論文

査読有り
2017年4月

Multiple Independent Changes in Mitochondrial Genome Conformation in Chlamydomonadalean Algae

GENOME BIOLOGY AND EVOLUTION
  • Takashi Hamaji
  • ,
  • Hiroko Kawai-Toyooka
  • ,
  • Atsushi Toyoda
  • ,
  • Yohei Minakuchi
  • ,
  • Masahiro Suzuki
  • ,
  • Asao Fujiyama
  • ,
  • Hisayoshi Nozaki
  • ,
  • David Roy Smith

9
4
開始ページ
993
終了ページ
999
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1093/gbe/evx060
出版者・発行元
OXFORD UNIV PRESS

Chlamydomonadalean green algae are no stranger to linear mitochondrial genomes, particularly members of the Reinhardtinia clade. At least nine different Reinhardtinia species are known to have linear mitochondrial DNAs (mtDNAs), including the model species Chlamydomonas reinhardtii. Thus, it is no surprise that some have suggested that the most recent common ancestor of the Reinhardtinia clade had a linear mtDNA. But the recent uncovering of circular-mapping mtDNAs in a range of Reinhardtinia algae, such as Volvox carteri and Tetrabaena socialis, has shed doubt on this hypothesis. Here, we explore mtDNA sequence and structure within the colonial Reinhardtinia algae Yamagishiella unicocca and Eudorina sp. NIES-3984, which occupy phylogenetically intermediate positions between species with opposing mtDNA mapping structures. Sequencing and gel electrophoresis data indicate that Y. unicocca has a linear monomeric mitochondrial genome with long (3 kb) palindromic telomeres. Conversely, the mtDNA of Eudorina sp., despite having an identical gene order to that of Y. unicocca, assembled as a circular-mapping molecule. Restriction digests of Eudorina sp. mtDNA supported its circular map, but also revealed a linear monomeric form with a matching architecture and gene order to the Y. unicocca mtDNA. Based on these data, we suggest that there have been at least three separate shifts in mtDNA conformation in the Reinhardtinia, and that the common ancestor of this clade had a linear monomeric mitochondrial genome with palindromic telomeres.

リンク情報
DOI
https://doi.org/10.1093/gbe/evx060
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000406755800016&DestApp=WOS_CPL
ID情報
  • DOI : 10.1093/gbe/evx060
  • ISSN : 1759-6653
  • Web of Science ID : WOS:000406755800016

エクスポート
BibTeX RIS