## SMOOTH PLANE CURVES WHOSE AUTOMORPHISM GROUP IS PRIMITIVE

TAKESHI HARUI

This article is based on my talk on December 14, 2018. In this article we show that, for a given finite primitive subgroup $G$ of $P G L(3, \mathbb{C})$, there exists a smooth plane curve such that $\operatorname{Aut}(C)=G$. We also determine the number of quasi-Galois points for smooth plane curves whose automorphism group is primitive. These are joint work with A. Ohbuchi.

## 1. Introduction

Throughout this article $C$ denotes a smooth plane curve of degree $d \geq 4$ defined over the complex number field $\mathbb{C}$. Note that $\operatorname{Aut}(C)$ is considered as a finite subgroup of $\operatorname{PGL}(3, \mathbb{C})$.

In Theorem 1 we use the following notation:

$$
\begin{aligned}
\operatorname{PBD}(2,1) & :=\left\{\left.\left(\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right) \right\rvert\, A \in G L(2, \mathbb{C}), \alpha \in \mathbb{C}^{\times}\right\} / \mathbb{C}^{\times} \\
& =\left\{\left.\left(\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right) \right\rvert\, A \in S L(2, \mathbb{C}), \alpha \in \mathbb{C}^{\times}\right\} /\left\{ \pm E_{3}\right\} \\
& \subset P G L(3, \mathbb{C}) .
\end{aligned}
$$

Let $\rho: \operatorname{PBD}(2,1) \rightarrow P G L(2, \mathbb{C})$ be the natural homomorphism.
First we recall a classification of automorphism groups of smooth plane curves (cf. [H, Theorem 2.3]):

Theorem 1. Let $G$ be a subgroup of $\operatorname{Aut}(C)$. Then one of the following holds:
(a-i) $G$ fixes a point on $C$ and $G$ is a cyclic group whose order is at most $d(d-1)$. Furthermore, if $d \geq 5$ and $|G|=d(d-1)$, then $C$ is projectively equivalent to the curve $Y Z^{d-1}+X^{d}+Y^{d}=0$.
(a-ii) $G$ fixes a point not lying on $C$ and there exists a commutative diagram

$$
\begin{array}{rlrlll}
1 \rightarrow & \rightarrow \mathbb{C}^{*} & \rightarrow \operatorname{PBD}(2,1) & \xrightarrow{\rho} P G L(2, \mathbb{C}) \rightarrow 1 \quad \text { (exact) } \\
& \uparrow & \uparrow & & \uparrow & \\
1 \rightarrow & \mathbb{Z}_{n} & \longrightarrow & G & & G^{\prime} \rightarrow 1
\end{array} \text { (exact), }
$$

Date: January 31, 2019.
where $n$ is a factor of $d$ and $G^{\prime}$ is conjugate to $\mathbb{Z}_{m}, D_{2 m}(m \leq d-1)$, $A_{4}, S_{4}$ or $A_{5}$. Furthermore, if $n \neq 1$ and $G^{\prime} \simeq D_{2 m}$ then $m \mid d-2$. In particular $|G| \leq \max \{2 d(d-2), 60 d\}$.
(b-i) $G$ is a subgroup of the automorphism group of the Fermat curve $F_{d}: X^{d}+$ $Y^{d}+Z^{d}=0$. In particular, $|G| \leq 6 d^{2}$.
(b-ii) $G$ is a subgroup of the automorphism group of the Klein curve $K_{d}: X Y^{d-1}+Y Z^{d-1}+Z X^{d-1}=0$. In particular, $|G| \leq 3\left(d^{2}-3 d+3\right)$ if $d \geq 5$. On the other hand, $|G| \leq 168$ if $d=4$.
(c) $G$ is a primitive subgroup of $\operatorname{PGL}(3, \mathbb{C})$. In this case $G$ is conjugate to one of the following subgroups of $P G L(3, \mathbb{C})$ : the alternating group $A_{5}$ or $A_{6}$, the Klein group $K_{168}=P S L(2,7)$, the Hessian group $H_{216}$ of order 216 or its subgroup of order 36 or 72 . In particular $|G| \leq 360$.

In this article we consider the case (c) in Theorem 1 (see Definition 2 for the definition of primitive subgroups) and discuss the following problems:

Problem. (A) For a given finite primitive subgroup $G \subset P G L(3, \mathbb{C})$, does there exist a smooth plane curve $C$ such that $\operatorname{Aut}(C)=G$ ?
(B) Assume that $\operatorname{Aut}(C)$ is primitive. How many quasi-Galois points does $C$ have?

The notion of quasi-Galois points is introduced as follows (cf. FMT, Definition 1.1], see also [Y]):

Definition 1. Put $G[P]:=\left\{\sigma \in \operatorname{Aut}(C) \mid \pi_{P} \circ \sigma=\pi_{P}\right\}$ for $P \in \mathbb{P}^{2}$, where $\pi_{P}: C \rightarrow \mathbb{P}^{1}$ is the projection with center $P$. For $k \geq 2$,

$$
P \text { is a quasi-Galois point for } C \text { of order } k \quad \Longleftrightarrow \underset{\operatorname{def}}{\Longleftrightarrow} \quad|G[P]|=k .
$$

If $P \in C$ (resp. $P \notin C$ ) then it is said to be inner (resp. outer). If $|G[P]|=\operatorname{deg} \pi_{P}$ then $P$ is called a Galois point for $C$.

Remark 1. Since $C$ is smooth, the following hold:
(1) $G[P]$ is a cyclic group of order $k$.
(2) $k \mid d-1$ (resp. $k \mid d$ ) if $P$ is an inner (resp. outer) quasi-Galois point of order $k$.

For Problem (A) we have the following result:

Theorem A. Let $G$ be a finite primitive subgroup of $P G L(3, \mathbb{C})$. If $G \neq K_{168}$ then there exists a smooth plane sextic $C$ such that $\operatorname{Aut}(C)=G$.

Remark 2. The Klein group $K_{168}$ is the full automorphism group of the Klein quartic

$$
K: X Y^{3}+Y Z^{3}+Z X^{3}=0,
$$

i.e., $\operatorname{Aut}(K)=K_{168}$. It has 21 outer quasi-Galois points of order two (see [FMT, Theorem 6.9, Remark 6.10]).

For Problem (B) we determine the number of quasi-Galois points when $\operatorname{Aut}(C)$ is primitive. Set

$$
S_{k}=S_{k}(C):=\left\{P \in \mathbb{P}^{2} \mid P \text { is a quasi-Galois point for } C \text { of order } k\right\}
$$

Theorem B. Assume that $G=\operatorname{Aut}(C)$ is primitive. Then the set $S_{k}$ is empty for $k \neq 2,3$ and the number of quasi-Galois points of order two or three is determined by Table 1 .

| $G$ | $\left\|S_{2}\right\|$ | $\left\|S_{3}\right\|$ |
| :---: | :---: | :---: |
| $L$ | 15 | 0 |
| $K_{168}$ | 21 | 0 |
| $H_{216}$ | 9 | 12 |
| $H_{36}$ | 9 | 0 |
| $H_{72}$ | 9 | 0 |
| $V$ | 45 | 0 |

Table 1 quasi-Galois points

See Proposition 2 for the notation in this table.
2. Primitive subgroups of $\operatorname{PGL}(3, \mathbb{C})$ and primitive reflection subgroups of $G L(3, \mathbb{C})$

In this section we recall basic facts on primitive subgroups of $\operatorname{PGL}(3, \mathbb{C})$ and primitive reflection subgroups of $G L(3, \mathbb{C})$. See, for example, [B] and [LT] for the contents of this section.

Let $\pi: G L(n, \mathbb{C}) \rightarrow P G L(n, \mathbb{C})$ be the natural projection and $[A]:=\pi(A)$ for $A \in G L(n, \mathbb{C})$.

Definition 2. Let $\widetilde{G} \subset G L(n, \mathbb{C})$ be a subgroup of $G L(n, \mathbb{C})$.
(1) $\widetilde{G}$ is irreducible $\underset{\text { def }}{\Longleftrightarrow} \mathbb{C}^{n}$ has no proper $\widetilde{G}$-invariant subspaces.
(2) Assume that $\widetilde{G}$ is irreducible. It is said to be imprimitive if there exists a direct sum decomposition

$$
\mathbb{C}^{n}=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{r}
$$

such that

$$
\forall \sigma \in \widetilde{G}, \forall i, \exists j, \sigma\left(W_{i}\right)=W_{j}
$$

Otherwise $\widetilde{G}$ is said to be primitive.
(3) A subgroup $G \subset P G L(n, \mathbb{C})$ is said to be irreducible (resp. imprimitive, primitive) if $\pi^{-1}(G) \subset G L(n, \mathbb{C})$ is irreducible (resp. imprimitive, primitive).

Proposition 2. Any finite primitive subgroup of $\operatorname{PGL}(3, \mathbb{C})$ is conjugate to one of the following:
(i) $L \simeq A_{5} \simeq P S L(2,5)$ (alternating group of degree five).
(ii) The Klein group $K_{168} \simeq P S L(2,7)$.
(iii) The Hessian group $H_{216}$, or its subgroup $H_{36}$ or $H_{72}$.
(iv) $V \simeq A_{6}$ (alternating group of degree six).

Remark 3. (1) The Hessian group $H_{216}$ is generated by the four elements $h_{i}$ ( $i=1,2,3,4$ ) represented by the following matrices:

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right),\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right) \text { and }\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega
\end{array}\right)
$$

where $\omega$ is a primitive third root of unity. This group is the full automorphism group of the smooth plane sextic

$$
H: X^{6}+Y^{6}+Z^{6}-10\left(X^{3} Y^{3}+Y^{3} Z^{3}+Z^{3} X^{3}\right)=0
$$

i.e., $\operatorname{Aut}(H)=H_{216}$. This curve has 12 outer quasi-Galois points of order three (cf. [FMT, Theorem 4.12]).

The subgroups $H_{36}$ and $H_{72}$ are respectively equal to $\left\langle h_{1}, h_{2}, h_{3}\right\rangle$ and $\left\langle h_{1}, h_{2}, h_{3}, u\right\rangle$, where $u=h_{1}^{-1} h_{4}^{2} h_{1}$.
(2) The group $V$ is the full automorphism group of the Wiman sextic

$$
W: 10 X^{3} Y^{3}+9\left(X^{5}+Y^{5}\right) Z-45 X^{2} Y^{2} Z^{2}-135 X Y Z^{4}+27 Z^{6}=0
$$

i.e., $\operatorname{Aut}(W)=V \simeq A_{6}$. It has 45 outer quasi-Galois points of order two.

Definition 3. (1) A matrix $A \in G L(n, \mathbb{C})$ is called a reflection $\underset{\text { def }}{\Longleftrightarrow} \operatorname{rank}(A-E)=$ 1 (i.e., $A$ has a unique eigenvalue $\neq 1$ ).
(2) An element $\sigma \in P G L(n, \mathbb{C})$ is called a projective reflection $\Longleftrightarrow \underset{\text { def }}{\Longleftrightarrow}$ there exists a reflection $A \in G L(n, \mathbb{C})$ such that $\sigma=[A]$.
(3) A subgroup of $G L(n, \mathbb{C})$ (resp. $P G L(n, \mathbb{C})$ ) is called a reflection group (resp. projective reflection group) if it is generated by reflections (resp. projective reflections).

Note that a projective reflection can be represented by a non-reflection.
Example 1. Let $\omega$ be a primitive third root of unity. A reflection $A=\operatorname{diag}(1,1, \omega)$ and another matrix $A^{\prime}=\operatorname{diag}(-1,-1,-\omega)$ give the same projective reflection $\sigma=$ $[A]=\left[A^{\prime}\right]$, but $A^{\prime}$ is not a reflection.

The following classification of three-dimensional finite primitive reflection groups is well-known. We use the notation in [LT].

Proposition 3. Any finite primitive reflection subgroup of $G L(3, \mathbb{C})$ is conjugate to one of the following:
(i) $G_{23} \quad\left(\pi\left(G_{23}\right)=L,\left|G_{23}\right|=120\right)$
(ii) $G_{24} \quad\left(\pi\left(G_{24}\right)=K_{168},\left|G_{24}\right|=336\right)$
(iii) $G_{25} \quad\left(\pi\left(G_{25}\right)=H_{216},\left|G_{25}\right|=648\right)$
(iii') $G_{26}=G_{25} \times\left\{ \pm E_{3}\right\} \quad\left(\pi\left(G_{26}\right)=H_{216},\left|G_{26}\right|=1296\right)$
(iv) $G_{27} \quad\left(\pi\left(G_{27}\right)=V,\left|G_{27}\right|=2160\right)$

In particular, any finite primitive subgroup of $\operatorname{PGL}(3, \mathbb{C})$ is a projective reflection group or its subgroup.

Remark 4. Let $\widetilde{G_{1}}$ and $\widetilde{G_{2}}$ be finite reflection groups contained in $G L(3, \mathbb{C})$. If $\widetilde{G_{1}}$ is primitive and $\widetilde{G_{1}} \subset \widetilde{G_{2}}$, then $\widetilde{G_{2}}$ is also primitive. Hence $\left(\widetilde{G_{1}}, \widetilde{G_{2}}\right)=\left(G_{23}, G_{27}\right)$ or $\left(G_{25}, G_{26}\right)$.

## 3. Outline of proof of Theorem A

For Theorem A, we recall that

$$
\operatorname{Aut}(K)=K_{168}, \quad \operatorname{Aut}(H)=H_{216} \quad \text { and } \quad \operatorname{Aut}(W)=V \simeq A_{6}
$$

where

$$
\begin{aligned}
& K=X Y^{3}+Y Z^{3}+Z X^{3} \\
& H=X^{6}+Y^{6}+Z^{6}-10\left(Y^{3} Z^{3}+Z^{3} X^{3}+X^{3} Y^{3}\right) \\
& W=10 X^{3} Y^{3}+9\left(X^{5}+Y^{5}\right) Z-45 X^{2} Y^{2} Z^{2}-135 X Y Z^{4}+27 Z^{6}
\end{aligned}
$$

Thus we only have to give examples whose automorphism group is $L, H_{36}$ or $H_{72}$.

The homogeneous part of degree six of the invariant ring of $G_{23}$ is

$$
\mathbb{C}[X, Y]_{6}^{G_{23}}=\mathbb{C} W \oplus \mathbb{C} U
$$

The polynomials $U$ is defined by

$$
\begin{aligned}
& U:=7\left(X^{6}+Y^{6}+Z^{6}\right)+\alpha\left(X^{4} Y^{2}+Y^{4} Z^{2}+Z^{4} X^{2}\right) \\
& +\beta\left(X^{2} Y^{4}+Y^{2} Z^{4}+Z^{2} X^{4}\right)+54 X^{2} Y^{2} Z^{2}=0
\end{aligned}
$$

where

$$
\alpha=-21\left(\zeta_{5}+\zeta_{5}^{4}\right)-18\left(\zeta_{5}^{2}+\zeta_{5}^{3}\right), \quad \beta=-18\left(\zeta_{5}+\zeta_{5}^{4}\right)-21\left(\zeta_{5}^{2}+\zeta_{5}^{3}\right)
$$

( $\zeta_{5}$ is a primitive fifth root of unity).

Proposition 4. Let $C_{\lambda}(\lambda \in \mathbb{C})$ be the plane sextic defined by $U+\lambda W=0$. If $\lambda$ is general then $\operatorname{Aut}\left(C_{\lambda}\right)=L \simeq A_{5}$.

Set $\widetilde{H}_{36}=G_{26} \cap \pi^{-1}\left(H_{36}\right)$. Then

$$
\mathbb{C}[X, Y]_{6}^{\tilde{H}_{36}}=\mathbb{C} H \oplus \mathbb{C} F .
$$

The polynomials $F$ is defined by

$$
\begin{aligned}
F:= & 4\left(X^{6}+Y^{6}+Z^{6}\right)-15 \omega X Y Z\left(X^{3}+Y^{3}+Z^{3}\right) \\
& -10\left(Y^{3} Z^{3}+Z^{3} X^{3}+X^{3} Y^{3}\right)-45 \omega^{2} X^{2} Y^{2} Z^{2}
\end{aligned}
$$

where $\omega$ is a primitive third root of unity.

Proposition 5. Let $C_{\lambda}^{\prime}(\lambda \in \mathbb{C})$ be the plane sextic defined by $F+\lambda H=0$. If $\lambda$ is general then $\operatorname{Aut}\left(C_{\lambda}^{\prime}\right)=H_{36}$. On the other hand, $\operatorname{Aut}\left(C_{-3 / 2}^{\prime}\right)=H_{72}$.

Thus we obtain Theorem A.
4. Smooth plane curves whose automorphism group is primitive

In what follows $G$ denotes $\operatorname{Aut}(C)$ and assume that it is primitive. We define

$$
\widetilde{G}:= \begin{cases}G_{23} & \text { if } G=L \\ G_{24} & \text { if } G=K_{168} \\ G_{26} & \text { if } G=H_{216} \\ \widetilde{H}_{36}=G_{26} \cap \pi^{-1}\left(H_{36}\right) & \text { if } G=H_{36} \\ \widetilde{H}_{72}=G_{26} \cap \pi^{-1}\left(H_{72}\right) & \text { if } G=H_{72} \\ G_{27} & \text { if } G=V .\end{cases}
$$

Recall

$$
S_{k}=S_{k}(C)=\left\{P \in \mathbb{P}^{2} \mid P \text { is a quasi-Galois point for } C \text { of order } k\right\}
$$

and set
$R_{k}=R_{k}(G):=\{\sigma \in G \mid \sigma$ is a projective reflection of order $k\}, \quad R:=\bigcup R_{k}$,
$R^{(k)}=R^{(k)}(G):=\left\{\langle\sigma\rangle \subset G \mid \sigma \in R_{k}\right\}$,
$\widetilde{R}_{k}=\widetilde{R}_{k}(\widetilde{G}):=\{A \in \widetilde{G} \mid A$ is a reflection of order $k\}, \quad \widetilde{R}:=\bigcup \widetilde{R}_{k}$,
$\widetilde{R}^{(k)}=\widetilde{R}^{(k)}(\widetilde{G}):=\left\{\langle A\rangle \subset \widetilde{G} \mid A \in \widetilde{R}_{k}\right\}$.
Note that $G[P] \in R^{(k)}$ if $P \in S_{k}$. Furthermore

Lemma 6. The map $S_{k} \rightarrow R^{(k)}(P \mapsto G[P])$ is bijective.

By a classification of reflection groups we see that $\widetilde{R}^{(k)}=\emptyset$ for $k \neq 2,3$ and obtain the following table.

| $G$ | $\widetilde{G}$ | $\left\|\widetilde{R}^{(2)}\right\|$ | $\left\|\widetilde{R}^{(3)}\right\|$ |
| :---: | :---: | :---: | :---: |
| $L$ | $G_{23}$ | 15 | 0 |
| $K_{168}$ | $G_{24}$ | 21 | 0 |
| $H_{216}$ | $G_{26}$ | 9 | 12 |
| $H_{36}$ | $\widetilde{H}_{36}$ | 9 | 0 |
| $H_{72}$ | $\widetilde{H}_{72}$ | 9 | 0 |
| $V$ | $G_{27}$ | 45 | 0 |

Table 2 Reflections

Remark 5. (1) $\left|\widetilde{R}_{k}\right|=\varphi(k)\left|\widetilde{R}^{(k)}\right|,\left|R_{k}\right|=\varphi(k)\left|R^{(k)}\right|(\varphi$ is Euler's totient function).
(2) Note that $H_{216}=\pi\left(G_{25}\right)$ has 9 projective reflections of order 2, e.g.,

$$
h_{3}^{2}=\left[\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\right]
$$

but $G_{25}$ has no reflections of order 2 .
The following holds:

Proposition 7. $\left.\pi\right|_{\widetilde{R}}: \widetilde{R} \rightarrow R(A \mapsto[A])$ is bijection and $\pi\left(\widetilde{R}_{k}\right)=R_{k}$. In particular $\left|S_{k}\right|=\left|R^{(k)}\right|=\left|\widetilde{R}^{(k)}\right|$.

Thus we give a solution to Problem (B), i.e., we can determine the number of quasi-Galois points for $C$ by counting reflections in $\widetilde{G}$.

| $G$ | $\left\|S_{2}\right\|$ | $\left\|S_{3}\right\|$ |
| :---: | :---: | :---: |
| $L$ | 15 | 0 |
| $K_{168}$ | 21 | 0 |
| $H_{216}$ | 9 | 12 |
| $H_{36}$ | 9 | 0 |
| $H_{72}$ | 9 | 0 |
| $V$ | 45 | 0 |

Table 3 quasi-Galois points

## 5. Outline of proof of Theorem B

We show some lemmas to prove Proposition 7

Lemma 8. Let $\sigma \in P G L(n, \mathbb{C})$ be a projective reflection of finite order and $A \in G L(n, \mathbb{C})$ a reflection such that $\sigma=[A]$. Then $A$ is of finite order and ord $A=\operatorname{ord} \sigma$.

Proof. It suffices to show that ord $A \mid$ ord $\sigma$. There exists a matrix $A_{0} \in G L(n, \mathbb{C})$ of finite order such that $\sigma=\left[A_{0}\right]$ (For example, if we take $A_{0} \in S L(n, \mathbb{C})$ then ord $A_{0} \leq n$ ord $\sigma$ ). Then $A=c A_{0}$ for some $c \in \mathbb{C}^{\times}$and $A_{0}$ is diagonalizable (since it is of finite order). Hence $A$ is also diagonalizable, i.e.,

$$
P A P^{-1}=\operatorname{diag}(1, \ldots, 1, \zeta) \quad(\zeta \text { is a root of unity })
$$

for some $P \in G L(n, \mathbb{C})$.
Put $k=\operatorname{ord} \sigma$. Then

$$
E=[P] \sigma^{k}\left[P^{-1}\right]=\left[\left(P A P^{-1}\right)^{k}\right]=\left[\operatorname{diag}\left(1, \ldots, 1, \zeta^{k}\right)\right] .
$$

Hence $\zeta^{k}=1$, which implies that $A^{k}=E$. Thus ord $A \mid k$.
Set $N=\operatorname{lcm}\{$ ord $g \mid g \in \widetilde{G}\}$.

Lemma 9. Let $\sigma \in G$ be projective reflection. Take a reflection $A \in G L(3, \mathbb{C})$ and a matrix $A_{0} \in \widetilde{G}$ such that $\sigma=[A]=\left[A_{0}\right]$. If $A=c A_{0}\left(c \in \mathbb{C}^{\times}\right)$then $c^{N}=1$.

Proof. We see that $A^{N}=c^{N} E$ since $A_{0}^{N}=E$. Then $c^{N}=1$ because $A$ is a reflection.

Set

$$
\begin{aligned}
& Z_{N}:=\left\{a E_{3} \mid a^{N}=1\right\} \subset G L(3, \mathbb{C}), \quad \widehat{G}:=\left\langle\widetilde{G}, Z_{N}\right\rangle \quad \text { and } \\
& \widehat{R}=\{A \in \widehat{G} \mid A \text { is a reflection }\} .
\end{aligned}
$$

Then $\widehat{G}$ is a finite group since $Z_{N} \subset Z(G L(3, \mathbb{C}))$.

Lemma 10. If $\widetilde{G}=G_{i}(i=23,24,26,27)$ then $\widehat{R}=\widetilde{R}$.

Proof. Assume that $\widehat{R} \supsetneq \widetilde{R}$. Take $A \in \widehat{R} \backslash \widetilde{R}$. Note that $\langle\widetilde{G}, A\rangle$ is a finite reflection group strictly containing $\widetilde{G}=G_{i}$, hence it is primitive. Then $\widetilde{G}=G_{23}$ and $\langle\widetilde{G}, A\rangle=$ $G_{27}$. In particular $N=30$. However,

$$
\widehat{G}=\left\langle G_{23}, Z_{30}\right\rangle=G_{23} \times Z_{15}
$$

which implies that

$$
|\widehat{G}|=120 \cdot 15=1800<\left|G_{27}\right|=2160
$$

This is a contradiction.
We prove Proposition 7 by using above lemmas.
Proof of Proposition 7. We may assume that $\widetilde{G}=G_{i}(i=23,24,26,27)$. Take any element $\sigma \in R$. By Lemma 9 there exist $A_{0} \in \widetilde{G}$ and $c \in Z_{N}$ such that $\sigma=\left[A_{0}\right]$ and $c A_{0}$ is a reflection. Then $c A_{0} \in \widehat{R}$ since $c A_{0} \in \widehat{G}$. It follows from Lemma 10 that $c A_{0} \in \widetilde{R}$. Thus $\left.\pi\right|_{\widetilde{R}}: \widetilde{R} \rightarrow R$ is surjective since $\left[c A_{0}\right]=\sigma$.

Suppose that $A, A^{\prime} \in \widetilde{R}$ and $[A]=\left[A^{\prime}\right]$. Then
$A^{\prime}=c A \quad\left(\exists c \in \mathbb{C}^{\times}\right), \quad A \sim \operatorname{diag}(1,1, \zeta) \quad$ and $\quad A^{\prime} \sim \operatorname{diag}\left(1,1, \zeta^{\prime}\right) \quad\left(\zeta^{N}=\zeta^{\prime N}=1\right)$.
Hence

$$
\operatorname{diag}(c, c, c \zeta) \sim \operatorname{diag}\left(1,1, \zeta^{\prime}\right)
$$

which implies that $c=1$, that is to say, $A=A^{\prime}$. Thus $\left.\pi\right|_{\widetilde{R}}: \widetilde{R} \rightarrow R$ is injective. Furthermore, $\pi$ preserves the order of elements by Lemma 8 .

## References

[B] H. Blichfeldt, Finite Collineation Groups: With an Introduction to the Theory of Groups of Operators and Substitution Groups, Univ. of Chicago Press, Chicago (1917).
[FMT] S. Fukasawa, K. Miura, T. Takahashi, Quasi-Galois points, arXiv:math/1505.00148.
[H] T. Harui, Automorphism groups of smooth plane curves, Kodai Math., to appear.
[LT] G. I. Lehrer, D. E. Taylor, Unitary reflection groups, Cambridge University Press (2009).
[Y] H. Yoshihara, Function field theory of plane curves by dual curves, J. Algebra 239, no. 1 (2001), 340-355.

