論文

国際誌
2019年10月30日

Circuit-Specific Early Impairment of Proprioceptive Sensory Neurons in the SOD1G93A Mouse Model for ALS.

The Journal of Neuroscience : the official journal of the Society for Neuroscience
  • Soju Seki
  • ,
  • Toru Yamamoto
  • ,
  • Kiara Quinn
  • ,
  • Igor Spigelman
  • ,
  • Antonios Pantazis
  • ,
  • Riccardo Olcese
  • ,
  • Martina Wiedau-Pazos
  • ,
  • Scott H Chandler
  • ,
  • Sharmila Venugopal

39
44
開始ページ
8798
終了ページ
8815
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1523/JNEUROSCI.1214-19.2019

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons degenerate, resulting in muscle atrophy, paralysis, and fatality. Studies using mouse models of ALS indicate a protracted period of disease development with progressive motor neuron pathology, evident as early as embryonic and postnatal stages. Key missing information includes concomitant alterations in the sensorimotor circuit essential for normal development and function of the neuromuscular system. Leveraging unique brainstem circuitry, we show in vitro evidence for reflex circuit-specific postnatal abnormalities in the jaw proprioceptive sensory neurons in the well-studied SOD1G93A mouse. These include impaired and arrhythmic action potential burst discharge associated with a deficit in Nav1.6 Na+ channels. However, the mechanoreceptive and nociceptive trigeminal ganglion neurons and the visual sensory retinal ganglion neurons were resistant to excitability changes in age-matched SOD1G93A mice. Computational modeling of the observed disruption in sensory patterns predicted asynchronous self-sustained motor neuron discharge suggestive of imminent reflexive defects, such as muscle fasciculations in ALS. These results demonstrate a novel reflex circuit-specific proprioceptive sensory abnormality in ALS.SIGNIFICANCE STATEMENT Neurodegenerative diseases have prolonged periods of disease development and progression. Identifying early markers of vulnerability can therefore help devise better diagnostic and treatment strategies. In this study, we examined postnatal abnormalities in the electrical excitability of muscle spindle afferent proprioceptive neurons in the well-studied SOD1G93A mouse model for neurodegenerative motor neuron disease, amyotrophic lateral sclerosis. Our findings suggest that these proprioceptive sensory neurons are exclusively afflicted early in the disease process relative to sensory neurons of other modalities. Moreover, they presented Nav1.6 Na+ channel deficiency, which contributed to arrhythmic burst discharge. Such sensory arrhythmia could initiate reflexive defects, such as muscle fasciculations in amyotrophic lateral sclerosis, as suggested by our computational model.

リンク情報
DOI
https://doi.org/10.1523/JNEUROSCI.1214-19.2019
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/31530644
PubMed Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6820216
ID情報
  • DOI : 10.1523/JNEUROSCI.1214-19.2019
  • PubMed ID : 31530644
  • PubMed Central 記事ID : PMC6820216

エクスポート
BibTeX RIS