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A THEOREM OF CLIFFORD TYPE
FOR LINEAR SYSTEMS ON CURVES

TAKESHI HARUI

ABSTRACT. This paper concerns the relation between the degree
and the projective dimension of linear systems on curves. We gen-
eralize Clifford’s theorem and its improvement by Coppens and
G. Martens and classify the special curves for our problem, and
estimate their gonality.

0. Introduction

The well-known classical Clifford’s Theorem (Theorem 2.1) is the
starting point of the study of special divisors on curves. It gives a relation
between the degree and the projective dimension of linear systems on
curves. About fifteen years ago Coppens and G. Martens obtained an
improvement of it in their famous paper [5] (Theorem 2.2).

We would like to refine these theorems in this paper. For this purpose
we introduce a new notion of [-Clifford curves (Definition 2.5), which are
the exceptional curves for our analogy of Clifford’s inequality. So our
problem is translated to the classification of [-Clifford curves. In our
words, the result of Coppens and G. Martens is the determination of
2-Clifford curves.

In Section 2 we obtain a rough description of [-Clifford curves for any
[ > 2 (Theorem 2.7). To put it simply, we can say that any [-Clifford
curve is nearly extremal (see Definition 2.4) or admits a covering of
another curve of mapping degree < [. The next step is finding criteria
for [-Clifford curves. So we investigate their gonality in the rest of the
section. For example, we show that the gonality is not greater than 2[
for {-Clifford curves of certain type (Theorem 2.11).
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In Section 3 we restrict ourselves to 3-Clifford curves and classify
them in detail (Theorem 3.1, Theorem 3.3). We also determine their
gonality (Corollary 3.4).

The author would like to express my sincere gratitude to my teacher
K. Konno. The author is also grateful to Prof. C. Keem, Prof. A. Ohbuchi
and the referee for many useful suggestions and all people I met during
my stay in Korea.

Notation and Conventions

A variety (curve, surface, etc.) means a reduced, irreducible and
projective one over the complex numbers C unless otherwise mentioned.
Everywhere in this paper C stands for a smooth curve of genus g. The
gonality of C' is the minimal degree of surjective morphisms from C to
P

A g} is an r-dimensional linear system of degree d on C. It does not
need to be complete nor free from base points, but it will be both mostly
in this paper. If it is free from base points, then it gives a morphism
from C onto a non-degenerate (possibly singular) curve in P". It will
be denoted by Pg-. When r > 2, the g is said to be simple if @47 is
birational onto its image.

Assume that the g is not simple (then it is also said to be com-
pounded) and let C’ be the normalization of its image curve. Then the
induced morphism ¢ : C — C’ is a non-trivial covering map of some
degree n > 2. A linear system g2 on C is said to be induced by ¢ (or by
(") if there exists a gf/n on C’ such that g¢ = go*(gf/n). For example,
our gy is induced by ¢.

Let D and D’ be two divisors on a variety. We will write D ~ D' if
they are linearly equivalent.

For a smooth variety X, Kx denotes the canonical divisor.

For a real number z, [z] denotes the greatest integer not exceeding z.

1. Preliminary results

We will use several known results.
LEMMA 1.1. The degree of a non-degenerate surface S in P" is not
less than r — 1. If it becomes equality, then S is one of the following:

e a rational normal surface scroll; or
e a Veronese surface (in this case r = 5).
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In the former case, if S is singular then it is a cone over a smooth rational
curve.

LEMMA 1.2. Let S be a surface scroll (possibly singular) and C C S
be a curve on S not lying in the singular locus of 5. Let o denote
the degree of the map from C to a general hyperplane section H of S
induced by the ruling on §. Then the arithmetic genus of C' is computed
as follows:

pa(C) = (v = 1) <degC —-1- %adegS) + ago,

where gq is the sectional genus of S, i. e. go = pg(H).

THEOREM 1.3 (Castelnuovo’s bound [2], [6]). Assume that C admits
a simple linear system glj(r > 2) without base points. Then

g <mo(d, 1) = <7;> (r —1) + me,

where m = [%} ande:=d—1—-m(r—1).

Recall that a smooth curve C of genus g which has a simple g};(r > 2)
is said to be extremal with respect to the gj if its genus is equal to
Castelnuovo’s bound, i. e. g = mg(d,r). Then the g} is very ample and
C is identified with the image curve of @47, which is also said to be
extremal.

THEOREM 1.4 ([1], [2]). Let d and r be integers such that r > 3,
d>2r+1. Setm:= [%} and € :=d—1—m(r —1). Then any
extremal curve C in P" lies on a surface of minimal degree and it is one
of the following:

(i) The image of a smooth plane curve of degree d’ under the Veronese
embedding P? — P5. In this case r = 5, d = 2d’ and gon(C) =
d —1;or
(ii) A smooth member of the linear system |mH + L| on a rational
normal scroll. In this case € = 0 and gon(C) = m; or
(iii) A smooth member of the linear system [(m + 1)H — (r — e — 2)L]
on a rational normal scroll and gon(C) =m + 1,

where H (resp. L) is the class of a hyperplane section of the scroll
(resp. of a line of the ruling).
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THEOREM 1.5 ([6]). Assume that C' admits a simple gj(r > 2) with-
out base points. Let Co be the image of the map @4r : C — P and let
po denote the arithmetic genus of Cy. Set

71'1((1,7‘) = <7T2M>r+m1(61 + 1) + u1,

where

d—1 .
mlzz[ }, er:=d—1—-—mar

T
nd a1 fa=r=1)
Hr = 0 (otherwise).

Then
(1) If p, > mi(d,r) and d > 2r + 1, then Cy lies on a surface of degree
r—1.
(2) If p, = m(d,r) and d > 2r + 3, then Cy lies on a surface of degree
T or less.

REMARK 1.6 ([2], [5]). Let C be a smooth curve of genus g. The
gonality of C, denoted by k, is bounded by g, i. e. k£ < [g;_g}

PROPOSITION 1.7 (Castelnuovo-Severi inequality). Let C, B; and
Bs be smooth curves of respective genera g, g1 and go. Assume that
wi : C — B; (i = 1,2) is a surjective morphism of degree d;. If
= @1 X s : C — By x By is birational onto its image, then g <
(di — 1)(dz2 — 1) + dig1 + daga.

REMARK 1.8. We would like to point out a simple but useful fact
concerning this proposition. Assume that ¢ is not birational onto its
image, i. e. n := degy > 2 and let C’ be the normalization of its image
curve. Then C’ has two surjective morphisms ¢} : ¢’ — B; (i = 1,2)
of degree d;/n. Applying Castelnuovo-Severi inequality to C’, we obtain
the following inequality:

d d d d
9(C') < (—1 - 1) (—2 - 1) + g+ .
n n n n

2. A theorem of Clifford type

In this section we generalize Clifford’s theorem.
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THEOREM 2.1 (Clifford’s Theorem). Let g} be a linear system on C
with 0 < d < 2g. Then 2r < d.

Coppens and G. Martens obtained a refinement of this theorem:.

THEOREM 2.2 ([5]). Assume that C' admits a complete linear system
gy without base points satisfying 0 < d < g — 1 and 3r > d. Then one
of the following occurs:
(i) r>2,d =3r—1 and gy embeds C' in P" as an extremal curve with
g = 3r. Furthermore, if r # 5 then C is tetragonal, i. e. gon(C) =
4. If r = 5 and d = 14, there is a further possibility that C is
hexagonal, i. e. gon(C) = 6; or

(i) C is a double covering of another smooth curve C' (of genus ¢')
with g > 6¢g’ + 3. In this case the gonality of C and C’, denoted
by k and ¥ respectively, satisfy k = 2k’ and 2r < d — 2(k — 3).

REMARK 2.3. The converse of this result is also true. In fact, it is
clear for (i). For the case (ii) we consider any linear system of degree
3¢’ + 1 on C’. Its dimension is 2¢’ + 1 since it is non-special. Thus the
pull-back of the linear system is a 93?3;’:—1) on C. Then 2(3¢9’ +1) < g—1
and 3-(2¢' + 1) > 2(3¢' + 1).

Clifford’s Theorem and Theorem 2.2 tell us that

if 0<d<2g—-2 then 2r <d for any g; on any curve,

if 0<d<g-—1 then 3r<d forany g; onC

unless C' is one of the curves described in Theorem 2.2.

We would like to generalize this result. That is to say, we expect to
have a better inequality for linear systems on almost all curves under
some stronger condition and classify the rest curves.

First of all we introduce some notions for describing our results.

DEFINITION 2.4. Let C be a smooth curve of genus g which admits a
simple gi(r > 2,d > 2r + 1) and let Cp be the image curve of $gr. Then
C is said to be nearly extremal with respect to the gJ if the arithmetic
genus of Cy is greater than 71(d,r). In this case C} is said to be nearly
extremal, too.

Note that any nearly extremal curve lies on a surface of degree r — 1
in P" by Theorem 1.5.

DEFINITION 2.5. Let [ be an integer > 1. Consider the condition:

* if 0§d§29~1 then (I+ 1)r <d for any gJ.
l d
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We will say that C is an [-Clifford curve if it does not satisfy (x;),
i. e. there exists a g}, on C such that 0 < d < %(g —1)and (I4+1)r > d.

From our point of view, Clifford’s Theorem exactly states that any
smooth curve satisfies (x1), i. e. there exist no 1-Clifford curves. The
result of Coppens and G. Martens (Theorem 2.2) is the determination
of 2-Clifford curves. In fact, the notion of [-Clifford curves is motivated
by these interpretations.

EXAMPLE 2.6. Examples of [-Clifford curves:

(1) Any smooth plane quintic or any smooth hyperelliptic curve of
genus > 3 is a 2-Clifford curve. Any smooth plane sextic or any
smooth trigonal curve of genus > 6 is a 3-Clifford curve.

(2) Let T' (resp. A) be the fiber of the first (resp. second) projection
from P! x P!. Then any smooth and irreducible member of |5A +
6I'| is a 3-Clifford curve since its genus is twenty and it admits a
9h-

Roughly speaking, we can say that “any [-Clifford curve is nearly
extremal or admits a covering of another curve of mapping degree < [”.
This is described more precisely in Theorem 2.7.

It might seem that the assumption for the degree in (¥;) is too strong,
but it will turn out to be reasonable. We will discuss it after proving
our main result (see Example 2.8).

Here we would like to give a simple remark. If a curve possesses a
linear system violating (%;) then in fact it admits a complete and base
point free one as such. So it suffices to consider complete linear systems
without base points in our argument. Then we obtain a description of
[-Clifford curves for any [ > 2.

THEOREM 2.7. Let C be a smooth [-Clifford curve of genus g, where
l is a fixed integer > 2. Let gj, be a complete linear system without base
points on C satisfying 0 < d < #(g — 1) and (I + 1)r > d. Then one of
the following occurs:
(i) C is nearly extremal with respect to the gj; or
(ii) C is a covering of another smooth curve C’ (of genus ¢') of degree
n(2<n<l). Ifn> I—ng, then
In{(l+1)¢' +1}
9="90x1-n)
holds. Furthermore if r > 2, then the gonality of C and C’, de-

noted by k and k' respectively, satisfy k = nk’ and the inequality
nr < d - 2k + 3n holds.

+1
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Proof. There are two cases:
(i) » > 2 and g} is simple. We make our way by induction on [. The
case | = 2 is directly follows from Theorem 2.2. So assume that [ > 3. If
' admits another simple linear system of dimension > 2 which breaks
(*;) for some i < [, then the hypothesis of the induction implies the
conclusion. Hence we may assume that C satisfies (x;) for any ¢ < L.
In particular, since the condition d < %(g — 1) for our g} implies d <
2:(g — 1), we obtain d > Ir by (x_1).

Let Cy be the image curve of the morphism @¢r : C — P7. If d > Ir
then my :=[(d — 1)/7] = [, so we have

[ 1
mi(d,r) = (2>r +l{d—1—-Ilr+1)=1d- 51(1 + 1)r.
Hence
1 1
g —m(d,r) > §ld ~m(d,r) = —2—1{(1 + 1)r —d} >0,

so (Y is nearly extremal. It is similar in the case d = Ir.
(ii) r = 1 or gj is compounded. Then n = deg®y; > 2. Let €’ be
the normalization of the image of the morphism @7 : €' — P" and let
g' be its genus. Then C has a covering ¢ : C — C’ of degree n and
C’ possesses a gg"/n such that go*(gfir/n) = g;. We may assume that the
covering map ¢ never factors through another curve.

Assume that n > HTl Then the gt’j’”/n is non-special, i. e. r = % -d,
since otherwise we have a contradiction 2r < % < l—:—lr by Clifford’s
Theorem. Since d < (I + 1)r — 1, we obtain

OSg’z%—rS%{(l—l—l—n)r—l},

which shows n < [. We also have

S ng +1 In{(l+1)g +1}

r> .

“l4+1-n I+1—-n
Finally, further assume that » > 2. Let us denote by k (resp. k') the
gonality of C (resp. C'). It remains to show that k = nk’. Suppose,
to the contrary, that k < nk’. The assumption for ¢ and Castelnuovo-
Severi inequality (Proposition 1.7) imply
(*) g<(n—1)(k-1)+ng.

Suppose that ¢/ = 0. Then ¥ =1, k < n and g < (n — 1)2. On the
other hand, d = nr > 2n and g > %ld > In > n? from our assumption.

29—-2>ld=1In(g' +7) >
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This is a contradiction, hence we obtain ¢’ > 0. It follows from (%) and
k<nk' <n-2F2 that

1).&'9/;;32_}_

= %n{(n +1)g' +3(n - 1)}

g<(n-— ng’

On the other hand, we have already obtained that g > %l.

Hence
Hl+ 1) +1} < (+1-n){(n+1)g +3(n—1)}.

It follows that

{+1)—(n+1)(+1-n)}g <3(n-1)(I+1-n)-1-1.
It is easy to check that the left side is positive and we have

{0+ —(n+1)(+1-n)} <3(n—-1)(I+1—n)—1-1,
which implies that

(I+1)2<202n-1)(1+1-n).

But the maximal value of the right side as a function of n is (l + —%)2 (it

is attained when n = 2%@), which is a contradiction. Hence k = nk’.
In particular £ < n(¢’ + 3)/2 = (d — nr + 3n)/2. Thus we complete the
proof. O

We should remark on our definition of [-Clifford curves, so we con-
struct an example which shows its validity.

EXAMPLE 2.8. Let S be a smooth surface scroll over an elliptic curve
in P"(r > 3) and let H (resp. f) denote its hyperplane section (resp. its
fiber of the ruling). Note that H2 = r, H.f = 1 and Kg = —2H + rf.
Choose a smooth irreducible element C of the linear system |5H — (r +
1)f|. Then its degree and genus are

d=CH=4r -1,
1
g= 50.(C+K5) +1=6r-3=mr-1r),
respectively. Hence they satisfy

d= [;(Q—I)J%-Z and 4r > d,
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but C is not nearly extremal. Thus we know that the notion of {-Clifford
curves is valid if we hope a clear description of special curves for our
problem.

DEFINITION 2.9. An [-Clifford curve C is said to be of type I (resp. of
type IT) if (i) (resp. (ii)) in Theorem 2.7 holds.

In the rest of this section, let [ denote a fixed integer not less than 3.
We shall estimate the gonality of [-Clifford curves.
First of all we note an easy fact:

LEMmmA 2.10. Let C he a smooth I-Clifford curve and assume that C
satisfies (x;) for any i < 1. Then k := gon(C) > 1.

Proof. By definition C has a pencil g,i. Suppose that k < 1. Let g;
be a linear system satisfying 0 < d < #(g— 1) and (I + 1)r > d. Note
that d > Ir since otherwise the ¢} breaks (x—1). Hence k <1 < d. So
k- k <ld € 2g— 2, which implies that k < %(g —1). Applying (*x) to
the 91}: we have a contradiction (k+1)-1 < k. O

From now on we consider [-Clifford curves of type I. Let C be a
smooth [-Clifford curve with a simple gj(r > 2) satisfying 0 < d <
%(g — 1) and (I + 1)r > d. If r = 2 then C has a plane model of degree
d < 21 + 1, which implies that gon(C) < 2.

So assume that » > 3. Theorem 2.7 tells us that the image curve
Cy of the morphism @+ lies on a surface S of degree r — 1 in P". By
Lemma 1.1 § is a rational normal surface scroll or a Veronese surface.

In the latter case, r = 5, 5l < d < 5l + 4 and d is even. Furthermore
Cy is isomorphic to a plane curve of degree d/2. In particular gon(C) <
d_1<8i+1.

In the following we restrict ourselves to the case that S is a rational
normal surface scroll.

THEOREM 2.11. Let C be a smooth I-Clifford curve with a simple
gh(r > 3) satisfying 0 < d < %(q — 1) and (I + 1)r > d. Assume that
the image curve Cy of the morphism g lies on a rational normal scroll
S. Let a denote the degree of the map from Cy to a general hyperplane
section of S induced by the ruling. Then

(1) The gonality k of C is not more than a and
o< 2l (r>4)
B (5[—1)/2 (r=3)
Furthermore if r > 6, orl > 5 and r > 5, then a < 2l.
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(2) Assume that C satisfies (x;) for any i < 1. If
a <2l and g¢>max{(a—1)(a—2),2(a—1)(a—6)+ 11},
then k = «. In particular, if r > 16 then k = a.

Proof. (1) It is clear that £ < a. We can compute the arithmetic
genus of Cy by Lemma 1.2:

() = (@~ 1) {d=1- jatr- 1},

Note that go = 0 since S is a rational normal scroll now. From our
assumption we have p,(Cp) > ¢ > Id/2 + 1 and it follows that

fl@)=(-1)a®—(2d+r-3)a+(1+2)d<0.
Suppose that r > 4. Then a straightforward calculation tells us that
fRAD) = - +1)2-Q2d+r-3)2+ 1)+ (1 +2)d
=2+ 1){@2+1)(r—-1)—(r-3)}-3ld
> 20+ 1)2r —20+2) = 31{(L+ 1)r — 1}
=P =Dr—4?+50+2
>1+20

Hence f(2l + 1) > 0. On the other hand the quadratic function f(«)
attains its minimal value at

2d+r-3 d—-1 1
Qp =

2(r —1) BT

It is easy to check that ag < 20+ 1 if » > 3. Hence our inequality
f(a) <0 implies that o < 2!. It is similar in the other cases.

(2) First of all, note that d > Ir since C satisfies (%;_1). Assume that
a < 20, g > max{(a — 1)(a — 2),2(a — 1)(a — 6) + 11} and suppose
that £ < a. Then C has two different pencils g}, g;. Consider the
morphism ¢ = &, x D1 : € — ¢(C) C P! x P!, If it is birational,
then Castelnuovo-Severi inequality tells us that ¢ < (e — 1)(k — 1) <
(e — 1)(a — 2). This contradicts our assumption, so ¢ is not birational,
i. e. s := degy > 2. Note that s divides both « and k, and k¥ < o — s.
Let C’ be the normalization of ¢(C) and denote its genus by ¢’. It has
two different pencils g’al/s, g;cl/s such that gl = go*(g(’ll/s), g; = ¢~ (g;cl/s).
An easy calculation gives us that
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which shows that s < I. Then k/s > 1 (since k > [ by Lemma 2.10) and
we then have s < %l similarly as above. If s > {/2, then
o<k 3
s s

which shows that k/s = 2 and a/s = 3. Then C’ is hyperelliptic and
has a gi which is free from base points. Hence we obtain that g’ = 2.
Since C' has a g’757 C has a g?s. Then 51 > -1:;3 > 7s. Then, from our
hypothesis that C satisfies (x;_1), we obtain that 2g —2 < (I —1)-7s <
7s(2s — 1). On the other hand, from our assumption for g we have
29— 2> 2a(a—3) = 18s(s — 1). Wethen have s =2,k =4, a =256
and [ = 4 by straightforward calculations. But then 2g — 2 < 42, which
contradicts that 48 < [?r < ld < 2g — 2.

Hence we obtain s < /2. Furthermore k/s > 3, since otherwise
k= (k/s)-s < 2-(1/2) = l. Take any linear system of degree 2¢’+1 on C".
Its dimension is ¢’ + 1 since it is non-special. Thus C’ has a g;"’g/,ill. Then
its pull-back by @ is a ggggl,ﬂ) on C. Note that 2s- (¢’ +1) > s(2¢' +1).
Now C satisfies (x95—1) from our hypothesis, hence it follows that

29— 1< (25 —1)-s(29' +1).

By Remark 1.8, we also have

Therefore

S2(@—3)((1—25)«}—32~2(a—s)—%s+% (kga—s,§23>

It is easy to show that the last number attains its maximum as a function
of s when s = 2 and the maximal value is 2(a — 2)(a — 5) + %. Hence
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we obtain that g < 2(a—2)(a —5) +3 =2(a — 1)(a — 6) + 11, which is
a contradiction.
If r > 16 then « < 2{ by (1) and

1 1
g> 5zd > éz% > 812 > 2a°.

Then our criterion is satisfied. O

3. The description of 3-Clifford curves

We obtained rough results for [-Clifford curves in the previous section.
Here we concentrate on 3-Clifford curves and determine all of them. We
may assume (*2) because 2-Clifford curves are classified by Theorem 2.2.

THEOREM 3.1. Assume that C satisfies (x2). Let g, be a complete
linear system without base points on C satisfying 0 < d < %(g —-1). If
4r > d then one of the following holds:

(i-a) d = 4r — 2 and g, embeds C in P" as an extremal curve with
g ="06r—2; or

(i-b) d = 4r — 1 and g}, maps C birationally in P" as a nearly extremal
curve and 6r < g < 6r + 2 except for the caser = 2,9 = 15 (C is
smooth septic); or

(ii) C is a triple covering of another curve C’' (of genus ¢') with g >

18¢' + 6. In this case k = 3k’ and 3r < d — (2k — 9), where k
(resp. k') is the gonality of C (resp. C").

Proof. Let g, be a complete linear system without base points on C
with d < %(g —1) and 4r > d. Note that d > 3r. If r = 1 then d = 3
and g > 6 from our assumption, hence C is trigonal and (ii} holds. So
assume that r > 2.

First consider the case that g is compounded. Let C’ be the nor-
malization of the image curve of ;- and let ¢ : C — C’ be the lift of
Pgr. All we have to show is that n := degy does not equal 2, since then
we can apply Theorem 2.7. Suppose that n = 2. Then d is even and C’
has a g(’ir/z, and its genus ¢’ must satisfy g < 6g’ + 2 because otherwise C

becomes a 2-Clifford curve by Remark 2.3. Since d < 2(g — 1), we have

% < %(g —1) < 2¢' + 3. Hence % < 2¢' and it follows from Clifford’s

Theorem that 2r < %, i. e. 4r < d. This contradicts our hypothesis.
Assume that the g}, is simple. First of all, it follows by Theorem 2.7

that the g/, maps C birationally in P” as a nearly extremal curve. From
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our hypothesis and Castelnuovo’s bound we have
3
() s+ 15g<midn) = () -1+ me

where m :=[(d—1)/(r - )] and e :=d— 1 —m(r — 1).
If = 2 then a direct calculation shows that

d=6 and g=my(6,2) =10, or
d=7 and 12<g<m(7,2)=15.

So assume r > 3. Then m = 3,4,or 5. But suppose that m = 3, then
mo(d, ) = 3d — 6r + 3 and (**) implies that d = 4r — 1, contradicting to
m=3. Som=4or 5.

If m = 4, then mg(d,r) = 4d — 10r + 6. By an easy calculation we
obtain

d=4r—-2 and g=my(4r—2,7r)=6r—2, or
d=4r—1 and 6r<g<my(dr—1,7r) =6r+2.

Ifm=>5then5< 9] <%=2-44 2 hencer=3andd=4r—1=
11. Then (%) shows that 18 < g < m(11,3) = 20. So C is a curve of
type (i-b). O

REMARK 3.2. We would like to some remarks on the range of the
degree in our hypothesis.
(1) Assume that C satisfies (x2). If it admits a linear system g, satisfying
d < g—2r—1and 4r > d, then the conclusion of Theorem 3.1 holds.
This is proved in a similar fashion.
(2) We can get a similar result for d = [%(g —1)] + 1, but there exists
a counterexample for d = [%—(g —1)] + 2 (see Example 2.8).

Let’s proceed to the further step. From now on we consider 3-Clifford
curves of type I. Let 7 be an integer not less than 3. Let C be a smooth
3-Clifford curve with a simple g; satisfying 0 < d < %(g— 1) and 4r > d.
We denote by Cy the image of the morphism Qgg : C — P7, by p, its
arithmetic genus. Then Theorem 1.5 tells us that Cy lies on a surface S
of degree r — 1 in P". Recall that S is a rational normal surface scroll
or a Veronese surface.

In the former case, we will denote by H (resp. L, A) the linear equiv-
alence class of its general hyperplane section (resp. of a line of the ruling,
of the minimal section) and let o denote the degree of the map from Cjy
to a general hyperplane section of S induced by the ruling on S.
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If S is a cone over a smooth rational curve then consider the blowing-
up of S at its vertex xp, which gives us a smooth rational ruled surface
S. Then &, can be lifted to a morphism from C to S because the fiber
of @QS at xp is a divisor on C. Let C’O be its image curve and we will

denote by H (resp. L) the class of the pull-back of a general hyperplane
section (resp. of a line of the ruling) of S.

THEOREM 3.3. Let the notation be as above. In particular, let C be
a smooth 3-Clifford curve with a simple gj(r > 3) satisfying 0 < d <
%(g —1) and 4r > d. Assume that C satisfies (x2). Let Cy be the image
curve of the morphism ®,7 : C — P" and let S be a surface of degree
r — 1 in P" containing Cy. Then one of the following holds:
(1) If d = 4r — 2 then C is extremal and C ~ Cy (~ Cy if S is a cone)
and there are three possibilities.
(i) S is a smooth rational surface scroll and Cy is a smooth and irre-
ducible member of the linear system |5H — (r — 3)L| on S.
(ii) S is a cone over a smooth rational curve and Cy is a smooth and
irreducible member of |5H| on S. In this case r = 3 and d = 10.
(iii) S is a Veronese surface and Cy is the image of a smooth nonic
under the Veronese embedding P2 — P®. In this case r = 5 and
d=18.
(2) If d = 4r — 1 then there are two possibilities.
(i) S is a smooth rational surface scroll and Cy is a reduced and
irreducible member of one of the following linear systems:

[4H +3L| ; g = p, = 6r,
|5H — (r —4)L|; 6r < g < pa = 6r + 2,
|6H — (2r —5)L|; r=3,4, or5 and 6r <g<p,=5r+5,
|TH—-3L| ;r=3 and g=p,=18.
(ii) S is a cone over a smooth rational curve and Cy is a reduced and
irreducible member of one of the following linear systems:
|4H + 3L|; g = pa = 6r,
|5H+L|; r=3 and 18 <g < p, =20.
Proof. We restrict ourselves to the case that d = 4r — 1 because
otherwise the conclusion follows from Theorem 1.4. Then S cannot be a
Veronese surface since the degree d of Cj is odd, therefore S is a rational

normal surface scroll. First suppose that S is smooth. Then Pic(S) is
freely generated by H and L with H> = — 1, H.L = 1 and L? = 0.
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Note that the canonical line bundle Kg ~ —2H + (r —3)L. Assume that
Cy belongs to the linear system |aH + BL|. Then
d:47'—1:CO.H:O1(T—1)+,8, Co.L = a.
By the adjunction formula
2pe —2=Cp.(Co+ Kg) = Co{(a—2)H + (B+7r —3)L}
=(a—-2)4r—-1)+afdr—-1-a(r—1)+r -3}
= —(a® - 90 +8)r+a® —5a +2
Then it follows by p, > g > 6r that
127 — 2 < —(a? — 9a 4 8)r + o® — 5a + 2.
Simplifying it we obtain that
(o~ (a5 - (@= 1} <0,
which implies that 4 < a < 7. Then our conclusion follows from straight-
forward calculations. N
If S is a cone then we will make a similar argument on S instead of S.
Assume that Co belongs to the linear system [aH + BL| of S. Note that
H does not intersect the minimal section A of S, which implies that
H~A+(r-1)L,
Cy € oA + {a(r — 1) + BYL).
Then it is necessary (and sufficient) that 8 > 0 for the last linear equiv-

alence class to contain a reduced and irreducible member. Taking it into
consideration, we can obtain our classification similarly as above. O

As a corollary of the theorem we can determine the gonality of 3~
Clifford curves.

COROLLARY 3.4. Let r > 2 be an integer and let the notation be
as above if r > 3. Let C be a smooth 3-Clifford curve with a simple
gy(r > 2) satisfying 0 < d < %(q — 1) and 4r > d. Assume that C
satisfies (x2). Then the gonality of C' is determined as follows:

(1) If d = 4r — 2 then gon(C) = 5 or 8. In the latter case, r = 5 and C
is isomorphic to a smooth plane nonic.

(2) If d = 4r — 1, then gon(C) = « if r > 3 except for the cases that
r =3 and a = 6,7. In the former case k = 5 and in the latter case
k=4. Ifr =2 then

gon(C) = {

6 (g2 is very ample)
5 (otherwise)
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In particular, 4 < gon(C) < 6.

For simplifying the proof, we use a result by G. Martens for the
gonality of smooth curves on a Hirzebruch surface. Let us denote by X,
the Hirzebruch surface with invariant e.

PROPOSITION 3.5 ([9]). Let C be a smooth curve on X, linearly equiv-
alent to aA + bL (a,b € Z). Assume that a > 2, b > ae, and a # b for
e=1,b2>a fore=0. Then gon(X) = a.

Proof. The first part of the conclusion is the direct consequence of
Theorem 1.4. So we consider the second part.

Assume that r > 3. If a < 6, then the conclusion directly follows
from Theorem 2.11 (2).

Assume that o = 6 (then S is smooth). If r = 5 then Cj is smooth
and we can apply Proposition 3.5. So we may assume r = 3 or 4. If
r = 4 then S is isomorphic to the Hirzebruch surface X1, which is the
blow-up of P? at one point and C is birational to a plane curve of degree
9 with a triple point. Then it is easy to show that gon(C) = 6 (see [10],
Proposition 2). If » = 3 then S is isomorphic to ¢ = P! x P! and Cy ~
6A + 5L. Hence gon(C) < 5. If gon(C) < 5, then Castelnuovo-Severi
inequality (Prop 1.7) gives a contradiction 18 < g < (5—1)(4—1) = 12.
Hence gon(C) = 5.

Assume that o = 7. Then r = 3 and S is isomorphic to £g = P! x P!,
and C ~ Cy ~ TA + 4L. Hence gon(C) = 4.

Finally, assume that r = 2. If g% is very ample, then C is smooth
septic (gon(C) = 6). Otherwise 12 < g < 14 and the image of the g2 is a
singular plane septic with at most two nodes as its singularities. Then it
is easy to show that gon(C') = 5 (for example, see [3], Theorem 2.1). I
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