Toru Ohmoto

J-GLOBAL         Last updated: Sep 10, 2018 at 23:36
 
Avatar
Name
Toru Ohmoto
URL
http://www.math.sci.hokudai.ac.jp/~ohmoto/
Affiliation
Hokkaido University
Section
Faculty of Science Department of Mathematics
Degree
PhD(Tokyo Inst. Tech)

Profile

My main subjects are Singularity Theory and Characteristic Classes.

Research Areas

 
 

Published Papers

 
J. Deolindo Silva, Y. Kabata and T. Ohmoto
Topology and its Applications   234 457-473   2018   [Refereed]
Thom polynomials in A-classification I: counting singular projections of a surface
T. Sasajima and T. Ohmoto
Eroupean Math. Soc. Series of Congress Reports, IMPANGA Lecture Notes `Vector bundles, Schubert varieties, and equivariant cohomology',   203-226   2018   [Refereed]
C^1-triangulation of semialgebraic sets
T. Ohmoto and M. Shiota
J. Topology   10 765-775   2017   [Refereed]
Classical formulae on projective characters of surfaces and 3-folds, revisited
T. Sasajima and T. Ohmoto
Saitama J. Math. Proceedings of JARCS6 (Kagoshima, 2015)   31 141-160   2017   [Refereed]
Classification of jets of surfaces in projective 3-space via central projection
H. Sano, Y. Kabata, J. L. Deolindo Silva and T. Ohmoto
Bull. Brazilian Math. Soc.   48(4) 623-639   Dec 2017   [Refereed]
T. Yoshida, Y. Kabata and T. Ohmoto,
RIMS Koukyuroku Bessatsu   B55(1) 239-258   2016   [Refereed]
Singularities of Maps and Characteristic Classes
T. Ohmoto
Adv. Stud. Pure Math. Math. Soc. Japan   68 171-245   2016   [Refereed]
T. Yoshida, Y. Kabata and T. Ohmoto,
Quarterly Jour. Math.   66(1) 369-391   2015   [Refereed]
S. Cappell, L. Maxim, T. Ohmoto, J. Schuermann and S. Yokura,
Geometry & Topology   17 1165-1198   2013   [Refereed]
Vassiliev type invariants for generic mappings, revisited
T. Ohmoto
Contemporary Math., AMS   569 143-160   2012   [Refereed]
A note on Chern-Schwartz-MacPherson class
T. Ohmoto
IRMA Lectures in Mathematics and Theoretical Physics, European Math. Soc.   20 117-132   2012   [Refereed]
Thom polynomials and around
T. Ohmoto
RIMS Kokyuroku Bessatsu, New Trends in Combinatorial Representation Theory   11 75-86   2009   [Refereed][Invited]
Enumerative theory of singularities and equivariant Chern classes
T. Ohmoto
Suugaku (Iwanami Publ.)   61(1) 21-39   2009   [Refereed][Invited]
T. Ohmoto
Math. Proc. Cambridge Phil. Soc.   144 423-438   2008   [Refereed]
Chern classes and Thom polynomials
T. Ohmoto
SINGULARITIES IN GEOMETRY AND TOPOLOGY, World Scientific (2007)   464-482   2007   [Refereed]
T. Ohmoto
Math. Proc. Cambridge Phil. Soc.   140 115-134   2006   [Refereed]
T. Ohmoto and F. Aicardi
Topology   45 27-45   2006   [Refereed]
Self-intersection class for singularities and its application to fold maps
T. Ohmoto, O. Saeki and K. Sakuma
Trans. Amer. Math. Soc.   355 3825-3838   2003   [Refereed]

Misc

 
Toru Ohmoto, Masahiro Shiota
   May 2015
We show that any semialgebraic set admits a semialgebraic triangulation such
that each closed simplex is Tex differentiable. As an application, we give a
straightforward definition of the integration Tex over a compact
semialgebraic ...
Hiroaki Sano, Yutaro Kabata, Jorge Luiz Deolindo Silva, Toru Ohmoto
   Apr 2015
We present a local classification of smooth projective surfaces in 3-space
via projective transformations in accordance with singularity types of central
projections up to codimension 4. We also discuss a relation between our
classification of Mon...
Sylvain Cappell, Laurentiu Maxim, Toru Ohmoto, Joerg Schuermann, Shoji Yokura
Geom. Topol. 17 (2013) 1165-1198      Apr 2012
We obtain a formula for the generating series of (the push-forward under the
Hilbert-Chow morphism of) the Hirzebruch homology characteristic classes of the
Hilbert schemes of points for a smooth quasi-projective variety of arbitrary
pure dimensio...
Toru Ohmoto
   Sep 2013
This is a note on my mini-course in the International Workshop on Real and
Complex Singularities held at ICMC-USP (Sao Carlos, Brazil) in July 2012. Here
we introduce a new branch of the Thom polynomial theory for singularities of
holomorphic maps...
Toru Ohmoto
   Apr 2010
This is a note on MacPherson's Chern class for algebraic stacks, based on a
previous paper of the author [arXiv:math/0407348]. We also discuss other
additive characteristic classes in the same manner.
Toru Ohmoto
Math. Proc. Cambridge Phil. Soc. 144, (2008), 423--438 (a revised version)      Apr 2006
For a possibly singular complex variety Tex, generating functions of total
"orbifold Chern homology classes" of symmetric products Tex are given. Those
are very natural "Chern class versions" (in the sense of Schwartz-MacPherson)
of known gener...
Toru Ohmoto
Math. Proc. Cambridge Phil. Soc. 140, (2006), 115--134 (a revised version)      Jul 2004
We define the equivariant Chern-Schwartz-MacPherson class of a possibly
singular algebraic variety with a group action over the complex number field
(or a field of characteristic 0). In fact, we construct a natural
transformation from the equivari...

Books etc

 
Singularities in Geometry and Topology
V. Blanloeil and T. Ohmoto (Part:Joint Editor)
RMA Lectures in Mathematics and Theoretical Physics, European Math. Soc.   2012