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Introduction.

◮ Polyhedron : a finite intersection of half-spaces

P :=
{

x ∈ Rd : ã1x + b̃1 ≥ 0, . . . , ãnx + b̃n ≥ 0
}

(ã := (ã1, . . . , ãn) ∈ Rd×n, b̃ ∈ Rn).

Figure: Examples of polyhedra

◮ We call the probability content of a convex polyhedron with a multivariate normal distribution the

normal probabilities of polyhedra. D. Q. Naiman and H. P. Wynn (1997); and S. Kuriki, T. Miwa,

and A. J. Hayter (2012) studied about methods to evaluate the probabilities, which is important in

applications of statistics.

◮ The normal probability of polyhedra is a function of the parameters a ∈ Rd×n and b ∈ Rn which

determine the polyhedron:

ϕ(a,b) =

∫

∑d
i=1 aijxi+bj≥0,1≤j≤n
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This function is a generalization of the Schäfli function which studied by Aomoto (1977).

◮ By the inclusion-exclusion identity, we have the following: When the polyhedron P in general

position, the equation

ϕ(a,b) =
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J∈F
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dx

holds on a neighborhood of (ã, b̃) which defines P, where H(x) is the Heaviside function.

◮ We use this decomposition to obtain a holonomic system for ϕ(a,b). The rank of the holonomic

module is equal to the number of nonempty faces of the convex polyhedron P.

A Polyhedron in General Position.

Definition:

◮ P ⊂ Rd : a polyhedron

◮ F1, . . . ,Fn: the all facets of P

◮ H = {H1, . . . ,Hn}: the family of the bounding half-spaces for the polyhedron P,

i.e., for j ∈ [n], Hj ⊂ Rd is the half-space which is valid for P and satisfies (∂Hj) ∩ P = Fj .

◮ The homogenization Ĥ of a half-space H = {x ∈ Rd |∑ aixi + a0 ≥ 0} is defined as

Ĥ = {(x0, . . . , xd) ∈ Rd+1|
d
∑

i=0

aixi ≥ 0}.

◮ For a family of half-spaces H = {H1, . . . ,Hn}, we call Ĥ = {Ĥ0, Ĥ1, . . . , Ĥn} the homogenization of

H. Here, we put Ĥ0 = {x0 ≥ 0}.

◮ We call a family of half-spaces H = {H1, . . . ,Hn} (or it’s homogenization Ĥ = {Ĥ0, . . . , Ĥn}) is in

general position when for J ⊂ [n + 1],

F̂J :=





⋂

j∈J

∂Ĥj



 ∩





n
⋂

j=0

Ĥj





is a d + 1 − |J|-dimensional cone (i.e., the affine hull of the cone is d + 1 − |J|-dimensional affine

space) or {0}. Here, we denote by [n + 1] the set {0,1, . . . ,n}.

◮ The polyhedron P is in general position when the family H of the bounding half-spaces for P is in

general position.

Example: In the following two cases, neither polyhedron is in general position.

◮ There exists a vertex like the apex of the pyramid (a).

◮ There are two facet which intersect at points at infinity (b).

(a) (b)

Figure: Polyhedra not in general position

The Inclusion-Exclusion Identity.

The Abstract Simplicial Complex: The nerve of {F1, . . . ,Fn} is the abstract simplicial complex

defined by

F = {J ⊂ [n] : FJ 6= ∅},



FJ :=
⋂

j∈J

Fj



 .

We also call F the abstract simplicial complex associated with the polyhedron P.

Example. The abstract simplicial complex

associated with the polyhedron in the figure

on the right is

F = {∅,1,2,3,12,23,31} .
Note that each element of F corresponds to

a non-empty face of the polyhedron P.
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Edelsbrunner (1995) showed the inclusion–exclusion identity:
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where H(x) is the Heaviside function.

Example: In the case where the polyhedron P is the 2-simplex, the inclusion–exclusion identity is

3
∏
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− 1) + (1H2
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+ (1H1
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where {H1,H2,H3} is the family of bounding half-spaces for P, and 1E denotes the indicator

function of the domain E . Each of the term in the right-hand side corresponds to the cones in the

following figure.

Under the general position assumption, this identity can be generalized as follows.

Theorem

If the polyhedron P is in general position, then there exists a neighborhood U of (ã, b̃) such that the

equation
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holds for all (a,b, x) ∈ U × Rd .

Remark: When a polyhedron P is in general position, the abstract simplicial complex associated

with P is stable under perturbations of the parameters.

Example: The abstract simplicial complexes

associated with the tow polyhedra in the fig-

ure on the right are equivalent to the following

abstract simplicial complex:

F = {∅,1,2,3,12,23,31} .
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Complex Integrals.

By the inclusion–exclusion identity with parameters, the normal probability of the polyhedron can be

decomposed as follows:

ϕ(a,b) =
∑

F∈F
ϕF (a,b)

where

ϕF (a,b) =

∫

Rd
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for F ∈ F . The function ϕF (a,b) can be written in terms of complex integral. In fact, we have

∫

γ
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log(fj(a,b, z))

2π
√
−1

)

dz (1)

on a connected open neighborhood of (ã, b̃) in UF := {(a,b) : detαF (a) 6= 0}. Here, γ is a d-simplex

in Cd , and we suppose the multivalued function log satisfies log(1) = 0 and the branch cut is

{z ∈ C : ℜ(z) ≤ 0}. Consequently, we have the following theorem.

Theorem

The function ϕ(a,b) is a real analytic function, and it has an analytic continuation along every path

in
⋂

F∈F UF .

Holonomic System and Pfaffian equation.

We consider a holonomic system for the function

χP(a,b, x) =
∑

F∈F
χF (a,b, x). (2)

For J ⊂ [n], we define a hyperfunction χJ by χJ = ∂J
b
χP (∂J

b
:=
∏

i∈J ∂bi
). Regarding the Heaviside

function as a hyper function, we have

∂xi
χJ =

n
∑

j=1

aij∂bj
χJ , ∂aij

χJ = xi∂bj
χJ , ∂bℓ

χJ = χJ∪{ℓ}, fkχ
J = 0

for J ∈ F , 1 ≤ i ≤ d , 1 ≤ j ≤ n, k ∈ J, and ℓ ∈ [n]\J. Here, we put gJ∪{j} = 0 for J ∪ {j} /∈ F . These

differential equations define a holonomic module Mχ.

We can obtain a holonomic module Mq for exp(−1
2

∑d
i=1 x2

i
)χP from Mχ. Calculating the integration

module of Mq with respect to x , we have the following:

Theorem

The function ϕ(a,b) satisfies the following linear partial equations:


∂aij
−

n
∑

k=1

aik∂bk
∂bj



gJ = 0 (1 ≤ i ≤ d , 1 ≤ j ≤ n, J ∈ F),

∂bj
gJ − gJ∪{j} = 0 (j ∈ Jc, J ∈ F),

(bj +

n
∑

k=1

d
∑

i=1

aijaik∂bk
)gJ = 0 (j ∈ J, J ∈ F),

gJ = 0 (J /∈ F)

where gJ :=
(

∏

j∈J ∂bj

)

ϕ for J ⊂ [n]. Moreover, the above equations define a holonomic module M.

Theorem

The holonomic rank of M is equal to the number of non-empty faces of P, i.e.,

rank(M) = |F|.
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