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Outline (1/1)

 This paper presents a natural deduction system for ortho-
modular quantum logic.

 The system is shown to be provably equivalent to Nishimu-
ra’s quantum sequent calculus.

 Through the Curry–Howard isomorphism, quantum λ-calcu-
lus is also introduced for which strong normalization proper-
ty is established.
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Main contributions (1/2)

 This paper presents a natural deduction system for ortho-
modular quantum logic.

 Thanks to its intrinsic and straightforward appearance, we
can understand the meaning of inference in quantum logic
deeply by comparing the system with those for other logics
(e.g. intuitionistic logic or classical logic).
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Main contributions (2/2)

 We can also introduce the corresponding quantum λ-calcu-
lus, which allows us to further investigate computational
theories based on quantum logic, via the Curry–Howard
isomorphism.

 We can establish a desirable property regarding normaliza-
tion of proofs, or equivalently, termination of computation.
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Related Studies (1/3)

 As an earlier study for quantum natural deduction, we need
to mention Delmas-Rigoutsos’s double deduction system [5],
which incorporates a concept of compatibility into a natural
deduction system for classical logic.

 Differently from this approach, we define a natural deduc-
tion system that directly corresponds to GOM, Nishimura’s
quantum sequent calculus [13].
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Related Studies (2/3)

 Besides GOM, a few systems for quantum sequent calculus
have been proposed by Cutland and Gibbins [3] and
Nishimura [14].

 Furthermore, an extended logical system containing quan-
tum logic called basic logic along with its sequent calculus
has been studied by Sambin et al. [19], Faggian and Sambin
[7], and Dalla Chiara and Giuntini [4].

 These systems, however, are all inadequate for being trans-
lated into natural deduction forms due to their complex
treatment of negation (￢) and cut.
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Related Studies (3/3)

 The quantum λ-calculus introduced in this paper is based on
orthomodular quantum logic, while several other systems
based on intuitionistic linear logic have also been studied
under the name quantum λ-calculus [20,21].

 The proof of the strong normalization property presented in
this paper follows that of Girard et al. [8].
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Problems and solutions (1/14)

 It is known that quantum logic has no satisfactory implica-
tion operation (→) as in the case of intuitionistic logic or
classical logic. Indeed, Nishimura’s GOM only adopts
conjunction (∧ ) and negation (￢ ) as the basic set of
operations.

 On the other hand, it is almost inevitable to include implica-
tion in the basic set of operations for the purpose of devel-
oping a natural deduction system and the corresponding λ-
calculus.
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Problems and solutions (2/14)

 To handle such a contradiction, we employ the Sasaki hook, a
kind of quasi-implication, as one of the basic operations of
our system.

 Although it fails to satisfy the deduction theorem, the Sasaki
hook still enjoys some expected properties of implication
such as modus ponens.

9



Problems and solutions (3/14)

 Another problem that we encounter when associating GOM
with a natural deduction system is how to treat assumptions
in a deduction process.

 In the usual natural deduction system for intuitionistic logic
or classical logic, assumptions that are not used in the
application of a rule may be omitted.
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Problems and solutions (4/14)

 That is, for example:

 In this case, it is legitimate that assumptions other than α are
not explicitly stated even if they exist.
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Problems and solutions (5/14)

 The point becomes clear when we express this situation in
the sequent calculus form:

 Here, all (undischarged) assumptions other than α are
explicitly written as Γ, a (possibly empty) set of formulas.
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Problems and solutions (6/14)

 In quantum logic, however, the introduction rule of implica-
tion (the Sasaki hook) is subject to a restriction due to the
failure of the deduction theorem.

 That is, the introduction rule of implication can only be
applied if there exist no assumptions other than α:
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Intuitionistic / Classical Quantum 
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Problems and solutions (7/14)



Problems and solutions (8/14)

 Taking this restriction into account, we will use the following
convention in defining and applying rules of our natural
deduction system: the assumptions that are not explicitly
stated must not exist.
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Problems and solutions (9/14)

 When written in this style, the introduction rule of implica-
tion in intuitionistic logic or classical logic would become as
follows:
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Intuitionistic / Classical

(usual style)
Intuitionistic / Classical

(our style)
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Problems and solutions (10/14)



Problems and solutions (11/14)

 Example:  A legitimate proof in intuitionistic or classical logic.
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Problems and solutions (12/14)

 However, the proof is illegitimate in quantum logic.
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Problems and solutions (13/14)

 Indeed, (𝛼 → 𝛽) → ((𝛽 → 𝛾) → (𝛼 → 𝛾)) is not a theorem 
of quantum logic.
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Problems and solutions (14/14)

 Once a natural deduction system for quantum logic is obtained, the
corresponding quantum λ-calculus can be introduced via the Curry–
Howard isomorphism: the proofs of the natural deduction system can
be reversibly translated into the terms of the λ-calculus, respectively.

 Finally, we will prove the strong normalization property for the
quantum λ-calculus, which claims that any computation in the
quantum λ-calculus eventually terminates.
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Organization of the paper (1/1)

 Section 1 Introduction

 Section 2 Formal Definition of NQ

 Section 3 Equivalence Between NQ and GOM

 Section 4 Quantum λ-Calculus

 Section 5 Strong Normalization

 Section 6 Conclusion
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2 Formal Definition of NQ (1/9)

 We employ ∧ (conjunction) and → (implication) as the basic
connectives, and introduce the following as abbreviations:
𝛼 ∨ 𝛽 ≡ ￢(￢𝛼 ∧￢𝛽) (disjunction), ￢𝛼 ≡ 𝛼 → ⊥ (nega-
tion)
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2 Formal Definition of NQ (2/9)

 Proof of NQ

Assumption rule ⊥-rule
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2 Formal Definition of NQ (3/9)

∧El-rule ∧Er-rule
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2 Formal Definition of NQ (4/9)

∧I-rule
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2 Formal Definition of NQ (5/9)

→E-rule (Modus Ponens)
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2 Formal Definition of NQ (6/9)

→I-rule
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No assumptions other than a : α
are allowed to be made when
this rule is applied.



MT (Modus Tollens)

2 Formal Definition of NQ (7/9)
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2 Formal Definition of NQ (8/9)

￢￢E-rule
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￢￢I-rule

2 Formal Definition of NQ (9/9)
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3 Equivalence Between 
NQ and GOM (1/5)

 Nishimura’s GOM

Axioms

Rules
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3 Equivalence Between 
NQ and GOM (2/5)
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3 Equivalence Between 
NQ and GOM (3/5)
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 In GOM, we regard 𝛼 → 𝛽 as a shorthand for￢(𝛼 ∧￢(𝛼 ∧
𝛽)) (the Sasaki hook). Additionally, we regard ⊥ as a short-
hand for 𝛼 ∧￢𝛼.

 Theorem 3.5 (Admissibility of the rules of NQ in GOM). The
rules of NQ are provable in GOM.

 Theorem 3.6 (Admissibility of the axioms and rules of GOM
in NQ). The axioms and the rules of GOM are provable in NQ.

3 Equivalence Between 
NQ and GOM (4/5)
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3 Equivalence Between 
NQ and GOM (5/5)

 Here we have used the following fact.

 Proposition 3.2. O-modular can be replaced by the following 
MP rule.
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 Definition 4.1 (Type). Types of λ-terms are inductively de-
fined as follows:

 𝛼 is a type if 𝛼 is a type variable.
 𝛼 is a type if 𝛼 is ⊥.
 (𝛼 × 𝛽) is a type if 𝛼 and 𝛽 are types.
 (𝛼 → 𝛽) is a type if α and β are types.

4 Quantum λ-Calculus  (1/8)
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 Definition 4.4 (Typed λ-Term). Typed λ-terms (or simply λ-
terms), are inductively defined as follows:

 𝑥 ∶ 𝛼 is a λ-term under Γ if 𝑥 ∶ 𝛼 ∈ Γ.

 𝜀(𝑀) ∶ 𝛼 is a λ-term under Γ if 𝑀 ∶ ⊥ is a λ-term under.

 𝜋1(𝑀) ∶ 𝛼 and 𝜋2(𝑀) ∶ 𝛽 are λ-terms under Γ if 𝑀 ∶
𝛼 × 𝛽 is a λ-term under Γ.

 𝑀,𝑁 : 𝛼 × 𝛽 is a λ-term under Γ1 ∪ Γ2 if 𝑀 ∶ 𝛼 is a λ-
term under Γ1 and 𝑁 ∶ 𝛽 is a λ-term under Γ2.

4 Quantum λ-Calculus  (2/8)
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 (𝜆𝑥.𝑀) ∶ 𝛼 → 𝛽 is a λ-term under Γ if 𝑀 ∶ 𝛽 is a λ-term
under {𝑥 ∶ 𝛼}.

 (𝑀𝑁) ∶ 𝛽 is a λ-term under Γ1 ∪ Γ2 if 𝑀 ∶ 𝛼 → 𝛽 is a λ-
term under Γ1 and 𝑁 ∶ 𝛼 is a λ-term under Γ2.

 𝜏(𝑀,𝑁) ∶ 𝛼 → ⊥ is a λ-term under Γ if 𝑀 ∶ 𝛼 → 𝛽 is a λ-
term under ∅ and 𝑁 ∶ 𝛽 →⊥ is a λ-term under Γ.

 𝜂(𝑀) ∶ 𝛼 is a λ-term under Γ if 𝑀 ∶ (𝛼 →⊥) →⊥ is a λ-term
under Γ.

 𝜃(𝑀) ∶ (𝛼 →⊥) →⊥ is a λ-term under Γ if 𝑀 ∶ 𝛼 is a λ-term
under Γ.

4 Quantum λ-Calculus  (3/8)

39



 Theorem 4.6 (Curry–Howard isomorphism between the for-
mulas and the types). There exists an isomorphism between
the formulas of NQ and the types of the quantum λ-calculus.

 Theorem 4.7 (Curry–Howard isomorphism between the
proofs and the terms). There exists an isomorphism between
the proofs of NQ and the λ-terms of the quantum λ-calculus.

4 Quantum λ-Calculus  (4/8)
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 Definition 4.8 (Conversion). A λ-term M is said to be
converted if a subterm of M is substituted with another λ-
term in the following way:

 𝜋1(𝑁: 𝛼, 𝐿: 𝛽) is substituted with 𝑁: 𝛼.

In NQ:

4 Quantum λ-Calculus  (5/8)
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 𝜋2(𝑁: 𝛼, 𝐿: 𝛽) is substituted with 𝐿: 𝛽.

 (𝜆𝑥 ∶ 𝛼. 𝑁 ∶ 𝛽)(𝐿 ∶ 𝛼) is converted to (𝑁[𝑥 ∶= 𝐿 ∶ 𝛼]) ∶ 𝛽.

In NQ:

4 Quantum λ-Calculus  (6/8)
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 𝜂(𝜃(𝑀 ∶ 𝛼)) is converted to 𝑀 ∶ 𝛼.

4 Quantum λ-Calculus  (7/8)
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 Definition 4.9 (Normal form). A λ-term (or a proof) is said to
be in its normal form if it cannot be further converted. A λ-
term is said to be normalizable if there exists a conversion
sequence that starts with itself and ends with its normal
form.

4 Quantum λ-Calculus  (8/8)
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 Definition 5.1 (Strongly normalizing). A λ-term is said to be
strongly normalizing if there exists no infinite conversion
sequence that starts with itself.

 Theorem 5.2 (Strong normalization). The λ-terms of the
quantum λ-calculus are strongly normalizing.

5 Strong Normalization  (1/1)

45



 In this paper, we have presented a natural deduction system
for orthomodular quantum logic and the corresponding λ-
calculus.

 Proof theory and computational theory for quantum logic
have not been thoroughly studied so far. One of the reasons
for this is that quantum logic lacks a satisfactory implication
operation.

6 Conclusion  (1/2)
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 By treating the Sasaki hook as a quasi-implication and adopt-
ing it as a basic operation, we have obtained a straight-
forward formalization of natural deduction for quantum logic
and the corresponding λ-calculus.

 We hope that both systems will contribute to the study of
proof theory and computational theory for orthomodular
quantum logic.

6 Conclusion  (2/2)
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