SMOOTH PLANE CURVES WHOSE AUTOMORPHISM GROUP IS PRIMITIVE

TAKESHI HARUI

This article is based on my talk on December 14, 2018. In this article we show that, for a given finite primitive subgroup G of $PGL(3, \mathbb{C})$, there exists a smooth plane curve such that Aut(C) = G. We also determine the number of quasi-Galois points for smooth plane curves whose automorphism group is primitive. These are joint work with A. Ohbuchi.

1. INTRODUCTION

Throughout this article C denotes a smooth plane curve of degree $d \ge 4$ defined over the complex number field \mathbb{C} . Note that $\operatorname{Aut}(C)$ is considered as a finite subgroup of $PGL(3, \mathbb{C})$.

In Theorem 1 we use the following notation:

$$PBD(2,1) := \left\{ \begin{pmatrix} A & 0\\ 0 & 0 & \alpha \end{pmatrix} \middle| A \in GL(2,\mathbb{C}), \alpha \in \mathbb{C}^{\times} \right\} \middle/ \mathbb{C}^{\times}$$
$$= \left\{ \begin{pmatrix} A & 0\\ 0 & 0 & \alpha \end{pmatrix} \middle| A \in SL(2,\mathbb{C}), \alpha \in \mathbb{C}^{\times} \right\} \middle/ \{\pm E_3\}$$
$$\subset PGL(3,\mathbb{C}).$$

Let $\rho: \text{PBD}(2,1) \to PGL(2,\mathbb{C})$ be the natural homomorphism.

First we recall a classification of automorphism groups of smooth plane curves (cf. [H, Theorem 2.3]):

Date: January 31, 2019.

TAKESHI HARUI

where n is a factor of d and G' is conjugate to \mathbb{Z}_m , D_{2m} $(m \leq d-1)$, A_4 , S_4 or A_5 . Furthermore, if $n \neq 1$ and $G' \simeq D_{2m}$ then $m \mid d-2$. In particular $|G| \leq \max\{2d(d-2), 60d\}$.

- (b-i) G is a subgroup of the automorphism group of the Fermat curve F_d : $X^d + Y^d + Z^d = 0$. In particular, $|G| \le 6d^2$.
- (b-ii) G is a subgroup of the automorphism group of the Klein curve $K_d: XY^{d-1} + YZ^{d-1} + ZX^{d-1} = 0$. In particular, $|G| \le 3(d^2 3d + 3)$ if $d \ge 5$. On the other hand, $|G| \le 168$ if d = 4.
 - (c) G is a primitive subgroup of $PGL(3, \mathbb{C})$. In this case G is conjugate to one of the following subgroups of $PGL(3, \mathbb{C})$: the alternating group A_5 or A_6 , the Klein group $K_{168} = PSL(2,7)$, the Hessian group H_{216} of order 216 or its subgroup of order 36 or 72. In particular $|G| \leq 360$.

In this article we consider the case (c) in Theorem 1 (see Definition 2 for the definition of primitive subgroups) and discuss the following problems:

Problem. (A) For a given finite primitive subgroup $G \subset PGL(3, \mathbb{C})$, does there exist a smooth plane curve C such that Aut(C) = G? (B) Assume that Aut(C) is primitive. How many quasi-Galois points does C

(B) Assume that Aut(C) is primitive. How many quasi-Galois points does C have?

The notion of quasi-Galois points is introduced as follows (cf. [FMT, Definition 1.1], see also [Y]):

Definition 1. Put $G[P] := \{ \sigma \in \operatorname{Aut}(C) \mid \pi_P \circ \sigma = \pi_P \}$ for $P \in \mathbb{P}^2$, where $\pi_P \colon C \to \mathbb{P}^1$ is the projection with center P. For $k \geq 2$,

P is a quasi-Galois point for C of order $k \quad \iff \quad |G[P]| = k.$

If $P \in C$ (resp. $P \notin C$) then it is said to be *inner* (resp. *outer*). If $|G[P]| = \deg \pi_P$ then P is called a *Galois point* for C.

Remark 1. Since C is smooth, the following hold:

(1) G[P] is a cyclic group of order k.

(2) $k \mid d-1$ (resp. $k \mid d$) if P is an inner (resp. outer) quasi-Galois point of order k.

For Problem (A) we have the following result:

Theorem A. Let G be a finite primitive subgroup of $PGL(3, \mathbb{C})$. If $G \neq K_{168}$ then there exists a smooth plane sextic C such that Aut(C) = G.

Remark 2. The Klein group K_{168} is the full automorphism group of the Klein quartic

$$K: XY^3 + YZ^3 + ZX^3 = 0,$$

i.e., $\operatorname{Aut}(K) = K_{168}$. It has 21 outer quasi-Galois points of order two (see [FMT, Theorem 6.9, Remark 6.10]).

For Problem (B) we determine the number of quasi-Galois points when Aut(C) is primitive. Set

 $S_k = S_k(C) := \{ P \in \mathbb{P}^2 \mid P \text{ is a quasi-Galois point for } C \text{ of order } k \}.$

Theorem B. Assume that $G = \operatorname{Aut}(C)$ is primitive. Then the set S_k is empty for $k \neq 2,3$ and the number of quasi-Galois points of order two or three is determined by Table 1.

G	$ S_2 $	$ S_3 $
L	15	0
K_{168}	21	0
H_{216}	9	12
H_{36}	9	0
H_{72}	9	0
V	45	0

Table 1 quasi-Galois points

See Proposition 2 for the notation in this table.

2. Primitive subgroups of $PGL(3, \mathbb{C})$ and primitive reflection subgroups of $GL(3, \mathbb{C})$

In this section we recall basic facts on primitive subgroups of $PGL(3, \mathbb{C})$ and primitive reflection subgroups of $GL(3, \mathbb{C})$. See, for example, [B] and [LT] for the contents of this section.

Let $\pi: GL(n, \mathbb{C}) \to PGL(n, \mathbb{C})$ be the natural projection and $[A] := \pi(A)$ for $A \in GL(n, \mathbb{C})$.

Definition 2. Let $\widetilde{G} \subset GL(n, \mathbb{C})$ be a subgroup of $GL(n, \mathbb{C})$. (1) \widetilde{G} is *irreducible* $\iff_{\text{def}} \mathbb{C}^n$ has no proper \widetilde{G} -invariant subspaces. (2) Assume that \widetilde{G} is irreducible. It is said to be *imprimitive* if there exists a direct sum decomposition

$$\mathbb{C}^n = W_1 \oplus W_2 \oplus \cdots \oplus W_r$$

such that

$$\forall \sigma \in G, \ \forall i, \ \exists j, \ \sigma(W_i) = W_j.$$

Otherwise G is said to be *primitive*.

(3) A subgroup $G \subset PGL(n, \mathbb{C})$ is said to be *irreducible* (resp. imprimitive, primitive) if $\pi^{-1}(G) \subset GL(n, \mathbb{C})$ is irreducible (resp. imprimitive, primitive).

Proposition 2. Any finite primitive subgroup of $PGL(3, \mathbb{C})$ is conjugate to one of the following:

- (i) $L \simeq A_5 \simeq PSL(2,5)$ (alternating group of degree five).
- (ii) The Klein group $K_{168} \simeq PSL(2,7)$.
- (iii) The Hessian group H_{216} , or its subgroup H_{36} or H_{72} .
- (iv) $V \simeq A_6$ (alternating group of degree six).

Remark 3. (1) The Hessian group H_{216} is generated by the four elements h_i (i = 1, 2, 3, 4) represented by the following matrices:

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix} \text{ and } \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega \end{pmatrix},$$

where ω is a primitive third root of unity. This group is the full automorphism group of the smooth plane sextic

$$H: X^{6} + Y^{6} + Z^{6} - 10(X^{3}Y^{3} + Y^{3}Z^{3} + Z^{3}X^{3}) = 0,$$

i.e., $\operatorname{Aut}(H) = H_{216}$. This curve has 12 outer quasi-Galois points of order three (cf. [FMT, Theorem 4.12]).

The subgroups H_{36} and H_{72} are respectively equal to $\langle h_1, h_2, h_3 \rangle$ and $\langle h_1, h_2, h_3, u \rangle$, where $u = h_1^{-1} h_4^2 h_1$.

(2) The group V is the full automorphism group of the Wiman sextic

$$W: 10X^{3}Y^{3} + 9(X^{5} + Y^{5})Z - 45X^{2}Y^{2}Z^{2} - 135XYZ^{4} + 27Z^{6} = 0,$$

i.e., $\operatorname{Aut}(W) = V \simeq A_6$. It has 45 outer quasi-Galois points of order two.

Definition 3. (1) A matrix $A \in GL(n, \mathbb{C})$ is called a *reflection* $\Leftrightarrow_{\text{def}} \operatorname{rank}(A-E) = 1$ (i.e., A has a unique eigenvalue $\neq 1$).

(2) An element $\sigma \in PGL(n, \mathbb{C})$ is called a *projective reflection* \iff_{def} there exists a reflection $A \in GL(n, \mathbb{C})$ such that $\sigma = [A]$.

(3) A subgroup of $GL(n, \mathbb{C})$ (resp. $PGL(n, \mathbb{C})$) is called a *reflection group* (resp. *projective reflection group*) if it is generated by reflections (resp. projective reflections).

Note that a projective reflection can be represented by a non-reflection.

Example 1. Let ω be a primitive third root of unity. A reflection $A = \text{diag}(1, 1, \omega)$ and another matrix $A' = \text{diag}(-1, -1, -\omega)$ give the same projective reflection $\sigma = [A] = [A']$, but A' is not a reflection.

The following classification of three-dimensional finite primitive reflection groups is well-known. We use the notation in [LT].

Proposition 3. Any finite primitive reflection subgroup of $GL(3, \mathbb{C})$ is conjugate to one of the following:

(i) G_{23} ($\pi(G_{23}) = L$, $|G_{23}| = 120$) (ii) G_{24} ($\pi(G_{24}) = K_{168}$, $|G_{24}| = 336$) (iii) G_{25} ($\pi(G_{25}) = H_{216}$, $|G_{25}| = 648$) (iii') $G_{26} = G_{25} \times \{\pm E_3\}$ ($\pi(G_{26}) = H_{216}$, $|G_{26}| = 1296$) (iv) G_{27} ($\pi(G_{27}) = V$, $|G_{27}| = 2160$)

In particular, any finite primitive subgroup of $PGL(3, \mathbb{C})$ is a projective reflection group or its subgroup.

Remark 4. Let $\widetilde{G_1}$ and $\widetilde{G_2}$ be finite reflection groups contained in $GL(3, \mathbb{C})$. If $\widetilde{G_1}$ is primitive and $\widetilde{G_1} \subset \widetilde{G_2}$, then $\widetilde{G_2}$ is also primitive. Hence $(\widetilde{G_1}, \widetilde{G_2}) = (G_{23}, G_{27})$ or (G_{25}, G_{26}) .

3. Outline of proof of Theorem A

For Theorem A, we recall that

$$\operatorname{Aut}(K) = K_{168}, \quad \operatorname{Aut}(H) = H_{216} \quad \text{and} \quad \operatorname{Aut}(W) = V \simeq A_6,$$

where

$$\begin{split} &K = XY^3 + YZ^3 + ZX^3, \\ &H = X^6 + Y^6 + Z^6 - 10(Y^3Z^3 + Z^3X^3 + X^3Y^3), \\ &W = 10X^3Y^3 + 9(X^5 + Y^5)Z - 45X^2Y^2Z^2 - 135XYZ^4 + 27Z^6. \end{split}$$

Thus we only have to give examples whose automorphism group is L, H_{36} or H_{72} .

TAKESHI HARUI

The homogeneous part of degree six of the invariant ring of G_{23} is

 $\mathbb{C}[X,Y]_6^{G_{23}} = \mathbb{C}W \oplus \mathbb{C}U.$

The polynomials U is defined by

$$U := 7(X^{6} + Y^{6} + Z^{6}) + \alpha(X^{4}Y^{2} + Y^{4}Z^{2} + Z^{4}X^{2}) + \beta(X^{2}Y^{4} + Y^{2}Z^{4} + Z^{2}X^{4}) + 54X^{2}Y^{2}Z^{2} = 0,$$

where

$$\alpha = -21(\zeta_5 + \zeta_5^4) - 18(\zeta_5^2 + \zeta_5^3), \quad \beta = -18(\zeta_5 + \zeta_5^4) - 21(\zeta_5^2 + \zeta_5^3)$$

(ζ_5 is a primitive fifth root of unity).

Proposition 4. Let C_{λ} ($\lambda \in \mathbb{C}$) be the plane sextic defined by $U + \lambda W = 0$. If λ is general then Aut(C_{λ}) = $L \simeq A_5$.

Set $\widetilde{H}_{36} = G_{26} \cap \pi^{-1}(H_{36})$. Then

$$\mathbb{C}[X,Y]_6^{\widetilde{H}_{36}} = \mathbb{C}H \oplus \mathbb{C}F.$$

The polynomials F is defined by

$$F := 4(X^6 + Y^6 + Z^6) - 15\omega XYZ(X^3 + Y^3 + Z^3) - 10(Y^3Z^3 + Z^3X^3 + X^3Y^3) - 45\omega^2 X^2 Y^2 Z^2,$$

where ω is a primitive third root of unity.

Proposition 5. Let C'_{λ} ($\lambda \in \mathbb{C}$) be the plane sextic defined by $F + \lambda H = 0$. If λ is general then $\operatorname{Aut}(C'_{\lambda}) = H_{36}$. On the other hand, $\operatorname{Aut}(C'_{-3/2}) = H_{72}$.

Thus we obtain Theorem A.

4. SMOOTH PLANE CURVES WHOSE AUTOMORPHISM GROUP IS PRIMITIVE In what follows G denotes Aut(C) and assume that it is primitive. We define

$$\widetilde{G} := \begin{cases} G_{23} & \text{if } G = L \\ G_{24} & \text{if } G = K_{168} \\ G_{26} & \text{if } G = H_{216} \\ \widetilde{H}_{36} = G_{26} \cap \pi^{-1}(H_{36}) & \text{if } G = H_{36} \\ \widetilde{H}_{72} = G_{26} \cap \pi^{-1}(H_{72}) & \text{if } G = H_{72} \\ G_{27} & \text{if } G = V. \end{cases}$$

Recall

 $S_k = S_k(C) = \{ P \in \mathbb{P}^2 \mid P \text{ is a quasi-Galois point for } C \text{ of order } k \}$

6

and set

$$R_{k} = R_{k}(G) := \{ \sigma \in G \mid \sigma \text{ is a projective reflection of order } k \}, \quad R := \bigcup R_{k},$$

$$R^{(k)} = R^{(k)}(G) := \{ \langle \sigma \rangle \subset G \mid \sigma \in R_{k} \},$$

$$\widetilde{R}_{k} = \widetilde{R}_{k}(\widetilde{G}) := \{ A \in \widetilde{G} \mid A \text{ is a reflection of order } k \}, \quad \widetilde{R} := \bigcup \widetilde{R}_{k},$$

$$\widetilde{R}^{(k)} = \widetilde{R}^{(k)}(\widetilde{G}) := \{ \langle A \rangle \subset \widetilde{G} \mid A \in \widetilde{R}_{k} \}.$$
Note that $G[P] \in R^{(k)}$ if $P \in S_{k}$. Furthermore

Lemma 6. The map
$$S_k \to R^{(k)}$$
 $(P \mapsto G[P])$ is bijective

By a classification of reflection groups we see that $\widetilde{R}^{(k)} = \emptyset$ for $k \neq 2, 3$ and obtain the following table.

G	\widetilde{G}	$ \widetilde{R}^{(2)} $	$ \widetilde{R}^{(3)} $
L	G_{23}	15	0
K_{168}	G_{24}	21	0
H_{216}	G_{26}	9	12
H_{36}	\widetilde{H}_{36}	9	0
H_{72}	\widetilde{H}_{72}	9	0
V	G_{27}	45	0

Table 2 Reflections

Remark 5. (1) $|\widetilde{R}_k| = \varphi(k)|\widetilde{R}^{(k)}|, |R_k| = \varphi(k)|R^{(k)}|$ (φ is Euler's totient function).

(2) Note that $H_{216} = \pi(G_{25})$ has 9 projective reflections of order 2, e.g.,

$$h_3^2 = \left[\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \right]$$

but G_{25} has no reflections of order 2.

The following holds:

Proposition 7. $\pi|_{\widetilde{R}}: \widetilde{R} \to R \ (A \mapsto [A])$ is bijection and $\pi(\widetilde{R}_k) = R_k$. In particular $|S_k| = |R^{(k)}| = |\widetilde{R}^{(k)}|$.

Thus we give a solution to Problem (B), i.e., we can determine the number of quasi-Galois points for C by counting reflections in \tilde{G} .

G	$ S_2 $	$ S_3 $
L	15	0
K_{168}	21	0
H_{216}	9	12
H_{36}	9	0
H_{72}	9	0
V	45	0

Table 3 quasi-Galois points

5. Outline of proof of Theorem B

We show some lemmas to prove Proposition 7.

Lemma 8. Let $\sigma \in PGL(n, \mathbb{C})$ be a projective reflection of finite order and $A \in GL(n, \mathbb{C})$ a reflection such that $\sigma = [A]$. Then A is of finite order and ord $A = \operatorname{ord} \sigma$.

Proof. It suffices to show that $\operatorname{ord} A \mid \operatorname{ord} \sigma$. There exists a matrix $A_0 \in GL(n, \mathbb{C})$ of finite order such that $\sigma = [A_0]$ (For example, if we take $A_0 \in SL(n, \mathbb{C})$ then $\operatorname{ord} A_0 \leq n \operatorname{ord} \sigma$). Then $A = cA_0$ for some $c \in \mathbb{C}^{\times}$ and A_0 is diagonalizable (since it is of finite order). Hence A is also diagonalizable, i.e.,

$$PAP^{-1} = \text{diag}(1, \dots, 1, \zeta)$$
 (ζ is a root of unity)

for some $P \in GL(n, \mathbb{C})$.

Put $k = \operatorname{ord} \sigma$. Then

$$E = [P]\sigma^{k}[P^{-1}] = [(PAP^{-1})^{k}] = [\operatorname{diag}(1, \dots, 1, \zeta^{k})].$$

Hence $\zeta^k = 1$, which implies that $A^k = E$. Thus ord $A \mid k$.

Set $N = \operatorname{lcm} \{ \operatorname{ord} g \mid g \in \widetilde{G} \}.$

Lemma 9. Let $\sigma \in G$ be projective reflection. Take a reflection $A \in GL(3, \mathbb{C})$ and a matrix $A_0 \in \widetilde{G}$ such that $\sigma = [A] = [A_0]$. If $A = cA_0$ ($c \in \mathbb{C}^{\times}$) then $c^N = 1$.

Proof. We see that $A^N = c^N E$ since $A_0^N = E$. Then $c^N = 1$ because A is a reflection.

 Set

$$Z_N := \{ aE_3 \mid a^N = 1 \} \subset GL(3, \mathbb{C}), \quad \widehat{G} := \langle \widetilde{G}, Z_N \rangle \quad \text{and} \\ \widehat{R} = \{ A \in \widehat{G} \mid A \text{ is a reflection} \}.$$

Then \widehat{G} is a finite group since $Z_N \subset Z(GL(3,\mathbb{C}))$.

Lemma 10. If
$$\widetilde{G} = G_i$$
 $(i = 23, 24, 26, 27)$ then $\widehat{R} = \widetilde{R}$.

Proof. Assume that $\widehat{R} \supseteq \widetilde{R}$. Take $A \in \widehat{R} \setminus \widetilde{R}$. Note that $\langle \widetilde{G}, A \rangle$ is a finite reflection group strictly containing $\widetilde{G} = G_i$, hence it is primitive. Then $\widetilde{G} = G_{23}$ and $\langle \widetilde{G}, A \rangle = G_{27}$. In particular N = 30. However,

$$G = \langle G_{23}, Z_{30} \rangle = G_{23} \times Z_{15}$$

which implies that

$$|\hat{G}| = 120 \cdot 15 = 1800 < |G_{27}| = 2160.$$

This is a contradiction.

We prove Proposition 7 by using above lemmas.

Proof of Proposition 7. We may assume that $\widetilde{G} = G_i$ (i = 23, 24, 26, 27). Take any element $\sigma \in R$. By Lemma 9 there exist $A_0 \in \widetilde{G}$ and $c \in Z_N$ such that $\sigma = [A_0]$ and cA_0 is a reflection. Then $cA_0 \in \widehat{R}$ since $cA_0 \in \widehat{G}$. It follows from Lemma 10 that $cA_0 \in \widetilde{R}$. Thus $\pi|_{\widetilde{R}} : \widetilde{R} \to R$ is surjective since $[cA_0] = \sigma$.

Suppose that $A, A' \in \widetilde{R}$ and [A] = [A']. Then

 $A' = cA \quad (\exists c \in \mathbb{C}^{\times}), \quad A \sim \operatorname{diag}(1, 1, \zeta) \quad \text{and} \quad A' \sim \operatorname{diag}(1, 1, \zeta') \quad (\zeta^N = \zeta'^N = 1).$ Hence

$$\operatorname{diag}(c, c, c\zeta) \sim \operatorname{diag}(1, 1, \zeta'),$$

which implies that c = 1, that is to say, A = A'. Thus $\pi|_{\widetilde{R}} \colon \widetilde{R} \to R$ is injective. Furthermore, π preserves the order of elements by Lemma 8.

References

- [B] H. Blichfeldt, Finite Collineation Groups: With an Introduction to the Theory of Groups of Operators and Substitution Groups, Univ. of Chicago Press, Chicago (1917).
- [FMT] S. Fukasawa, K. Miura, T. Takahashi, Quasi-Galois points, arXiv:math/1505.00148.
- [H] T. Harui, Automorphism groups of smooth plane curves, Kodai Math., to appear.
- [LT] G. I. Lehrer, D. E. Taylor, Unitary reflection groups, Cambridge University Press (2009).
- [Y] H. Yoshihara, Function field theory of plane curves by dual curves, J. Algebra 239, no. 1 (2001), 340–355.