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Introduction
Opioids like morphine have been widely used clinicaly as effective 

analgesics for acute and chronic pain. When opioids are used, the 
importance of care for side effects such as nausea, drowsiness and 
constipation is emphasized. In addition, continuous use of opioids 
developes tolerance in which the analgesic effect becomes attenuated. 
In this paper, we mainly discuss endoplasmic reticulum (ER) stress 
as one of the molecular mechanisms for the development of opioid 
tolerance.

ER stress response

The ER provides a folding environment for newly synthesized 
secretory and membrane proteins [1]. Secretory proteins are synthesized 
by ribosomes and translocated cotranslationally or posttranslationally 
to the ER. These newly synthesized proteins interact with ER molecular 
chaperones, such as immunoglobulin heavy chain-binding protein 
(BiP), calnexin, calreticulin and protein disulfide isomerase, to become 
properly folded and assembled into a mature protein complex for 
transport along the secretory pathway. Aberrant protein folding, due 
to extracellular stimuli such as ischemia and oxidative stress, or genetic 
mutations leads to the accumulation of misfolded proteins in the ER, 
which in turn evokes the unfolded protein response (UPR) [2]. The 
UPR reduces the amount of misfolded proteins [3] by inducing the 
production of ER chaperones that promote protein folding, reducing 
general protein synthesis, and enhancing the degradation of misfolded 
proteins via a ubiquitin-proteasome system, termed ER-associated 
degradation (ERAD) [4]. 

A further overload of misfolded proteins initiates apoptosis, 
leading to diverse human disorders [5,6]. such as neurodegenerative 
diseases [7-9] and cardiomyopathies [10]. Another distinct mechanism 
for human disorders caused by ER stress is the alteration of signal 
transduction pathways during the UPR. Obesity causes ER stress that 
induces UPR, which may disturb insulin receptor signaling through 
hyperactivation of c-Jun N-terminal kinase (JNK) and subsequent 
serine phosphorylation of insulin receptor substrate-1 (IRS-1), 
resulting in type II diabetes (Figure 1).

Recent studies suggest that ER stress is involved in pain disorders 
such as diabetic peripheral neuropathy [11] and orofacial inflammatory 
pain [12]. Our previous studies in mice suggest that an ER chaperone, 
BiP, may play an important role in the development of morphine 
tolerance. We also found that a chemical chaperone, which improves 
ER protein folding capacity, attenuated the development of morphine 
tolerance [13]. 

Analgesic mechanism and tolerance formation of opioid

Morphine is the main component of opium alkaloids from opium 
poppy. While morphine had been thought to exert an analgesic effect by 
acting on nerve system, it became clear that there are opioid receptors 
in the brain [14-16]. Subsequently, δ-opioid receptor gene was first 
identified [17,18], followed by μ, κ and ORL1 (opioid receptor-like 1) 
opioid receptor genes. Since analgesic effects of morphine were lost in 
mice deleted with μ opioid receptor (MOR) gene, MOR was confirmed 
to be responsible for morphine analgesic signaling [19]. 

Opioid receptors are cell surface receptors with seven 
transmembrane, belonging to the heterotrimeric guanine nucleotide-
binding protein (G protein)-coupled receptor superfamily. The 
homology of amino acid sequences of transmembrane region among μ, 
δ, and κ receptors has been maintained, whereas the carboxyl terminal 
of intracellular domain and the amino terminal of extracellular 
domain are very different. The main endogenous ligand for MOR is 
β-endorphin that binds to MOR to activate various signaling molecules 
through Gα subunit of inhibitory Gi proteins, leading to a decrease in 
neuronal excitability by the inhibition of voltage-dependent calcium 
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channels and the activation of inwardly rectifying potassium channels 
[20]. Activation of MOR also induces the phosphorylation of MOR 
by G-protein-coupled receptor kinases [21,22]. Phosphorylated MOR 
is recognized by arrestins [23], and internalized by clathrin-coated 
vesicles. The transient uncoupling of MOR from signaling pathways 
due to the phosphorylation and intracellular trafficking of MOR causes 
opioid desensitization. Most of the internalized MORs return to the cell 
surface, resulting in resensitization [24-26] (Figure 2). 

Signal transduction upon MOR activation

Chronic morphine tolerance may be derived from adaptations 
in the intracellular signal transduction of post-MOR activation, 
as morphine does not induce effective MOR phosphorylation and 
internalization [27]. Persistent MOR activation on the cell surface 
may alter signal transduction, including changes in MOR-coupled G 
proteins from Giα to Gsα [28], increased activity of protein kinase C 
[29], and the upregulation of N-methyl-D-aspartate receptor signaling 
[30]. These changes may contribute to the development of morphine 
tolerance. Chronic morphine treatment also activates the cyclin-
dependent kinase 5 and glycogen synthase kinase 3β (GSK3β) signaling 
pathway, while the inhibition of them diminishes morphine tolerance 
and restores analgesia in rats [31] (Figure 2b). 

GSK3β is expressed ubiquitously and is one of the central molecules 
in intracellular signal transduction [32]. It may play an important role 
in diverse physiological and pathological states [33]. We focused on 
GSK3β as a key signaling molecule in the MOR signaling pathway. 
GSK3β is a serine/threonine kinase. The kinase activity is inactivated by 
the phosphorylation of Ser9 and enhanced by the dephosphorylation of 
Ser9 and the phosphorylation of Tyr216. The p90 ribosomal S6 kinase 
[34], Akt [35], protein kinase C [36] and protein kinase A [37] have 
been demonstrated to phosphorylate GSK3β at Ser9. MOR activation 
also phosphorylates GSK3β at Ser9 through the PI3K/Akt pathway 
[32]. On the other hand, the regulatory mechanism for the activation 
of GSK3β remains uncertain in comparison to that for its inactivation. 
ZAK1 [38], Fyn tyrosine kinases [39] and transient increases in 
intracellular Ca2+ [40] have been reported to phosphorylate GSK3β 
at Tyr216 to activate the kinase. In addition, ER stress has been also 
reported to induce the activation of GSK3β [41,42].

Possible crosstalk between mor analgesic signal transduction 
and the UPR

Chronic morphine administration may cause altered signal 
transduction through persistent MOR activation on the cell surface. 

A mechanism similar to that occurring in type II diabetes would be 
possible in the crosstalk between MOR analgesic signal transduction 
and the UPR. We speculate that the UPR signaling might attenuate the 
MOR signaling, thus causing the development of morphine tolerance. 

BiP, (or GRP78) is an ER chaperone that is central to ER 
functioning. Our studies in mice suggest that BiP may play an important 
role in the development of morphine tolerance, possibly through the 
modulation of GSK3β signaling. We have previously produced knock-
in mice expressing a mutant BiP in order to elucidate the physiological 
processes that are sensitive to BiP function in adulthood [43]. The 
mutant BiP protein lacks the retrieval carboxyl-terminal KDEL 
sequence [44,45] that normally functions to return BiP to the ER from 
the secretory pathway by the KDEL receptor in the Golgi complex. 
This mutant allows us to examine the effects of a defect in ER function 
without completely eliminating BiP function.

The kinase activity of GSK3β is regulated by its phosphorylation 
status. Phosphorylation of residue Ser9 inactivates the activity, whereas 
dephosphorylation of Ser9 and phosphorylation of Tyr216 enhance 
the activity [32]. We evaluated the phosphorylation status of GSK3β 
in the brain stems of wild-type and heterozygous mutant BiP mice 
using specific antibodies against phosphorylated Tyr216 GSK3β and 
phosphorylated Ser9 GSK3β [13]. After chronic morphine injection 
intraperitoneally for 5 days, the wild-type mice developed morphine 
tolerance, whereas the mutant BiP mice remained less tolerant to 
morphine. Because we injected morphine intraperitoneally, both spinal 
and supraspinal neurons were supposed to be affected. Neurons with 
MOR expression in the periaqueductal gray (PAG) matter contribute 
to morphine tolerance [46-48]. With repeated morphine treatment, 
the mutant BiP brain stems showed low levels of phosphorylation of 
Tyr216 in GSK3β, in contrast to the prominent phosphorylation in 
wild-type mice by western blotting. These brains were also sectioned 
and double-immunostained with antibodies raised against MOR and 
tyrosine-phosphorylated GSK3β. MOR-immunopositive neurons in 
the PAG region of wild-type brains showed more enhanced expression 
of tyrosine-phosphorylated GSK3β significantly than those in the 
mutant BiP brains. 

These observations suggest that chronic MOR stimulation by 
repetitive morphine injection may activate GSK3β and that the 

Figure 1: Many physiological and pathological conditions can cause aberrant 
protein folding and the accumulation of misfolded proteins in the ER. These 
insults lead to ER stress and initiate the UPR.

Figure 2: a. Opioids bind to the μ opioid receptor (MOR) to activate various 
signaling moleculedecrease in neuronal excitability. Activation of MOR also 
induces the phosphorylation and internalization of MOR. The transient 
uncoupling of MOR from signaling pathways causes opioid desensitization. Most 
of the internalized MORs return to the cell surface, resulting in resensitization. 
b. Chronic morphine tolerance may be derived from adaptations in the 
intracellular signal transduction of post-MOR activation, as morphine does not 
induce effective MOR phosphorylation and internalization. Persistent MOR 
activation on the cell surface may cause ER stress and alter signal transduction.
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activation of GSK3β may be related to the development of morphine 
tolerance. Mice with the mutant BiP may be defective in the activation 
of GSK3β and show less less tolerant to morphine. In fact, we showed 
that co-administration of morphine and a GSK3β inhibitor in wild type 
mice did not develope the tolerance [13] (Figure 3).

Chemical chaperone attenuates the development of Morphine 
tolerance

In order to confirm that an ER chaperone like BiP may mediate 
the development of morphine tolerance, we examined the effect of a 
chemical chaperone on morphine tolerance [13]. Tauroursodeoxycholic 
acid (TUDCA) is a derivative of endogenous bile acids that is thought 
to increase ER folding capacity and suppresses the expression of BiP 
[49,50]. We administered TUDCA together with morphine twice a 
day for 5 days in wild-type mice, and hot plate tests were performed 
at the first and the tenth treatments. The response latencies of the mice 
receiving both TUDCA and morphine were significantly longer than 
those of control mice with morphine alone after the tenth treatment. 
Thus, TUDCA prevented the development of morphine tolerance, 
suggesting a mechanistic relationship between an ER chaperone and 
morphine tolerance. The modulation of morphine analgesia by TUDCA 
reveals a potential clinical application of chemical chaperones that can 
modulate ER functions for the prevention of morphine tolerance.

Conclusion
Studies above suggest that morphine tolerance may be related to ER 

stress. Thus, the modulation of ER functions by chemical chaperones 
and other drugs may lead to a new direction for the prevention of 
morphine tolerance.
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