SMOOTH PLANE CURVES WHOSE AUTOMORPHISM GROUP
IS PRIMITIVE

TAKESHI HARUI

This article is based on my talk on December 14, 2018. In this article we show
that, for a given finite primitive subgroup G of PGL(3,C), there exists a smooth
plane curve such that Aut(C) = G. We also determine the number of quasi-Galois

points for smooth plane curves whose automorphism group is primitive. These are
joint work with A. Ohbuchi.

1. INTRODUCTION

Throughout this article C' denotes a smooth plane curve of degree d > 4 defined
over the complex number field C. Note that Aut(C) is considered as a finite subgroup
of PGL(3,C).

In Theorem [I] we use the following notation:

0
PBD(2,1) := A 0] |AeGL(2,C),aeC” /(CX
0 0 «

A 0

= 0] AeSL(2,C),aeC” /{:l:Eg}
0 0 «

C PGL(3,C).

Let p: PBD(2,1) — PGL(2,C) be the natural homomorphism.
First we recall a classification of automorphism groups of smooth plane curves
(cf. [H, Theorem 2.3]):

Theorem 1. Let G be a subgroup of Aut(C'). Then one of the following holds:

(a-i) G fizes a point on C and G is a cyclic group whose order is at most
d(d—1). Furthermore, if d > 5 and |G| = d(d—1), then C' is projectively
equivalent to the curve Y Z4 1 + X4+ Y4 = (.

(a-ii) G fizes a point not lying on C' and there ezists a commutative diagram

1 - C*— PBD(2,1) & PGL(2,C) = 1 (exact)
i i T

1-+%2, — G — G —1 (exact),
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where n is a factor of d and G’ is conjugate to Z,,, Doy (m < d —1),
Ay, Sy or As. Furthermore, if n # 1 and G' ~ Ds,, then m | d —2. In
particular |G| < max{2d(d — 2),60d}.

(b-i) G is a subgroup of the automorphism group of the Fermat curve Fy: X%+
Y44 Z%=0. In particular, |G| < 6d>.

(b-ii) G is a subgroup of the automorphism group of the Klein curve
Kg: XYL 4y Zz4 4 77X = 0. In particular, |G| < 3(d* — 3d + 3)
if d > 5. On the other hand, |G| < 168 if d = 4.

(c) G is a primitive subgroup of PGL(3,C). In this case G is conjugate to

one of the following subgroups of PGL(3,C): the alternating group As or
Ag, the Klein group Kigs = PSL(2,7), the Hessian group Haig of order
216 or its subgroup of order 36 or 72. In particular |G| < 360.

In this article we consider the case (c¢) in Theorem [l (see Definition 2] for the
definition of primitive subgroups) and discuss the following problems:

Problem. (A) For a given finite primitive subgroup G C PGL(3,C), does there
exist a smooth plane curve C' such that Aut(C) = G?

(B) Assume that Aut(C') is primitive. How many quasi-Galois points does C
have?

The notion of quasi-Galois points is introduced as follows (cf. [FMT], Definition
1.1], see also [Y]):

Definition 1. Put G[P] := {0 € Aut(C) | npooc = mp} for P € P?, where
7p: C — P! is the projection with center P. For k > 2,

P is a quasi-Galois point for C of order k = |G[P]| = k.

If P e C (resp. P ¢ C) then it is said to be inner (resp. outer). If |G[P]| = degmp
then P is called a Galois point for C.

Remark 1. Since C' is smooth, the following hold:

(1) G[P] is a cyclic group of order k.

(2) k| d—1 (resp. k | d) if P is an inner (resp. outer) quasi-Galois point of
order k.

For Problem (A) we have the following result:

Theorem A. Let G be a finite primitive subgroup of PGL(3,C). If G # Kigs
then there exists a smooth plane sextic C' such that Aut(C) = G.
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Remark 2. The Klein group Kigs is the full automorphism group of the Klein
quartic

K: XY34+YZ2+2ZX3=0,

i.e., Aut(K) = Kigs. It has 21 outer quasi-Galois points of order two (see [FMT)
Theorem 6.9, Remark 6.10]).

For Problem (B) we determine the number of quasi-Galois points when Aut(C')
is primitive. Set

Sp = Si(C) := { P € P* | P is a quasi-Galois point for C' of order & }.

Theorem B. Assume that G = Aut(C) is primitive. Then the set Sy is empty

for k # 2,3 and the number of quasi-Galois points of order two or three is
determined by Table [1

G | [Sa | ]Ss]

L 151 0
K168 21 0
Hyig| 9 12
Hys | 9 0

H;x | 9 0

Vo145 0O

Table 1 quasi-Galois points

See Proposition 2 for the notation in this table.

2. PRIMITIVE SUBGROUPS OF PGL(3,C) AND PRIMITIVE REFLECTION
SUBGROUPS OF GL(3,C)

In this section we recall basic facts on primitive subgroups of PGL(3,C) and

primitive reflection subgroups of GL(3,C). See, for example, [B] and [LT] for the
contents of this section.

Let 7: GL(n,C) — PGL(n,C) be the natural projection and [A] := 7(A) for
A e GL(n,C).

Definition 2. Let G C GL(n,C) be a subgroup of GL(n,C).
(1) G is irreducible (ﬁ C™ has no proper G-invariant subspaces.
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(2) Assume that @G is irreducible. It is said to be imprimitive if there exists a

direct sum decomposition
C'=W,eoWo®---aW,
such that _
Vo € G, Vi, 35, o(W;) = Wj.

Otherwise G is said to be primitive.

(3) A subgroup G C PGL(n,C) is said to be irreducible (resp. imprimitive, prim-
itive) if 771(G) € GL(n,C) is irreducible (resp. imprimitive, primitive).

Proposition 2. Any finite primitive subgroup of PGL(3,C) is conjugate to one
of the following:

(i) L ~ A5 ~ PSL(2,5) (alternating group of degree five).

(ii) The Klein group Kigs ~ PSL(2,7).

(iii) The Hessian group Haig, or its subgroup Hsg or Hrs.

(iv) V =~ Ag (alternating group of degree siz).

Remark 3. (1) The Hessian group Haj¢ is generated by the four elements h;
(1 =1,2,3,4) represented by the following matrices:

010 1 0 O 1 1 1 1 0 0
00 1,10 w 0],{1 w w?]and [0 w 0],
1 00 0 0 w? 1 w? w 0 0 w

where w is a primitive third root of unity. This group is the full automorphism
group of the smooth plane sextic

H: X0+ Y5+ 25 —10(X3Y? +Y*Z3 + Z3X3) = 0,

i.e., Aut(H) = Hag. This curve has 12 outer quasi-Galois points of order three
(cf. [EMT], Theorem 4.12]).

The subgroups Hszs and Hrpe are respectively equal to (hy, he,hs) and
(hy, ha, hs,u), where u = hi'h2h,.

(2) The group V is the full automorphism group of the Wiman sextic
W:10X°Y? +9(X° + YP)Z — 45X2Y? 7% — 135XY Z* +272° = 0,
i.e., Aut(W) =V =~ Ag. It has 45 outer quasi-Galois points of order two.

Definition 3. (1) A matrix A € GL(n,C) is called a reflection — rank(A—FE) =

1 (i.e., A has a unique eigenvalue # 1).
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(2) An element ¢ € PGL(n,C) is called a projective reflection = there exists
€

a reflection A € GL(n,C) such that o = [A].

(3) A subgroup of GL(n,C) (resp. PGL(n,C)) is called a reflection group
(resp. projective reflection group) if it is generated by reflections (resp. projective
reflections).

Note that a projective reflection can be represented by a non-reflection.

Example 1. Let w be a primitive third root of unity. A reflection A = diag(1,1,w)
and another matriz A’ = diag(—1,—1, —w) give the same projective reflection o =

[A] = [A'], but A" is not a reflection.

The following classification of three-dimensional finite primitive reflection groups
is well-known. We use the notation in [LT].

Proposition 3. Any finite primitive reflection subgroup of GL(3,C) is conjugate
to one of the following:
(i) Gas (m(Ga) = L, |Gag| = 120)
(ii) Gas  (7(Gaa) = Kies, |Gaa| = 336)
(iil) Gos  (m(Gas) = Hag, |Gos| = 648)
(111 ) G26 = G25 X {:l:Eg} (W(GQG) = H216, |G26| = 1296)
(lV) G27 (W(G27) = V, |G27| = 2160)

In particular, any finite primitive subgroup of PGL(3,C) is a projective reflection
group or its subgroup.

Remark 4. Let G1 and Gg be finite reflection groups contained in GL( ,C). If Gy

is primitive and G1 C GQ, then G2 is also primitive. Hence (Gl, Gg) (Gas, Gar)
or (025, GQG)-

3. OUTLINE OF PROOF OF THEOREM E]
For Theorem [Al, we recall that
Aut(K) = Kyps, Aut(H) = Hyg and Aut(W) =V ~ Ag,
where
K=XY*+YZ3+7ZX3,
H=X+Y®+2°-10Y*Z° + Z°X® + X°Y?),
W =10X3Y? + 9(X° + Y®)Z — 45X?Y? 2% — 135X Y Z* + 272°.

Thus we only have to give examples whose automorphism group is L, Hzg or Hrs.
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The homogeneous part of degree six of the invariant ring of Ga3 is
C[X,Y]{* = CW @ CU.
The polynomials U is defined by
Ui=7X+Y+ 7% + a(X'Y?+ Y22+ Z1X?)
+ B(X2Y* + Y22 + 722X 4+ 54XV 2% = 0,
where

a=-21G+¢) —18(G+E), B=-18(¢G+¢) —2UE+E)
(C5 is a primitive fifth root of unity).

Proposition 4. Let C) (A € C) be the plane sextic defined by U + AW = 0. If
A is general then Aut(C)) = L ~ A;.

Set ﬁgﬁ = Gog N 1(Hss). Then
C[X, Y] = CH @ CF.
The polynomials F' is defined by
Fi=4(X+YS+ 75 —150XYZ(X?+Y? + Z°)
—10(Y*Z3 + Z3 X3 + X3Y?) — 45> X?Y2 72,

where w is a primitive third root of unity.

Proposition 5. Let C (A € C) be the plane sextic defined by F' + AH = 0. If
A is general then Aut(C}) = Hze. On the other hand, Aut(C”; ;) = Hra.

Thus we obtain Theorem [A]

4. SMOOTH PLANE CURVES WHOSE AUTOMORPHISM GROUP IS PRIMITIVE

In what follows G denotes Aut(C') and assume that it is primitive. We define

4

Goz ifG=1L
Goy if G = Kys
~ . G26 it G = Hyi6
Hys = Gag N (Hsg) if G = Hag
Hyy = Gog N (Hyy) if G = Hry
|Gy G =V.

Recall
S = Si(C) = { P € P* | P is a quasi-Galois point for C of order k }
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and set
Ry = Rk(G) {0 € G | o is a projective reflection of order k}, R := U Ry,
RYW = R®(G):={(0) CG|o € Ry},
Ry, = ék(G) ={Acec G | A is a reflection of order k}, R:= UE"?’
N(G):={(A) cG|AeR}
Note that G[P] € R®™ if P € S;. Furthermore

Lemma 6. The map S, — R®™ (P~ G[P)) is bijective.

By a classification of reflection groups we see that R® = for k # 2,3 and obtain
the following table.

G G |R(2) ’ |R(3)|

L | Gas 15 0
Kigg | Gaa | 21 0
Hyi6 | Gog 9 12
Hag | Hsg 9 0
H7o | Hp 9 0

V | Gy | 45 0

Table 2 Reflections

Remark 5. (1) |Rx| = ¢(k)|R®)|, |Ri| = o(k)|R®]| (¢ is Euler’s totient func-
tion).
(2) Note that Hojs = m(Gos) has 9 projective reflections of order 2, e.g.,

1 00
h;= [0 0 1
010
but (Go5 has no reflections of order 2.

The following holds:

Proposition 7. 7|z: R — R (A — [A]) is bijection and m(Ry) = Ry. In
particular |Sy| = |[R®)| = |R®)|.

Thus we give a solution to Problem (B), i.e., we can determine the number of
quasi-Galois points for C' by counting reflections in G.
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G | 5] ][5

L [15] 0
Kies | 21 | 0
Hog | 9 | 12
Hys | 9 | O
Hrn | 9 | O

V |45 | 0

Table 3 quasi-Galois points

5. OUTLINE OF PROOF OF THEOREM [B]

We show some lemmas to prove Proposition [7]

Lemma 8. Let 0 € PGL(n,C) be a projective reflection of finite order and
A € GL(n,C) a reflection such that o = [A]. Then A is of finite order and
ord A =ordo.

Proof. Tt suffices to show that ord A | ord 0. There exists a matrix Ay € GL(n,C)
of finite order such that o = [Ag] (For example, if we take Ay € SL(n,C) then
ord Ag < nordo). Then A = cAg for some ¢ € C* and Ay is diagonalizable (since
it is of finite order). Hence A is also diagonalizable, i.e.,

PAP™' = diag(1,...,1,¢) (Cis aroot of unity)

for some P € GL(n,C).
Put k = ordo. Then

E = [Plo"[P~] = [(PAP~)"] = [diag(, ..., 1,¢")].
Hence ¢* = 1, which implies that A* = E. Thus ord A | k. 0
Set N =lem{ordg|ge G}.

Lemma 9. Let 0 € G be projective reflection. Take a reflection A € GL(3,C)

and a matriz Ay € G such that o = [A] = [Ag]. If A = cAy (¢ € C*) then
N =1.

Proof. We see that AN = ¢VE since A) = E. Then ¢ = 1 because A is a
reflection. 0

Set
Zy ={aEs;|a¥ =1} C GL(3,C), G:=(G,Zy) and
R={AecG|Ais areflection }.
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Then G is a finite group since Zy C Z(GL(3,C)).

Lemma 10. If G = G; (i = 23,24,26,27) then R = R.

Proof. Assume that R D R. Take A € R\ R. Note that (G, A) is a finite reflection

group strictly containing G = G, hence it is primitive. Then G = Go3 and (G A) =
Go7. In particular N = 30. However,

G= (Gas, Zo) = Glag X Zis,
which implies that
|G| =120 - 15 = 1800 < |Ga7| = 2160.
This is a contradiction. 0
We prove Proposition [7] by using above lemmas.

Proof of Proposition [[l. We may assume that G =G, (1 = 23,24,26,27). Take any
clement o € R. By Lemma [ there exist Ay € G and ¢ € Zy such that o = [A]
and cAp is a reflection. Then cAq € R since cAgy € G. Tt follows from Lemma 1a
that cAg € R. Thus |5 R — R is surjective since [cAy] = 0.

Suppose that A, A’ € R and [A] = [4/]. Then
A'=cA (3ceC”), A~diag(l,1,¢) and A" ~diag(1,1,¢") (N =¢N=1).

Hence
diag(c, ¢, cC) ~ diag(1,1,{’),

which implies that ¢ = 1, that is to say, A = A’. Thus 7|z: R — Ris injective.

Furthermore, 7 preserves the order of elements by Lemma [8l. 0
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