c : C=G ! P1 ð½x� 7! pP3
ðxÞÞ is well-defined, where ½x� is the

equivalence class of x A C. We thus have a commutative diagram

C ���������!p
C=G

l

P1:

 ���
��

 ���
��

pP3 c

In particular jGj ¼ deg p is a factor of deg pP3
, which is equal to d � 1 (resp. d ) if

P3 A C (resp. P3 B C).
If jGj ¼ deg p, then p coincides the quotient map, which implies that P3 is a

Galois point for C and G is the Galois group at P3. r

Combining Proposition 3.6 and Lemma 3.8, we obtain a characterization of
the plane curve YZd�1 þ X d þ Y d ¼ 0.

Proposition 3.9. For db 5, let Fd;d�1 be the smooth plane curve defined by
the equation YZd�1 þ X d þ Y d ¼ 0. Then AutðFd;d�1Þ is isomorphic to Zdðd�1Þ,
a cyclic group of order dðd � 1Þ. Moreover, Fd;d�1 is the only smooth plane curve
of degree d with an automorphism of order dðd � 1Þ.

Proof. First note that this curve has the unique inner Galois point ð0 : 0 : 1Þ
(cf. [18, Theorem 4]), which is fixed by AutðFd;d�1Þ. Hence AutðFd;d�1Þ is
cyclic by virtue of Proposition 3.6. In particular jAutðFd;d�1Þja dðd � 1Þ by
Lemma 3.8. On the other hand, Fd;d�1 has automorphisms ½zdX ;Y ;Z� and
½X ;Y ; zd�1Z�, where zk is a primitive k-th root of unity. Thus AutðFd;d�1Þ
contains Zd � Zd�1 FZdðd�1Þ, which implies that AutðFd;d�1ÞFZdðd�1Þ.

Let C be a smooth plane curve of degree d with an automorphism s of order
dðd � 1Þ. We may assume that s is represented by a diagonal matrix and from
the proof of Lemma 3.8 we may further assume that P3 A C and P1;P2 B C.
Then C is defined by a homogeneous polynomial F of the form YZd�1 þ X d þ
Y d þ ðother termsÞ after a suitable change of the coordinate system if necessary,
because C is smooth at P3.

Assume that s ¼ ½aX ; bY ;Z�. Since it fixes F up to a constant we see that
b ¼ ad ¼ b d , which implies that b ¼ zd�1 and a ¼ zd�1zd , where zd�1 (resp. zd ) is
a primitive ðd � 1Þ-th (resp. d-th) root of unity. Then it is clear that C has two
automorphisms ½zdX ;Y ;Z� and ½X ;Y ; zd�1Z�.

Let X iY jZk ði þ j þ k ¼ dÞ be any term of F without its coe‰cient. It is
fixed by these automorphisms since they fixes X d þ Y d . Therefore z id ¼ zkd�1 ¼
1, which shows that i1 0 ðmod dÞ and k1 0 ðmod d � 1Þ. Thus ði; kÞ ¼
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ð0; d � 1Þ, ðd; 0Þ or ð0; 0Þ, or equivalently, F ¼ YZd�1 þ X d þ Y d . Hence the
conclusion follows. r

Remark 3.10. Kontogeorgis [11] determined the group of automorphisms of
the function field Fn;m of the curve xn þ ym þ 1 ¼ 0 in arbitrary characteristic0
2; 3 by using a di¤erent method.

In the end of this section, we refer to a theorem on finite groups of planar
projective transformations, which is a basic tool to prove Theorem 2.3.

Theorem 3.11 ([13, Section 1–Section 10], [5, Theorem 4.8]). Let G be a
finite subgroup of PGLð3;CÞ. Then one of the following holds:

(a) G fixes a line and a point not lying on the line;
(b) G fixes a triangle; or
(c) G is primitive and conjugate to the icosahedral group A5, the Klein group

PSLð2; 7Þ (of order 168), the alternating group A6, the Hessian group H216

of order 216 or its subgroup of order 36 or 72.

Remark 3.12. To be precise, Mitchell [13] proved that G fixes a point, a line
or a triangle unless G is primitive and isomorphic to a group as in the case
(c). In fact, the first two cases are equivalent. Indeed, if G fixes a point (resp. a
line) then G also fixes a line not passing through the point (resp. a point not lying
the line). It is a direct consequence of Maschke’s theorem in group represen-
tation theory. Combining this fact with Mitchell’s result we obtain the above
theorem.

4. Automorphism groups of smooth plane curves: Case (A)

In what follows C always denotes a smooth plane curve of degree db 4 and
let G be a finite subgroup of AutðCÞ, which is also considered as a subgroup of
PGLð3;CÞ. We identify an element s of G with the corresponding planar pro-
jective transformation, which is also denoted by s.

The following two sections are wholly devoted to prove Theorem 2.3. From
Theorem 3.11 there are three cases:

(A) G fixes a line and a point not lying on the line.
(B) G fixes a triangle and there exists neither a line nor a point fixed by G.
(C) G is primitive and conjugate to a group described in Theorem 3.11.

Note that the last case leads us to the statement (c) in Theorem 2.3. We argue
the other cases one by one and consider the first case in this section.

Case (A): G fixes a line L and a point P not lying on L.
If P A C then AutðCÞ is cyclic by virtue of Proposition 3.6. Hence (a-i) in

Theorem 2.3 follows from and Lemma 3.8 and Proposition 3.9.
In what follows we assume that P B C and prove that the statement (a-ii) or

(b-i) in Theorem 2.3 holds. We may further assume that L is defined by Z ¼ 0
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and P ¼ ð0 : 0 : 1Þ. Then G is a subgroup of PBDð2; 1Þ. Let r be the restric-
tion of the natural map from PBDð2; 1Þ to PGLð2;CÞ. Then there exists a short
exact sequence of groups

1! N ! G !r G 0 ! 1;

where N ¼ Ker r and G 0 ¼ Im r.

Claim 1. The subgroup N is a cyclic group whose order is a factor
of d.

Proof. For each element h of N, there exists a unique diagonal matrix of
the form diagð1; 1; zÞ that represents h. Then the homomorphism j : N ! C�

ðh 7! zÞ is injective. Hence N is isomorphic to a finite subgroup of C�, which
implies that N is a cyclic group generated by a reflection. Our assertion on the
order of N follows from Lemma 3.8. r

Let h ¼ ½X ;Y ; zZ� be a generator of N, where z is a root of unity. On the
other hand, it is well known that G 0, a finite subgroup of PGLð2;CÞ, is isomor-
phic to Zm, D2m, A4, S4 or A5.

In what follows we assume that G 0FZm or D2m and give an upper bound
for m. There exists an element s such that rðsÞ ¼ s 0 is of order m. Let
H ¼ hsi be the cyclic subgroup of G generated by s. We see that s ¼ ½aX ;
bY ;Z�, where a and b are roots of unity such that a=b is a primitive m-th root of
unity. Then the fixed points of s on L are P1 ¼ ð1 : 0 : 0Þ and P2 ¼ ð0 : 1 : 0Þ.
If G 0FZm, then G is generated by h and s, which implies that G fixes two points
P1 and P2.

Additionally, when G 0FD2m, we may assume that there exists an element t
such that s 0 and t 0 ¼ rðtÞ generate G 0 with t 0 ¼ ½Y ;X �. Then G is generated by
h, s and t.

Let F be a defining homogeneous polynomial of C and ek the intersection
multiplicity iPk

ðC;LÞ of C and L at Pk ðk ¼ 1; 2Þ. Note that e1 ¼ e2 if G 0 is a
dihedral group.

For the triviality of N, we have the following:

Claim 2. If e1 b 2 or e2 b 2, then N is trivial.

Proof. Without loss of generality, we may assume that e1 b 2. Then, since
C is smooth at P1 ¼ ð1 : 0 : 0Þ, its defining polynomial F contains a term of the
form cX d�1Z ðc0 0Þ. Then F is written as

F ¼ X e2Y e1F1ðX ;YÞ þ cX d�1Z þ ðother termsÞ;

where F1 is a homogeneous polynomial of X , Y such that neither X nor Y is its
factor. Therefore

h�F ¼ X e2Y e1F1ðX ;YÞ þ zcX d�1Z þ ðother termsÞ;
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which implies that z ¼ 1, since h�F is equal to F up to a constant. That is to
say, N is trivial. r

Next we distinguish two subcases:
(A-1) C \ L contains a point distinct from P1 and P2.
(A-2) C \ L � fP1;P2g.
We give a simple remark on these assumptions.

Remark 4.1. If G 0FZm, we may assume that the former one is the case.
Indeed, suppose that C \ L � fP1;P2g. Then G fixes each of P1 and P2 and
at least one of them are lying on C, that is to say, G fixes a point on C.
Hence (a-i) in Theorem 2.3 follows from the argument in the beginning of this
case.

Subcase (A-1): C \ L contains a point Q distinct from P1 and P2.
We show the following claim:

Claim 3. The order m of s 0 divides d � e1 � e2. Furthermore, if m ¼ d then
ðC;GÞ is a descendant of Fermat curve Fd.

Proof. Suppose that s j fixes Q for some j. Then it fixes three points on
L, namely, Q, P1 and P2. Hence it fixes L pointwise, that is to say, s j A N.
In other words, ðs 0Þ j ¼ 1, which shows that m j j. On the other hand, it is
obvious that sm fixes Q. It follows that the order of the orbit of Q by H
is equal to jH=hsmij ¼ m. Therefore we conclude that m j d � e1 � e2 using
Bézout’s theorem.

Assume that m ¼ d. Then e1 ¼ e2 ¼ 0, which implies that neither P1 nor
P2 lies on C. It follows that C is defined by a polynomial whose core is
X d þ Y d þ Zd in a suitable coordinate system. Recall that G is generated by h
and s (resp. h, s and t) when G 0FZm (resp. G 0FD2m). Hence every element
of G fixes the polynomial X d þ Y d þ Zd up to a constant, in other words, G is a
subgroup of AutðFdÞ. Thus ðC;GÞ is a descendant of Fermat curve Fd . r

We obtain the assertion of Theorem 2.3 by using Claim 1, Claim 2 and
Claim 3 as follows.

First N is a cyclic group whose order is a factor of d by Claim 1.
Furthermore, when G 0FZm, the inequality ma d � 1 holds or ðC;GÞ is a
descendant of Fermat curve Fd by Claim 3. Hence (a-ii) or (b-i) in Theorem
2.3 holds. On the other hand, when G 0FD2m, note that e1 ¼ e2. Therefore
combining Claim 2 with Claim 3 we come to the following conclusion.

(i) m j d � 2 if e1 ¼ e2 ¼ 1.
(ii) ma d � 4 and N is trivial if e1 ¼ e2 b 2.
(iii) ðC;GÞ is a descendant of Fermat curve Fd if e1 ¼ e2 ¼ 0.

That is to say, (a-ii) or (b-i) in Theorem 2.3 follows in this case also. Thus we
complete the proof in this subcase.
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Subcase (A-2): C \ L � fP1;P2g, or equivalently, e1 þ e2 ¼ d.
As we noted in Remark 4.1, we may assume that G 0FD2m. Furthermore,

it follows from our assumption that e1 ¼ e2 ¼ d=2b 2, which implies that N is
trivial by virtue of Claim 2.

It remains to prove that ma d � 1. In fact we can show the following
claim.

Claim 4. m j d � 1.

Proof. Since C passes through P1 ¼ ð1 : 0 : 0Þ and P2 ¼ ð0 : 1 : 0Þ and C is
smooth, F , the defining polynomial of C, contains two terms of the form cX d�1Z
and c 0Y d�1Z ðc; c 00 0Þ. We then have the following equalities:

F ¼ cX d�1Z þ c 0Y d�1Z þ ðother termsÞ;

s�F ¼ ad�1cX d�1Z þ bd�1c 0Y d�1Z þ ðother termsÞ:

Since s preserves F up to a constant, we obtain the equality ad�1 ¼ bd�1. In
other words, ðs 0Þd�1 ¼ 1, which implies that m j d � 1. r

Thus the assertion (a-ii) in Theorem 2.3 holds in this subcase, which com-
pletes our proof in Case (A).

5. Automorphism groups of smooth plane curves: Case (B)

In this section we show the statement (b-i) or (b-ii) in Theorem 2.3 holds in
Case (B).

Case (B): G fixes a triangle D and there exists neither a line nor a point
fixed by G.

We may assume that D consists of three lines L1 : X ¼ 0, L2 : Y ¼ 0 and
L3 : Z ¼ 0. Let V be the set of vertices of D, i.e., V ¼ fP1;P2;P3g. Then
G acts on V transitively because otherwise G fixes a line or a point, which
conflicts with our assumption. It follows that either C and V are disjoint or C
contains V .

Let F be a defining homogeneous polynomial of C. We note a trivial but
useful observation:

Observation. Each element of G gives a permutation of the set fX ;Y ;Zg
of the coordinate functions up to constants.

If C contains V , we denote by Ti the tangent line to C at Pi ði ¼ 1; 2; 3Þ.
Note that these lines are distinct and not concurrent by our assumption. Fur-
thermore, G fixes the set fT1;T2;T3g and acts on it transitively. Thus Case (B)
is divided into three subcases:
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(B-1) C and V are disjoint.
(B-2) C contains V and each of Ti’s ði ¼ 1; 2; 3Þ is an edge of D.
(B-3) C contains V and none of Ti’s ði ¼ 1; 2; 3Þ is an edge of D.

Subcase (B-1): C and V are disjoint.
We show that ðC;GÞ is a descendant of Fermat curve Fd : X d þ Y d þ Zd ¼

0 in this subcase. By our assumption the defining polynomial F of C is of the
form

F ¼ aX d þ bY d þ cZd þ ðlow termsÞ ða; b; c0 0Þ:

Furthermore, we may assume that a ¼ b ¼ c ¼ 1 after a suitable coordinate
change if necessary. Then the core of F is X d þ Y d þ Zd , which is fixed by
each element of G up to a constant from the above observation. It follows that
G also acts on Fermat curve Fd , in other words, G is a subgroup of AutðFdÞ.
Thus we conclude that ðC;GÞ is a descendant of Fd .

Subcase (B-2): C contains V and each Ti ði ¼ 1; 2; 3Þ is an edge of D.
We show that ðC;GÞ is a descendant of Klein curve Kd : XY d�1 þ YZd�1 þ

ZX d�1 ¼ 0 in this subcase. Without loss of generality we may assume that
T1 ¼ L3, T2 ¼ L1 and T3 ¼ L2. Then the defining polynomial F of C is of the
form

F ¼ aXY d�1 þ bYZd�1 þ cZX d�1 þ ðlow termsÞ ða; b; c0 0Þ:

Again we may assume that a ¼ b ¼ c ¼ 1 after a suitable coordinate change if
necessary. Then the core of F is XY d�1 þ YZd�1 þ ZX d�1, which is fixed by
each element of G up to a constant from the above observation. Hence G also
acts on Klein curve Kd , that is to say, G is a subgroup of AutðKdÞ. Thus ðC;GÞ
is a descendant of Kd .

Subcase (B-3): C contains V and no Ti ði ¼ 1; 2; 3Þ is an edge of D.
We show that this subcase does not actually occur.
Let V 0 ¼ fP 01;P 02;P 03g be the set of the intersection points of T1, T2 and

T3, where P 0i is the intersection point of Tj and Tk with fi; j; kg ¼ f1; 2; 3g.
They are pairwise distinct because otherwise T1, T2 and T3 are concurrent
and the intersection point of them is fixed by G, which conflicts with our
assumption. Thus T1, T2 and T3 constitute a triangle D0, which is fixed by G
and V 0 is the set of its vertices. Furthermore, V and V 0 are disjoint by our
assumption.

Any element s A G can be written in the form s ¼ ½aXi; bXj; gXk� with some
constants a, b and g, where fi; j; kg ¼ f1; 2; 3g, X1 ¼ X , X2 ¼ Y and X3 ¼ Z.
Hence we have the natural homomorphism r : G ! S3 defined by

rðsÞ ¼ 1 2 3

i j k

� �
:
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Then Im r is isomorphic to Z3 or S3, since there exists neither a line nor a point
fixed by G.

We show that Ker r is trivial. Let s be any element of Ker r. Then it can
be written in the form ½aX ; bY ;Z� ða; b0 0Þ. Hence it fixes V pointwise, which
implies that it fixes each Ti ði ¼ 1; 2; 3Þ. In particular it fixes V 0 also pointwise.
Then it follows from Lemma 3.7 that s is the identity. Thus Ker r is trivial, or
equivalently, GF Im rFZ3 or S3.

If G is isomorphic to Z3, then G fixes a line, which contradicts our assump-
tion. Thus G is isomorphic to S3. Hence we may assume that G is generated
by h ¼ ½Y ;Z;X � and another element t of order two with tht ¼ h�1 after a
suitable coordinate change if necessary. We may further assume that t fixes
L3 : Z ¼ 0 and exchanges L1 : X ¼ 0 and L2 : Y ¼ 0, since t fixes D ¼ fXYZ ¼
0g. Then t ¼ ½oY ;o�1X ;Z� for some o A C� and the relation tht ¼ h�1 shows
that o3 ¼ 1. Hence both h and t fixes the same point ð1 : o2 : oÞ. Therefore G
also fixes this point, which conflicts with our assumption again. It follows that
this subcase is excluded.

Thus we complete the proof of Theorem 2.3 thoroughly.

6. Smooth plane curves with automorphism groups of large order

In this section we shall prove Theorem 2.5 and Theorem 2.7. First we
consider primitive groups acting on smooth plane curves.

Proposition 6.1. Let C be a smooth plane curve of degree db 4, G a finite
subgroup of AutðCÞ. If G is primitive, then jGja 6d 2 except the following
cases:

(i) d ¼ 4 and C is projectively equivalent to Klein quartic XY 3 þ YZ3 þ ZX 3

¼ 0 and GFAutðK4ÞFPSLð2; 7Þ.
(ii) d ¼ 6 and C is projectively equivalent to Wiman sextic W6, which is

defined by

10X 3Y 3 þ 9ðX 5 þ Y 5ÞZ � 45X 2Y 2Z2 � 135XYZ4 þ 27Z6 ¼ 0

and GFAutðW6ÞFA6.

Proof. First note that AutðCÞ is also primitive, which implies that jGja
jAutðCÞja 360 by Theorem 3.11. Hence jGj < 6d 2 if db 8.

Assume that da 7. If d ¼ 5 or 7, then we have the inequality jGj < 6d 2

except for ðd; jGjÞ ¼ ð5; 168Þ; ð5; 216Þ; ð5; 360Þ or ð7; 360Þ again by Theorem 3.11.
It is easy to check by Theorem 3.1 that these four exceptional cases do not occur.

Assume that d ¼ 6. If jGj < 360, then jGja 216 ¼ 6d 2 by Theorem 3.11.
Suppose that jGj ¼ 360 and C is not projectively equivalent to Wiman sextic W6.
Since G is conjugate to A6, we may assume that G acts on both C and W6. It
follows from Bézout’s theorem that C \W6 is a non-empty subset of C with
jC \W6ja 62 ¼ 36, which is fixed by G. Applying Oikawa’s inequality we
come to the conclusion that 360 ¼ jGja 12 � 9þ 6 � 36 ¼ 324, a contradiction.
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When d ¼ 4, we have the inequality jGja 168 by Hurwitz’s theorem. If
jGj < 168, then jGja 72 < 6d 2 by Theorem 3.11. Suppose that jGj ¼ 168 and C
is not projectively equivalent to Klein quartic K4. Then the same argument as
above leads a contradiction as follows. Since G is conjugate to the Klein group
PSLð2; 7Þ, we may assume that G acts on both C and K4. In particular C \ K4

is fixed by G. This is a non-empty subset of C with jC \W6ja 62 ¼ 36, by
Bézout’s theorem. It follows from Oikawa’s inequality that 168 ¼ jGja 12 � 2þ
6 � 16 ¼ 120, a contradiction. r

We show Theorem 2.5 by using Theorem 3.11 and Oikawa’s inequality.

Proof of Theorem 2.5. We may assume that AutðCÞ is not primitive by
virtue of Proposition 6.1. Then it follows from Theorem 3.11 that AutðCÞ fixes
a line or a triangle. First suppose that AutðCÞ fixes a line L. Then S :¼ C \ L
is a non-empty set of order at most d, which is also fixed by AutðCÞ. Applying
Theorem 3.2 (1) we obtain the inequality

jAutðCÞja 12ðg� 1Þ þ 6jSja 6dðd � 3Þ þ 6d ¼ 6dðd � 2Þ < 6d 2:

Next suppose that AutðCÞ fixes a triangle D. Then C \ D is a non-empty set of
order at most 3d, which is also fixed by AutðCÞ. Thus we have the inequality
jAutðCÞja 6d 2 by the same argument as above.

Finally assume that jAutðCÞj ¼ 6d 2. From Proposition 6.1 and the above
argument AutðCÞ fixes a triangle and does not fix a line. Then C is a de-
scendant of Fermat curve Fd by virtue of Theorem 2.3. Comparing the order of
two groups we know that G ¼ AutðFdÞ. Let X iY jZk ði þ j þ k ¼ dÞ be a term
of F without its coe‰cient. Note that ½zX ;Y ;Z� and ½X ; zY ;Z� (z is a primi-
tive d-th root of unity), which are elements of G, preserve F . Hence they also
preserve the monomial X iY jZk. Then z i ¼ z j ¼ 1, which implies that ði; j; kÞ ¼
ðd; 0; 0Þ; ð0; d; 0Þ or ð0; 0; dÞ. It follows that F ¼ X d þ Y d þ Zd . r

In the rest of this section we show Theorem 2.7. Before starting our proof,
we determine the full automorphism groups of curves in three exceptional cases
(iii), (iv) and (v) in the theorem. First we show the following.

Proposition 6.2. Assume that db 4 and C is the smooth plane curve defined
by the equation Zd þ XY ðX d�2 þ Y d�2Þ ¼ 0.

(i) If d0 4; 6, then AutðCÞ is a central extension of D2ðd�2Þ by Zd . In
particular jAutðCÞj ¼ 2dðd � 2Þ.

(ii) If d ¼ 6, AutðCÞ is a central extension of S4 by Z6. In particular
jAutðCÞj ¼ 144.

(iii) If d ¼ 4, then C is isomorphic to Fermat quartic F4. In particular
AutðCÞFZ2

4 zS3 ðjAutðCÞj ¼ 96Þ.

Proof. First assume that db 5 and d0 6. Note that G ¼ AutðCÞ contains
three elements s ¼ ½xX ; x�ðd�1ÞY ;Z�, t ¼ ½Y ;X ;Z� and h ¼ ½X ;Y ; zZ�, where x
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(resp. z) is a primitive dðd � 2Þ-nd (resp. d-th) root of unity. Then H ¼ hs; t; hi
is a subgroup of PBDð2; 1Þ. This is a central extension of H 0 ¼ hs 0; t 0iF
D2ðd�2Þ by hhiFZd , where s 0 (resp. t 0) is the image of s (resp. t) by the natural
homomorphism r : PBDð2; 1Þ ! PGLð2;CÞ.

Next we note that C has an outer Galois point P ¼ ð0 : 0 : 1Þ. Since s is of
order dðd � 2Þ > 2d for d > 4, it follows from Lemma 3.4 that C is not isomor-
phic to Fermat curve Fd . Hence P is the unique outer Galois point for C (see
[18, Theorem 4 0, Proposition 5 0]). In particular G fixes P. Then it follows from
Remark 2.4 that G also fixes a line not passing through P, which is L3 : Z ¼ 0
since it is the only line fixed by H. Thus G � PBDð2; 1Þ, from which we have
the short exact sequence

1! N ¼ Ker r! G !r G 0 ¼ Im r! 1:

By virtue of Theorem 2.3, the kernel N coincides with hhiFZd . On the other
hand, G 0 is a finite subgroup of PGLð2;CÞ containing H 0FD2ðd�2Þ. Hence
G 0 ¼ H 0 or G 0 isomorphic to A4, S4 or A5 again by Theorem 2.3. We show that
G 0 ¼ H 0 by excluding the latter case.

Suppose that G 0 isomorphic to A4, S4 or A5. Since G fixes the line L : Z ¼
0, the set S ¼ C \ L is a non-empty subset of C with jSja d. It follows from
Oikawa’s inequality that

jGja 12ðg� 1Þ þ 6 � d ¼ 6dðd � 2Þ; (*)

where g ¼ ðd � 1Þðd � 2Þ=2 is the genus of C.
The order of an element of G 0 is at most four (resp. five) if G 0FA4 or S4

(resp. G 0FA5). On the other hand, ord s 0 ¼ d � 2. It follows that d ¼ 5 (resp.
da 7) if G 0FA4 or S4 (resp. G 0FA5).

If G 0FA5, then 60d ¼ jGja 6dðd � 2Þ from (*), which implies that db 12,
a contradiction.

If d ¼ 5 and G 0FS4, then 24 � 5 ¼ jGja 6 � 5 � 3 from (*) again, which is
absurd.

If d ¼ 5 and G 0FA4, then H 0FD6 is isomorphic to a subgroup of A4 of
index two, which is impossible since A4 has no such subgroup. Thus we exclude
this case.

Next assume that d ¼ 6. We prove that G ¼ AutðCÞ is a central extension
of S4 by Z6. It su‰ces to show that G 0FS4. Since G 0 contains H 0, a sub-
group of order eight, G 0 cannot be A4. Then we only have to find an element
of G 0 of order three for verifying that G 0FS4. Converting slightly the defining
polynomial of C, we may assume that C is defined by Z6 � XY ðX 4 � Y 4Þ ¼ 0.
Then it is easy to verify that G 0 has an element of order three. Indeed, a 3� 3
matrix

0
A

0

0 0 a

0
B@

1
CA A ¼ c

1
ffiffiffiffiffiffiffi
�1
p

1 �
ffiffiffiffiffiffiffi
�1
p

� �� �
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gives an automorphism e of C for a suitable constant c. Then e 0 ¼ rðeÞ is of
order three.

Finally assume that d ¼ 4. Set F ¼ Z4 þ XY ðX 2 þ Y 2Þ. Substituting
X þ

ffiffiffiffiffiffiffi
�1
p

Y (resp. X �
ffiffiffiffiffiffiffi
�1
p

Y ) for X (resp. Y ), F is converted to

~FF ¼ Z4 þ ðX þ
ffiffiffiffiffiffiffi
�1
p

YÞðX �
ffiffiffiffiffiffiffi
�1
p

YÞððX þ
ffiffiffiffiffiffiffi
�1
p

YÞ2 þ ðX �
ffiffiffiffiffiffiffi
�1
p

YÞ2Þ

¼ Z4 þ ðX 2 þ Y 2Þ � 2ðX 2 � Y 2Þ

¼ Z4 þ 2ðX 4 � Y 4Þ:

Then it is clear that the curve defined by ~FF is isomorphic to Fermat quartic F4.
r

Next we consider the curves

F 0d : X 3m þ Y 3m þ Z3m � 3lX mY mZm ¼ 0

ðd ¼ 3m; l0 0; l3 0 1Þ and

F 00d : X 2m þ Y 2m þ Z2m þ lðXmY m þ Y mZm þ ZmX mÞ ¼ 0

ðd ¼ 2m; l0 0;�1;G2Þ:

The following propositions shows that F 0d and F 00d are descendants of Fd .

Proposition 6.3. For a positive integer d ¼ 3mb 9, the curve F 0d is a
descendant of Fermat curve Fd and AutðF 0dÞ is generated by five transformations
½z3X ;Y ;Z�, ½X ; z3Y ;Z�, ½zX ; z�1Y ;Z�, ½Y ;Z;X � and ½Y ;X ;Z�, where z is a
primitive d-th root of unity. In particular jAutðF 0dÞj ¼ 2d 2.

Proof. Let H be a subgroup of G ¼ AutðF 0dÞ generated by five transforma-
tions ½z3X ;Y ;Z�, ½X ; z3Y ;Z�, ½zX ; z�1Y ;Z�, ½Y ;Z;X � and ½X ;Z;Y �. Note that
H also acts on Fermat curve Fd . It is easy to check that jHj ¼ 3m2 � 6 ¼ 2d 2,
which divides the order of G. In particular G is not isomorphic to any group in
Theorem 2.3 (c) since db 9. On the other hand, jGj is a proper factor of 6d 2

from Theorem 2.5. Thus jGj ¼ 2d 2, which implies that G ¼ H. Hence C is a
descendant of Fermat curve Fd . r

Proposition 6.4. For a positive even integer d ¼ 2mb 8, the curve F 00d is a
descendant of Fermat curve Fd and AutðF 00d Þ is generated by four transformations
½z2X ;Y ;Z�, ½X ; z2Y ;Z�, ½Y ;Z;X � and ½Y ;X ;Z�, where z is a primitive d-th root of
unity. It is isomorphic to a semidirect product of S3 acting on Z2

m, in other words,
there exists a split short exact sequence of groups

1! Z2
m ! AutðF 00d Þ ! S3 ! 1:

In particular jAutðF 00d Þj ¼ 6m2 ¼ ð3=2Þd 2.
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Proof. Let H be a subgroup of G ¼ AutðF 00d Þ generated by four transfor-
mations ½z2X ;Y ;Z�, ½X ; z2Y ;Z�, ½Y ;Z;X � and ½Y ;X ;Z�. This is a semidirect
product of S3 acting on Z2

m. In particular jGj is divided by jHj ¼ 6m2. Then it
is easy to verify that G is not isomorphic to any group in Theorem 2.3 (c), since
mb 4 and H is not isomorphic to the Hessian group H216. Furthermore, since
H fixes no point, neither does G. Thus we conclude that F 00d is a descendant of
Fermat curve Fd or Klein curve Kd by using Theorem 2.3. Since G has an even
order, the latter is not the case. Hence F 00d is a descendant of Fermat curve Fd .

Suppose that G contains an element of AutðFdÞ outside H. Then it can be
converted by H to the transformation ½zX ;Y ;Z�. This transformation, however,
does not act on C, which shows that G ¼ H. r

Next we classify descendants of Fermat curve with automorphism groups of
large order. Let d be an integer at least four, z a primitive d-th root of unity.
In what follows we denote the projective transformations ½zX ;Y ;Z�, ½X ; zY ;Z�
and ½X ;Y ; zZ� by h1, h2 and h3, respectively.

Lemma 6.5. Let C be a descendant of Fermat curve Fd ðdb 4Þ and G ¼
AutðCÞ. Then there exists a commutative diagram

1 ���! Zd � Zd ���! AutðFdÞ ���!r S3 ���! 1 ðexactÞx??
U

x??
U

x??
U

1 H G G 0 ���! 1 ðexactÞ;�����! ��������! �����!
where H ¼ KerðrjGÞ and G 0 ¼ ImðrjGÞ.

(1) If G contains two of three ht’s then it contains the other and C is pro-
jectively equivalent to Fd .

(2) If G 0 is of order at least three and G contains an ht for some t ð1a ta 3Þ,
then G contains all ht’s and C is projectively equivalent to Fd.

Proof. (1) It is clear that G contains all ht’s, since hihj ¼ h�1k for fi; j; kg ¼
f1; 2; 3g. Take a defining polynomial of C whose core is X d þ Y d þ Zd . Let
X iY jZk ði þ j þ k ¼ dÞ be any term of the polynomial without its coe‰cient.
Since it is invariant for the action of each ht, we have the equality z i ¼ z j ¼
zk ¼ 1, or equivalently ði; j; kÞ ¼ ðd; 0; 0Þ, ð0; d; 0Þ or ð0; 0; dÞ, which implies the
assertion.

(2) Assume that jG 0jb 3 and G contains an ht for some t ð1a ta 3Þ. We
may assume that t ¼ 1 without loss of generality. Noting that G 0FZ3 or S3

since G 0 is a subgroup of S3, we may further assume that G contains an element
of order three represented by a projective transformation ½zaY ; zbZ;X �, where a
and b are integers with 0a a; b < d. Then G contains ½Y ; zbZ;X � since h1 A G,
which implies that ðh�11 Þ

b½Y ; zbZ;X �2ðh�11 Þ
b ¼ ½Z;X ;Y � A G. Thus G contains

h1 and ½Z;X ;Y �, which implies that it also contains h2. In particular C is pro-
jectively equivalent to Fd from (1). r
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By using the above lemma we obtain a characterization of two descendants
F 0d and F 00d of Fermat curve.

Lemma 6.6. For db 8, two curves F 0d and F 00d are the only descendants of
Fermat curve Fd whose group of automorphisms has order greater than d 2 up to
projective equivalence, except Fd itself.

Proof. Let C be a descendant of Fd such that C is not isomorphic to Fd

and G ¼ AutðCÞ has order greater than d 2. Then G is a proper subgroup of
AutðFdÞ from Theorem 2.5, which implies that jGj ¼ 3d 2; 2d 2; ð3=2Þd 2 or ð6=5Þd 2.
Recall the commutative diagram in Lemma 6.5:

1 ���! Zd � Zd ���! AutðFdÞ ���!r S3 ���! 1 ðexactÞx??
U

x??
U

x??
U

1 H G G 0 ���! 1 ðexactÞ;������! ��������! �����!
where H ¼ KerðrjGÞ and G 0 ¼ ImðrjGÞ.

First we show that G 0 coincides with S3. Indeed, if G 0 is a proper subgroup
of S3, then G 0FZ2 or Z3.

If G 0FZ2 then H ¼ Zd � Zd since jGj > d 2, which implies that C is projec-
tively equivalent to Fd from Lemma 6.5 (1), a contradiction.

If G 0FZ3 then H ¼ Zd � Zd or H is a subgroup of Zd � Zd of index two.
In the former case C is projectively equivalent to Fd again from Lemma 6.5 (1),
a contradiction. In the latter case s2 A H for any s A Zd � Zd , which implies
that H contains a subgroup hh21 ; h

2
2i, which is of order ðd=2Þ2 ¼ d 2=4. There-

fore there exists an extra element of H, which is written as ha
1h

b
2 , where a or b

is odd. Then H also contains h1, h2 or h1h2 ¼ h�13 , or equivalently, H contains
at least one ht, which implies a contradiction from Lemma 6.5 (2). Thus G 0

coincides S3.
Next we consider the group H, which is a subgroup of Zd � Zd of index less

than six. Let F be a defining homogeneous polynomial of C. We may assume
that F is written as

F ¼ X d þ Y d þ Zd þ ðlow termsÞ:
Let X iY jZk ði þ j þ k ¼ d; 0a i; j; k < dÞ be any low term of F without its
coe‰cient.

Consider two projections $1 : Z
ð1Þ
d �Z

ð2Þ
d ! Z

ð1Þ
d ðha

1h
b
2 7! ha

1 Þ and $2 : Z
ð1Þ
d �

Z
ð2Þ
d ! Z

ð2Þ
d ðha

1h
b
2 7! hb

2 Þ and their restriction $1jH : H ! Z
ð1Þ
d and $2jH : H !

Z
ð2Þ
d . There are two cases:

(i) $1jH or $2jH is surjective.
(ii) Neither $1jH nor $2jH is surjective.

Case (i) We may assume that $1jH is surjective. In this case H contains
an element ½zX ; zeY ;Z� ð0a e < dÞ. It fixes the polynomial X iY jZk, which
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implies that i þ ej1 0 ðmod dÞ. Since G 0FS3, we also see that j þ ek1
k þ ei1 j þ ei1 0 ðmod dÞ. It follows from these congruences that i1 j1 k
ðmod dÞ, which implies that i ¼ j ¼ k ¼ d=3. Therefore F ¼ X 3m þ Y 3m þ
Z3m þ cX mY mZm, where d ¼ 3m and c0 0. Furthermore, we can write
c ¼ �3l, where l is a non-zero number with l3 0 1 because C is non-singular.
Thus we see that C ¼ F 0d in this case.

Case (ii) Neither $1jH nor $2jH is surjective. Note that jKerð$ijHÞja
d=2 ði ¼ 1; 2Þ since H does not contain h1 or h2. Then we see that jKerð$1jHÞj
¼ jImð$1jHÞj ¼ jKerð$2jHÞj ¼ jImð$2jHÞj ¼ d=2 because H is a subgroup of
Zd � Zd of index less than six. In particular d is an even integer, say d ¼ 2m
and jHj ¼ m2. We also see that Kerð$1jHÞ is a subgroup of Zd ¼ hh2i of
index two, that is to say, Kerð$1jHÞ ¼ hh22i. Thus H contains h22 . In the same
way we can show that H also contains h21 . Then H contains the subgroup
hh21 ; h

2
2i, which implies that H ¼ hh21 ; h

2
2i since both of them have the same

order m2.
Both h21 and h22 fixes the monomial X iY jZk. It follows that 2i1 2j1 0

ðmod dÞ, which implies that ði; j; kÞ ¼ ðm;m; 0Þ, ðm; 0;mÞ or ð0;m;mÞ. Then it is
easy to show that F can be written as X 2m þ Y 2m þ Z2m þ lðX mY m þ Y mZm þ
ZmX mÞ ðl0 0Þ. Note that l0�1;G2 since C is non-singular. We thus con-
clude that C ¼ F 00d in this case. r

We also need to show the uniqueness of smooth plane curve of degree d
whose full automorphism group is of order 3ðd 2 � 3d þ 3Þ.

Proposition 6.7. Let C be a smooth plane curve of degree db 5, G a

subgroup of AutðCÞ. Assume that jGj ¼ 3ðd 2 � 3d þ 3Þ. Then C is projectively
equivalent to Klein curve Kd and G ¼ AutðKdÞ.

Proof. Note that jGj ¼ 3ðd 2 � 3d þ 3Þ is an odd integer greater than d 2.
Hence (b-ii) in Theorem 2.3 only can occur. Thus ðC;GÞ is a descendant of
Klein curve Kd . Then C is defined by a homogeneous polynomial whose core
is XY d�1 þ YZd�1 þ ZX d�1 in a suitable coordinate system. Furthermore G ¼
AutðKdÞ, since jGj ¼ 3ðd 2 � 3d þ 3Þ ¼ jAutðKdÞj. Then G contains an element

s ¼ ½x�ðd�2ÞX ; xY ;Z� (x is a primitive ðd 2 � 3d þ 3Þ-rd root of unity) from
Proposition 3.5.

Suppose that F contains a low term cX iY jZk ðc0 0; i þ j þ k ¼ dÞ. We
then have following equalities:

F ¼ XY d�1 þ YZd�1 þ ZX d�1 þ cX iY jZk þ ðother low termsÞ;

s�F ¼ xðXY d�1 þ YZd�1 þ ZX d�1Þ þ x�ðd�2Þiþ jcX iY jZk þ ðother low termsÞ:

Since they are equal up to a constant we see that x�ðd�2Þiþj ¼ x, which implies

that xðd�2Þi�jþ1 ¼ 1. The indices i, j and k are at most d � 2 since the term
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cX iY jZk is low. Hence �d þ 3a ðd � 2Þi � j þ 1 < ðd � 2Þðd � 1Þ þ 1 ¼ d 2 �
3d þ 3, which shows that ðd � 2Þi � j þ 1 ¼ 0, i.e., j ¼ ðd � 2Þi þ 1. Then we
see that i ¼ 0, j ¼ 1 and k ¼ d � 1, which conflicts with our assumption that the
term cX iY jZk is low. Thus we conclude that F ¼ XY d�1 þ YZd�1 þ ZX d�1.

r

Now we are ready to give a proof of Theorem 2.7.

Proof of Theorem 2.7. Let C be a smooth plane curve of degree db 60, F
a defining homogeneous polynomial of C. Assume that a subgroup G of AutðCÞ
is of order greater than d 2.

Since db 60, we have the inequalities jGj > 60d and jGj > 360. Then there
are only three possibilities from Theorem 2.3:

(i) G fixes a point P not lying on C and G is isomorphic to a central
extension of D2ðd�2Þ by Zd .

(ii) ðC;GÞ is a descendant of Fermat curve Fd : X d þ Y d þ Zd ¼ 0.
(iii) ðC;GÞ is a descendant of Klein curve Kd : XY d�1 þ YZd�1 þ ZX d�1

¼ 0.

Case (i) In this case G also fixes a line L not containing P. We may
assume that P ¼ ð0 : 0 : 1Þ and L is defined by Z ¼ 0. Then G contains h ¼
½X ;Y ; zZ� and s ¼ ½X ;oY ;o 0Z�, where z, o and o 0 are certain roots of unity
and the order of z (resp. o) is d (resp. d � 2). Since h preserves F up to a
constant, F is written as F ¼ Zd þ F̂F ðX ;YÞ, where F̂F ðX ;YÞ is a homogeneous
polynomial of X and Y without multiple factors. Furthermore, C intersects
L transversally at P1 ¼ ð1 : 0 : 0Þ and P2 ¼ ð0 : 1 : 0Þ respectively, by virtue of
Claim 2 in Section 4. Hence F̂FðX ;YÞ has a factor of the form X � cY ðc0 0Þ.
Since s preserves F̂F ðX ;YÞ up to a constant, we conclude that F̂FðX ;Y Þ ¼
lXYPd�3

k¼0 ðX � okcYÞ ¼ lXY ðX d�2 � cd�2Y d�2Þ ðl A C�Þ. Thus it is clear that
C is projectively equivalent to the curve defined by Zd þ XY ðX d�2 þ Y d�2Þ
¼ 0.

Case (ii) From Lemma 6.6 we know that C is projectively equivalent to
Fd , F 0d or F 00d in this case.

Case (iii) In this case G is a subgroup of AutðKdÞ. Since AutðKdÞ has an
odd order 3ðd 2 � 3d þ 3Þ, we know that G ¼ AutðKdÞ by our assumption that
jGj > d 2. It follows from Proposition 6.7 that C is projectively equivalent to
Klein curve Kd . r
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