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a b s t r a c t

Recent evidence suggests that Golgi cells in the cerebellar granular layer are densely connected to each
other with massive gap junctions. Here, we propose that the massive gap junctions between the Golgi
cells contribute to the representational complexity of the granular layer of the cerebellum by inducing
chaotic dynamics. We construct a model of cerebellar granular layer with diffusion coupling through
gap junctions between the Golgi cells, and evaluate the representational capability of the network with
the reservoir computing framework. First, we show that the chaotic dynamics induced by diffusion
coupling results in complex output patterns containing a wide range of frequency components. Second,
the long non-recursive time series of the reservoir represents the passage of time from an external
input. These properties of the reservoir enable mapping different spatial inputs into different temporal
patterns.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Recent experimental studies have revealed that neighboring
olgi cells in the granular layer of the cerebellar cortex are
ensely interconnected with gap junctions that allow direct diffu-
ion of ions between neuronal intracellular spaces1 (Dugué et al.,
009; Vervaeke et al., 2010). Vervaeke et al. (2010) reported that
ore than 80% of neighboring neuron pairs are interconnected
ith gap junctions, and that each Golgi cell is connected to
pproximately 10 other Golgi cells via gap junctions. They also
howed that the diffusion current between neighboring Golgi
ells has the effect of transiently desynchronizing the spike activ-
ties after external excitation (Vervaeke et al., 2010). This is con-
radictory to the classical view of the role of gap junctions, which

∗ Corresponding author.
E-mail address: tokuda@cs.tsukuba.ac.jp (K. Tokuda).

1 Gap junctions are the structures that directly connect the intracellular
paces of neighboring cells, thereby forming electrical synapses that allow direct
iffusion of ions between the neuronal intracellular spaces. Several properties
f an electrical synapse differ from those of a chemical synapse; an electrical
ynapse has almost no conduction delay, does not require spiking, and the
onnection is usually bidirectional and symmetric. In contrast, an interaction
etween neurons with chemical synapses consists of multiple active steps
nvolving several structures (axon conduction, transmitter release, sensing and
esponse by the receptors on the postsynaptic cells) that result in a variety
f dynamic responses with finite delays (∼ a few milliseconds) (Kandel et al.,
013).
ttps://doi.org/10.1016/j.neunet.2020.12.020
893-6080/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access a
is to synchronize nearby neurons (Watanabe, 1958). In spite
of the complex effect of diffusion coupling between Golgi cells
on the ongoing dynamics, the causal relationship between this
dynamics and cerebellar computation has yet to be elucidated.

Several theoretical studies have pointed out that diffusion
coupling between nonlinear oscillators not necessarily realizes
synchronization, but also induces instability (Turing, 1952) or
even chaotic activity (Fujii & Tsuda, 2004; Katori et al., 2010;
Schweighofer et al., 2004; Tadokoro et al., 2011; Tokuda et al.,
2010, 2019; Tsuda et al., 2004; Yamada & Kuramoto, 1976). Fujii
and Tsuda (2004) and Tsuda et al. (2004) reported that intro-
ducing diffusion coupling through gap junctions between class
1 neurons induces chaotic dynamics. Schweighofer et al. (2004)
proposed a theory that the abundant gap junctions in the infe-
rior olive produce chaotic neural activity that enables efficient
transmission of information in the high-frequency components of
inputs. It has also been proposed that the adaptive strength of the
gap junction in the inferior olive regulates the degrees of freedom
of the system, and the brain modifies the gap junction strength
during learning to ensure that the system operates at an optimal
level of degrees of freedom (Hoang et al., 2020; Kawato et al.,
2011; Tokuda et al., 2017, 2013). The possible computational role
of diffusion coupling through gap junction in the granular layer
should be elucidated as well.

The majority of cerebellar computational theories assume
that the cerebellum is a supervised machine that learns a de-
sirable input–output relationship (Albus, 1971; Buonomano &
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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auk, 1994; Ito, 1970; Kawato et al., 1987; Marr, 1969; Ray-
ond & Medina, 2018; Schweighofer et al., 2004; Wolpert et al.,
998; Yamazaki & Tanaka, 2007). It is well known that two
ajor input pathways converge on the Purkinje cells; the mossy

iber–granular layer–Purkinje cell pathway originating from a
recerebellar nucleus such as the pontine nucleus, and the climb-
ng fiber–Purkinje cell pathway originating from the inferior olive
Ruigrok et al., 2015). These theories assume that the former
athway is the input layer of the supervised machine and the lat-
er pathway conveys the supervising signals. The computational
ole of the cerebellar granular layer is assumed to be the pre-
rocessing – feature engineering – of incoming signals from the
ossy fibers. It transforms an input to a dynamical representation

n a high-dimensional space realized by the enormous number
∼ 1011 in human) of the granular neurons (Albus, 1971; Badura
De Zeeuw, 2017; Marr, 1969; Raymond & Medina, 2018). The

ranule cells and Golgi cells are the two major components of
he cerebellar granular layer. Even though the major outputs
f the granular layer are conveyed by the parallel fibers of the
ranule cells, the Golgi cells are also thought to play the central
ole of forming the representation because of the lack of direct
ecurrent connection within granule cells (Albus, 1971; Marr,
969; Raymond & Medina, 2018).
It has long been known that the cerebellum plays a crucial

ole in motor learning, which requires execution of sequential
ovements with temporally precise timing (Ito, 1984). For exam-
le, a vast amount of experimental studies have characterized the
ssential information flow in the cerebellum that supports motor
earning called classical eyeblink conditioning (Thompson, 2005).
n a typical eyeblink conditioning, the animal is exposed to paired
resentation of tone stimulus and a periorbital air puff stimulus
ntervened with a fixed interval (typically 250 ms) repetitively.
fter learning occurs, the animal acquires a temporally precise
otor response (eyeblink) to the tone. The eyeblink response is
recisely timed at the air puff onset with millisecond precision. It
s also known that the interval discrimination task can be learned
n eyeblink conditioning: animals can learn to elicit eyeblink
esponses at different latencies to different tone stimuli (Green
Steinmetz, 2005; Kehoe et al., 1993). Vast amount of evidence

upports the fact that the cerebellum acquires the desired map
o return a specific spatiotemporal pattern to a specific input.
o explain this computation of the cerebellum, Buonomano and
auk (1994) proposed a model of the granular layer consisting
f sparse reciprocally connected granule cells and Golgi cells that
re capable of representing the passage of time from the onset of
n external sensory stimulus. In their model, mossy fiber excita-
ion conveying the information of external tone stimulus elicits
ctivity of the granule cells and the Golgi cells, with different
ub-populations activated at different times. As a result, a specific
ub-population of the granule cells is activated at a specific time
rom the onset of the stimulus, thereby representing the passage
f time. This model successfully explains an important aspect of
he behavioral and physiological traits in eyeblink conditioning.

Yamazaki and Tanaka (2007) extended Buonomano’s model,
nd proposed the view that the cerebellum is a liquid state
achine — a type of reservoir machine (Jaeger, 2001; Maass et al.,
002). In the reservoir computing framework, the input signals
o the system project to a recurrent network called reservoir that
as a highly nonlinear dynamics in a high dimensional space, and
nly the readout connections from this reservoir are modified to
ive the desired output signals. In Yamazaki’s model, the general
omputational role of the cerebellum is to acquire a map between
patiotemporal input patterns and desired spatiotemporal output
atterns. This is a natural elaboration of the classical Marr-Albus-
to model regarding the cerebellum as a supervised machine, in

hat the reservoir machine can process spatiotemporal patterns.

73
The granular layer works as the reservoir, and long-term depres-
sion (LTD) of the parallel fiber–Purkinje cell connection works
as the learning rule. The Purkinje cell corresponds to the output
neuron of the reservoir. They showed that the network of random
recurrent connections between granule and Golgi cells realize
temporally specific activation of different sub-populations of
granule cells in response to external inputs. Their model suc-
cessfully acquires a function that maps specific different inputs
to specific different temporal patterns. To date, several studies
of cerebellar function with the reservoir computing framework
have been conducted (Rössert et al., 2015; Yamazaki & Nagao,
2012). However, even though these theories assume the in-
evitable functional role of the Golgi cells in realizing the reservoir,
to our knowledge, no study has focused on the functional role
of massive gap junctions between the Golgi cells. Considering
the facts that chaotic activity is related to the performance of
the reservoir (Bertschinger & Natschläger, 2004; Jaeger, 2001;
Laje & Buonomano, 2013; Natschläger et al., 2005; Sussillo &
Abbott, 2009; Yildiz et al., 2012) and that gap junction often
induces chaotic activity (Fujii & Tsuda, 2004; Katori et al., 2010;
Schweighofer et al., 2004; Tadokoro et al., 2011; Tokuda et al.,
2010, 2019; Tsuda et al., 2004; Yamada & Kuramoto, 1976), it is
necessary to elucidate how the gap junctions affect the compu-
tational performance of the granular layer as the reservoir, espe-
cially in terms of the effect of chaotic dynamics it may produce.

2. Methods

2.1. The network architecture

Fig. 1 shows the schematic diagrams of the two network ar-
chitectures of the reservoir machines studied in the current study.
We take the view that the cerebellum is a reservoir machine (Ya-
mazaki & Tanaka, 2007). In this view, the granular layer of the
cerebellum works as the reservoir, the mossy fiber projecting
to the granular layer is the input, and the Purkinje cell is the
output neuron. Learning via synaptic modification is realized by
changing the connection strength of the parallel fibers, which
are the readout connections. The reservoir maps an incoming
input into a high-dimensional time series by nonlinear dynamics.
Fig. 1(a) shows a simple reservoir machine composed of only
Golgi cells that are mutually connected with diffusion coupling
through gap junctions. In this study, we mainly focused on this
model to evaluate the computational performance of diffusion-
induced chaos as a reservoir machine. To confirm whether the
results obtained with this model can also be observed in a more
realistic situation, we perform a simulation incorporating the
granule cells as well (Fig. 1(b)). This model incorporates other
major components of the granular layer: the granule cells, the ex-
citatory projections from the granule cells to the Golgi cells, and
the inhibitory projections from the Golgi cells to the granule cells.
The readout projection to the Purkinje cell originates from the
granule cells as the actual cerebellar anatomical structure. Note
that we do not incorporate a feedback loop from the reservoir
output to the input in this study.

2.2. The model dynamics

A cerebellar Golgi cell is known to have the following prop-
erties: (1) it shows a periodic activity in vitro (Forti et al., 2006;
Solinas et al., 2007; Vervaeke et al., 2010), (2) its spike frequency
increases as external input increases (Forti et al., 2006; Solinas
et al., 2007), and (3) its diffusion coupling induces desynchroniza-
tion of neighboring cells (Vervaeke et al., 2010). We model the
Golgi cells with the µ-model, which is a simple model described

by a two-dimensional ordinary differential equation (Tsuda et al.,
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Fig. 1. Two network architectures of the reservoir machine considered in the current study. The assumed corresponding anatomical structures of the cerebellum are
lso indicated. (a) The Golgi cells coupled with gap junctions are the reservoir. Other structures in the granular layer, such as the granule cells and chemical synapses,
re omitted in order to focus on studying the computational performance of neurons with gap junctions acting as the reservoir. (b) The model incorporating the
ranule cells, the excitatory projections from the granule cells to the Golgi cells, and the inhibitory projections from the Golgi cells to the granule cells.
004). The µ-model is a class 1 neuron model that shows spiking
activity after a saddle–node bifurcation occurs as tonic external
input increases. This model shows periodic activity under isolated
conditions with a tonic input, increases spike frequency to in-
creasing tonic input, and shows aperiodic activity when coupled
with diffusion (Katori et al., 2010; Tadokoro et al., 2011; Tokuda
et al., 2013, 2019; Tsuda et al., 2004). The simple model shown
in Fig. 1(a) is described as follows:

dV go
i

dt
= −Rgo

i − µ ·
(
V go
i

)2 (V go
i −

3
2
)

+Jgoi + Igo,tonic + Igo,inputi , (1)
dRgo

i

dt
= −Rgo

i − µ ·
(
V go
i

)2
, (2)

Jgoi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
gGJ(V

go
2 − V go

1 ) (for i = 1),

gGJ(V
go
i+1 + V go

i−1 − 2V go
i ) (for i = 2, . . . ,

Ngo − 1),

gGJ(V
go
Ngo−1 − V go

Ngo
) (for i = Ngo),

(3)

where V go
i is the membrane potential of the ith Golgi cell, Rgo

i is
the recovery variable representing the ion channel activity of the
ith Golgi cell, µ is the parameter of the µ-model, Igo,tonic is the
common tonic input to all cells, Jgoi is the diffusion current into
the ith Golgi cell from the neighboring cells conducted through
the gap junctions, gGJ is the conductance of a gap junction, Igo,inputi
is the input signal to the reservoir described below, and Ngo is
the number of Golgi cells. The model only differs from that of
the former studies (Fujii & Tsuda, 2004; Tadokoro et al., 2011;
Tsuda et al., 2004) in that the input signal Igo,inputi is incorporated
in Eq. (1). In the µ-model, both the units of time and the vari-
ables are arbitrary. We use milliseconds as the unit of time for
convenience. We use parameters µ = 1.7, gGJ = 0.08 (typical pa-
rameter set showing chaotic dynamics) except in Figs. 4, 5 where
the dependency of the dynamics on these parameters is studied,
and in Figs. 3, 10 where gGJ = 0 is used. For the parameter Igo,tonic,
we use Igo,tonic = 0.004 other than in a simulation shown in
Fig. 2(b) and (c). As in the former studies (Katori et al., 2010;
Tadokoro et al., 2011; Tokuda et al., 2013, 2019; Tsuda et al.,
2004), we choose a one-dimensional chain with nearest-neighbor
coupling (Eq. (3)). This setting makes it easy to compare our re-
sults to those of previous studies such as the one that conducted a
detailed bifurcation analysis (Tadokoro et al., 2011) and it reduces
the computational cost of the numerical simulations. It has been
shown that this network topology is not a necessary condition for
chaotic dynamics, but it appears in the two-dimensional lattice
74
of the µ-model as well (Tokuda et al., 2019). Quantitatively, the
same results as those of the current study are obtained in two-
and three-dimensional topology (see the Supplementary material
(MMC S1) and Video (Video S3)).

We restrict the form of the input signal Igo,input ∈ RNgo to an
instantaneous pulse as follows:

Igo,input = xinδ (t − t1) , (4)

where δ (t) is the Dirac delta function, xin,i
∈ RNgo is the Ngo-

dimensional vector representing the amplitude of the input, t1
is the time when the input is given to the reservoir. Practically,
giving an input pulse is done by setting V go

→ V go
+ xin at time

t1, where V go
= (V go

i ) ∈ RNgo is the vector representation of
the membrane potentials. In Section 3.4, a series of two different
pulses are given to the system. In this case, the input signal
Igo,input is described as follows:

Igo,input = xin,1δ (t − t1) + xin,2δ (t − t2) , (5)

where t1 and t2 are the times when the input pulses are given to
the reservoir.

The model incorporating the granule cells shown in Fig. 1(b)
is described as follows:

dV gr
i

dt
= −Rgr

i − µ ·
(
V gr
i

)2 (V gr
i −

3
2
) + Igr,tonic + Ieii + Igr,inputi , (6)

dRgr
i

dt
= −Rgr

i − µ ·
(
V gr
i

)2
, (7)

dV go
i

dt
= −Rgo

i − µ
(
V go
i

)2 (V go
i −

3
2
) + Jgoi + Igo,tonic + I iei

+Igo,inputi , (8)
dRgo

i

dt
= −Rgo

i − µ
(
V go
i

)2
, (9)

where V gr
i is the membrane potential of the ith granule cell, Rgr

i is
the recovery variable representing the ion channel activity of the
ith granule cell, Igr,tonic is the common tonic input to the granule
cells, and Igr,inputi is the input signal to the reservoir projecting
to the ith granule cell. The diffusion currents are described as
follows:

Jgoi =

⎧⎪⎪⎨⎪⎪⎩
gGJ(V

go
2 − V go

1 ) (for i = 1),

gGJ(V
go
i+1 + V go

i−1 − 2V go
i ) (for i = 2, . . . ,Ngo − 1),

gGJ(V
go
Ngo−1 − V go

Ngo
) (for i = Ngo).

(10)
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he currents Ieii , I iei are the currents caused by chemical synapses,
ach representing the inhibition of the ith granule cell by the
olgi cells and the excitation of the ith Golgi cell by the granule
ells, respectively, described with the following equations:

ei
i =

Ngo∑
j=1

wei
ij f (V

go
j − θ ), (11)

ie
i =

Ngr∑
j=1

wie
ij f (V

gr
j − θ ), (12)

here wei
ij is the strength of the synaptic connection from the jth

olgi cell to the ith granule cell, wie
ij is the strength of the synaptic

onnection from the jth granule cell to the ith Golgi cell, θ is a
arameter defining the threshold above which each neuron can
e regarded as emitting a spike, and f (V ) is an activation function.
n this study, we use θ = 0.7, f (V ) =

1
1+exp(−50V ) . The synaptic

trengths are determined using the following procedure. For each
ranule cell i, nei presynaptic Golgi cells are randomly chosen.
hen, the strength is set at wei

ij = cei/nei, if the jth Golgi cell is in
the chosen group. The strength is set at wei

ij = 0, if the jth Golgi
cell is not in the chosen group. Similarly, for each Golgi cell i, nie
presynaptic granule cells are randomly chosen. Then, the strength
is set at wie

ij = c ie/nie, if the jth granule cell is in the chosen group.
The strength is set at wie

ij = 0, if the jth granule cell is not in the
chosen group. The parameter values used are µ = 1.7, gGJ ∈

{0, 0.08} , Ngr = 104, Ngo = 102, nei = 4, nie = 102, c ie =

−cei = 0.2. These parameters are determined such that the ratio
of the numbers of granule cells and Golgi cells, Ngr/Ngo, and the
number of synapses each neuron receive, nei, nie, are compatible
with those described in the former study (Sudhakar et al., 2017).

Neurons in a specific subset of the reservoir neurons are con-
nected to the outputs, which we refer to as the projecting neurons
hereafter. Let V out

i be the membrane potential of the ith projecting
neuron. In the simple model shown in Fig. 1(a), all the Golgi cells
are the projecting neurons. Thus, V out

i = V go
i . In the model shown

in Fig. 1(b), all (and only) the granule cells are the projecting
neurons. Thus, V out

i = V gr
i . The ith output of the reservoir, yi is

defined as follows:

yi =

Nout∑
j=1

wout
ij V out

j , (13)

where Nout is the number of projecting neurons in the reservoir,
and wout

ij is the synaptic weight of the connection from the jth
projecting neuron in the reservoir to the ith output yi. The vector
y = (yi) ∈ RNy defines the instantaneous output of the reservoir
machine, where Ny is the number of outputs (the number of
Purkinje cells considered). The output synaptic weight wout

ij is
time independent, and its value is modified only in the batch
learning procedure described below.

2.3. Learning of the readout connection

Let ytarget
∈ RNy be the target pattern consisting of Ny-

dimensional time series defined over a time interval
[
t0, t0 +

Ttrain
]
, where Ttrain is the length of the time series. We determine

the readout weight matrix W out
=
[
wout

ij

]
∈ RNy×Nout to minimize

the following residual value:∫ t0+Ttrain

t0

|ytarget
− y|

2dt =

∫ t0+Ttrain

t0

|ytarget
− W outV out

|
2dt,

(14)
 2

75
where |x| is the Euclidean norm of a vector x. In practice, this is
conducted by sampling both the output vectors and the target
vectors with a small sampling interval ∆. Let Ω ∈ RNy×K be
he discretized time series of the numerically integrated mem-
rane potentials of the reservoir dynamics over the time interval
t0, t0 + Ttrain] as follows:

=
(
V out (t0), V out(t0 + ∆), V out(t0 + 2∆), . . . ,

V out(t0 + K∆)
)
, (15)

here K is the natural number satisfying K∆ ≤ Ttrain < (K +1)∆,
nd V (t) = (V out

i (t)) ∈ RNout is the instantaneous membrane
otentials of the projecting neurons. The target pattern matrix
target is also defined by the same discretization as follows:
target

=
(
ytarget(t0), ytarget(t0 + ∆), ytarget(t0 + 2∆), . . . ,

ytarget(t0 + K∆)
)
. (16)

hen, the optimal readout weight matrix Ŵ out is obtained by
olving the following linear least square regression:ˆ out

= argmin |Y target
− W outΩ|

2
fro. (17)

here |W |fro is the Frobenius norm of a matrix W .

.4. Evaluation of model performance

In order to evaluate the performance of the model, we use
oot mean square error normalized by that of the target pattern
nRMSE), as follows:

RMSE =

⎛⎝∫ t0+Ttrain
t0

(|ytarget
− Ŵ outV out

|
2
)dt∫ t0+Ttrain

t0
(|ytarget|

2)dt.

⎞⎠ 1
2

(18)

ith the discretized time series, nRMSE is calculated as follows:

RMSE =
|Y target

− Ŵ outΩ|fro

|Y target
|fro

. (19)

2.5. Lyapunov dimension

For the simple model (Fig. 1(a)) under no dynamical input,
we characterized the strength of chaotic activity of the reser-
voir with the Lyapunov dimension (Kaplan & Yorke, 1979). First,
we calculate the Lyapunov spectrum by the standard method
with continuous Gram–Schmidt orthonormalization of the fun-
damental solutions to the linearized differential equation along
the trajectory (Shimada & Nagashima, 1979). Then, let λ1 ≥

λ2 ≥ λ3 · · · ≥ λ2Ngo be the Lyapunov exponents of the reservoir
dynamics, and k be the maximal value of j such that

∑j
i=1 λi ≥ 0,

he Lyapunov dimension of the system is defined as follows:

L = k +

∑k
i=1 λi

|λk+1|
. (20)

n this study, the Lyapunov dimension of the system is calculated
nder no external input to the system, where the system can
e regarded as an autonomous dynamical system. Because we
estrict the form of the input to the system as an instantaneous
ulse (Eq. (4)), the property of the reservoir without any external
nput characterizes the system’s response to the external input.

.6. Similarity index

It is commonly assumed that the cerebellar granular layer is
ble to exhibit activity specific to the passage of time in response
o an input (Buonomano & Mauk, 1994; Yamazaki & Tanaka,
007). In order to evaluate the specificity of the instantaneous
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C (1),(2)(t1, t2) =

⏐⏐⏐⏐⏐⏐
∑Nout

i=1 (V out,(1)
i (t1) − ⟨V out,(1)(t1)⟩)(V

out,(2)
i (t2) − ⟨V out,(2)(t2)⟩)√∑Nout

i=1 (V out,(1)
i (t1) − ⟨V out,(1)(t1)⟩)2

√∑Nout
i=1 (V out,(2)

i (t2) − ⟨V out,(2)(t2)⟩)2

⏐⏐⏐⏐⏐⏐ , (21)

Box I.
ctivity of the reservoir with respect to the passage of time
nd external input, we use the similarity index between differ-
nt states of the reservoir. Let V out,(1)(t) and V out,(2)(t) be two
ifferent time series of the projecting neurons of the reservoir
enerated with two different external inputs. We use the absolute
alue of the Pearson correlation coefficient between the instanta-
eous values of V out,(1)(t) and V out,(2)(t) at two time points t1 and
2, which we call the similarity index Eq. (21) as given in Box I:
here |x| denotes the absolute value of x, and ⟨V out,(1)(t)⟩ is the

mean membrane potential at time t as follows:

⟨V out,(1)(t)⟩ =
1

Nout

Nout∑
i=1

V out,(1)
i (t). (22)

.7. Continuous-time recurrent neural network with random con-
ections

To characterize the current model of the cerebellar Golgi cells
ith diffusion, the temporal specificity of the model neuron ac-
ivity is compared to that of the commonly used model that
hows chaotic activity – continuous-time recurrent neural net-
ork (CTRNN) – with random connections (Sompolinsky et al.,
988; Sussillo & Abbott, 2009). The CTRNN model is described as
ollows:

dV ctrnn
i

dt
= −V ctrnn

i +

Nctrnn∑
j=1

Wij tanh (V ctrnn
j ), (23)

where V ctrnn
i is the membrane potential of the ith neuron of

the CTRNN, Wij is the coupling strength of the synaptic con-
nection from the jth neuron to the ith neuron, tanh (·) denotes
the hyperbolic tangent, and τ is the time constant. The coupling
matrix Wij is generated as follows: first, each entry of Wij is
sampled independently from the standard normal distribution,
N (0, 1). Then, the largest absolute value of the eigenvalues of
the connection matrix, ρmax = max(abs(eig(Wij))), is calculated.
Lastly, Wij is multiplied by ρ/ρmax, where ρ is a pre-determined
scalar that specifies the spectral radius of Wij. In this study, we
use the parameter values τ = 1 ms, ρ = 10 (The results of this
study have little dependency on these parameters, unless τ is too
large or ρ is too small).

2.8. Numerical calculation

The numerical simulations were conducted using the ode45
function in Matlab R2019a (MathWorks Inc., Natick, MA, USA).
The obtained time series of the reservoir states were further
discretized with time step ∆ = 0.1 ms using the interp1 function
(Eq. (15)). The learning procedure to obtain the optimal readout
weight matrix Ŵ out was conducted by solving a linear least
squares regression in Eq. (17) using the Matlab function mldivide.

3. Results

3.1. Broad distribution of the interspike interval caused by gap
junctions

First, we show that introducing diffusion coupling causes
chaotic dynamics, which in turn results in a broad distribution
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of interspike interval (ISI) of a neuron in the model. Fig. 2 shows
examples of the evolution of the simple reservoir (Fig. 1(a))
described by Eqs. (1)–(3). Namely, the model network is a one-
dimensional chain of neurons coupled to nearest neighbors with
gap junctions and does not consist of any connections via chem-
ical synapses. Fig. 2(a) illustrates an evolution of the membrane
potentials (Ngo = 100) under a positive tonic input, Igo,tonic =

0.004. An external perturbation at t = 0 is given with xin in
Eq. (4) as xin = 0.2e50, to the all-synchronized state, where e50 is
the 50th standard basis. Namely, the membrane potential of the
neuron in the center (50th neuron) is set as V go

50 → V go
50 +0.2. The

network shows chaotic activity induced by diffusion coupling, as
reported previously (Tadokoro et al., 2011; Tsuda et al., 2004).
Periodic synchronous activity is observed before the propagation
of chaotic dynamics is elicited by an external perturbation. The
behavior of the cell in the center of the network is shown in
Fig. 2(d). The activity is quite different from an isolated µ-model
neuron with the same parameter, as shown in Fig. 2(e) (Igo,tonic =

0.004, µ = 1.7). An isolated µ-model shows a saddle–node
bifurcation at Igo,tonic = 0, and it has a periodic spiking activity
with Igo,tonic > 0 and stable fixed point at resting potential with
Igo,tonic < 0 (Tsuda et al., 2004). The ISI of the neuron in the
center of the network (cell #50) in Fig. 2(a) is calculated for the
subsequent 1 × 103 seconds (Fig. 2(f)) by regarding the neuron
emitting a spike when crossing the threshold θ = 0.7 from
negative to positive. As visually evident in Fig. 2(a), (d), the ISI
of this neuron shows a broad distribution over a wide range of
periods, which is quite different from the periodic spiking activity
without diffusion coupling shown in Fig. 2(e). The distribution
has a small peak at around 50 ms, which is close to the period
of the isolated single neuron (without the effect of the gap
junction) shown in Fig. 2(e). Interestingly, the spatiotemporal
pattern of the membrane potentials shows the fractal known as
the Sierpinski gasket (Mandelbrot, 1983) under a small negative
tonic input, Igo,tonic = −0.00095 (Fig. 2(b)). The spatiotemporal
pattern at larger scale (Ngo = 1000) shown in Fig. 2(c) clearly
depicts self-similarity of the spatiotemporal pattern. Namely,
the spatiotemporal pattern has no characteristic scale. The spa-
tiotemporal pattern with positive tonic input (Fig. 2(a)) could be
interpreted as a ruined pattern of the Sierpinski gasket (Fig. 2(b)),
thus inheriting the fractal’s property of scale invariance over
multiple time scales (i.e., broad distribution of ISI).

3.2. Gap junctions in the reservoir realize producing a target pattern
with a broad range of frequencies.

Next, we evaluate the effect of introducing gap junctions on
the expressivity of the reservoir. More specifically, we examine
how closely the model can output a sinusoidal temporal pattern
with various temporal frequencies. Namely, we use the following
sinusoidal wave (a scalar function of time t) as the target pattern
ytarget described in Eq. (14):

f (t; Twave) = sin
(

2π t
wave

)
, (24)
T
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Fig. 2. The chaotic dynamics induced by gap junctions in the simple reservoir consist of a one-dimensional chain (Eqs. (1)–(3), Fig. 1(a)). (a) The dynamics of
the model with a small positive tonic input, Igo,tonic = 0.004. The colormap shows the dynamics of the membrane potentials, V go . The parameter values are
go = 100, µ = 1.7, gGJ = 0.08, Igo,tonic = 0.004. (b–c) A Sierpinski gasket appears under small tonic inhibition, Igo,tonic = −0.00095. The number of neurons is
= 100 in (b) and Ngo = 1000 in (c). (d) The time evolution of the membrane potentials of the 50th neuron in (a). (e) Periodic activity of an isolated µ-model

euron under a small positive tonic input, Igo,tonic = 0.004. (f) Broad distribution of the ISI of a neuron in chaotic dynamics. Data of the 50th neuron in (a) for
× 103 seconds is shown. The bin width is 1 ms.
where Twave is the period of the sinusoidal wave. We quantify
the dependency of the following nRMSE value on the period of
the sinusoidal target wave, Twave, and on the model parameters:

nRMSE(Twave) =

(
RSS(Twave)∫ t0+Ttrain

t0
|f (t; Twave)|2 dt

) 1
2

, (25)

here RSS(Twave) is the value of the objective function described
n Eq. (14), which depends on Twave. The spectrum of the value
RMSE(Twave) over various Twave gives a way to evaluate the
odel’s ability to output a more general complex temporal pat-

ern that contains various frequency components. Suppose there
s a target pattern, ytarget that is composed of a linear superposi-
ion of various sinusoidal waves as follows:

target
=

Nwave∑
k=1

ckf (t; Twave
k ), (26)

here Nwave is the number of different sinusoidal waves that
ompose the target pattern, Twave

k is the period of the kth sinu-
oidal pattern. Let nRMSEtarget be the optimal nRMSE values for
target that minimizes the objective function described in Eq. (14).
hen, from the triangle inequality, the following inequality holds:

nRMSEtarget)2
≤

Nwave∑
k=1

c2k
(
nRMSE(Twave

k )
)2

. (27)

hus, the right hand side of Eq. (27) gives the upper limit of the
RMSE value for the target pattern.
To evaluate nRMSE(Twave) (Eq. (25)), the following analysis is

onducted. Firstly, a time evolution over [t0, t0 + Ttrain] of the
reservoir with a random initial input at t = 0 is numerically
generated. Then, we use various sinusoidal waves (scalar func-
tion of time) over the same time interval [t , t + T ] as the
0 0 train
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target patterns. The readout connection is fitted to match each
sinusoidal wave separately by the linear least squares. The dashed
lines in Fig. 3(a) indicate the sinusoidal target patterns, and the
solid lines indicate the fitted outputs of the model when the
system is chaotic (gGJ = 0.08). The difference between the target
patterns and the model outputs are visually not detectable when
Twave

≥ 3 ms. Note that, as shown in Fig. 2(d) and (e), the
width of a spike of the model neuron is ∼ 5–8 ms. The results of
the same analysis without gap junctions are shown in Fig. 3(b).
All settings of the analysis are the same as in Fig. 3(a) except
for two conditions. First, the conductance of the gap junction is
changed from gGJ = 0.08 to gGJ = 0. Second, the initial state
of the reservoir is generated by randomly shuffling the phases
of neurons. This is because, with gGJ = 0, all neurons behave
as parallel isolated neurons with a shared identical period. Thus,
the distribution of the phase of the neurons is time invariant,
and biased distribution of the phase of the neurons should be
disadvantageous in producing the sinusoidal target patterns. The
phase of the initial state of each neuron is shuffled by sepa-
rately simulating the evolution of each neuron for a sufficiently
long period (3000 ms), discarding the initial transient, choos-
ing a time point in the remaining time series from a uniform
distribution, and employing the state variable, (V go, Rgo), as the
initial condition of the neuron. The precision of the model output
drastically decreases compared to the condition with diffusion
coupling through gap junctions (Fig. 3(b)). The nRMSE values for
both conditions are shown in Fig. 3(c). The nRMSE takes very
small values over a wide range of the period of the target pattern
when the gap junctions are incorporated in the model, whereas
the nRMSE takes small values only at some specific range of the
period if the model lacks the gap junctions. This result suggests
that incorporating diffusion coupling in a reservoir enhances the
output’s expressivity that the network can generate by inducing
chaotic dynamics.
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Fig. 3. Evaluation of the expressivity in the frequency domain. (a) The sinusoidal target patterns (dashed lines) and the fitted outputs of the model (solid lines) when
the reservoir shows chaotic dynamics with diffusion coupling. The readout weights are determined separately for each sinusoidal target pattern with a different
period, Twave . The parameters are Ttrain = 500 ms, µ = 1.7, gGJ = 0.08, Ngo = 500, Igo,tonic = 0.004, ∆ = 0.1 ms. Note that the spike width of a neuron is

5–8 ms, as shown in Fig. 2(b) and (c). Data only at t = [0 50] are shown for Twave
≤ 3, though fitting is done for t = [0 500]. (b) Without diffusion through the

ap junctions (gGJ = 0). Each solid line indicates the fitted output of the model. (c) The nRMSE dependency on the period of the target pattern, with gap junctions
gGJ = 0.08) (solid line), and without gap junctions (gGJ = 0) (dashed line).
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.3. Inverse correlation of the Lyapunov dimension and nRMSE

Figs. 4 and 5 illustrate the parameter dependency of nRMSE
nd the Lyapunov dimension. The color map in Fig. 4(a) depicts
he dependency of the nRMSE on the strength of gap junction
oupling, gGJ/N2

go, and the target wave period Twave. Fig. 4(b) illus-
rates the nRMSE dependence on gGJ/N2

go when the target pattern
eriod is Twave

= 100 ms. We employ gGJ/N2
go rather than gGJ

ecause different network models with different sizes, but a same
alue of gGJ/N2

go, behave qualitatively the same (Tadokoro et al.,
011). This is because the model described with Eqs. (1)–(3) can
e regarded as a discretization of a partial differential equation
f a continuous one-dimensional excitable media. Models with
ifferent network sizes, Ngo, and the same value of gGJ/N2

go corre-
pond to discretizations of the same partial differential equation
ith different spatial resolutions. Equivalently, different models
ith a same network size N2

go and different gGJ values show spa-
iotemporal patterns with different spatial scales proportional to
/
√
gGJ. As illustrated in Fig. 4(a) and (b), the nRMSE takes small

alue at a wide but specific range of g (10−7.5
≤ g ≤ 10−5.5). At
GJ GJ
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the same time, the Lyapunov dimension, DL, takes a large value at
the same range of gGJ (Fig. 4(c) and (d)). The Lyapunov dimension
haracterizes the strength of chaos, and represents the degrees of
reedom of the dynamics (Kaplan & Yorke, 1979). Fig. 5 illustrates
he nRMSE dependency on the parameter µ. Chaotic activity
nduced by diffusion coupling appears at a specific range of µ, as
hown in the positive Lyapunov dimension in Fig. 5(c) and (d)). As
n the case of the dependency of the nRMSE value on gGJ (Fig. 4),
he nRMSE takes very small values when the dynamics is chaotic
nd the Lyapunov dimension is large. These results showing the
nverse correlation between the Lyapunov dimension and nRMSE
uggest that diffusion-induced chaotic dynamics enhances the
omplexity of the reservoir’s representation. Interestingly, the
yapunov dimension takes a larger value than the system size
the number of the neurons in the model), Ngo = 500, with some
arameter values (Fig. 4(d)). This large Lyapunov dimension is
istinct from that of the chaotic dynamics in the commonly used
TRNN model, which can only take less than 10% of the system
ize (Engelken et al., 2020).
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Fig. 4. The dependency of the nRMSE on the period of the target pattern, Twave , and the strength of the gap junction, gGJ/N2
go . (a) The nRMSE is illustrated over

arious values of Twave and gGJ/N2
go . The colormap shows the nRMSE value on a logarithmic scale. The parameter values are Ngo = 500, Ttrain = 500 ms, µ =

.7, Igo,tonic = 0.004, ∆ = 0.1 ms. (b) The nRMSE value for a target pattern with Twave
= 100 ms plotted against gGJ/N2

go , corresponding to the section indicated
y the dashed line in panel (a). (c) Colormap showing the Lyapunov dimension against gGJ/N2

go (no variable is assigned to the vertical axis of the colormap since DL

oes not depend on Ttrain). (d) The Lyapunov dimension plotted against gGJ/N2
go (same value as panel (c)).
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.4. The reservoir state represents the passage of time from a specific
nput

We evaluate the reservoir’s ability to represent the passage
f time with the similarity index (Eq. (21)). The color map in
ig. 6(a) shows similarity indices C (1),(1)(t1, t2) defined by Eq. (21),
alculated within a time series, V go,1(t), shown in the upper and
eft panels in Fig. 6(a). An external perturbation is given at t = 0
o an all-synchronized state as V go

50 → V go
50 + 0.5. The length of

he time series V go,1(t) is 1000 ms, and it is discretized with a
ime step of 1 ms to calculate the similarity indices, yielding a
000 × 1000 matrix. Each element of the matrix corresponds
o the correlation coefficient between the membrane potentials
f the reservoir neurons at two different time points. Because
(1),(1)(t1, t2) is calculated within one time series, the diagonal
lements are all 1. Fig. 6(b) shows the histogram of the values of
ll the elements above the main diagonal of C (1),(1)(t1, t2) shown
n panel (a). Most of the elements have smaller values than ∼ 0.4.
his suggests that the state of the system does not come back
lose to the same point in the phase space – close enough that
he similarity index takes high value close to 1 – within 1000 ms.
n other words, the state of the reservoir activity has specificity
o the passage of time.

The discriminative ability of the reservoir to different inputs
s also important. Fig. 6(c) shows the similarity indices calcu-
ated between two time series, V go,(1)(t) and V go,(2)(t), that have
lightly different inputs. The time series shown in the left panel,
go,(2)(t), evolves with the same initial condition as V go,(1)(t)
hown in Fig. 6(a), but an additional input pulse is given to the cell
t the edge of the network at t = 200 as V go

1 → V go
1 +0.5 (shown

ith an open magenta circle). Because of the chaotic property of
 i
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he dynamics, the orbit diverges from the original unperturbed
rbit of V go,(1)(t), and the correlation between the two time series
anishes at around t = 350 ms (Fig. 6(c), lower panel). This
an be explained by the sensitivity to the initial condition of
haotic dynamics. Thus, the reservoir’s response to input has high
pecificity to the input.
By conducting the same analysis, we compare the current

odel to the commonly used model that exhibits chaotic dynam-
cs, i.e., CTRNN with a random connection matrix (Sompolinsky
t al., 1988; Sussillo & Abbott, 2009), in terms of the temporal
pecificity of the model activity. This model is often used in
eservoir computing frameworks. Fig. 7 shows the same analysis
s shown by Fig. 6, conducted for both the current model (µ-
odel) and the CTRNN. Here, the initial state of the model is
enerated from a multivariate Gaussian distribution, simulation
s conducted for 2000 ms, and the data from the first 1000 ms
s discarded to exclude the transient state. Within the remaining
ime series of 1000 ms, the similarity index is calculated. The
andom parameter Wij is generated every time the simulation is
onducted. We use the parameter values τ = 1 ms, ρ = 10
or the CTRNN model, but the results shown in Fig. 7(c) and
f) depend little on these parameters as long as τ is sufficiently
mall compared to the length of the time series (1000 ms), and
is sufficiently large that the probability of the system showing

haotic dynamics is high. As the parameter τ purely determines
he time scale of the system, if τ is too large, the state of the
ystem does not evolve much within the simulation time, result-
ng in a large similarity index within the different time points.
hen ρ is not sufficiently larger than 1, the system often does
ot show chaotic behavior, which results in a large similarity
ndex as well. Fig. 7 (a–c) show the results when the number of
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µ

Fig. 5. The dependency of the nRMSE on the period of the target pattern, Twave , and the parameter, µ. (a) The nRMSE is illustrated over various values of Twave and
. The colormap shows the nRMSE value on a logarithmic scale. The parameter values are Ngo = 500, Ttrain = 500 ms, gGJ = 0.08, Igo,tonic = 0.004, ∆ = 0.1 ms.

(b) The nRMSE value for a target pattern with Twave
= 100 ms plotted against µ, corresponding to the section indicated by the dashed line in panel (a). (c) Colormap

showing the Lyapunov dimension against µ (no variable is assigned to the vertical axis of the colormap since DL does not depend on Ttrain). (d) The Lyapunov
dimension plotted against µ (same value as panel (c)).
neurons is 100. Fig. 7(a) shows the result from the current model,
showing a small similarity index between different time points, as
in Fig. 6. In contrast, the similarity index has large values between
different time points in the CTRNN (Fig. 7(b)). This difference
is clearly shown in the histograms of the similarity index in
Fig. 7(c) with flat distributions between 0 and 1 for the CTRNN.
In the CTRNN, there are some trials with large frequencies at
very large similarity indices near 1. This suggests that the system
sometimes does not show strong chaotic activity because of the
randomness of the value of parameter Wij and the small number
of the neurons, Nctrnn = 100. Recently, Engelken et al. (2020)
reported the size-invariant Lyapunov spectrum and the linear
relationship between the attractor dimension and the systems
size in the CTRNN model. According to their results, the CTRNN
should show chaotic dynamics with the current parameter value
with a larger system size. Fig. 7(d–f) show the results for the
analyses with a larger system size Ngo = Nctrnn = 500. As
expected, the histograms’ variance across different simulations
shown in Fig. 7(f) is smaller than that in Fig. 7(c). Additionally,
both the histograms for the µ-model and the CTRNN shift toward
smaller values than Fig. 7(c). This difference may be reflecting
the increase of the attractor dimension with a larger system size
in both models. The µ-model shows smaller distributions of the
similarity indices than the CTRNN model with different system
sizes. The histogram for the µ-model with Ngo = 100 (Fig. 7(c))
shows even smaller values compared to the histogram for the
CTRNN model with Nctrnn = 500 (Fig. 7(f)). The dimension of
the phase space is 2Ngo = 200 and Nctrnn = 500, respec-
tively, with the former smaller than the latter. Thus, the smaller
value of the similarity index between different time points in the
µ-model cannot be simply explained by the fact that the degrees
of freedom of its phase space is two times larger than the num-
ber of its neurons. These results suggest that chaotic dynamics
80
induced by diffusion results in activity with a higher temporal
specificity with a smaller number of neurons, compared to the
CTRNN model.

3.5. Generation of different activities for different inputs

Next, we examine whether a model with a fixed readout
weight matrix is actually able to generate different temporal
outputs for different inputs. Firstly, we show a simulation of
eyeblink conditioning: an extensively studied model of cerebel-
lar dependent learning, which has been reproduced in several
computational studies as well (Bullock et al., 1994; Buonomano
& Mauk, 1994; Li et al., 2013; Medina et al., 2000; Yamazaki
& Igarashi, 2013; Yamazaki & Tanaka, 2007). We simulated a
situation where the model outputs a specific time series with
respect to a specific external input. In eyeblink conditioning,
animals are able to acquire motor response with different timings
to different types of tone stimuli (Green & Steinmetz, 2005; Kehoe
et al., 1993). For example, an animal can learn to elicit a motor
reflex to a tone stimulus 200 ms after the stimulus onset if the
pitch of the tone is 600-Hz, and 600 ms after the onset if its pitch
is 1-kHz (Kehoe et al., 1993). To reproduce this phenomenon, we
consider the case where the model output, y, is a scalar function
of time representing the eyeblink response, and train the model
with multiple target patterns with its peaks at different latencies
from the external input. Fig. 8(a) shows similarity indices calcu-
lated between four time series of the reservoir state with a same
initial condition and four different inputs xin,0, xin,1, xin,2, xin,3

∈

RNgo . The four inputs, xin,0, xin,1, xin,2, xin,3
∈ RNgo are

vectors representing the spatial patterns that are generated from
a multivariate Gaussian distribution N (0, (0.2)2E), where E is the
identity matrix. The input pattern is given at time t = 50 as
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Fig. 6. The reservoir state is specific to the passage of time from a specific input. (a) Similarity indices C (1),(1)(t1, t2) calculated within a time series. The upper and
eft panels show the time series, V go,1(t): the membrane potentials of reservoir neurons over 1000 ms. The neuron in the center (cell #50) is stimulated at t = 0
s V go

50 → V go
50 + 0.5. The parameter values are µ = 1.7, gGJ = 0.08, Ngo = 100, Igo,tonic = 0.004. (b) Histogram of all the elements above the main diagonal of

he similarity indices shown in (a). The bin width is 0.02. Normalized with total counts. (c) The similarity indices calculated between two time series, V go,1(t) and
go,2(t). The time series in the left, V go,2(t), evolves with the same initial condition as V go,1(t), but an additional input pulse is given at the 100 th cell at t = 200 ms
shown with an open magenta circle). The lower panel shows the diagonal elements versus time.
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n impulse. (See Eq. (4) for the detailed description as to how
he input stimulus is given to the model). As shown in Fig. 8(a),
he four spatiotemporal patterns with the same initial condition
ut different external inputs xin,0, xin,1, xin,2, xin,3 at t = 50
apidly lose the similarity among them after the inputs are given.
hen the time series with the inputs xin,0, xin,1, xin,2, xin,3

re fitted to different target patterns (dashed lines in Fig. 8(b))
imultaneously, the model acquires different outputs assigned for
ach time series of the reservoir (solid lines). This procedure of
itting a shared output connection for different output patterns
s conducted as follows: first, four pairs of each desired pattern
nd corresponding time evolution of the reservoir dynamics are
btained by the numerical simulation of the reservoir. The four
esired patterns are then concatenated to yield a novel vector
hose length, K , is four times longer than the original patterns.
his vector is used as the final target vector for training, Y target

∈
1×K in Eq. (16). Similarly, the four time series of the reservoir’s
embrane potentials are concatenated to yield a novel matrix
hose size is RNgo×K , which is used as the matrix Ω in Eq. (15).
We also demonstrate the model’s ability to generate two dif-

erent human motions responding to two different inputs. Fig. 9
hows the two outputs of a learned model with a fixed output
atrix: walking (Fig. 9(a)) and boxing (Fig. 9(b)). The simula-

ion settings are the same as in Fig. 8. The model is trained
n two time series simultaneously, each for a specific input at
ime t = 0. The two external inputs are drawn from a mul-
ivariate Gaussian distribution in the same way as the inputs
in,0 in,1 in,2 in,3
, x , x , x in Fig. 8. The motion capture data provided

81
y the Carnegie Mellon University Motion Capture Library (MO-
AP) (http://mocap.cs.cmu.edu/) were used. Datasets 08_01.amc
walking) and 13_17.amc (boxing) were used as the target out-
ut patterns. Three variables representing the spatial offset of
he person are discarded from the 62 dimensional signal. Thus,
he target patterns are the remaining 59-dimensional temporal
atterns. The result demonstrates that the model is able to gen-
rate completely different temporal patterns with a fixed readout
onnection, when the initial condition is different. See also the
upplementary Videos (Videos S1–2).

.6. Incorporation of excitatory granular neurons

Lastly, we briefly confirm that the observed property of the
imple model (Fig. 1(a)) can also be reproduced in the model in-
orporating the excitatory granule cells and the chemical
ynapses, shown in Fig. 1(b) (Eqs. (6)–(10)). A model incor-
orating 104 granule cells, 100 Golgi cells, and the reciprocal
onnections between the granule cells and the Golgi cells with
he chemical synapses is composed. We evaluate the similarity
ndex using the membrane potentials of the granule cells because
he projecting neurons of the real cerebellar granular layer to the
urkinje cells are the granule cells. Fig. 10 shows examples of the
ynamics of the model after a random initial input, with the gap
unctions (gGJ = 0.08, Fig. 10(a)–(e)) and without gap junctions
gGJ = 0, Fig. 10(f)–(j)). Fig. 10(a) and (b) show the raster plots
f the spikes of the granule cells and the Golgi cells, respectively.
oth the granule cells and the Golgi cells show irregular activity
ith no apparent repetitive pattern. Fig. 10(c) is a scattergram

http://mocap.cs.cmu.edu/
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Fig. 7. Comparison of the similarity index with the CTRNN model. The panels (a–c) show the results for Ngo = Nctrnn = 100, and the panels (d–f) show the results
for Ngo = Nctrnn = 500. The panels (a) and (d) show the results for the current model (µ-model), and the panels (b) and (e) show the results for the CTRNN.
(a) Similarity indices C (1),(1)(t1, t2) calculated within a representative time series of the chaotic activity in the current model (same analysis as in Fig. 6 other than
the initial condition). The parameter values are µ = 1.7, gGJ = 0.08, Ngo = 100, Igo,tonic = 0.004. (b) The similarity index calculated within a representative time
series of the evolution of the CTRNN model. The parameter values are τ = 1 ms, ρ = 10, Nctrnn = 100. For the randomly chosen parameter, Wij , see the main text.
(c) Histogram of all the elements above main diagonal of the similarity indices for the calculations shown in (a) and (b). Because the model parameter has a random
parameter Wij , the results of a 100 simulations are shown. The bin width is 0.01. Each trace normalized with total counts. (d–e) The same analysis as in (a) and
(b) with the number of the neurons being Ngo = Nctrnn = 500. (f) Histogram of all the elements above the main diagonal of the matrix of similarity indices for the
calculations shown in (d) and (e).

Fig. 8. Different output patterns for different inputs acquired by the model with a same readout connection matrix. (a) Each heat map shows the similarity index
calculated between two different time series corresponding to two different inputs (as in Fig. 6(a)). Each side of each square corresponds to the time interval from
t = 0 to t = 300. For example, the square that is lowermost and leftmost shows the similarity index calculated between two time series, one with the external
input xin,0 given at t = 50, and one with the external input xin,3 given at t = 50. All the time series start from an identical initial condition. Since two time series
receive different spatial inputs at t = 50, their orbits diverge after that, resulting in a decrease in the value of the similarity index, as shown by the diagonal line.
The parameter values are µ = 1.7, gGJ = 0.08, Ngo = 500, Igo,tonic = 0.004. (b) The time series with the initial inputs xin,0, xin,1, xin,2, xin,3 are fitted to different
target patterns (dashed lines) with a shared readout connection. The output patterns are plotted with solid lines. The differences between the target patterns and
the fitted patterns are so small that they are almost indistinguishable.
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o
r
c

Fig. 9. The network showing walking (a) and boxing (b) patterns for two different initial inputs. The upper panels show the human motion generated by the model
utput visualized using a skeleton, and the lower panels show the corresponding raw output signals of the model representing the angles of the bones. Only the
epresentative nine out of 59 traces are shown for simplicity. The same readout connection matrix is used for both movements, walking and boxing. The motion
apture data from a human are learned. The parameters are µ = 1.7, gGJ = 0.08, Ngo = 500, Igo,tonic = 0.004. Visualization was done using a toolbox, MATLAB
Motion Capture Toolbox, at https://github.com/lawrennd/mocap. See also the Supplementary Videos (Videos S1–2).
showing the instantaneous membrane potentials of the granule
cells, V gr

i , at two different time points, t = 954 and t = 990.
The similarity index between two different time points within
this time series verifies that the state, V gr, is specific to time
(Fig. 10(d)). The histogram of all the elements above the main di-
agonal of this matrix reveals the small similarity indices between
two different time points (Fig. 10(e)). The similarity index is
distributed at far smaller values than that of the Golgi membrane
potentials in the simple model (Fig. 6(c) and (d)), presumably
because of the large number of granule cells. Fig. 10(f)–(j) show
the result of the same analysis with the parameter gGJ = 0. All the
other settings are identical. It is observed that, without diffusion
coupling, the model dynamics converges to an all-synchronized
periodic orbit by the interaction through the chemical synapses.
The scattergram of V gr in Fig. 10 (h) shows a high correlation
between the state of the membrane potential at different time
points corresponding to the two last peaks, even though the abso-
lute value of its variation across different cells is very small. This
is because the small deviations of the neurons’ phases have not
completely vanished within the first 1000 ms. The resulting small
deviations from the instantaneous mean value of the membrane
potentials across all the neurons are highly correlated at different
phases of the periodic oscillation. As a result, the similarity index
takes very high values after it converges to periodic activity at
around t = 250 ms, independent of the phase of the global oscil-
lation over multiple periods (Fig. 10 (i)). Thus, it is not the case
that the small deviations of the phases of the neurons differ at
different peaks of oscillation, and the system is able to represent
the passage of time using different orders of the precise spike
sequence at the peaks. Rather, the spike sequence of the neurons
around the peaks of the global oscillation is highly preserved
across different periods (although its absolute difference is less
than 1 ms), and the system cannot represent the passage of time
using different activity patterns. The distribution of non-diagonal
elements of the similarity index clearly shows that changing the
parameter gGJ to 0 abolished the model’s ability to represent the
passage of time (Fig. 10(j)). These results suggest that the stable
all-synchronized orbit exists in the system without gap junction,
but it is destroyed by the chaotic dynamics if diffusion current

through gap junctions exists.
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4. Discussion

In the current study, we investigated the computational role
of the gap junction between Golgi cells in the cerebellar granular
layer. Specifically, we evaluated the computational performance
of the model of the cerebellar cortex using a reservoir computing
framework. First, we showed that introducing gap junctions in
the model induces chaotic dynamics that enables the reservoir to
output complex patterns containing a wide range of frequency
components (Figs. 2–5). Second, we showed that the chaotic
dynamics has a long non-recursive time series that is capable
of representing the passage of time (Figs. 6–7). These properties
of the chaotic dynamics realize the reservoir’s ability to output
the desired temporal patterns (Figs. 8, 9). Yamazaki and their
colleagues have proposed a model with these abilities based on
a different mechanism, i.e., the random connection by chemi-
cal synapses between granule cells and Golgi cells (Yamazaki
& Tanaka, 2007). In the current study, we pointed out another
possible mechanism (diffusion through gap junctions) that would
be capable of reproducing the aforementioned abilities of the
model. Because the gap junctions connect neighboring neurons,
the connections realized by the gap junctions must inevitably be
local rather than distant. Thus, the average number of neighbor-
ing cells a neuron can contact cannot be as large as the case of
chemical synapses. The average degree of the network realized
by gap junctions may therefore be small. In the literature, it has
been argued that the desirable feature of a reservoir is that the
connection should be sparse (Jaeger, 2001). This is in line with our
hypothesis that diffusion coupling by the gap junction constitutes
the reservoir in the cerebellum. On the other hand, one report
showed that the small-worldness of the reservoir contributes to
better performance (Kawai et al., 2019). In the granular layer of
the real brain, the chemical synapses and the gap junctions may
work in concert to realize preferable properties as a reservoir.

The ISI of a neuron in the chaotic dynamics induced by diffu-
sion coupling through gap junctions shows a broad distribution
over a wide range of periods, unlike that of an isolated neuron
model (Fig. 2). Our result may explain the fact that a Golgi cell

https://github.com/lawrennd/mocap
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1

Fig. 10. The dynamics of the model incorporating the granule cells in the
reservoir. (a–e) The model behavior with gap junctions under random initial
input. The parameters are µ = 1.7, gGJ = 0.08, Ngr = 104, Ngo =

00, Igr,tonic = 0.01, Igo,tonic = 0.004, θ = 0.7. (a) The spike raster plot of
the granule cells. Only the 1–500th cells out of Ngr = 104 cells are shown. (b)
The spike raster plot of all the Golgi cells. (c) Scattergram showing V gr

i at two
different time points, t = 954 and t = 990. (d) The similarity index calculated
between the granule cells’ instantaneous membrane potentials at different time
points in the time series shown in (a). (e) Histogram of all the elements above
the main diagonal of the matrix of similarity indices shown in (d). The histogram
is normalized with total counts. (f–j) The model dynamics without gap junctions.
All of the conditions of simulation and properties of the model are the same as
those in (a–e), other than that parameter value gGJ = 0 is used. (f) Spike raster
plot showing the activities of the granule cells of a model without gap junctions.
(g) The spike raster plot of all the Golgi cells. (h) Scattergram showing a high
correlation between V gr

i at two different time points, t = 954 and t = 990,
which correspond to the time of the last two peaks of the oscillation. (i) The
similarity indices showing high values over different time points because of the
rapid relaxation to a synchronized activity. (j) Histogram of all the elements
above the main diagonal of the matrix of similarity indices shown in (i).

exhibits periodic activity in some experimental settings such as in
vitro recordings (Forti et al., 2006; Solinas et al., 2007; Vervaeke
et al., 2010), but also shows an irregular activity with broad ISI
distribution in vivo (Holtzman et al., 2006).

Reservoir computing has drawn considerable attention in
recent years, as it is expected to be a suitable and powerful
framework for processing temporal sequences. However, the
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desirable dynamical properties that the reservoir must have, and
its proper implementation, have not been well characterized, and
still remain an open question (Bertschinger & Natschläger, 2004;
Boyd & Chua, 1985; Jaeger, 2001; Maass et al., 2002; Natschläger
et al., 2005; Yildiz et al., 2012). A variety of systems, including
both physical systems and mathematical models, have been used
as implementations of the reservoir (Tanaka et al., 2019). The
current study investigated a reservoir consisting of a reaction–
diffusion system (i.e., neurons coupled with gap junctions) and
obtained results suggesting chaos in a reaction–diffusion system
may contribute to the performance of the model. Interestingly,
the Lyapunov dimension of the chaotic attractor induced by
diffusion in the current model can be larger than the number of
the neurons in the model, which is 50% of the freedom of the
whole phase space (Fig. 4). In contrast, a recent study by Engelken
et al. (2020) reported that in the CTRNN model, which is often
used as the reservoir that shows chaotic dynamics, the ratio of
the Lyapunov dimension of the chaotic attractor to the system
size is invariant to the system size and less than 10%. This large
difference in the ratio of the Lyapunov dimension to the system
size is consistent with the smaller similarity index between two
different time points along a temporal evolution of the system in
the current model than the CTRNN model (Fig. 7). The specificity
of the activity pattern was higher in the current model than in
the CTRNN model having the same system size. Thus, incorpo-
rating diffusion coupling in a reservoir could be an advantageous
implementation to raise the expressivity of the system. Further
investigation of a reservoir machine using chaotic dynamics in
a reaction–diffusion system may be an interesting direction for
future study.

We found that the spatiotemporal pattern of the chaotic dy-
namics of µ-models coupled with diffusion in a one-dimensional
chain shows the Sierpinski gasket (Fig. 2). It is reported that some
other nonlinear reaction–diffusion systems also show the Sier-
pinski gasket (Hayase & Ohta, 1998, 2000). The simple model in
our current study (Fig. 1(a)) also belongs to the class of reaction–
diffusion system, as it consists of a one-dimensional chain of
the neurons with nearest–neighbor connections. There maybe a
common mathematical structure behind our model and these
former studies. It is well known that the Sierpinski gasket appears
in the spatiotemporal patterns of a cellular automaton (CA) such
as Wolfram’s Rule 90 (Wolfram, 1994). Some previous studies
attempted to implement a reservoir with a CA (Morán et al.,
2020; Yilmaz, 2015). Morán et al. used CA as the reservoir and
constructed a classifier for handwritten characters of the MNIST
dataset (Lecun et al., 1998), and compared the performance across
the rules in CA. They reported that Wolfram’s Rule 90 gives the
best performance in the test data of the cross-validation (Morán
et al., 2020). In the current study, we did not construct a classifier
with our model. Thus, it is difficult to directly compare the
current results with Morán and their colleagues’ work. However,
it should be an interesting direction to evaluate the performance
of a classifier model with a reaction–diffusion system as the
reservoir. Additionally, studies with CA may contribute to the
elucidation of the cerebellar computation.

An important issue we did not consider in depth in the current
study is the generalization ability of the model. Namely, the
ability of the model to generate the same output from simi-
lar input. We showed that the chaotic dynamics realizes the
specificity of the response to the input (Fig. 6). This can be
interpreted by the chaotic dynamics’ high sensitivity to the initial
condition. However, the high sensitivity to the initial condition
may cause poor generalization ability, because a small noise or
a deviation in the input signal grows rapidly over time. Thus,
systematic evaluation of the generalization ability of the current
model should be an important issue to be elucidated in the
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uture study. The aforementioned study by Morán et al. showed
hat Wolfram’s Rule 90, which shows the same Sierpinski gasket
attern as the current model we use, shows the best performance
n the test data of cross-validation (i.e., it shows the highest
eneralization ability). In their study, the MNIST data is used as
he initial state of the reservoir, and the spatiotemporal pattern
f the evolution of CA over specific steps is used as the feature
ector used for the subsequent classification task. Similarly, one
ould modify our current model so that the activity caused by
he input decays within a specific time scale, before the small
eviation in the input grows to the system size. This situation
s actually similar in the real cerebellum because the cerebel-
um is believed to be able to maintain the input information
or a fixed time, approximately ∼ 500 ms (Kotani et al., 2003;
hompson, 2005). It should be an interesting issue to elucidate
he relationship to previously proposed properties of the reser-
oir such as the echo state property (Jaeger, 2001; Yildiz et al.,
012) or the edge of chaos (Bertschinger & Natschläger, 2004;
atschläger et al., 2005). Another important issue to be elucidated
s the relationship between the strength of gap junctions and the
eneralization ability of the model. Fig. 4 shows the Lyapunov
imension of the system takes a large value at a specific range
f the strength of gap junctions. Some previous studies pointed
ut the possibility that the strength of gap junctions changes
he degrees of freedom of the network dynamics, which is cru-
ial for the generalization ability (Hoang et al., 2020; Kawato
t al., 2011; Schweighofer et al., 2013; Tokuda et al., 2017).
dditionally, it should also be noted that cerebellar dependent
otor learning requires repetitive training (Thompson, 2005),
hich would help generalization. This is very different from
ippocampal dependent learning, where an episode is learned
ne-shot.
In the last part of the Results section, we confirmed that

he non-recursiveness of the system is inherited in the model
ncorporating the excitatory granule cells (Fig. 10). Actually, the
imilarity index between different time points within a time
eries (Fig. 10(d)) shows higher specificity to the passage of
ime than in the simple model consisting of only the Golgi cells
Fig. 6(c)). This suggests that the large number of granule cells
ontributes to the specificity. In this study, we incorporated gran-
lar neurons with a population size only 102 times larger than the

Golgi cells (Ngr = 104, Ngo = 102) because of the computational
cost. However, the ratio of the number of the granule cells to the
Golgi cells in the real brain is reported to be even larger, as much
as 430 times (Korbo et al., 1993). The numerous granule cells may
serve a role in multiplying the representational ability of the Golgi
neurons.

In conclusion, we proposed the hypothesis that the massive
gap junctions between the Golgi cells in the cerebellar granular
layer contributes to expressivity by inducing chaotic dynamics.
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