Lectures on Ordinal Analysis *

Toshiyasu Arai (University of Tokyo, JAPAN)

The lecture rely on the followings, especially on starred ones.

- [Buchholz75] W. Buchholz, Normalfunktionen und konstruktive Systeme von Ordinalzahlen. In: Diller, J., Müller, G. H. (eds.) Proof Theory Symposion Keil 1974, Lect. Notes Math. vol. 500, pp. 4-25, Springer (1975)
- [Buchholz92]* W. Buchholz, A simplified version of local predicativity, in *Proof Theory*, eds. P. H. G. Aczel, H. Simmons and S. S. Wainer (Cambridge UP,1992), pp. 115–147.
- [Buchholz00]* W. Buchholz, Review of the paper: A. Setzer, Well-ordering proofs for Martin-Löf type theory, Bulletin of Symbolic Logic 6 (2000) 478-479.
- [Jäger82]* G. Jäger, Zur Beweistheorie der Kripke-Platek Mengenlehre über den natürlichen Zahlen, Archiv f. math. Logik u. Grundl., 22(1982), 121-139.
- [Jäger83]* G. Jäger, A well-ordering proof for Feferman's theory T_0 , Archiv f. math. Logik u. Grundl., 23(1983), 65-77.
- [Rathjen94]* M. Rathjen, Proof theory of reflection, Ann. Pure Appl. Logic 68 (1994) 181–224.
- [Rathjen05b] M. Rathjen, An ordinal analysis of parameter free Π_2^1 -comprehension, Arch. Math. Logic 44 (2005) 263-362.
- (An ordinal analysis of set theory) [Jäger82]*.
- (Operator controlled derivations) A streamlined technique introduced in [Buchholz92]*, and its extension in [Rathjen94]*.
- (Shrewd cardinals) [Rathjen05b]
- (Well-foundedness proofs) Distinguished classes are introduced in [Buchholz75]. I have learnt it in [Jäger83]* and its improved version in [Buchholz00]*.

^{*}This is a lecture notes for a mini-course in Department of Mathematics, Ghent University, 14 Mar.-25 Mar. 2023. I'd like to thank A. Weiermann and F. Pakhomov for the hospitality during my stay in Gent, Belgium.

Plan

- 1. $KP\omega$
- 2. Rathjen's analysis of Π_3 -reflection Well-foundedness proof in $\mathsf{KP}\Pi_3$ (skipped)
- 3. First-order reflection
- 4. First-order reflection (contd.)
- 5. Π_1^1 -reflection
- 6. Π_1^1 -reflection (contd.)
- 7. Π_1^1 -reflection (contd.)
- 8. Π_1 -collection
- 9. Π_1 -collection (contd.)

An ordinal α is said to be *recursive* iff there exists a recursive (computable) well ordering on ω of type α . ω_1^{CK} (*Church-Kleene* ω_1) denotes the least non-recursive ordinal.

Definition 0.1 1. $Prg[\prec, U] :\Leftrightarrow \forall x[\forall y \prec x(y \in U) \rightarrow x \in U]$ (*U* is *progressive* with respect to \prec).

- 2. $\mathrm{TI}[\prec,A]:\Leftrightarrow Prg[\prec,A] \to \forall x\, A(x)$ for formulas A(x), and $\mathrm{TI}[\prec,U] \Leftrightarrow Prg[\prec,U] \to \forall x\, U(x)$ (transfinite induction on \prec).
- 3. Let \prec be a computable strict partial order on ω . If \prec is well-founded, then let $|n|_{\prec} := \sup\{|m|_{\prec} + 1 : m \prec n\}$, and $|\prec| := \sup\{|n|_{\prec} + 1 : n \in \omega\}$ (the order type of \prec). Otherwise let $|\prec| := \omega_1^{CK}$.

Definition 0.2 For a theory T comprising elementary recursive arithmetic EA the *proof-theoretic ordinal* |T| of T is defined by

$$|T| := \sup\{|\prec| : T \vdash \mathrm{TI}[\prec, U] \text{ for some recursive well order } \prec\}$$
 (1)

where U is a fresh predicate constant.

Now, most brutally speaking, the aim of the ordinal analysis is to compute and/or describe the proof-theoretic ordinals of natural theories, thereby measuring the proof-theoretic strengths of theories with respect to Π_1^1 -consequences.

1 Ordinal analysis of $KP\omega$

1.1 Kripke-Platek set theory

A fragment KP of Zermelo-Fraenkel set theory ZF, Kripke-Platek set theory, is introduced Let $\mathcal{L}_{set} = \{\in, =\}$ be the set-theoretic language. In this section we deal only with set-theoretic models $\langle X; \in \upharpoonright (X \times X) \rangle$, and the model is identified with the sets X.

Definition 1.1 $(\Delta_0, \Sigma_1, \Pi_2, \Sigma)$

- 1. A set-theoretic formula is said to be a Δ_0 -formula if every quantifier occurring in it is bounded by a set. Bounded quantifiers is of the form $\forall x \in u, \exists x \in u$.
- 2. A formula of the form $\exists xA$ with a Δ_0 -matrix A is a Σ_1 -formula. Its dual $\forall xA$ is a Π_1 -formula.
- 3. The set of Σ -formulas [Π -formulas] is the smallest class including Δ_0 formulas, closed under positive operations \wedge, \vee , bounded quantifications $\forall x \in u, \exists x \in u$, and existential (unbounded) quantification $\exists x$ [universal (unbounded) quantification $\forall x$], resp.

For example $\forall x \in u \exists y A (A \in \Delta_0)$ is a Σ -formula but not a Σ_1 -formula.

4. A formula of the form $\forall x A$ with a Σ_1 -matrix A is a Π_2 -formula.

We see easily that Δ_0 -formulas are absolute in the sense that for any transitive sets $X \subset Y$ (X is transitive iff $\forall y \in X \forall x \in y(x \in X)$), $X \models A[\bar{x}] \Leftrightarrow Y \models A[\bar{x}]$ for any Δ_0 -formula A and $\bar{x} = x_1, \ldots, x_n$ with $x_i \in X$.

Definition 1.2 Axioms of KP are **Extensionality** $\forall a, b [\forall x \in a (x \in b) \land \forall x \in b (x \in a) \rightarrow a = b]$, **Null set**(the empty set \emptyset exists), **Pair** $\forall x, y \exists a (x \in a \land y \in a)$, **Union** $\forall a \exists b \forall x \in a \forall y \in x (y \in b)$, and the following three schemata.

 Δ_0 -Separation For any set a and any Δ_0 -formula A, the set $b = \{x \in a : A(x)\}$ exists. Namely $\exists b \forall x [x \in b \leftrightarrow x \in a \land A(x)]$.

 Δ_0 -Collection $\forall x \in a \exists y \ A(x,y) \to \exists b \forall x \in a \exists y \in b \ A(x,y) \text{ for } \Delta_0$ -formulas A.

Foundation or \in -Induction $\forall x [\forall y \in xF(y) \to F(x)] \to \forall xF(x)$ for arbitrary formula F.

 $\mathsf{KP}\omega$ denotes KP plus Axiom of **Infinity** $\exists x \neq \emptyset \forall y \in x[y \cup \{y\} \in x]$.

1.2 Constructible hierarchy and admissible sets

The constructible hierarchy $\{L_{\alpha} : \alpha \in ON\}$.

- 1. $L_0 := \emptyset$.
- 2. $L_{\alpha+1}$ is the collection of all definable sets in (L_{α}, \in) .
- 3. $L_{\lambda} := \bigcup_{\alpha < \lambda} L_{\alpha}$ for limits λ .
- 4. $L := \bigcup_{\alpha \in ON} L_{\alpha}$.

Note that $L_{\omega\alpha} \models \mathsf{KP} - (\Delta_0\text{-}\mathbf{Collection})$ for $\alpha > 0$, and $\omega \in L_{\omega\alpha}$ if $\alpha > 1$.

Definition 1.3 1. A transitive set A is admissible if $(A; \in) \models \mathsf{KP}$.

- 2. An ordinal α is admissible if L_{α} is admissible.
- 3. A relation R on an admissible set A is A-recursive [A-recursively enumerable, A-r.e.] (A-finite) if R is Δ_1 [Σ_1] ($R \in A$), resp.
- 4. A function on an admissible set A is A-recursive if its graph is A-r.e.
- 5. An ordinal α is recursively regular iff $L_{\alpha} \models \mathsf{KP}\omega$.

Observe that an ordinal α is recursively regular iff α is a multiplicative principal number> ω , and for any L_{α} -recursive function $f:\beta\to\alpha$ with a $\beta<\alpha$, $\sup\{f(\gamma):\gamma<\beta\}<\alpha$ holds.

Theorem 1.4 (Π_2 -Reflection on L)

For any Σ -predicate A

$$\mathsf{KP}\omega \vdash \forall x \in L\exists y \in L\, A(x,y) \to \exists z \in L \forall x \in z \exists y \in z\, A(x,y).$$

In particular for recursively regular ordinals Ω ,

$$\forall \alpha < \Omega \exists \beta < \Omega \, A(\alpha, \beta) \to \exists \gamma < \Omega \forall \alpha < \gamma \exists \beta < \gamma \, A(\alpha, \beta).$$

Lemma 1.5
$$|\mathsf{KP}\omega| \leq |\mathsf{KP}\omega|_{\Sigma} := \min\{\alpha : \forall A \in \Sigma(\mathsf{KP}\omega \vdash A \Rightarrow L_{\alpha} \models A)\}.$$

Proof. Suppose $\mathsf{KP}\omega$ proves $\mathsf{TI}[\prec, U]$ for a computable order \prec on ω , where a unary predicate U may occur in Foundation schema, but not in Δ_0 -Separation nor Δ_0 -Collection. Then $\forall n \in \omega \exists \alpha (\alpha = |n|_{\prec} = \sup\{|m|_{\prec} + 1 : m \prec n\})$ is provable in $\mathsf{KP}\omega$. Therefore $|\mathsf{KP}\omega| \leq |\mathsf{KP}\omega|_{\Sigma}$.

The Mostowski collapsing close(b) of a set b is defined by $C_b(x) = \{C_b(y) : y \in x \cap b\}$ and close(b) := $C_b(b) = \{C_b(x) : x \in b\}$.

Definition 1.6 We say that a class \mathcal{C} is Π_n -classes for $n \geq 2$ if there exists a set-theoretic Π_n -formula $F(\bar{a})$ with parameters \bar{a} such that for any transitive set P with $\bar{a} \subset P$, $P \in \mathcal{C} \Leftrightarrow P \models F(\bar{a})$ holds. For a whole universe $L, L \in \mathcal{C}$ denotes the formula $F(\bar{a})$. By a Π_0^1 -class we mean a Π_n -class for some $n \geq 2$.

1.3 Buchholz' ψ -functions

In this section we work in $\mathsf{KP}\omega$.

We are in a position to introduce a collapsing function $\psi_{\sigma}(\alpha) < \sigma$ (even if $\alpha \geq \sigma$). The following definition is due to [Buchholz86].

Definition 1.7 Let $\Omega = \omega_1$ or $\Omega = \omega_1^{CK}$. Define simultaneously by recursion on ordinals $\alpha < \Gamma_{\Omega+1}$ the classes $\mathcal{H}_{\alpha}(X)(X \subset \Omega)$ and the ordinals $\psi_{\Omega}(\alpha)$ as follows.

 $\mathcal{H}_{\alpha}(X)$ is the Skolem hull of $\{0,\Omega\} \cup X$ under the functions $+,\varphi$, and $\beta \mapsto \psi_{\Omega}(\beta)$ $(\beta < \alpha)$.

Let

$$\psi_{\Omega}(\alpha) = \min(\{\Omega\} \cup \{\beta < \Omega : \mathcal{H}_{\alpha}(\beta) \cap \Omega \subset \beta\})$$
 (2)

Let us interpret $\Omega = \omega_1$. Then we see readily that $\mathcal{H}_{\alpha}(X)$ is countable for any countable X.

To see that the ordinal $\psi_{\Omega}(\alpha)$ could be defined, it suffices to show the existence of an ordinal $\beta < \Omega$ such that $\mathcal{H}_{\alpha}(\beta) \cap \Omega \subset \beta$: let $\beta = \sup\{\beta_n : n \in \omega\}$ with $\beta_{n+1} = \min\{\beta < \Omega : \mathcal{H}_{\alpha}(\beta_n) \cap \Omega \subset \beta\}$ and $\beta_0 = 0 < \Omega$. Then $\mathcal{H}_{\alpha}(\beta) \cap \Omega \subset \beta$ since $\mathcal{H}_{\alpha}(\beta) = \bigcup_n \mathcal{H}_{\alpha}(\beta_n)$, and $\beta < \Omega$ since $\Omega > \omega$ is regular.

The ordinal $\psi_{\Omega_1}(\varepsilon_{\Omega_1+1})$ is called the Bachmann-Howard ordinal.

Proposition 1.8 1. $\alpha_0 \leq \alpha_1 \wedge X_0 \subset X_1 \Rightarrow \mathcal{H}_{\alpha_0}(X_0) \subset \mathcal{H}_{\alpha_1}(X_1)$.

- 2. $\mathcal{H}_{\alpha}(\psi_{\Omega}(\alpha)) \cap \Omega = \psi_{\Omega}(\alpha)$ and $\psi_{\Omega}(\alpha) \notin \mathcal{H}_{\alpha}(\psi_{\Omega}(\alpha))$.
- 3. $\alpha_0 \leq \alpha \Rightarrow \psi_{\Omega}(\alpha_0) \leq \psi_{\Omega}(\alpha) \wedge \mathcal{H}_{\alpha_0}(\psi_{\Omega}(\alpha_0)) \subset \mathcal{H}_{\alpha}(\psi_{\Omega}(\alpha))$.
- 4. $\alpha_0 \in \mathcal{H}_{\alpha}(\psi_{\Omega}(\alpha)) \cap \alpha \Rightarrow \psi_{\Omega}(\alpha_0) < \psi_{\Omega}(\alpha)$. Therefore $\alpha_0 \in \mathcal{H}_{\alpha_0}(\psi_{\Omega}(\alpha_0)) \wedge \alpha \in \mathcal{H}_{\alpha}(\psi_{\Omega}(\alpha)) \Rightarrow (\alpha_0 < \alpha \leftrightarrow \psi_{\Omega}(\alpha_0) < \psi_{\Omega}(\alpha))$.
- 5. $\psi_{\Omega}(\alpha)$ is a strongly critical number such that $\psi_{\Omega}(\alpha) < \Omega$.
- 6. $\gamma \in \mathcal{H}_{\alpha}(\beta) \Leftrightarrow \mathsf{SC}(\gamma) \subset \mathcal{H}_{\alpha}(\beta)$, where $\mathsf{SC}(0) = \mathsf{SC}(\Omega) = \emptyset$, $\mathsf{SC}(\gamma) = \{\gamma\}$ if $\gamma \neq \Omega$ is strongly critical, and $\mathsf{SC}(\varphi\gamma\delta) = \mathsf{SC}(\gamma + \delta) = \mathsf{SC}(\gamma) \cup \mathsf{SC}(\delta)$.
- 7. $\mathcal{H}_{\alpha}(\psi_{\Omega}(\alpha)) = \mathcal{H}_{\alpha}(0)$ and $\psi_{\Omega}(\alpha) = \min\{\xi : \xi \notin \mathcal{H}_{\alpha}(0) \cap \Omega\}.$

Proposition 1.8.7 means that $\psi_{\Omega}(\alpha)$ is the Mostowski's collapse of the point Ω in the iterated Skolem hull $\mathcal{H}_{\alpha}(0)$ of ordinals $\{0,\Omega\}$ under addition + and the binary Veblen function φ . This suggests us that the ordinal $\psi_{\Omega}(\alpha)$ could be a substitute for Ω in a restricted situation.

1.4 Computable notation system $OT(\Omega)$ of ordinals

By Proposition 1.8.7 we have $\mathcal{H}_{\varepsilon_{\Omega+1}}(0) = \mathcal{H}_{\varepsilon_{\Omega+1}}(0) = \mathcal{H}_{\varepsilon_{\Omega+1}}(\psi_{\Omega}(\varepsilon_{\Omega+1}))$, and hence each ordinal below $\psi_{\Omega}(\varepsilon_{\Omega+1})$ can be denoted by terms built up from $0, \Omega, +, \varphi, \psi$. Although the representation is not uniquely determined from ordinals, e.g., $\psi_{\Omega}(\psi_{\Omega}(\Omega)) = \psi_{\Omega}(\Omega)$, α can be determined from the ordinal $\psi_{\Omega}(\alpha)$ if $\alpha \in \mathcal{H}_{\alpha}(0)$, cf. Propositions 1.8.4 and 1.8.7. We can devise a recursive notation system $OT(\Omega)$ of ordinals with this restriction in such a way that the following holds

Proposition 1.9 EA proves that $(OT(\Omega), <)$ is a linear order.

1.5 Ramified set theory

Definition 1.10 RS-terms t and their levels |t| are defined recursively as follows.

- 1. For each ordinal $\alpha \in OT(\Omega) \cap (\Omega + 1)$, L_{α} is an RS-term of level $|L_{\alpha}| = \alpha$.
- 2. Let $\theta(x, y_1, \ldots, y_n)$ be a formula in the set-theoretic language, and s_1, \ldots, s_n be RS-terms such that $\max\{|s_i|: 1 \leq i \leq n\} < \alpha$. Then the formal expression $[x \in \mathsf{L}_\alpha : \theta^{\mathsf{L}_\alpha}(x, s_1, \ldots, s_n)]$ is an RS-term of level $|[x \in \mathsf{L}_\alpha : \theta^{\mathsf{L}_\alpha}(x, s_1, \ldots, s_n)]| = \alpha$.

RS denotes the set of all RS-terms.

Let $\theta(x_1, ..., x_n)$ be a formula such that each quantifier is bounded by a variable $y, Qx \in y$, all free variables occurring in θ are among the list $x_1, ..., x_n$, and each x_i occurs freely in θ . An *RS-formula* is obtained from such a formula $\theta(x_1, ..., x_n)$ by substituting RS-terms t_i for each x_i .

Let
$$\mathsf{k}(\mathsf{L}_{\alpha}) := \{\alpha\}, \, \mathsf{k}([x \in \mathsf{L}_{\alpha} : \theta^{\mathsf{L}_{\alpha}}(x, s_1, \dots, s_n)]) = \{\alpha\} \cup \bigcup_{i \leq n} \mathsf{k}(s_i) \text{ and }$$

$$\mathsf{k}(\theta(t_1,\dots,t_n)) := \bigcup_{i \le n} \mathsf{k}(t_i), \, |\theta(t_1,\dots,t_n)| := \max\{|t_1|,\dots,|t_n|,0\}.$$

The bound L_Ω in $\exists x \in \mathsf{L}_\Omega$ and $\forall x \in \mathsf{L}_\Omega$ is the replacements of the unbounded quantifiers \exists and \forall , resp.

Definition 1.11 Let s, t be RS-terms with |s| < |t|.

$$(s\dot{\in}t):\equiv\left\{\begin{array}{ll}B(s) & t\equiv [x\in\mathsf{L}_\alpha:B(x)]\\ \top & t\equiv \mathsf{L}_\alpha\end{array}\right.$$

where \top denotes a true literal, e.g., $\emptyset \notin \emptyset$.

We assign disjunctions or conjunctions to sentences as follows. When a disjunction $\bigvee (A_i)_{i \in J}$ [a conjunction $\bigwedge (A_i)_{i \in J}$] is assigned to A, we denote $A \simeq \bigvee (A_i)_{i \in J}$ [$A \simeq \bigwedge (A_i)_{i \in J}$], resp.

Definition 1.12 1. $(A_0 \vee A_1) :\simeq \bigvee (A_i)_{i \in J}$ and $(A_0 \wedge A_1) :\simeq \bigwedge (A_i)_{i \in J}$ with J := 2.

- 2. $(a \in b) :\simeq \bigvee (t \dot{\in} b \wedge t = a)_{t \in J}$ and $(a \notin b) :\simeq \bigwedge (t \dot{\in} b \rightarrow t \neq a)_{t \in J}$ with $J := Tm(|b|) := \{t \in RS : |t| < |b|\}.$
- 3. Let a, b be set terms. $(a \neq b) :\simeq \bigvee (\neg A_i)_{i \in J}$ and $(a = b) :\simeq \bigwedge (A_i)_{i \in J}$ with J := 2 and $A_0 :\equiv (\forall x \in a(x \in b)), A_1 :\equiv (\forall x \in b(x \in a)).$
- 4. $\exists x \in b \ A(x) :\simeq \bigvee (t \dot{\in} b \land A(t))_{t \in J} \text{ and } \forall x \in b \ A(x) :\simeq \bigwedge (t \dot{\in} b \to A(t))_{t \in J} \text{ with } J := Tm(|b|).$

Lemma 1.13 $\forall i \in J(\mathsf{k}(i) \subset \mathsf{k}(A_i) \subset \mathsf{k}(A) \cup \mathsf{k}(i))$ for $A \simeq \bigvee (A_i)_{i \in J}$, where $\mathsf{k}(0) = \mathsf{k}(1) = \emptyset$.

The $rank \operatorname{rk}(A), \operatorname{rk}(a) < \Omega + \omega$ of RS-formulas A and RS-terms a are defined so that the followings hold for any formula A.

Proposition 1.14 1. $rk(A) \in \{\omega | A| + n : n \in \omega\}$ for RS-terms and RS-formulas A.

- 2. $\operatorname{rk}(B(t)) \in \{\omega|t| + n : n \in \omega\} \cup \{\operatorname{rk}(B(\mathsf{L}_0))\}.$
- 3. Let $A \simeq \bigvee (A_i)_{i \in J}$. Then $\forall i \in J(\operatorname{rk}(A_i) < \operatorname{rk}(A))$.

Definition 1.15 1. Let $B(x_1, ..., x_n)$ be a Δ_0 -formula, and $a_1, ..., a_n \in RS$ be $|a_i| < \Omega$. Then $B(a_1, ..., a_n)$ is a $\Delta(\Omega)$ -formula.

- 2. Let $A(x_1, \ldots, x_n)$ be a Σ -formula, and $a_1, \ldots, a_n \in RS$ be $|a_i| < \Omega$. Then $A^{(\mathsf{L}_\Omega)}(a_1, \ldots, a_n)$ is a $\Sigma(\Omega)$ -formula, where for RS-terms $c, A^{(c)}$ denotes the result of replacing unbounded existential quantifiers $\exists x(\cdots)$ by $\exists x \in c(\cdots)$.
- 3. Let $B \equiv A^{(\mathsf{L}_{\Omega})}$ be a $\Sigma(\Omega)$ -formula, and $\alpha \in OT(\Omega) \cap \Omega$. Then $B^{(\alpha,\Omega)} \equiv A^{(\mathsf{L}_{\alpha})}$. For $\Gamma \subset \Sigma(\Omega)$, $\Gamma^{(\alpha,\Omega)} := \{B^{(\alpha,\Omega)} : B \in \Gamma\}$.

Let us define a derivability relation $\mathcal{H}_{\gamma}[\Theta] \vdash_b^a \Gamma$ for finite sets Θ of ordinals, $\gamma, a < \varepsilon_{\Omega+1}, \ b < \Omega + \omega$ and RS-sequents, i.e., finite sets of RS-formulas Γ .

Definition 1.16 $\mathcal{H}_{\gamma}[\Theta] \vdash_b^a \Gamma$ holds if

$$\{\gamma, a, b\} \cup \mathsf{k}(\Gamma) \subset \mathcal{H}_{\gamma}[\Theta]$$
 (3)

and one of the following cases holds:

 (\bigvee) There are $A \in \Gamma$ such that $A \simeq \bigvee (A_i)_{i \in J}$, an $i \in J$ with

$$|i| < a \tag{4}$$

and an a(i) < a for which $\mathcal{H}_{\gamma}[\Theta] \vdash_{b}^{a(i)} \Gamma, A_{i}$ holds.

$$\frac{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a(i)} \Gamma, A_i}{\mathcal{H}_{\gamma}[\Theta] \vdash_b^a \Gamma} (\bigvee)_{(|i| < a)}$$

(\bigwedge) There is an $A \in \Gamma$ such that $A \simeq \bigwedge (A_i)_{i \in J}$, and for each $i \in J$, there is an a(i) such that a(i) < a for which $\mathcal{H}_{\gamma}[\Theta \cup \mathsf{k}(i)] \vdash_b^{a(i)} \Gamma, A_i$ holds.

$$\frac{\{\mathcal{H}_{\gamma}[\Theta \cup \mathsf{k}(i)] \vdash_b^{a(i)} \Gamma, A_i\}_{i \in J}}{\mathcal{H}_{\gamma}[\Theta] \vdash_b^a \Gamma} \ (\bigwedge)$$

(cut) There are C and $a_0 < a$ such that $\operatorname{rk}(C) < b$, $\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a_0} \Gamma, \neg C$ and $\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a_0} C, \Gamma$.

$$\frac{\mathcal{H}_{\gamma}[\Theta] \vdash_{b}^{a_{0}} \Gamma, \neg C \quad \mathcal{H}_{\gamma}[\Theta] \vdash_{b}^{a_{0}} C, \Gamma\left(\operatorname{rk}(C) < b\right)}{\mathcal{H}_{\gamma}[\Theta] \vdash_{b}^{a} \Gamma} \quad (cut)$$

 $(\Delta_0(\Omega)\text{-Coll})$ $b \geq \Omega$, and there are a formula $C \in \Sigma(\Omega)$ and an $a_0 < a$ such that $\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a_0} \Gamma, C$ and $\mathcal{H}_{\gamma}[\Theta \cup \{\alpha\}] \vdash_b^{a_0} \Gamma, \neg C^{(\alpha,\Omega)}$ for every $\alpha < \Omega$.

$$\frac{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a_0} \Gamma, C \quad \{\mathcal{H}_{\gamma}[\Theta \cup \{\alpha\}] \vdash_b^{a_0} \neg C^{(\alpha,\Omega)}, \Gamma\}_{\alpha < \Omega}}{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a} \Gamma} \quad (\Delta_0(\Omega)\text{-Coll})$$

Lemma 1.17 (Tautology) $\mathcal{H}_0[\mathsf{k}(A)] \vdash_0^{2d} \neg A, A \text{ with } d = \mathrm{rk}(A).$

Lemma 1.18 (Inversion)

$$\mathcal{H}_{\gamma}[\Theta] \vdash^a_b \Gamma, A \Rightarrow \forall i \in J(\mathcal{H}_{\gamma}[\Theta \cup \mathsf{k}(i)] \vdash^a_b \Gamma, A_i) \ \textit{for} \ A \simeq \bigwedge(A_i)_{i \in J}.$$

Lemma 1.19 (Boundedness) Let $a \leq \beta \in \mathcal{H}_{\gamma}[\Theta] \cap \Omega$ and $\Lambda \subset \Sigma(\Omega)$. Then $\mathcal{H}_{\gamma}[\Theta] \vdash_b^a \Gamma, \Lambda \Rightarrow \mathcal{H}_{\gamma}[\Theta] \vdash_b^a \Gamma, \Lambda^{(\beta,\Omega)}$.

Lemma 1.20 (Embedding)

Let $\Gamma[\vec{x} := \vec{a}] \ (\vec{a} \subset RS)$ denote a closed instance of a sequent Γ with restriction of unbounded quantifiers to L_{Ω} . Assume $\mathsf{KP}\omega \vdash \Gamma$. Then

$$\exists m, l < \omega \forall \vec{a} \subset RS[\mathcal{H}_0[\mathsf{k}(\vec{a})] \vdash_{\Omega + m}^{\Omega + l} \Gamma[\vec{x} := \vec{a}]]$$

where $k(\vec{a}) = k(a_1) \cup \cdots k(a_n)$ for $\vec{a} = (a_1, \dots, a_n)$.

Let $\theta_c(a)$ be the c-th iterate of $\theta_1(a) = \omega^a$. $\theta_0(a) = a$, $\theta_{c+d}(a) = \theta_c(\theta_d(a))$, and $\theta_{\omega^c}(a) = \varphi_c(a)$.

Lemma 1.21 (Predicative Cut-elimination)

$$\mathcal{H}_{\gamma}[\Theta] \vdash_{b+c}^{a} \Gamma \Rightarrow \mathcal{H}_{\gamma}[\Theta] \vdash_{b}^{\theta_{c}(a)} \Gamma \text{ if } \neg (b < \Omega \leq b+c).$$

Theorem 1.22 (Collapsing)

Suppose

$$\Theta \subset \mathcal{H}_{\gamma}(\psi_{\Omega}(\gamma)) \tag{5}$$

for a finite set Θ of ordinals, and $\Gamma \subset \Sigma(\Omega)$. Then for $\hat{a} = \gamma + \omega^a$ and $\beta = \psi_{\Omega}(\hat{a})$

$$\mathcal{H}_{\gamma}[\Theta] \vdash_{\Omega}^{a} \Gamma \Rightarrow \mathcal{H}_{\hat{a}+1}[\Theta] \vdash_{\beta}^{\beta} \Gamma.$$

Proof. This is seen by induction on a. Observe that $\mathsf{k}(\Gamma) \cup \{\beta\} \subset \mathcal{H}_{\hat{\alpha}+1}[\Theta]$ by $\gamma < \hat{\alpha} + 1$ and (3).

Case 1. The last inference is a (\bigvee) .

Let $A \in \Gamma$ be such that $A \simeq \bigvee (A_i)_{i \in J}$, and for an $i \in J$ and an a(i) < a

$$\frac{\mathcal{H}_{\gamma}[\Theta] \vdash_{\Omega}^{a(i)} \Gamma, A_{i}}{\mathcal{H}_{\gamma}[\Theta] \vdash_{\Omega}^{a} \Gamma} (\bigvee)$$

By IH it suffices to show $|i| < \psi_{\Omega}(\hat{a})$ for (4). We can assume $\mathsf{k}(i) \subset \mathsf{k}(A_i)$. Then $|i| \in \mathsf{k}(A_i) \subset \mathcal{H}_{\gamma}[\Theta] \subset \mathcal{H}_{\gamma}(\psi_{\Omega}(\gamma))$ by (3) and the assumption (5). On the other hand we have $|i| < \Omega$. Hence $|i| \in \mathcal{H}_{\hat{a}}(\psi_{\Omega}(\hat{a})) \cap \Omega = \psi_{\Omega}(\hat{a})$.

Case 2. The last inference is a (Λ) .

Let $A \in \Gamma$ be such that $A \simeq \bigwedge (A_i)_{i \in J}$, and for each $i \in J$, there are a(i) < a such that

$$\frac{\{\mathcal{H}_{\gamma}[\Theta \cup \mathsf{k}(i)] \vdash^{a(i)}_{\Omega} \Gamma, A_i\}_{i \in J}}{\mathcal{H}_{\gamma}[\Theta] \vdash^{a}_{\Omega} \Gamma} \ (\bigwedge)$$

By IH it suffices to show that $\forall i \in J(\mathsf{k}(i) \subset \mathcal{H}_{\gamma}(\psi_{\Omega}(\gamma)))$. For example consider the case when $A \equiv (\forall x \in u \, B(x))$ for a set term u. Then $J = \{t \in RS : |t| < |u|\}$. Since A is a $\Sigma(\Omega)$ -sentence, we have $|a| < \Omega$. On the other hand we have $|u| \in \mathcal{H}_{\gamma}[\Theta]$ for $|u| = \max \mathsf{k}(u)$, and hence $\mathsf{k}(i) \subset |u| \in \mathcal{H}_{\gamma}(\psi_{\Omega}(\gamma)) \cap \Omega = \psi_{\Omega}(\gamma)$ for any $i \in J$.

Case 3. The last inference is a $(\Delta_0(\Omega)\text{-Coll})$.

There are a sentence $C \in \Sigma(\Omega)$ and an $a_0 < a$ such that

$$\frac{\mathcal{H}_{\gamma}[\Theta] \vdash_{\Omega}^{a_0} \Gamma, C \quad \{\mathcal{H}_{\gamma}[\Theta \cup \{\alpha\}] \vdash_{\Omega}^{a_0} \neg C^{(\alpha,\Omega)}, \Gamma\}_{\alpha < \Omega}}{\mathcal{H}_{\gamma}[\Theta] \vdash_{\Omega}^{a} \Gamma} \ (\Delta_0(\Omega)\text{-Coll})$$

Let $\widehat{a_0} = \gamma + \omega^{a_0}$ and $\beta_0 = \psi_{\Omega}(\widehat{a_0})$. IH yields $\mathcal{H}_{\hat{a}+1}[\Theta] \vdash_{\beta_0}^{\beta_0} \Gamma, C$. Boundedness 1.19 yields $\mathcal{H}_{\widehat{a_0}+1}[\Theta] \vdash_{\beta_0}^{\beta_0} \Gamma, C^{(\beta_0,\Omega)}$, where $\beta_0 \in \mathcal{H}_{\widehat{a_0}+1}[\Theta]$. On the other hand we have $\mathcal{H}_{\gamma}[\Theta \cup \{\beta_0\}] \vdash_{\Omega}^{a_0} \neg C^{(\beta_0,\Omega)}, \Gamma$, and $\mathcal{H}_{\widehat{a_0}+1}[\Theta] \vdash_{\Omega}^{a_0} \neg C^{(\beta_0,\Omega)}, \Gamma$. IH yields $\mathcal{H}_{\widehat{a_0}+\omega^{a_0}+1}[\Theta] \vdash_{\beta}^{\beta_1} \neg C^{(\beta_0,\Omega)}, \Gamma$, where $\beta_1 = \psi_{\Omega}(\widehat{a_0} + \omega^{a_0})$ with $\widehat{a_0} + \omega^{a_0} = \gamma + \omega^{a_0} + \omega^{a_0} < \widehat{a}$. A (cut) with $\mathrm{rk}(C^{(\beta_0,\Omega)}) < \beta$ yields $\mathcal{H}_{\hat{a}+1}[\Theta] \vdash_{\beta}^{\beta} \Gamma$.

Case 4. The last inference is a (cut).

$$\frac{\mathcal{H}_{\gamma}[\Theta] \vdash^{a_0}_{\Omega} \Gamma, \neg C \quad \mathcal{H}_{\gamma}[\Theta] \vdash^{a_0}_{\Omega} C, \Gamma}{\mathcal{H}_{\gamma}[\Theta] \vdash^{a}_{\Omega} \Gamma} \ (cut)$$

We obtain $\operatorname{rk}(C) < \Omega$, and $\operatorname{rk}(C) \in \mathcal{H}_{\gamma}[\Theta] \cap \Omega \subset \psi_{\Omega}(\gamma) \leq \beta$. IH followed by a (cut) yields the lemma.

Lemma 1.23 (Truth)

If
$$\mathcal{H}_{\gamma}[\Theta] \vdash^{\alpha}_{\Omega} \Gamma$$
 with $\Gamma \subset \Delta(\Omega)$, then $L_{\Omega} \models \Gamma$.

Theorem 1.24 KP $\omega \vdash \Gamma$ and $\Gamma \subset \Sigma(\Omega_1) \Rightarrow \exists m < \omega \left[L_{\Omega} \models \Gamma^{(\psi_{\Omega}(\omega_m(\Omega+1)),\Omega)} \right].$

Proof. Let $\mathsf{KP}\omega \vdash \Gamma$ for a set Γ of Σ-sentences. By Embedding 1.20 pick an $m < \omega$ such that $\mathcal{H}_0[\emptyset] \vdash_{\Omega+m}^{\Omega+m} \Gamma$. Predicative Cut-elimination 1.21 yields $\mathcal{H}_0[\emptyset] \vdash_{\Omega}^{a} \Gamma$ for $a = \omega_m(\Omega + m)$. Let $\beta = \psi_{\Omega}(\hat{a})$ with $\hat{a} = \omega^a = \omega_{m+1}(\Omega + m)$. We then obtain $\mathcal{H}_{\hat{a}+1}[\emptyset] \vdash_{\beta}^{\beta} \Gamma$ by Collapsing 1.22, and $\mathcal{H}_{\hat{a}+1}[\emptyset] \vdash_{\beta}^{\beta} \Gamma^{(\beta,\Omega)}$ by Boundedness 1.19. We see $L_{\Omega} \models \Gamma^{(\beta,\Omega)}$ from Truth 1.23. From $\beta < \psi_{\Omega}(\omega_{m+2}(\Omega+1))$ and the persistency of Σ-formulas, we conclude $L_{\Omega} \models \Gamma^{(\psi_{\Omega}(\omega_{m+2}(\Omega+1)),\Omega)}$.

1.6 Well-foundedness proof in $KP\omega$

In this subsection $\alpha, \beta, \gamma, \delta, \ldots$ range over ordinal terms in $OT(\Omega)$, and < denotes the relation between ordinal terms defined in Definition ??. An ordinal term α is identified with the set $\{\beta \in OT(\Omega) : \beta < \alpha\}$. For ordinal terms α, β , ordinal terms $\alpha + \beta$ and ω^{α} are defined trivially.

In this subsection we show that the theory ID for non-iterated positive elementary inductive definitions on \mathbb{N} proves the fact that the relation < on $OT(\Omega)$ is well-founded up to each $\alpha < \psi_{\Omega}(\varepsilon_{\Omega+1})$.

Theorem 1.25 For each $n < \omega$

$$\mathsf{ID} \vdash \mathsf{TI}[< \!\!\upharpoonright \psi_{\Omega}(\omega_n(\Omega+1)), B]$$

for any formula B in the language $\mathcal{L}(\mathsf{ID})$.

Acc denotes the accessible part of < in $OT(\Omega)$, which is defined in ID as the least fixed point $P_{\mathcal{A}}$ of the operator $\mathcal{A}(X,\alpha):\Leftrightarrow \alpha\subset X\Leftrightarrow (\forall\beta<\alpha(\beta\in X))$. It suffices to show the following, which is equivalent to Theorem 1.25.

Theorem 1.26 For each $\alpha < \psi_{\Omega}(\varepsilon_{\Omega+1})$, $\mathsf{ID} \vdash \alpha \in Acc$.

The least fixed point Acc enjoys $\forall \alpha(\alpha \subset Acc \to \alpha \in Acc)$, and $\forall \alpha(\alpha \subset F \to \alpha \in F) \to Acc \subset F$. From these we see easily that Acc is closed under $+, \varphi$ besides $0 \in Acc$. Hence we obtain $\Gamma_0 = \psi_{\Omega}(0) \in Acc$. Likewise $\Gamma_1 = \psi_{\Omega}(1) \in Acc$ follows. To prove $\psi_{\Omega}(\Omega) \in Acc$, we need to show $\psi_{\Omega}(\alpha) \in Acc$ for any $\alpha < \Omega$ such that $\psi_{\Omega}(\alpha)$ is an ordinal term, i.e., $G(\alpha) < \alpha$. This means that when $\psi_{\Omega}(\beta)$ occurs in α , then $\beta < \alpha$ holds. Thus we have a chance to prove inductively that $\psi_{\Omega}(\alpha) \in Acc$. The ordinal term α is built from 0, Ω and some ordinal terms $\psi_{\Omega}(\beta)$ with $\beta < \alpha$ by $+, \varphi$. Let us assume that each of ordinals $\psi_{\Omega}(\beta) < \Omega$ occurring in α is in $W_0 = Acc \cap \Omega$, and denote the set of such ordinals α by M_1 . Though we don't have $\Omega \in Acc$ in hand (since this means that $OT(\Omega) \cap \Omega$ is well-founded, which is the fact we are going to prove), Ω is in the accessible part W_1 of the set M_1 . It turns out that W_1 is progressive on M_1 , and $\Omega \in W_1$. Moreover $\omega^{\Omega+1} \in W_1$ is seen as for the jump set for epsilon numbers. In this way we see that $\alpha \in W_1$, i.e., $\psi_{\Omega}(\alpha) \in W_0$ for $each \alpha < \varepsilon_{\Omega+1}$.

Let $SC(\alpha)$ denote the set of strongly critical parts of α defined in Proposition 1.8.6, and let $SC_{\Omega}(\alpha) = SC(\alpha) \cap \Omega$.

Definition 1.27 $M_1 = \{ \alpha \in OT(\Omega) : \mathsf{SC}_{\Omega}(\alpha) \subset W_0 \}.$

Proposition 1.28 $G(\beta) < \alpha \Rightarrow \mathsf{SC}_{\Omega}(\beta) < \psi_{\Omega}(\alpha) \text{ for } \psi_{\Omega}(\alpha) \in OT(\Omega).$

Proof. By induction on the length of ordinal terms β . Assume $G(\beta) < \alpha$. By IH we can assume $\beta = \psi_{\Omega}(\gamma)$. Then $\gamma \in G(\beta)$ and $SC_{\Omega}(\beta) = \{\beta\}$. Hence $\gamma < \alpha$ and $\beta < \psi_{\Omega}(\alpha)$.

In what follows we work in ID except otherwise stated.

Lemma 1.29 $M_1 \cap \Omega = W_0$.

$$\mathcal{A}(X) := \{ \alpha \in M_1 : M_1 \cap \alpha \subset X \}.$$

Proposition 1.30 For each formula F, $A(F) \subset F \to \Omega \in F$.

Proof. Assuming $\mathcal{A}(F) \subset F$, we see $\alpha \in W_0 \Rightarrow \alpha \in F$ by induction on $\alpha \in W_0$.

Lemma 1.31 For each formula F, $\mathcal{A}(F) \subset F \to \mathcal{A}(\mathsf{j}[F]) \subset \mathsf{j}[F]$, where $\mathsf{j}[F] := \{\beta \in OT(\Omega) : \forall \alpha (M_1 \cap \alpha \subset F \to M_1 \cap (\alpha + \omega^{\beta}) \subset F)\}.$

Lemma 1.32 For each formula F and each $n < \omega$, $A(F) \subset F \to \omega_n(\Omega + 1) \in F$.

$$\alpha \in W : \Leftrightarrow (\psi_{\Omega}(\alpha) \in OT(\Omega) \to \psi_{\Omega}(\alpha) \in W_0).$$

Lemma 1.33 $A(W) \subset W$.

Proof. Assume $\alpha \in \mathcal{A}(W)$ and $\psi_{\Omega}(\alpha) \in OT(\Omega)$. Then $\alpha \in M_1$ and $M_1 \cap \alpha \subset W$. We show

$$\gamma < \psi_{\Omega}(\alpha) \to \gamma \in W_0$$

by induction on the length of ordinal terms γ . We can assume that $\gamma = \psi_{\Omega}(\beta)$. Then $\beta < \alpha$. We see $\beta \in M_1$ from IH. Therefore $\beta \in M_1 \cap \alpha \subset W$, which yields $\gamma = \psi_{\Omega}(\beta) \in W_0$. Therefore $\psi_{\Omega}(\alpha) \subset W_0$.

Let us show Theorem 1.26. We show that ID proves $\psi_{\Omega}(\omega_n(\Omega+1)) \in W_0$ for each $n < \omega$. By Lemmas 1.32 and 1.33 we obtain $\omega_n(\Omega+1) \in W$. Thus $\psi_{\Omega}(\omega_n(\Omega+1)) \in W_0$ by the definition of W.

2 Rathjen's analysis of Π_3 -reflection

Given an analysis of $\mathsf{KP}\omega$ for a single recursively regular ordinal, it is not hard to extend it to an analysis of theories of recursively regular ordinals of a given order type, e.g., to $\mathsf{KP}\ell$, or equivalently to $\Pi^1_1\text{-}\mathsf{CA}+\mathsf{BI}$. Or to an iteration of recursively regularities in another manner. Specifically an ordinal analysis of $\mathsf{KP}M$ for recursively Mahlo ordinals is not an obstacle.

Let us introduce a Π_i -recursively Mahlo operation RM_i and its iterations. A Π_i -recursively Mahlo operation RM_i for $2 \leq i < \omega$, is defined through a universal Π_i -formula $\Pi_i(a)$ such that for each Π_i -formula $\varphi(x)$ there exists a natural number n such that $\mathsf{KP} \vdash \forall x [\varphi(x) \leftrightarrow \Pi_i(\langle n, x \rangle)]$. Let \mathcal{X} be a collection of sets.

$$P \in RM_i(\mathcal{X}) : \Leftrightarrow \forall b \in P [P \models \Pi_i(b) \to \exists Q \in \mathcal{X} \cap P(b \in Q \models \Pi_i(b))]$$

(read: P is Π_i -reflecting on \mathcal{X} .)

Let $RM_i = RM_i(V)$, and V is Π_i -reflecting if $V \in RM_i$. Under the axiom V = L of constructibility, $V \in RM_2$ iff $V \models \mathsf{KP}\omega$, and $V \in RM_2(RM_2)$ iff V is recursively Mahlo universe. When $V = L_\sigma$, the ordinal σ is recursively Mahlo ordinal.

Let $\mathsf{KP}M$ denote a set theory for recursively Mahlo universes. For an ordinal analysis of $\mathsf{KP}M$, it suffices for us to have two step collapsings $\alpha \mapsto \sigma = \psi_M(\alpha) \in RM_2$ and $(\sigma, \beta) \mapsto \psi_{\sigma}(\beta)$.

Assume that $P \in \mathcal{X}$ is given by a Δ_0 -formula. Then there exists a Π_{i+1} -formula rm_i such that for any non-empty transitive sets $P \in V \cup \{V\}$, $P \in RM_i(\mathcal{X}) \leftrightarrow rm_i^P$, where rm_i^P denotes the result of restricting unbounded quantifiers in rm_i to P.

An iteration of RM_i along a definable relation \prec is defined as follows.

$$P \in RM_i(a; \prec) : \Leftrightarrow a \in P \in \bigcap \{RM_i(RM_i(b; \prec)) : b \in P \models b \prec a\}.$$

Assume that $b \prec a$ is given by a Σ_1 -formula. Then there exists a Π_{i+1} -formula $rm_i(a, \prec)$ such that for any non-empty transitive sets $P \in V \cup \{V\}$ and $a \in P$, $P \in RM_i(a; \prec) \leftrightarrow rm_i^P(a, \prec)$.

For $2 \leq N < \omega$, $\mathsf{KP}\Pi_N$ denotes a set theory for Π_N -reflecting universes V, which is obtained from $\mathsf{KP}\omega$ by adding an axiom $V \in RM_N$ (the axiom for Π_N -reflection) stating that its universe is Π_N -reflecting. This means that for each Π_N -formula $\varphi, \ \varphi(a) \to \exists c[ad_N^c \land a \in c \land \varphi^c(a)]$ is an axiom, where $ad_2^c := (\forall x \in c \forall y \in x(y \in c))$, i.e., c is transitive, and for N > 2, $ad \equiv ad_N$ denotes a Π_3 -sentence such that $P \models ad \Leftrightarrow P \models \mathsf{KP}\omega$ for any transitive and well-founded sets P. $\mathsf{KP}\Pi_2$ is a subtheory of $\mathsf{KP}\omega + (V = L)$, which is interpreted in $\mathsf{KP}\omega$: $\mathsf{KP}\omega + (V = L) \vdash \varphi \Rightarrow \mathsf{KP}\omega \vdash \varphi^L$, cf. Theorem 1.4.

KPΠ_{N+1} is much stronger than KPΠ_N since Π_N-recursively Mahlo operation RM_N can be iterated in KPΠ_{N+1}. For example, KPΠ_{N+1} proves $\forall \alpha \in ON[V \in RM_N(\alpha; <)]$ by induction on ordinals α . Suppose $\forall \beta < \alpha[V \in RM_N(\beta; <)]$. Let φ be a Π_N -formula such that $V \models \varphi$, and $\beta < \alpha$. We can reflect a Π_{N+1} -formula $V \in RM_N(\beta; <) \land \varphi$, and obtain a set P such that $P \in RM_N(\beta; <) \land P \models \varphi$. Hence $V \in RM_N(\alpha; <)$. This means that V is in the diagonal intersection $\triangle_{\alpha}RM_N(\alpha; <)$, i.e., $V \in \bigcap \{RM_N(\alpha; <) : \alpha \in ON \cap V\}$. Since this is a Π_{N+1} -formula, the Π_{N+1} -reflecting universe V reflects it: there exists a set $P \in V$ such that P is in the diagonal intersection, i.e., $P \in \bigcap \{RM_N(\alpha; <) : \alpha \in ON \cap P\}$, and so forth.

Let $ON \subset V$ denote the class of ordinals, $ON^{\varepsilon} \subset V$ and $<^{\varepsilon}$ be Δ -predicates such that for any transitive and well-founded model V of $\mathsf{KP}\omega, <^{\varepsilon}$ is a well order

of type $\varepsilon_{\mathbb{K}+1}$ on ON^{ε} for the order type \mathbb{K} of the class ON in V. $\lceil \omega_n(\mathbb{K}+1) \rceil \in ON^{\varepsilon}$ denotes the code of the 'ordinal' $\omega_n(\mathbb{K}+1)$, which is assumed to be a closed 'term' built from the code $\lceil \mathbb{K} \rceil$ and n, e.g., $\lceil \alpha \rceil = \langle 0, \alpha \rangle$ for $\alpha \in ON$, $\lceil \mathbb{K} \rceil = \langle 1, 0 \rangle$ and $\lceil \omega_n(\mathbb{K}+1) \rceil = \langle 2, \langle 2, \cdots \langle 2, \langle 3, \lceil \mathbb{K} \rceil, \langle 0, 1 \rangle \rangle \rangle \cdots \rangle$.

 $<^{\varepsilon}$ is assumed to be a standard epsilon order with base \mathbb{K} (not on \mathbb{N} , but on V) such that $\mathsf{KP}\omega$ proves the fact that $<^{\varepsilon}$ is a linear ordering, and for any formula φ and each $n < \omega$,

$$\mathsf{KP}\omega \vdash \forall x(\forall y <^{\varepsilon} x \varphi(y) \to \varphi(x)) \to \forall x <^{\varepsilon} [\omega_n(\mathbb{K} + 1)]\varphi(x) \tag{6}$$

Theorem 2.1 ([A14a])

For each $N \geq 2$, $\mathsf{KP}\Pi_{N+1}$ is Π_{N+1} -conservative over the theory

$$\mathsf{KP}\omega + \{V \in RM_N(\lceil \omega_n(\mathbb{K}+1) \rceil; <^{\varepsilon}) : n \in \omega\}.$$

From (6) we see that $\mathsf{KP}\Pi_{N+1}$ proves $V \in RM_N(\lceil \omega_n(\mathbb{K}+1) \rceil; <^{\varepsilon})$ for each $n \in \omega$.

Let us consider the simplest case N=3, i.e., an ordinal analysis of set theory $\mathsf{KP}\Pi_3$ for Π_3 -reflecting universe. It turns out that $\mathsf{KP}\Pi_3$ is proof-theoretically reducible to iterations of recursively Mahlo operations $V \in RM_2(\lceil \omega_n(\mathbb{K}+1) \rceil; <^{\varepsilon})$ $(n \in \omega)$, but how to analyze it proof-theoretically? Here we need a breakthrough done by [Rathjen94].

2.1 Ordinals for $KP\Pi_3$

In this subsection we define collapsing functions $\psi_{\sigma}^{\xi}(a)$ for KP Π_3 . It is much easier for us to justify the definitions with an existence of a small large cardinal. Let \mathbb{K} be the least weakly compact cardinal, i.e., Π_1^1 -indescribable cardinal, and $\Omega = \omega_1$. In general for $n \geq 0$, $A \subset ON$ is Π_n^1 -indescribable in an ordinal π iff for every $\Pi_n^1(P)$ -formula $\varphi(P)$ with a predicate P and $C \subset \pi$, if $(L_{\pi}, C) \models \varphi(P)$, then $(L_{\alpha}, C \cap \alpha) \models \varphi(P)$ for an $\alpha \in A \cap \pi$. First let us introduce the Mahlo operation. Let $A \subset \mathbb{K}$ be a set, and $\alpha \leq \mathbb{K}$ a limit ordinal. $\alpha \in M_2(A)$ iff $A \cap \alpha$ is Π_0^1 -indescribable in α .

As in Definition 1.7 we define the Skolem hull $\mathcal{H}_a(X)$ and simultaneously classes $Mh_2^a(\xi)$ as follows.

Definition 2.2 Define simultaneously by recursion on ordinals $a < \varepsilon_{\mathbb{K}+1}$ the classes $\mathcal{H}_a(X)$ $(X \subset \Gamma_{\mathbb{K}+1})$, $Mh_2^a(\xi)$ $(\xi < \varepsilon_{\mathbb{K}+1})$ and the ordinals $\psi_{\sigma}^{\xi}(a)$ as follows.

- 1. $\mathcal{H}_a(X)$ denotes the Skolem hull of $\{0, \Omega, \mathbb{K}\} \cup X$ under the functions $+, \varphi$, and $(\sigma, \nu, b) \mapsto \psi^{\nu}_{\sigma}(b)$ (b < a).
- 2. Let for $\xi > 0$,

$$\pi \in Mh_2^a(\xi) :\Leftrightarrow \{a,\xi\} \subset \mathcal{H}_a(\pi) \& \forall \nu \in \mathcal{H}_a(\pi) \cap \xi (\pi \in M_2(Mh_2^a(\nu)))$$
 (7)

 $\pi \in Mh_2^a(0)$ iff π is a limit ordinal.

3. For $0 \le \xi < \varepsilon_{\mathbb{K}+1}$,

$$\psi_{\pi}^{\xi}(a) = \min\left(\left\{\pi\right\} \cup \left\{\kappa \in Mh_{2}^{a}(\xi) : \left\{\xi, \pi, a\right\} \subset \mathcal{H}_{a}(\kappa) \& \mathcal{H}_{a}(\kappa) \cap \pi \subset \kappa\right\}\right)$$
(8)
and
$$\psi_{\Omega}(\alpha) = \min\left\{\beta < \Omega : \mathcal{H}_{\alpha}(\beta) \cap \Omega \subset \beta\right\}.$$

We see that each of $x = \mathcal{H}_a(y)$, $x = \psi_{\kappa}^{\xi} a$ and $x \in Mh_2^a(\xi)$, is a Σ_1 -predicate as fixed points in ZFL

Since the cardinality of the set $\mathcal{H}_{\varepsilon_{\mathbb{K}+1}}(\pi)$ is π for any infinite cardinal $\pi \leq \mathbb{K}$, pick an injection $f: \mathcal{H}_{\varepsilon_{\mathbb{K}+1}}(\mathbb{K}) \to \mathbb{K}$ so that $f"\mathcal{H}_{\varepsilon_{\mathbb{K}+1}}(\pi) \subset \pi$ for any weakly inaccessibles $\pi \leq \mathbb{K}$.

Lemma 2.3 (Cf. Theorem 4.12 in [Rathjen94].)

- 1. There exists a Π_1^1 -formula $mh_2^a(x)$ such that $\pi \in Mh_2^a(\xi)$ iff $L_{\pi} \models mh_2^a(\xi)$ for any weakly inaccessible cardinals $\pi \leq \mathbb{K}$ with $f''(\{a,\xi\}) \subset L_{\pi}$.
- 2. $\mathbb{K} \in Mh_2^a(\varepsilon_{\mathbb{K}+1}) \cap M_2(Mh_2^a(\varepsilon_{\mathbb{K}+1}))$ for every $a < \varepsilon_{\mathbb{K}+1}$.

Proof. 2.3.1. Let π be a weakly inaccessible cardinal and f an injection such that $f''\mathcal{H}_{\varepsilon_{\mathbb{K}+1}}(\pi) \subset L_{\pi}$. Assume that $f''(\{a,\xi\}) \subset L_{\pi}$. Then for $f(\xi) \in f''\mathcal{H}_a(\pi)$, $\pi \in Mh_2^a(\xi)$ iff for any $f(\nu) \in L_{\pi}$, if $f(\nu) \in f''\mathcal{H}_a(\pi)$ and $\nu < \xi$, then $\pi \in M_2(Mh_2^a(\nu))$, where $f''\mathcal{H}_a(\pi) \subset L_{\pi}$ is a class in L_{π} .

2.3.2. We show the following $B(\xi)$ is progressive in $\xi < \varepsilon_{\mathbb{K}+1}$:

$$B(\xi) : \Leftrightarrow \mathbb{K} \in Mh_2^a(\xi) \cap M_2(Mh_2^a(\xi))$$

Note that $\xi \in \mathcal{H}_a(\mathbb{K})$ holds for any $\xi < \varepsilon_{\mathbb{K}+1}$.

Suppose $\forall \nu < \xi \ B(\nu)$. We have to show that $Mh_2^a(\xi)$ is Π_0^1 -indescribable in \mathbb{K} . It is easy to see that if $\pi \in M_2(Mh_2^a(\xi))$, then $\pi \in Mh_2^a(\xi)$ by induction on π . Let $\theta(P)$ be a first-order formula with a predicate P such that $(L_{\mathbb{K}}, C) \models \theta(P)$ for $C \subset \mathbb{K}$.

By IH we have $\forall \nu < \xi[\mathbb{K} \in M_2(Mh_2^a(\nu))]$. In other words, $\mathbb{K} \in Mh_2^a(\xi)$, i.e., $(L_{\mathbb{K}}, C) \models mh_2^a(\xi) \land \theta(P)$. Since the universe $L_{\mathbb{K}}$ is Π_1^1 -indescribable, pick a $\pi < \mathbb{K}$ such that $(L_{\pi}, C \cap \pi)$ enjoys the Π_1^1 -sentence $mh_2^a(\xi) \land \theta(P)$, and $\{f(a), f(\xi)\} \subset L_{\pi}$. Therefore $\pi \in Mh_2^a(\xi)$. Thus $\mathbb{K} \in M_2(Mh_2^a(\xi))$.

Lemma 2.4 For every $\{a,\xi\}\subset \varepsilon_{\mathbb{K}+1},\ \psi_{\mathbb{K}}^{\xi}(a)<\mathbb{K}$ for the Π^1_1 -indescribable cardinal \mathbb{K} .

Proof. Let $\{a,\xi\} \subset \varepsilon_{\mathbb{K}+1}$. By Lemma 2.3.2 we obtain $\mathbb{K} \in M_2(Mh_2^a(\xi))$. On the other, $\{\kappa < \mathbb{K} : \{\xi,a\} \subset \mathcal{H}_a(\kappa), \mathcal{H}_a(\kappa) \cap \mathbb{K} \subset \kappa\}$ is a club subset of \mathbb{K} . Hence $\psi_{\mathbb{K}}^{\xi}(a) < \mathbb{K}$ by the definition (8).

From the definition (8) we see

$$\pi \in Mh_2^a(\mu) \cap \mathcal{H}_a(\pi) \& \xi \in \mathcal{H}_a(\pi) \cap \mu \Rightarrow \pi \in M_2(Mh_2^a(\xi)) \& \psi_{\pi}^{\xi}(a) < \pi$$

In what follows M_2 denote the Π_2 -recursively Mahlo operation RM_2 .

2.2 Operator controlled derivations for $KP\Pi_3$

 $OT(\Pi_3)$ denotes a computable notation system of ordinals with collapsing functions $\psi_{\sigma}^{\nu}(b)$. $\kappa = \psi_{\sigma}^{\nu}(b) \in OT(\Pi_3)$ if $\{\sigma, \nu, b\} \subset OT(\Pi_3) \cap \mathcal{H}_b(\kappa)$, $\nu = m_2(\kappa) < m_2(\sigma)$ and

$$SC_{\mathbb{K}}(\nu) \subset \kappa \& \nu \leq b$$
 (9)

where $m_2(\Omega) = 1$ and $m_2(\mathbb{K}) = \varepsilon_{\mathbb{K}+1}$. We need the condition (9) in our well-foundedness proof of $OT(\Pi_3)$, cf. Proposition 3.30 and Lemma 3.38.

Operator controlled derivations for $\mathsf{KP}\Pi_3$ are defined as in Definition 1.16 for $\mathsf{KP}\omega$ together with the following inference rules. For ordinals $\pi = \psi^\xi_\sigma(a)$, let $m_2(\pi) = \xi$.

 $(\mathrm{rfl}_{\Pi_3}(\mathbb{K}))$ $b \geq \mathbb{K}$. There exist an ordinal $a_0 \in \mathcal{H}_{\gamma}[\Theta] \cap a$, and a $\Sigma_3(\mathbb{K})$ -sentence A enjoying the following conditions:

$$\frac{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a_0} \Gamma, \neg A \quad \{\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash_b^{a_0} \Gamma, A^{(\rho, \mathbb{K})} : \rho < \mathbb{K}\}}{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a} \Gamma} \text{ (rfl}_{\Pi_3}(\mathbb{K}))$$

The inference says that $\mathbb{K} \in RM_3$.

 $(\text{rfl}_{\Pi_2}(\alpha, \pi, \nu))$ There exist ordinals $\alpha < \pi \leq b < \mathbb{K}$, $\nu < m_2(\pi)$ such that $SC_{\mathbb{K}}(\nu) \subset \pi$ and $\nu \leq \gamma$, cf. (9), $a_0 < a$, and a finite set Δ of $\Sigma_2(\pi)$ -sentences enjoying the following conditions:

- 1. $\{\alpha, \pi, \nu\} \subset \mathcal{H}_{\gamma}[\Theta]$.
- 2. For each $\delta \in \Delta$, $\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a_0} \Gamma$, $\neg \delta$.
- 3. For each $\alpha < \rho \in Mh_2(\nu) \cap \pi$, $\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash_b^{a_0} \Gamma, \Delta^{(\rho,\pi)}$ holds. By $\rho \in Mh_2(\nu)$ we mean $\nu \leq m_2(\rho)$.

$$\frac{\{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a_0} \Gamma, \neg \delta\}_{\delta \in \Delta} \quad \{\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash_b^{a_0} \Gamma, \Delta^{(\rho, \pi)} : \alpha < \rho \in Mh_2(\nu) \cap \pi\}}{\mathcal{H}_{\gamma}[\Theta] \vdash_b^a \Gamma} \quad (\mathrm{rfl}_{\Pi_2}(\alpha, \pi, \nu))$$

The inference says that $\pi \in M_2(Mh_2^{\gamma}(\nu))$ provided that $\{m_2(\pi), \gamma, \nu\} \subset \mathcal{H}_{\gamma}(\pi)$.

The axiom for Π_3 -reflection follows from the inference $(\mathrm{rfl}_{\Pi_3}(\mathbb{K}))$ as follows. Let $A \in \Sigma_3(\mathbb{K})$ with $d = \mathrm{rk}(A) < \mathbb{K} + \omega$, and $d_\rho = \mathrm{rk}(A^{(\rho,\mathbb{K})})$ for $\rho < \mathbb{K}$.

$$\frac{\mathcal{H}_0[\mathsf{k}(A) \cup \{\rho\}] \vdash_0^{2d_\rho} A^{(\rho,\mathbb{K})}, \neg A^{(\rho,\mathbb{K})}}{\mathcal{H}_0[\mathsf{k}(A) \cup \{\rho\}] \vdash_0^{\mathbb{K}} \exists z \, A^{(z,\mathbb{K})}, \neg A^{(\rho,\mathbb{K})}}}{\mathcal{H}_0[\mathsf{k}(A)] \vdash_{\mathbb{K}}^{\mathbb{K}+\omega} \neg A, \exists z \, A^{(z,\mathbb{K})}} \; (\mathrm{rfl}_{\Pi_3}(\mathbb{K}))$$

An appropriate name for this collapsing technique would be stationary collapsing since in order for this procedure to work, a single derivation has to be collapsed into a "stationary" family of derivations. [Rathjen94]

We see from the following proof that $\alpha = \psi_{\mathbb{K}}(\gamma + \mathbb{K})$ holds in every inference $(\text{rfl}_{\Pi_2}(\alpha, \kappa, a_0))$ occurring in a witnessed derivation of $\mathcal{H}_{\hat{a}+1}[\Theta \cup {\kappa}] \vdash_{\beta}^{\beta} \Gamma^{(\kappa,\mathbb{K})}$. Let us call the unique ordinal α a *base*.

Lemma 2.5 Assume $\Gamma \subset \Sigma_2(\mathbb{K})$, $\Theta \subset \mathcal{H}_{\gamma}(\psi_{\mathbb{K}}(\gamma))$, and $\mathcal{H}_{\gamma}[\Theta] \vdash_{\mathbb{K}}^a \Gamma$ with $a \leq \gamma$. Then $\mathcal{H}_{\hat{a}+1}[\Theta \cup \{\kappa\}] \vdash_{\beta}^{\beta} \Gamma^{(\kappa,\mathbb{K})}$ holds for any $\kappa \in Mh_2(a) \cap \psi_{\mathbb{K}}(\gamma + \mathbb{K} \cdot \omega)$ such that $\psi_{\mathbb{K}}(\gamma + \mathbb{K}) < \kappa$, where $\hat{a} = \gamma + \omega^{\mathbb{K}+a}$ and $\beta = \psi_{\mathbb{K}}(\hat{a})$.

Proof. By induction on a. Note that there exists a $\kappa \in OT(\Pi_3)$ such that $\psi_{\mathbb{K}}(\gamma + \mathbb{K}) < \kappa \in Mh_2(a) \cap \psi_{\mathbb{K}}(\gamma + \mathbb{K} \cdot \omega)$. F.e. $\kappa = \psi_{\mathbb{K}}^a(\gamma + \mathbb{K} + 1)$. **Case 1.** Consider the case when the last inference is a $(\mathrm{rfl}_{\Pi_3}(\mathbb{K}))$. For $\Sigma_3 \ni A \simeq \bigvee (A_i)_{i \in J}$,

$$\frac{\mathcal{H}_{\gamma}[\Theta] \vdash^{a_0}_{\mathbb{K}} \Gamma, \neg A \quad \{\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash^{a_0}_{\mathbb{K}} \Gamma, A^{(\rho, \mathbb{K})} : \rho < \mathbb{K}\}}{\mathcal{H}_{\gamma}[\Theta] \vdash^{a}_{\mathbb{K}} \Gamma} \quad (\mathrm{rfl}_{\Pi_3}(\mathbb{K}))$$

Let

$$\psi_{\mathbb{K}}(\gamma + \mathbb{K}) \le \sigma \in Mh_2(a_0) \cap \kappa.$$

Let $i \in Tm(\sigma)$, i.e., $\mathsf{k}(i) \subset \sigma$. For each $i \in Tm(\sigma)$ Inversion yields $\mathcal{H}_{\gamma+|i|}[\Theta \cup \mathsf{k}(i)] \vdash_{\mathbb{K}}^{a_0} \Gamma, \neg A_i \text{ with } \mathsf{k}(i) < \psi_{\mathbb{K}}(\gamma+|i|)$. By IH we obtain $\mathcal{H}_{\hat{a}+1}[\Theta \cup \{\sigma\} \cup \mathsf{k}(i)] \vdash_{\beta}^{\beta_0} \Gamma^{(\sigma,\mathbb{K})}, \neg A_i^{(\sigma,\mathbb{K})}$ for every $i \in Tm(\sigma)$, where $\beta_0 = \psi_{\mathbb{K}}(\widehat{a_0})$ with $\widehat{a_0} = \gamma + \omega^{\mathbb{K}+a_0} = \gamma + |i| + \omega^{\mathbb{K}+a_0}$. A (\bigwedge) yields

$$\mathcal{H}_{\hat{a}+1}[\Theta \cup \{\sigma\}] \vdash_{\beta}^{\beta_0+1} \Gamma^{(\sigma,\mathbb{K})}, \neg A^{(\sigma,\mathbb{K})}$$

On the other hand we have $\mathcal{H}_{\gamma+\sigma}[\Theta \cup \{\sigma\}] \vdash_{\mathbb{K}}^{a_0} \Gamma, A^{(\sigma,\mathbb{K})}$ with $\sigma \in \mathcal{H}_{\gamma+\sigma}(\psi_{\mathbb{K}}(\gamma + \sigma))$, but $\sigma \notin \mathcal{H}_{\gamma}(\psi_{\mathbb{K}}(\gamma + \mathbb{K}))$. We obtain $\kappa \in Mh_2(a_0)$ by $a_0 < a$, and $\gamma + \sigma + \mathbb{K} = \gamma + \mathbb{K}$. IH yields

$$\mathcal{H}_{\hat{a}+1}[\Theta \cup \{\kappa, \sigma\}] \vdash_{\beta}^{\beta_0} \Gamma^{(\kappa, \mathbb{K})}, A^{(\sigma, \mathbb{K})}$$

A (cut) of the cut formula $A^{(\sigma,\mathbb{K})}$ with $\operatorname{rk}(A^{(\sigma,\mathbb{K})}) < \kappa < \psi_{\mathbb{K}}(\gamma + \mathbb{K} \cdot \omega) \leq \beta$ yields

$$\mathcal{H}_{\hat{a}+1}[\Theta \cup \{\kappa, \sigma\}] \vdash_{\beta}^{\beta_0+2} \Gamma^{(\kappa, \mathbb{K})}, \Gamma^{(\sigma, \mathbb{K})}$$

On the other side

$$\mathcal{H}_{\gamma}[\Theta \cup \{\kappa\}] \vdash_{0}^{2d} \neg \theta^{(\kappa,\mathbb{K})}, \Gamma^{(\kappa,\mathbb{K})}$$

holds for each $\theta \in \Gamma \subset \Sigma_2(\mathbb{K})$, where $d = \max\{\operatorname{rk}(\theta^{(\kappa,\mathbb{K})}) : \theta \in \Gamma\} < \kappa + \omega < \beta$. Moreover we have $a_0 < \hat{a}$, $SC_{\mathbb{K}}(a_0) \subset \mathcal{H}_{\gamma}[\Theta] \cap \mathbb{K} \subset \mathcal{H}_{\gamma}(\psi_{\mathbb{K}}(\gamma)) \cap \mathbb{K} \subset \kappa$. A $(\operatorname{rfl}_{\Pi_2}(\delta, \kappa, a_0))$ with $\delta = \psi_{\mathbb{K}}(\gamma + \mathbb{K})$, $\{\delta, \kappa, a_0\} \subset \mathcal{H}_{\hat{a}+1}[\Theta \cup \{\kappa\}]$ yields $\mathcal{H}_{\hat{a}+1}[\Theta \cup \{\kappa\}] \vdash_{\beta}^{\beta} \Gamma^{(\kappa,\mathbb{K})}$.

$$\frac{\{\mathcal{H}_{\hat{a}+1}[\Theta \cup \{\sigma\}] \vdash_{\beta}^{\beta_{0}+1} \Gamma^{(\sigma,\mathbb{K})}, \neg A^{(\sigma,\mathbb{K})} \quad \mathcal{H}_{\hat{a}+1}[\Theta \cup \{\kappa,\sigma\}] \vdash_{\beta}^{\beta_{0}} \Gamma^{(\kappa,\mathbb{K})}, A^{(\sigma,\mathbb{K})}}{\{\mathcal{H}_{\hat{a}+1}[\Theta \cup \{\kappa,\sigma\}] \vdash_{\beta}^{\beta_{0}+2} \Gamma^{(\kappa,\mathbb{K})}, \Gamma^{(\sigma,\mathbb{K})}\}_{\delta < \sigma \in Mh_{2}(a_{0}) \cap \kappa}}}{\mathcal{H}_{\hat{a}+1}[\Theta \cup \{\kappa\}] \vdash_{\beta}^{\beta} \Gamma^{(\kappa,\mathbb{K})}} (\mathrm{rfl}_{\Pi_{2}}(\delta,\kappa,a_{0}))}$$

Case 2. The last inference is a (cut) of a cut formula C with $\mathrm{rk}(C) < \mathbb{K}$. Then $\mathrm{rk}(C) \in \mathcal{H}_{\gamma}[\Theta] \cap \mathbb{K} \subset \psi_{\mathbb{K}}(\gamma) < \beta$ by (3), Proposition 3.1 and the assumption $\Theta \subset \mathcal{H}_{\gamma}(\psi_{\mathbb{K}}(\gamma))$.

Case 3. The last inference is a (\bigwedge) with a main formula $\Pi_1(\mathbb{K}) \ni A \simeq \bigwedge (A_{\iota})_{\iota \in J}$. We may assume $J = Tm(\mathbb{K})$. Then $A^{(\kappa,\mathbb{K})} \simeq \bigwedge (A_{\iota})_{\iota \in Tm(\kappa)}$, and we obtain the lemma by pruning the branches for $\iota \notin Tm(\kappa)$.

Case 4. The last inference is a (\bigvee) with a main formula $\Sigma_2(\mathbb{K}) \ni A \simeq \bigvee (A_\iota)_{\iota \in J}$. We may assume $J = Tm(\mathbb{K})$. Then $A^{(\kappa,\mathbb{K})} \simeq \bigvee (A_\iota)_{\iota \in Tm(\kappa)}$.

$$\frac{\mathcal{H}_{\gamma}[\Theta] \vdash_{\mathbb{K}}^{a_0} \Gamma, A_{\iota}}{\mathcal{H}_{\gamma}[\Theta] \vdash_{\mathbb{K}}^{a} \Gamma} (\bigvee)$$

We may assume that $\mathsf{k}(\iota) \subset \mathsf{k}(A_{\iota})$. Then by (3) and $\Theta \subset \mathcal{H}_{\gamma}(\psi_{\mathbb{K}}(\gamma))$ we obtain $\mathsf{k}(\iota) \subset \mathcal{H}_{\gamma}[\Theta] \cap \mathbb{K} \subset \mathcal{H}_{\gamma}(\psi_{\mathbb{K}}(\gamma)) \cap \mathbb{K} \subset \kappa$, and $\iota \in Tm(\kappa)$.

An ordinal term α in $OT(\Pi_3)$ is said to be regular if either $\alpha \in \{\Omega, \mathbb{K}\}$ or $\alpha = \psi_{\sigma}^{\nu}(a)$ for some σ, a and $\nu > 0$.

Lemma 2.6 Let λ be regular, $\Gamma \subset \Sigma_1(\lambda)$ and $\mathcal{H}_{\gamma}[\Theta] \vdash_b^a \Gamma$, where $a < \mathbb{K}$, $\mathcal{H}_{\gamma}[\Theta] \ni \lambda \leq b < \mathbb{K}$, and $\forall \kappa \in [\lambda, b)(\Theta \subset \mathcal{H}_{\gamma}(\psi_{\kappa}(\gamma)))$. Let $\hat{a} = \gamma + \theta_b(a)$ and $\beta = \psi_{\lambda}^{\eta}(\hat{a})$ such that $0 \leq \eta \in \mathcal{H}_{\gamma}[\Theta]$, $\eta < m_2(\lambda)$, $SC_{\mathbb{K}}(\eta) \subset \beta$ and $\eta \leq \gamma$. Then $\mathcal{H}_{\hat{a}+1}[\Theta] \vdash_{\beta}^{\beta} \Gamma$ holds.

Proof. By main induction on b with subsidiary induction on a as in Theorem 1.22.

Case 1. Consider first the case when the last inference is a $(\text{rfl}_{\Pi_2}(\alpha, \sigma, \nu))$ with $b \geq \sigma > \alpha$.

$$\frac{\{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a_0} \Gamma, \neg \delta\}_{\delta \in \Delta} \quad \{\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash_b^{a_0} \Gamma, \Delta^{(\rho, \sigma)} : \alpha < \rho \in Mh_2(\nu) \cap \sigma\}}{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a} \Gamma} \quad (\text{rfl}_{\Pi_2}(\alpha, \sigma, \nu))$$

where $\Delta \subset \Sigma_2(\sigma)$, $\{\alpha, \sigma, \nu\} \subset \mathcal{H}_{\gamma}[\Theta]$, $\nu < m_2(\sigma)$, $\nu \le \gamma$ and $SC_{\mathbb{K}}(\nu) \subset \sigma$.

Case 1.1. $\sigma < \lambda$: Then $\{\neg \delta\} \cup \Delta^{(\rho,\sigma)} \subset \Delta_0(\lambda)$ for each $\delta \in \Delta$. For any $\lambda \leq \kappa < b$, we obtain $\rho < \sigma \in \mathcal{H}_{\gamma}[\Theta] \cap \kappa \subset \psi_{\kappa}(\gamma)$. SIH yields the lemma.

Case 1.2. $\sigma \geq \lambda$: For each $\delta \in \Delta$, let $\delta \simeq \bigvee(\delta_i)_{i \in J}$. We may assume $J = Tm(\sigma)$. Inversion yields $\mathcal{H}_{\gamma+|i|}[\Theta \cup \mathsf{k}(i)] \vdash_b^{a_0} \Gamma, \neg \delta_i$. Let $\widehat{a_0} = \gamma + \theta_b(a_0)$ and $\rho = \psi_{\sigma}^{\nu}(\widehat{a_0} + \alpha)$, where $\Theta \subset \mathcal{H}_{\gamma}(\rho)$ by the assumption, $\{\alpha, \sigma, \nu, \widehat{a_0}\} \subset \mathcal{H}_{\gamma}[\Theta]$ with $\nu < m_2(\sigma)$. Hence $\{\alpha, \sigma, \nu, \widehat{a_0}\} \subset \mathcal{H}_{\gamma}(\rho)$ and $\alpha < \rho$ by $\alpha < \sigma$. Therefore, cf. (9), $SC_{\mathbb{K}}(\nu) \subset \rho \in Mh_2(\nu) \cap \sigma \cap \mathcal{H}_{\widehat{a_0}+\alpha+1}[\Theta]$.

For each $\mathsf{k}(i) \subset \rho$ and $\neg \delta_i \in \Sigma_1(\sigma)$, we obtain $\gamma + |i| + \theta_b(a_0) = \widehat{a_0}$ by $|i| < \rho < \sigma \le b$, and $\mathcal{H}_{\widehat{a_0}+1}[\Theta \cup \mathsf{k}(i)] \vdash_{\rho_0}^{\rho_0} \Gamma, \neg \delta_i$ by SIH for $\rho_0 = \psi_{|sig}(\widehat{a_0}) \le \rho$. Hence $\mathcal{H}_{\widehat{a_0}+\alpha+1}[\Theta \cup \mathsf{k}(i)] \vdash_{\rho}^{\rho} \Gamma, \neg \delta_i$ By Boundedness we obtain $\mathcal{H}_{\widehat{a_0}+\alpha+1}[\Theta \cup \mathsf{k}(i)] \vdash_{\rho}^{\rho} \Gamma, \neg \delta_i^{(\rho,\sigma)}$. A (\bigwedge) yields

$$\mathcal{H}_{\widehat{a_0}+\alpha+1}[\Theta] \vdash^{\rho+1}_{\rho} \Gamma, \neg \delta^{(\rho,\sigma)}.$$

On the other hand we have $\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash_b^{a_0} \Gamma, \Delta^{(\rho,\sigma)}$, and $\mathcal{H}_{\widehat{a_0} + \alpha + 1}[\Theta] \vdash_b^{a_0} \Gamma$ $\Gamma, \Delta^{(\rho,\sigma)}$. By SIH we obtain

$$\mathcal{H}_{\widehat{a_1}+1}[\Theta] \vdash_{\beta_1}^{\beta_1} \Gamma, \Delta^{(\rho,\sigma)}$$

for $\beta_1 = \psi_{\sigma}(\widehat{a}_1) > \rho$, with $\widehat{a}_1 = \widehat{a}_0 + \alpha + \theta_b(a_0) \le \gamma + \theta_b(a_0) \cdot 3 < \widehat{a}$. Therefore we obtain $\mathcal{H}_{\widehat{a}_1+1}[\Theta] \vdash_{\beta_1}^{\beta_1+\omega} \Gamma$ by several (cut)'s of $\operatorname{rk}(\delta^{(\rho,\sigma)}) < \rho + \omega < \beta_1$.

If $\sigma = \lambda$, then we are done. Let $\lambda < \sigma \le b$. Then $\lambda \in \mathcal{H}_{\gamma}[\Theta] \cap \sigma \subset \beta_1$. MIH yields $\mathcal{H}_{\widehat{a}_2+1}[\Theta] \vdash_{\beta_2}^{\beta_2} \Gamma$, where $\widehat{a}_2 = \widehat{a}_1 + \theta_{\beta_1}(\beta_1 + \omega) < \widehat{a}$ by $\beta_1 < \sigma \le b$, and $\beta_2 = \psi_{\lambda}(\widehat{a}_2) < \psi_{\lambda}(\widehat{a}) \le \beta$.

Case 2. Next the last inference is a (cut) of a cut formula C with $d = \operatorname{rk}(C) < b$.

$$\frac{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a_0} \Gamma, \neg C \quad \mathcal{H}_{\gamma}[\Theta] \vdash_b^{a_0} \Gamma, C}{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a} \Gamma} \ (cut)$$

If $d < \lambda$, then SIH yields the lemma. Let $\lambda \le d$ and $\widehat{a_0} = \gamma + \theta_b(a_0)$.

Case 2.1. There exists a regular $\sigma \in \mathcal{H}_{\gamma}[\Theta]$ such that $d < \sigma \leq b$: For $\{\neg C, C\} \subset$ $\Delta_0(\sigma), \text{ we obtain } \mathcal{H}_{\widehat{a_0}+1}[\Theta] \vdash_{\beta_0}^{\beta_0} \Gamma, C \text{ and } \mathcal{H}_{\widehat{a_0}+1}[\Theta] \vdash_{\beta_0}^{\beta_0} \Gamma, \neg C \text{ for } \beta_0 = \psi_{\sigma}(\widehat{a_0})$ by SIH. A (cut) yields $\mathcal{H}_{\widehat{a_0}+1}[\Theta] \vdash_{\beta_0}^{\beta_0+1} \Gamma$. MIH yields $\mathcal{H}_{\widehat{a_1}+1}[\Theta] \vdash_{\beta_1}^{\beta_1} \Gamma$, where $\widehat{a_1} = \widehat{a_0} + \theta_{\beta_0}(\beta_0 + 1) < \widehat{a}$ and $\beta_1 = \psi_{\lambda}(\widehat{a_1}) < \psi_{\lambda}(\widehat{a}) \leq \beta$.

Case 2.2. Otherwise: Then there is no regular $\sigma \in \mathcal{H}_{\gamma}[\Theta]$ such that $d < \sigma \leq b$. Let d + c = b. Then by Cut-elimination we obtain $\mathcal{H}_{\gamma}[\Theta] \vdash_{d}^{\theta_{c}(a)} \Gamma$. MIH yields $\mathcal{H}_{\hat{a}+1}[\Theta] \vdash_{\psi_{\lambda}(\hat{a})}^{\psi_{\lambda}(\hat{a})} \Gamma$, where $\gamma + \theta_d(\theta_c(a)) = \gamma + \theta_b(a) = \hat{a}$.

Theorem 2.7 Assume $\mathsf{KP}\Pi_3 \vdash \theta^{L_\Omega}$ for $\theta \in \Sigma$. Then there exists an $n < \omega$ such that $L_{\alpha} \models \theta$ for $\alpha = \psi_{\Omega}(\omega_n(\mathbb{K} + 1))$ in $OT(\Pi_3)$.

Proof. By Embedding there exists an m > 0 such that $\mathcal{H}_0[\emptyset] \vdash_{\mathbb{K}+m}^{\mathbb{K}+m} \theta^{L_{\Omega}}$. By Cut-elimination, $\mathcal{H}_0[\emptyset] \vdash_{\mathbb{K}}^a \theta^{L_{\Omega}}$ and $\mathcal{H}_a[\emptyset] \vdash_{\mathbb{K}}^a \theta^{L_{\Omega}}$ for $a = \omega_m(\mathbb{K} + m)$. By Lemma 2.5 we obtain $\mathcal{H}_{\omega^a+1}[\{\kappa\}] \vdash_{\beta}^{\beta} \theta^{L_{\Omega}}$, where $\beta = \psi_{\mathbb{K}}(\omega^a)$, $a + \omega^{\mathbb{K}+a} = \omega^a$, $(\theta^{L_{\Omega}})^{(\kappa,\mathbb{K})} \equiv \theta^{L_{\Omega}}$ and $\psi_{\mathbb{K}}(a+\mathbb{K}) < \kappa \in Mh_2(a) \cap \psi_{\mathbb{K}}(a+\mathbb{K}\cdot\omega)$. F.e. $\kappa =$ $\psi_{\mathbb{K}}^{a}(a+\mathbb{K}+1) \in \mathcal{H}_{a+\mathbb{K}+2}[\emptyset]$. Hence $\mathcal{H}_{\omega^{a}+\mathbb{K}+2}[\emptyset] \vdash_{\beta}^{\beta} \theta^{L_{\Omega}}$. Lemma 2.6 then yields $\mathcal{H}_{\gamma+1}[\emptyset] \vdash_{\beta_1}^{\beta_1} \theta^{L_{\Omega}} \text{ for } \gamma = \omega^a + \mathbb{K} + \theta_{\beta}(\beta) \text{ and } \beta_1 = \psi_{\Omega}(\gamma) < \psi_{\Omega}(\omega^a + \mathbb{K} \cdot 2) < \psi_{\Omega}(\omega_{m+2}(\mathbb{K}+1)) = \alpha. \text{ Therefore } L_{\alpha} \models \theta.$

Well-foundedness proof in $\mathsf{KP}\Pi_3$ 3

 $OT(\Pi_3)$ denotes the computable notation system in section 2. $\kappa = \psi_{\sigma}^{\nu}(b) \in$ $OT(\Pi_3)$ only if $\nu = m_2(\kappa) < m_2(\sigma)$, $SC_{\mathbb{K}}(\nu) \subset \kappa$ and $\nu \leq b$, cf. (9). In this section we show the

Theorem 3.1 KP Π_3 proves the well-foundedness of $OT(\Pi_3)$ up to each $\alpha <$

We assume a standard encoding $OT(\Pi_3) \ni \alpha \mapsto \lceil \alpha \rceil \in \omega$, and identify ordinal terms α with its code $\lceil \alpha \rceil$.

3.1 Distinguished sets

In this subsection we work in $\mathsf{KP}\ell$.

Definition 3.2 [Buchholz00]. For $\alpha \in OT(\Pi_3), X \subset OT(\Pi_3)$, let

$$\mathcal{C}^{\alpha}(X) := \text{closure of } \{0, \Omega, \mathbb{K}\} \cup (X \cap \alpha) \text{ under } +, \varphi$$

$$\text{and } (\sigma, \alpha, \nu) \mapsto \psi^{\nu}_{\sigma}(\alpha) \text{ for } \sigma > \alpha \text{ in } OT(\Pi_{3})$$

$$\tag{10}$$

 $\alpha^+ = \Omega_{a+1}$ denotes the least regular term above α if such a term exists. Otherwise $\alpha^+ := \infty$.

Proposition 3.3 Assume $\forall \gamma \in X[\gamma \in C^{\gamma}(X)]$ for a set $X \subset OT(\Pi_3)$.

1.
$$\alpha \leq \beta \Rightarrow \mathcal{C}^{\beta}(X) \subset \mathcal{C}^{\alpha}(X)$$
.

2.
$$\alpha < \beta < \alpha^+ \Rightarrow \mathcal{C}^{\beta}(X) = \mathcal{C}^{\alpha}(X)$$
.

Proof. 3.3.1. We see by induction on $\ell \gamma$ ($\gamma \in OT(\Pi_3)$) that

$$\forall \beta \ge \alpha [\gamma \in \mathcal{C}^{\beta}(X) \Rightarrow \gamma \in \mathcal{C}^{\alpha}(X) \cup (X \cap \beta)] \tag{11}$$

For example, if $\psi_{\pi}^{\nu}(\delta) \in \mathcal{C}^{\beta}(X)$ with $\pi > \beta \geq \alpha$ and $\{\pi, \delta, \nu\} \subset \mathcal{C}^{\alpha}(X) \cup (X \cap \beta)$, then $\pi \in \mathcal{C}^{\alpha}(X)$, and for any $\gamma \in \{\delta, \nu\}$, either $\gamma \in \mathcal{C}^{\alpha}(X)$ or $\gamma \in X \cap \beta$. If $\gamma < \alpha$, then $\gamma \in X \cap \alpha \subset \mathcal{C}^{\alpha}(X)$. If $\alpha \leq \gamma \in X \cap \beta$, then $\gamma \in \mathcal{C}^{\gamma}(X)$ by the assumption, and by IH we have $\gamma \in \mathcal{C}^{\alpha}(X) \cup (X \cap \gamma)$, i.e., $\gamma \in \mathcal{C}^{\alpha}(X)$. Therefore $\{\pi, \delta, \nu\} \subset \mathcal{C}^{\alpha}(X)$, and $\psi_{\pi}^{\nu}(\delta) \in \mathcal{C}^{\alpha}(X)$.

Using (11) we see from the assumption that $\forall \beta \geq \alpha [\gamma \in C^{\beta}(X) \Rightarrow \gamma \in C^{\alpha}(X)]$.

3.3.2. Assume $\alpha < \beta < \alpha^+$. Then by Proposition 3.3.1 we have $\mathcal{C}^{\beta}(X) \subset \mathcal{C}^{\alpha}(X)$. $\mathcal{C}^{\alpha}(X) \subset \mathcal{C}^{\beta}(X)$ is easily seen from $\beta < \alpha^+$.

Definition 3.4 1. $Prq[X,Y] : \Leftrightarrow \forall \alpha \in X(X \cap \alpha \subset Y \rightarrow \alpha \in Y).$

- 2. For a definable class \mathcal{X} , $TI[\mathcal{X}]$ denotes the schema: $TI[\mathcal{X}] : \Leftrightarrow Prg[\mathcal{X}, \mathcal{Y}] \to \mathcal{X} \subset \mathcal{Y}$ holds for any definable classes \mathcal{Y} .
- 3. For $X \subset OT(\Pi_3)$, W(X) denotes the well-founded part of X.
- 4. $Wo[X] :\Leftrightarrow X \subset W(X)$.

Note that for $\alpha \in OT(\Pi_3)$, $W(X) \cap \alpha = W(X \cap \alpha)$.

Definition 3.5 For $X \subset OT(\Pi_3)$ and $\alpha \in OT(\Pi_3)$,

1.

$$D[X] : \Leftrightarrow \forall \alpha (\alpha \le X \to W(\mathcal{C}^{\alpha}(X)) \cap \alpha^{+} = X \cap \alpha^{+})$$
 (12)

A set X is said to be a distinguished set if D[X].

2. $\mathcal{W} := \bigcup \{X : D[X]\}.$

Let $\alpha \in X$ for a distinguished set X. Then $W(\mathcal{C}^{\alpha}(X)) \cap \alpha^{+} = X \cap \alpha^{+}$. Hence X is a well order.

Proposition 3.6 Let X be a distinguished set. Then $\alpha \in X \Rightarrow \forall \beta [\alpha \in C^{\beta}(X)]$.

Proof. Let D[X] and $\alpha \in X$. Then $\alpha \in X \cap \alpha^+ = W(\mathcal{C}^{\alpha}(X)) \cap \alpha^+ \subset \mathcal{C}^{\alpha}(X)$. Hence $\forall \gamma \in X(\gamma \in \mathcal{C}^{\gamma}(X))$, and $\alpha \in \mathcal{C}^{\beta}(X)$ for any $\beta \leq \alpha$ by Proposition 3.3.1. Moreover for $\beta > \alpha$ we have $\alpha \in X \cap \beta \subset \mathcal{C}^{\beta}(X)$.

Proposition 3.7 $X \cap \alpha = Y \cap \alpha \Rightarrow \forall \beta < \alpha^+ \left[\mathcal{C}^{\beta}(X) = \mathcal{C}^{\beta}(Y) \right] \text{ if } \forall \gamma \in X(\gamma \in \mathcal{C}^{\gamma}(X)) \text{ and } \forall \gamma \in Y(\gamma \in \mathcal{C}^{\gamma}(Y)).$

Proof. Assume that $X \cap \alpha = Y \cap \alpha$ and $\alpha \leq \beta < \alpha^+$. We obtain $\mathcal{C}^{\alpha}(X) = \mathcal{C}^{\alpha}(Y)$. On the other hand we have $\mathcal{C}^{\beta}(X) = \mathcal{C}^{\alpha}(X)$ and similarly for $\mathcal{C}^{\beta}(Y)$ by Proposition 3.3.2. Hence $\mathcal{C}^{\beta}(X) = \mathcal{C}^{\beta}(Y)$.

Proposition 3.8 $\alpha \leq X \& \alpha \leq Y \Rightarrow X \cap \alpha^+ = Y \cap \alpha^+ \text{ if } D[X] \text{ and } D[Y].$

Proof. For distinguished set X, $\alpha \leq X \Rightarrow X \cap \alpha^+ = W(\mathcal{C}^{\alpha}(X)) \cap \alpha^+$. Hence the proposition follows from Propositions 3.6 and 3.7.

Proposition 3.9 W is the maximal distinguished class.

Proof. First we show $\forall \gamma \in \mathcal{W}(\gamma \in \mathcal{C}^{\gamma}(\mathcal{W}))$. Let $\gamma \in \mathcal{W}$, and pick a distinguished set X such that $\gamma \in X$. Then $\gamma \in \mathcal{C}^{\gamma}(X) \subset \mathcal{C}^{\gamma}(\mathcal{W})$ by $X \subset \mathcal{W}$.

Let $\alpha \leq \mathcal{W}$. Pick a distinguished set X such that $\alpha \leq X$. We claim that $\mathcal{W} \cap \alpha^+ = X \cap \alpha^+$. Let Y be a distinguished set and $\beta \in Y \cap \alpha^+$. Then $\beta \in Y \cap \beta^+ = X \cap \beta^+$ by Proposition 3.8. The claim yields $W(\mathcal{C}^{\alpha}(\mathcal{W})) \cap \alpha^+ = W(\mathcal{C}^{\alpha}(X)) \cap \alpha^+ = X \cap \alpha^+ = \mathcal{W} \cap \alpha^+$. Hence $D[\mathcal{W}]$.

Definition 3.10 $\mathcal{G}(X) := \{ \alpha \in OT(\Pi_3) : \alpha \in \mathcal{C}^{\alpha}(X) \& \mathcal{C}^{\alpha}(X) \cap \alpha \subset X \}.$

Lemma 3.11 For D[X], $X \subset \mathcal{G}(X)$.

Proof. Let $\gamma \in X$. We have $\gamma \in W(\mathcal{C}^{\gamma}(X)) \cap \gamma^{+} = X \cap \gamma^{+}$. Hence $\gamma \in \mathcal{C}^{\gamma}(X)$. Assume $\alpha \in \mathcal{C}^{\gamma}(X) \cap \gamma$. Then $\alpha \in W(\mathcal{C}^{\gamma}(X)) \cap \gamma^{+} \subset X$. Therefore $\mathcal{C}^{\gamma}(X) \cap \gamma \subset X$.

Definition 3.12 For ordinal terms $\alpha, \delta \in OT(\Pi_3)$, finite sets $G_{\delta}(\alpha) \subset OT(\Pi_3)$ are defined recursively as follows.

1. $G_{\delta}(\alpha) = \emptyset$ for $\alpha \in \{0, \Omega, \mathbb{K}\}$. $G_{\delta}(\alpha_m + \cdots + \alpha_0) = \bigcup_{i \leq m} G_{\delta}(\alpha_i)$. $G_{\delta}(\varphi \beta \gamma) = G_{\delta}(\beta) \cup G_{\delta}(\gamma)$.

$$2. \ G_{\delta}(\psi^{\nu}_{\pi}(a)) = \left\{ \begin{array}{ll} G_{\delta}(\{\pi,a,\nu\}) & \delta < \pi \\ \{\psi^{\nu}_{\pi}(a)\} & \pi \leq \delta \end{array} \right..$$

Proposition 3.13 For $\{\alpha, \delta, a, b, \rho\} \subset OT(\Pi_3)$,

1. $G_{\delta}(\alpha) \leq \alpha$.

2.
$$\alpha \in \mathcal{H}_a(b) \Rightarrow G_{\delta}(\alpha) \subset \mathcal{H}_a(b)$$
.

Proof. These are shown simultaneously by induction on the lengths $\ell\alpha$ of ordinal terms α . It is easy to see that

$$G_{\delta}(\alpha) \ni \beta \Rightarrow \beta < \delta \& \ell \beta \le \ell \alpha$$
 (13)

3.13.1. Consider the case $\alpha = \psi_{\pi}^{\nu}(a)$ with $\delta < \pi$. Then $G_{\delta}(\alpha) = G_{\delta}(\{\pi, a, \nu\})$. On the other hand we have $\{\pi, a, \nu\} \subset \mathcal{H}_{a}(\alpha)$. Proposition 3.13.2 with (13) yields $G_{\delta}(\{\pi, a, \nu\}) \subset \mathcal{H}_{a}(\alpha) \cap \pi \subset \alpha$. Hence $G_{\delta}(\alpha) < \alpha$.

3.13.2. Since $G_{\delta}(\alpha) \leq \alpha$ by Proposition 3.13.1, we can assume $\alpha \geq b$.

Consider the case $\alpha = \psi_{\pi}^{\nu}(a)$ with $\delta < \pi$. Then $\{\pi, a, \nu\} \subset \mathcal{H}_a(b)$ and $G_{\delta}(\alpha) = G_{\delta}(\{\pi, a, \nu\})$. IH yields the proposition.

Proposition 3.14 Let $\gamma < \beta$. Assume $\alpha \in C^{\gamma}(X)$ and $\forall \kappa \leq \beta[G_{\kappa}(\alpha) < \gamma]$. Moreover assume $\forall \delta[\ell \delta \leq \ell \alpha \& \delta \in C^{\gamma}(X) \cap \gamma \Rightarrow \delta \in C^{\beta}(X)]$. Then $\alpha \in C^{\beta}(X)$.

Proof. By induction on $\ell\alpha$. If $\alpha < \gamma$, then $\alpha \in \mathcal{C}^{\gamma}(X) \cap \gamma$. The third assumption yields $\alpha \in \mathcal{C}^{\beta}(X)$. Assume $\alpha \geq \gamma$. Except the case $\alpha = \psi_{\pi}^{\nu}(a)$ for some π, a, ν , IH yields $\alpha \in \mathcal{C}^{\beta}(X)$. Suppose $\alpha = \psi_{\pi}^{\nu}(a)$ for some $\{\pi, a, \nu\} \subset \mathcal{C}^{\gamma}(X)$ and $\pi > \gamma$. If $\pi \leq \beta$, then $\{\alpha\} = G_{\pi}(\alpha) < \gamma$ by the second assumption. Hence this is not the case, and we obtain $\pi > \beta$. Then $G_{\kappa}(\{\pi, a, \nu\}) = G_{\kappa}(\alpha) < \gamma$ for any $\kappa \leq \beta < \pi$. IH yields $\{\pi, a, \nu\} \subset \mathcal{C}^{\beta}(X)$. We conclude $\alpha \in \mathcal{C}^{\beta}(X)$ from $\pi > \beta$.

Lemma 3.15 Suppose D[Y] and $\alpha \in \mathcal{G}(Y)$. Let $X = W(\mathcal{C}^{\alpha}(Y)) \cap \alpha^{+}$. Assume that the following condition (71) is fulfilled. Then $\alpha \in X$ and D[X].

$$\forall \beta \left(Y \cap \alpha^+ < \beta \& \beta^+ < \alpha^+ \to W(\mathcal{C}^\beta(Y)) \cap \beta^+ \subset Y \right) \tag{14}$$

Proof. Let $\alpha \in \mathcal{G}(Y)$. By $\mathcal{C}^{\alpha}(Y) \cap \alpha \subset Y$ and Wo[Y] we obtain by Proposition 3.6

$$X \cap \alpha = Y \cap \alpha = \mathcal{C}^{\alpha}(Y) \cap \alpha \tag{15}$$

Hence $\alpha \in X$.

Claim 3.16 $\alpha^+ = \gamma^+ \& \gamma \in X \Rightarrow \gamma \in \mathcal{C}^{\gamma}(X)$.

Proof of Claim 3.16. Let $\alpha^+ = \gamma^+$ and $\gamma \in X = W(\mathcal{C}^{\alpha}(Y)) \cap \alpha^+$. We obtain $\gamma \in \mathcal{C}^{\alpha}(Y) = \mathcal{C}^{\gamma}(Y)$ by Propositions 3.6 and 3.3. Hence $Y \cap \gamma \subset \mathcal{C}^{\gamma}(Y) \cap \gamma = \mathcal{C}^{\alpha}(Y) \cap \gamma$. $\gamma \in W(\mathcal{C}^{\alpha}(Y))$ yields $Y \cap \gamma \subset X$. Therefore we obtain $\gamma \in \mathcal{C}^{\gamma}(Y) \subset \mathcal{C}^{\gamma}(X)$.

Claim 3.17 D[X].

Proof of Claim 3.17. We have $X \cap \alpha = Y \cap \alpha$ by (15). Let $\beta \leq X$. We show $W(\mathcal{C}^{\beta}(X)) \cap \beta^{+} = X \cap \beta^{+}$.

Case 1. $\beta^+ = \alpha^+$: We obtain $\mathcal{C}^{\beta}(X) = \mathcal{C}^{\alpha}(X) = \mathcal{C}^{\alpha}(Y)$ by Proposition 3.3, Claim 3.16 and (15).

Case 2. $\beta^+ < \alpha^+$: Then $\beta^+ \le \alpha$.

First let $Y \cap \alpha^+ < \beta$. Then the assumption (71) yields $W(\mathcal{C}^{\beta}(Y)) \cap \beta^+ \subset Y$. We obtain $W(\mathcal{C}^{\beta}(X)) \cap \beta^+ \subset Y \cap \beta^+ = X \cap \beta^+$ by (15). It remains to show $Y \cap \beta^+ \subset W(\mathcal{C}^{\beta}(Y))$. Let $\gamma \in Y \cap \beta^+$. We obtain $\gamma \in W(\mathcal{C}^{\gamma}(Y))$ by D[Y]. On the other hand we have $\mathcal{C}^{\beta}(Y) \subset \mathcal{C}^{\gamma}(Y)$ by Proposition 3.3. Moreover Proposition 3.6 yields $\gamma \in \mathcal{C}^{\beta}(Y)$. Hence $\gamma \in W(\mathcal{C}^{\beta}(Y))$.

Next let $\beta \leq Y \cap \alpha^+$. We obtain $Y \cap \beta^+ = \mathcal{W}(\mathcal{C}^{\beta}(Y)) \cap \beta^+$, and $X \cap \beta^+ = \mathcal{W}(\mathcal{C}^{\beta}(X)) \cap \beta^+$ by (15). \square of Claim 3.17.

This completes a proof of Lemma 3.15.

Proposition 3.18 Let D[X].

- 1. Let $\{\alpha, \beta\} \subset X$ with $\alpha + \beta = \alpha \# \beta$ and $\alpha > 0$. Then $\gamma = \alpha + \beta \in X$.
- 2. If $\{\alpha, \beta\} \subset X$, then $\varphi_{\alpha}(\beta) \in X$.

Proof. Proposition 3.18.2 is seen by main induction on $\alpha \in X$ with subsidiary induction on $\beta \in X$ using Proposition 3.18.1. We show Proposition 3.18.1. We obtain $\alpha \in X \cap \gamma^+ = W(\mathcal{C}^{\gamma}(X)) \cap \gamma^+$ with $\gamma^+ = \alpha^+$. We see that $\alpha + \beta \in W(\mathcal{C}^{\gamma}(X))$ by induction on $\beta \in X \cap \alpha \subset \mathcal{C}^{\gamma}(X)$.

Proposition 3.19 Let $X_0 = W(\mathcal{C}^0(\emptyset)) \cap 0^+$ with $0^+ = \Omega$, and $X_1 = W(\mathcal{C}^\Omega(X_0)) \cap \Omega^+$. Then $0 \in X_0$, $\Omega \in X_1$ and $D[X_i]$ for i = 0, 1.

Proof. For each $\alpha \in \{0, \Omega\}$ and any set $Y \subset OT(\Pi_3)$ we have $\alpha \in \mathcal{C}^{\alpha}(Y)$. First we obtain $0 \in \mathcal{G}(\emptyset)$ and $D[\emptyset]$. Also there is no β such that $\beta^+ < 0^+$. Hence the condition (71) is fulfilled, and we obtain $0 \in X_0$ and $D[X_0]$ by Lemma 3.15.

Next let $\gamma \in \mathcal{C}^{\Omega}(X_0) \cap \Omega$. We show $\gamma \in X_0$ by induction on the lengths $\ell \gamma$ of ordinal terms γ as follows. We see that each strongly critical number $\gamma \in \mathcal{C}^{\Omega}(X_0) \cap \Omega$ is in X_0 since if $\psi^{\nu}_{\sigma}(\beta) < \Omega$, then $\sigma = \Omega$. Otherwise $\gamma \in X_0$ is seen from IH using Proposition 3.18 and $0 \in X_0$. Therefore we obtain $\alpha \in \mathcal{G}(X_0)$. Let $\beta^+ < \alpha^+$. Then $\beta^+ = \Omega$ and $\beta < \Omega$. Then $W(\mathcal{C}^{\beta}(X_0)) \cap \Omega = W(\mathcal{C}^0(X_0)) \cap \Omega = X_0$ by Proposition 3.3. Hence the condition (71) is fulfilled, and we obtain $\Omega \in X_1$ and $D[X_1]$ by Lemma 3.15.

Definition 3.20 $\beta \prec \alpha$ iff there exists a sequence $\{\sigma_i\}_{i \leq n} (n > 0)$ such that $\alpha = \sigma_0$, $\beta = \sigma_n$ and for each i < n, there are some ν_i, a_i such that $\sigma_{i+1} = \psi_{\sigma_i}^{\nu_i}(a_i)$.

Note that $\beta \prec \alpha \Rightarrow m_2(\beta) < m_2(\alpha)$.

Lemma 3.21 Suppose D[Y] with $\{0,\Omega\} \subset Y$, and for $\eta \in OT(\Pi_3)$

$$\eta \in \mathcal{G}(Y) \tag{16}$$

and

$$\forall \gamma \prec \eta (\gamma \in \mathcal{G}(Y) \Rightarrow \gamma \in Y) \tag{17}$$

Let $X = W(\mathcal{C}^{\eta}(Y)) \cap \eta^+$. Then $\eta \in X$ and D[X].

Proof. By Lemma 3.15 and the hypothesis (16) it suffices to show (71), i.e.,

$$\forall \beta \left(Y \cap \eta^+ < \beta \& \beta^+ < \eta^+ \to W(\mathcal{C}^{\beta}(Y)) \cap \beta^+ \subset Y \right).$$

Assume $Y \cap \eta^+ < \beta$ and $\beta^+ < \eta^+$. We have to show $W(\mathcal{C}^{\beta}(Y)) \cap \beta^+ \subset Y$. We prove this by induction on $\gamma \in W(\mathcal{C}^{\beta}(Y)) \cap \beta^+$. Suppose $\gamma \in \mathcal{C}^{\beta}(Y) \cap \beta^+$ and

$$\mathrm{MIH}: \mathcal{C}^{\beta}(Y) \cap \gamma \subset Y.$$

We show $\gamma \in Y$. We can assume that

$$Y \cap \eta^+ < \gamma \tag{18}$$

since if $\gamma \leq \delta$ for some $\delta \in Y \cap \eta^+$, then by $Y \cap \eta^+ < \beta$ and $\gamma \in \mathcal{C}^{\beta}(Y)$ we obtain $\delta < \beta$, $\gamma \in \mathcal{C}^{\delta}(Y)$ and $\delta \in W(\mathcal{C}^{\delta}(Y)) \cap \delta^+ = Y \cap \delta^+$. Hence $\gamma \in W(\mathcal{C}^{\delta}(Y)) \cap \delta^+ \subset Y$.

We show first

$$\gamma \in \mathcal{G}(Y) \tag{19}$$

First $\gamma \in \mathcal{C}^{\gamma}(Y)$ by $\gamma \in \mathcal{C}^{\beta}(Y) \cap \beta^{+}$ and Proposition 3.3. Second we show the following claim by induction on $\ell \alpha$:

$$\alpha \in \mathcal{C}^{\gamma}(Y) \cap \gamma \Rightarrow \alpha \in Y \tag{20}$$

Proof of (20). Assume $\alpha \in \mathcal{C}^{\gamma}(Y)$. We can assume $\gamma^{+} \leq \beta$ for otherwise we have $\alpha \in \mathcal{C}^{\gamma}(Y) \cap \gamma = \mathcal{C}^{\beta}(Y) \cap \gamma \subset Y$ by MIH.

By induction hypothesis on lengths, $\alpha < \gamma < \beta^+ < \eta^+$, Proposition 3.18, and $\{0,\Omega\} \subset Y$, we can assume that $\alpha = \psi_{\pi}^{\nu}(a)$ for some $\pi > \gamma$ such that $\{\pi,a,\nu\} \subset \mathcal{C}^{\gamma}(Y)$.

Case 1. $\beta < \pi$: Then $G_{\beta}(\{\pi, a, \nu\}) = G_{\beta}(\alpha) < \alpha < \gamma$ by Proposition 3.13.1. Proposition 3.14 with induction hypothesis on lengths yields $\{\pi, a, \nu\} \subset \mathcal{C}^{\beta}(Y)$. Hence $\alpha \in \mathcal{C}^{\beta}(Y) \cap \gamma$ by $\pi > \beta$. MIH yields $\alpha \in Y$.

Case 2. $\beta \geq \pi$: We have $\alpha < \gamma < \pi \leq \beta$. It suffices to show that $\alpha \leq Y \cap \eta^+$. Then by (18) we have $\alpha \leq \delta \in Y \cap \eta^+$ for some $\delta < \gamma$. $C^{\delta}(Y) \ni \alpha \leq \delta \in Y \cap \delta^+ = W(C^{\delta}(Y)) \cap \delta^+$ yields $\alpha \in W(C^{\delta}(Y)) \cap \delta^+ \subset Y$.

Assume first that γ is not a strongly critical number. By $\alpha = \psi_{\pi}^{\nu}(a) < \gamma$, we can assume that $\gamma \neq 0$. Let δ denote the largest immediate subterm of γ . We obtain $\delta \in \mathcal{C}^{\beta}(Y) \cap \gamma$ by (18), $Y \cap \eta^{+} < \gamma \in \mathcal{C}^{\beta}(Y)$. Hence $\delta \in Y$ by MIH. Also by $\alpha < \gamma$, we obtain $\alpha \leq \delta$, i.e., $\alpha \leq Y$, and we are done.

Next let $\gamma = \psi_{\kappa}^{\xi}(b)$ for some b, ξ and $\kappa > \beta$ by (18) and $\gamma \in \mathcal{C}^{\beta}(Y)$. We have $\alpha < \gamma < \pi \leq \beta < \kappa$. We obtain $\pi \notin \mathcal{H}_b(\gamma)$ since otherwise by $\pi < \kappa$ we would have $\pi < \gamma$. Therefore $\alpha = \psi_{\pi}^{\nu}(a) < \psi_{\kappa}^{\xi}(b) = \gamma < \pi < \kappa$ with $\pi \in \mathcal{H}_a(\alpha)$ and $\pi \notin \mathcal{H}_b(\gamma)$. This yields a > b and $\{\kappa, b, \xi\} \not\subset \mathcal{H}_a(\alpha)$.

On the other hand we have $\{\kappa, b, \xi\} \subset \mathcal{H}_a(\gamma)$. This means that there exists a subterm $\delta < \gamma$ of one of κ, b, ξ such that $\delta \notin \mathcal{H}_a(\alpha)$. Also we have $\{\kappa, b, \xi\} \subset \mathcal{C}^{\beta}(Y)$. Then $\delta \in \mathcal{C}^{\beta}(Y) \cap \gamma$. By MIH we obtain $\alpha \leq \delta \in \mathcal{C}^{\beta}(Y) \cap \gamma \subset Y$.

 \square of (20) and (19).

Hence we obtain $\gamma \in \mathcal{G}(Y)$. We have $\gamma < \beta^+ \leq \eta$ and $\gamma \in \mathcal{C}^{\gamma}(Y)$. If $\gamma \prec \eta$, then the hypothesis (17) yields $\gamma \in Y$. In what follows assume $\gamma \not\prec \eta$.

If $G_{\eta}(\gamma) < \gamma$, then Proposition 3.14 yields $\gamma \in \mathcal{C}^{\eta}(Y) \cap \eta \subset Y$ by $\eta \in \mathcal{G}(Y)$. Suppose $G_{\eta}(\gamma) = \{\gamma\}$. This means, by $\gamma \not\prec \eta$, that $\gamma \prec \tau$ for a $\tau < \eta$. Let τ denote the maximal such one. We have $\gamma < \tau < \eta$. From $\gamma \in \mathcal{C}^{\gamma}(Y)$ we see $\tau \in \mathcal{C}^{\gamma}(Y)$. Next we show that

$$G_{\eta}(\tau) < \gamma \tag{21}$$

Let $\tau = \psi_{\kappa}^{\mu}(b)$. Then $\eta < \kappa$ by the maximality of τ , and $G_{\eta}(\tau) = G_{\eta}(\{\kappa, b, \mu\}) < \tau$ by Proposition 3.13.1. On the other hand we have $\tau \in \mathcal{H}_a(\gamma)$. Proposition 3.13.2 yields $G_{\eta}(\tau) \subset \mathcal{H}_a(\gamma)$. We see $G_{\eta}(\tau) < \gamma$ inductively.

Proposition 3.14 with (21) yields $\tau \in \mathcal{C}^{\eta}(Y)$, and $\tau \in \mathcal{C}^{\eta}(Y) \cap \eta \subset Y$ by $\eta \in \mathcal{G}(Y)$. Therefore $Y \cap \eta^+ < \gamma < \tau \in Y$. This is not the case by (18). We are done

Proposition 3.22 $\alpha \leq W \cap \beta^+ \& \alpha \in C^{\beta}(W) \Rightarrow \alpha \in W$.

Proof. This is seen from Propositions 3.3, 3.6 an 7.39.

3.2 Mahlo universes

In Proposition 3.9, we saw that \mathcal{W} is the maximal distinguished class, which is Σ_2^{1-} -definable and a proper class in KPII₃. \mathcal{W}^P in Definition 3.25 denotes the maximal distinguished class *inside* a set P. \mathcal{W}^P exists as a set.

Let ad denote a Π_3^- -sentence such that a transitive set z is admissible iff $(z; \in) \models ad$. Let $lmtad :\Leftrightarrow \forall x \exists y (x \in y \land ad^y)$. Observe that lmtad is a Π_2^- -sentence.

Definition 3.23 L denotes a whole universe, which is a model of $KP\Pi_3$.

- 1. By a *universe* we mean either the whole universe L or a transitive set $Q \in L$ with $\omega \in Q$. Universes are denoted by P, Q, \ldots
- 2. For a universe P and a set-theoretic sentence φ , $P \models \varphi : \Leftrightarrow (P; \in) \models \varphi$.
- 3. A universe P is said to be a *limit universe* if $lmtad^P$ holds, i.e., P is a limit of admissible sets. The class of limit universes is denoted by Lmtad.

Lemma 3.24 $W(\mathcal{C}^{\alpha}(X))$ as well as D[X] are absolute for limit universes P.

Proof. Let P be a limit universe and $X \in \mathcal{P}(\omega) \cap P$. Then W(X) is Δ_1 in P, and so is $W(\mathcal{C}^{\alpha}(X))$. Hence $W(\mathcal{C}^{\alpha}(X)) = \{\beta \in OT(\Pi_3) : P \models \beta \in W(\mathcal{C}^{\alpha}(X))\}$, and $D[X] \Leftrightarrow P \models D[X]$.

Definition 3.25 For a universe P, let $\mathcal{W}^P := \bigcup \{X \in P : D[X]\}.$

Lemma 3.26 Let P be a universe closed under finite unions, and $\alpha \in OT(\Pi_3)$.

- 1. There is a finite set $K(\alpha) \subset OT(\Pi_3)$ such that $\forall Y \in P \forall \gamma [K(\alpha) \cap Y = K(\alpha) \cap \mathcal{W}^P \Rightarrow (\alpha \in \mathcal{C}^{\gamma}(\mathcal{W}^P) \Leftrightarrow \alpha \in \mathcal{C}^{\gamma}(Y))].$
- 2. There exists a distinguished set $X \in P$ such that $\forall Y \in P \forall \gamma [X \subset Y \& D[Y] \Rightarrow (\alpha \in \mathcal{C}^{\gamma}(\mathcal{W}^P) \Leftrightarrow \alpha \in \mathcal{C}^{\gamma}(Y))]$.

Proof. 3.26.1. F.e. the set of subterms of α enjoys the condition for $K(\alpha)$. 3.26.2. By $X, Y \in P \Rightarrow X \cup Y \in P$, pick a distinguished set $X \in P$ such that $K(\alpha) \cap \mathcal{W}^P \subset X$.

Proposition 3.27 For each limit universe P, $D[W^P]$ holds, and $\exists X(X = W^P)$ if P is a set.

Proof. $D[W^P]$ is seen as in Proposition 3.9.

For a universal Π_n -formula $\Pi_n(a)$ (n > 0) uniformly on admissibles, let

$$P \in M_2(\mathcal{C}) : \Leftrightarrow P \in Lmtad \& \forall b \in P[P \models \Pi_2(b) \rightarrow \exists Q \in \mathcal{C} \cap P(Q \models \Pi_2(b))].$$

Lemma 3.28 Let C be a Π_0^1 -class such that $C \subset Lmtad$. Suppose $P \in M_2(C)$ and $\alpha \in \mathcal{G}(W^P)$. Then there exists a universe $Q \in C$ such that $\alpha \in \mathcal{G}(W^Q)$.

Proof. Suppose $P \in M_2(\mathcal{C})$ and $\alpha \in \mathcal{G}(\mathcal{W}^P)$. First by $\alpha \in \mathcal{C}^{\alpha}(\mathcal{W}^P)$ and Lemma 3.26 pick a distinguished set $X_0 \in P$ such that $\alpha \in \mathcal{C}^{\alpha}(X_0)$ and $K(\alpha) \cap \mathcal{W}^P \subset X_0$. Next writing $\mathcal{C}^{\alpha}(\mathcal{W}^P) \cap \alpha \subset \mathcal{W}^P$ analytically we have

$$\forall \beta < \alpha [\beta \in \mathcal{C}^{\alpha}(\mathcal{W}^P) \Rightarrow \exists Y \in P(D[Y] \& \beta \in Y)]$$

By Lemma 3.26 we obtain $\beta \in \mathcal{C}^{\alpha}(\mathcal{W}^P) \Leftrightarrow \exists X \in P\{D[X] \& K(\beta) \cap \mathcal{W}^P \subset X \& \beta \in \mathcal{C}^{\alpha}(X)\}$. Hence for any $\beta < \alpha$ and any distinguished set $X \in P$, there are $\gamma \in K(\beta)$, $Z \in P$ and a distinguished set $Y \in P$ such that if $\gamma \in Z \& D[Z] \to \gamma \in X$ and $\beta \in \mathcal{C}^{\alpha}(X)$, then $\beta \in Y$. By Lemma 3.24 D[X] is absolute for limit universes. Hence the following Π_2 -predicate holds in the universe $P \in M_2(\mathcal{C})$:

$$\forall \beta < \alpha \forall X \exists \gamma \in K(\beta) \exists Z \exists Y [\{D[X] \& (\gamma \in Z \& D[Z] \to \gamma \in X) \& \beta \in \mathcal{C}^{\alpha}(X)\}$$

$$\Rightarrow (D[Y] \& \beta \in Y)]$$
(22)

Now pick a universe $Q \in \mathcal{C} \cap P$ with $X_0 \in Q$ and $Q \models (22)$. Tracing the above argument backwards in the limit universe Q we obtain $\mathcal{C}^{\alpha}(\mathcal{W}^Q) \cap \alpha \subset \mathcal{W}^Q$ and $X_0 \subset \mathcal{W}^Q = \bigcup \{X \in Q : Q \models D[X]\} \in P$. Thus Lemma 3.26 yields $\alpha \in \mathcal{C}^{\alpha}(\mathcal{W}^Q)$. We obtain $\alpha \in \mathcal{G}(\mathcal{W}^Q)$.

Definition 3.29 We define the class $M_2(\alpha)$ of α -recursively Mahlo universes for $\alpha \in OT(\Pi_3)$ as follows:

$$P \in M_2(\alpha) \Leftrightarrow P \in Lmtad \& \forall \beta \prec \alpha[SC_{\mathbb{K}}(m_2(\beta)) \subset \mathcal{W}^P \Rightarrow P \in M_2(M_2(\beta))]$$
(23)

 $M_2(\alpha)$ is a Π_3 -class.

Proposition 3.30 If $\eta \in \mathcal{G}(Y)$, then $SC_{\mathbb{K}}(m_2(\eta)) \subset Y$.

Proof. Let $\nu = m_2(\eta)$. Then $SC_{\mathbb{K}}(\nu) \subset \eta$ by (9). From $\eta \in \mathcal{C}^{\eta}(Y)$ we see $SC_{\mathbb{K}}(\nu) \subset \mathcal{C}^{\eta}(Y)$. Hence $SC_{\mathbb{K}}(\nu) \subset \mathcal{C}^{\eta}(Y) \cap \eta \subset Y$ by $\eta \in \mathcal{G}(Y)$.

Lemma 3.31 If $\eta \in \mathcal{G}(\mathcal{W}^P)$ and $P \in M_2(M_2(\eta))$, then $\eta \in \mathcal{W}^P$.

Proof. We show this by induction on \in . Suppose, as IH, the lemma holds for any $Q \in P$. By Lemma 3.28 pick a $Q \in P$ such that $Q \in M_2(\eta)$, and for $Y = \mathcal{W}^Q \in P$, $\{0, \Omega\} \subset Y$ and

$$\eta \in \mathcal{G}(Y) \tag{16}$$

On the other the definition (23) yields $\forall \gamma \prec \eta[SC_{\mathbb{K}}(m_2(\gamma)) \subset \mathcal{W}^Q \Rightarrow Q \in M_2(M_2(\gamma))]$. Hence by Proposition 3.30 $\forall \gamma \prec \eta[\gamma \in \mathcal{G}(\mathcal{W}^Q) \Rightarrow Q \in M_2(M_2(\gamma))]$. IH yields with $Y = \mathcal{W}^Q$

$$\forall \gamma \prec \eta (\gamma \in \mathcal{G}(Y) \Rightarrow \gamma \in Y) \tag{17}$$

Therefore by Lemma 3.21 we conclude $\eta \in X$ and D[X] for $X = W(\mathcal{C}^{\eta}(Y)) \cap \eta^+$. $X \in P$ follows from $Y \in P \in Lmtad$. Consequently $\eta \in \mathcal{W}^P$.

Lemma 3.32 1. $C^{\mathbb{K}}(\mathcal{W}) \cap \mathbb{K} = \mathcal{W} \cap \mathbb{K}$.

- 2. $\mathbb{K} \in \mathcal{C}^{\mathbb{K}}(\mathcal{W})$.
- 3. For each $n \in \omega$, $TI[\mathcal{C}^{\mathbb{K}}(\mathcal{W}) \cap \omega_n(\mathbb{K}+1)]$.

Proof. We show Lemma 3.32.3. It suffices to show $TI[\mathcal{W}]$. Assume $Prg[\mathcal{W}, A]$ for a formula A, and $\alpha \in \mathcal{W}$. Pick a distinguished set X such that $\alpha \in X$. Then $X \cap \alpha^+ = \mathcal{W} \cap \alpha^+$, and hence $Prg[X \cap (\alpha + 1), A]$. Wo[X] yields $A(\alpha)$.

Lemma 3.33 $\forall \eta[m_2(\eta) \in \mathcal{C}^{\mathbb{K}}(\mathcal{W}) \cap \omega_n(\mathbb{K}+1) \Rightarrow L \in M_2(M_2(\eta))]$ holds for each $n \in \omega$.

Proof. We show the lemma by induction on $\nu = m_2(\eta) \in \mathcal{C}^{\mathbb{K}}(\mathcal{W})$ up to each $\omega_n(\mathbb{K}+1)$. Suppose $\nu \in \mathcal{C}^{\mathbb{K}}(\mathcal{W})$ and $L \models \Pi_2(b)$ for a $b \in L$. We have to find a universe $Q \in L$ such that $b \in Q$, $Q \in M_2(\eta)$ and $Q \models \Pi_2(b)$.

By the definition (23) $L \in M_2(\eta)$ is equivalent to $\forall \gamma \prec \eta[m_2(\gamma) \in \mathcal{C}^{\mathbb{K}}(\mathcal{W}) \Rightarrow L \in M_2(M_2(\gamma))]$. We obtain $\gamma \prec \eta \Rightarrow m_2(\gamma) < m_2(\eta) = \nu$. Thus IH yields $L \in M_2(\eta)$. Let g be a primitive recursive function in the sense of set theory such that $L \in M_2(\eta) \Leftrightarrow P \models \Pi_3(g(\eta))$. Then $L \models \Pi_2(b) \land \Pi_3(g(\eta))$. Since this is a Π_3 -formula which holds in a Π_3 -reflecting universe L, we conclude for some $Q \in L$, $Q \models \Pi_2(b) \land \Pi_3(g(\eta))$ and hence $Q \in M_2(\eta)$. We are done.

Remark 3.34 Only here we need Π_3 -reflection. Therefore it suffices for a whole universe L to admit iterations of Π_2 -recursively Mahlo operations along a well founded relation \prec which is Σ on L: $L \in M_2^{\prec}(\mu) = \bigcap \{M_2(M_2^{\prec}(\nu)) : L \models \nu \prec \mu\}$. Hence our wellfoundednes proof is formalizable in a set theory axiomatizing such universes L.

Lemma 3.35 For each $n \in \omega$, $m_2(\eta) < \omega_n(\mathbb{K} + 1) \& \eta \in \mathcal{G}(\mathcal{W}) \Rightarrow \eta \in \mathcal{W}$.

Proof. Assume $\nu = m_2(\eta) < \omega_n(\mathbb{K} + 1)$ and $\eta \in \mathcal{G}(\mathcal{W})$. By Proposition 3.30 we obtain $\nu \in \mathcal{C}^{\mathbb{K}}(\mathcal{W})$. Lemma 3.33 yields $L \in M_2(M_2(\eta))$. From this we see $L \in M_2(\mathcal{C})$ with $\mathcal{C} = M_2(M_2(\eta))$ as in the proof of Lemma 3.33 using Π_3 -reflection of the whole universe L once again. Then by Lemma 3.28 pick a set $P \in L$ such that $\eta \in \mathcal{G}(\mathcal{W}^P)$ and $P \in \mathcal{C} = M_2(M_2(\eta))$. Lemma 3.31 yields $\eta \in \mathcal{W}^P \subset \mathcal{W}$.

3.3 Well-foundedness proof (concluded)

Definition 3.36 For terms $\alpha, \kappa, \delta \in OT(\Pi_3)$, finite sets $\mathcal{E}(\alpha), K_{\delta}(\alpha), k_{\delta}(\alpha) \subset OT(\Pi_3)$ are defined recursively as follows.

1.
$$\mathcal{E}(\alpha) = \emptyset$$
 for $\alpha \in \{0, \Omega, \mathbb{K}\}$. $\mathcal{E}(\alpha_m + \dots + \alpha_0) = \bigcup_{i \leq m} \mathcal{E}(\alpha_i)$. $\mathcal{E}(\varphi \beta \gamma) = \mathcal{E}(\beta) \cup \mathcal{E}(\gamma)$. $\mathcal{E}(\psi_{\pi}^{\nu}(a)) = \{\psi_{\pi}^{\nu}(a)\}$.

2.
$$\mathcal{A}(\alpha) = \bigcup \{\mathcal{A}(\beta) : \beta \in \mathcal{E}(\alpha)\} \text{ for } \mathcal{A} \in \{K_{\delta}, k_{\delta}\}.$$

$$3. \ K_{\delta}(\psi_{\pi}^{\nu}(a)) = \left\{ \begin{array}{ll} \{a\} \cup K_{\delta}(\{\pi,a\} \cup SC_{\mathbb{K}}(\nu)) & \psi_{\pi}^{\nu}(a) \geq \delta \\ \emptyset & \psi_{\pi}^{\nu}(a) < \delta \end{array} \right..$$

4.
$$k_{\delta}(\psi_{\pi}^{\nu}(a)) = \begin{cases} \{\psi_{\pi}^{\nu}(a)\} \cup k_{\delta}(\{\pi, a\} \cup SC_{\mathbb{K}}(\nu)) & \psi_{\pi}^{\nu}(a) \geq \delta \\ \emptyset & \psi_{\pi}^{\nu}(a) < \delta \end{cases}$$

Note that $K_{\delta}(\alpha) < a \Leftrightarrow \alpha \in \mathcal{H}_a(\delta)$.

Definition 3.37 For $a, \nu \in OT(\Pi_3)$, define:

$$A(a,\nu)$$
 : $\Leftrightarrow \forall \sigma \in \mathcal{C}^{\mathbb{K}}(\mathcal{W})[\psi_{\sigma}^{\nu}(a) \in OT(\Pi_3) \Rightarrow \psi_{\sigma}^{\nu}(a) \in \mathcal{W}].$ (24)

$$MIH(a) :\Leftrightarrow \forall b \in \mathcal{C}^{\mathbb{K}}(\mathcal{W}) \cap a \forall \nu \in \mathcal{C}^{\mathbb{K}}(\mathcal{W}) A(b, \nu). \tag{25}$$

$$SIH(a,\nu) :\Leftrightarrow \forall \xi \in \mathcal{C}^{\mathbb{K}}(\mathcal{W})[\xi < \nu \Rightarrow A(a,\xi)].$$
 (26)

Lemma 3.38 For each n the following holds: Assume $\{a, \nu\} \subset \mathcal{C}^{\mathbb{K}}(\mathcal{W}) \cap \omega_n(\mathbb{K}+1)$, MIH(a), and SIH (a, ν) in Definition 3.37. Then

$$\forall \kappa \in \mathcal{C}^{\mathbb{K}}(\mathcal{W})[\psi_{\kappa}^{\nu}(a) \in OT(\Pi_3) \Rightarrow \psi_{\kappa}^{\nu}(a) \in \mathcal{W}].$$

Proof. Let $\alpha_1 = \psi_{\kappa}^{\nu}(a) \in OT(\Pi_3)$ with $\{a, \kappa, \nu\} \subset \mathcal{C}^{\mathbb{K}}(\mathcal{W})$ and $\nu \leq a < \omega_n(\mathbb{K}+1)$, cf. (9). By Lemma 3.35 it suffices to show $\alpha_1 \in \mathcal{G}(\mathcal{W})$.

By Proposition 3.6 we have $\{\kappa, a, \nu\} \subset \mathcal{C}^{\alpha_1}(\mathcal{W})$, and hence $\alpha_1 \in \mathcal{C}^{\alpha_1}(\mathcal{W})$. It suffices to show the following claim.

$$\forall \beta_1 \in \mathcal{C}^{\alpha_1}(\mathcal{W}) \cap \alpha_1 [\beta_1 \in \mathcal{W}]. \tag{27}$$

Proof of (27) by induction on $\ell\beta_1$. Assume $\beta_1 \in \mathcal{C}^{\alpha_1}(\mathcal{W}) \cap \alpha_1$ and let

LIH :
$$\Leftrightarrow \forall \gamma \in \mathcal{C}^{\alpha_1}(\mathcal{W}) \cap \alpha_1[\ell \gamma < \ell \beta_1 \Rightarrow \gamma \in \mathcal{W}].$$

We show $\beta_1 \in \mathcal{W}$. By Propositions 3.18, 3.19 and LIH, we may assume that $\beta_1 = \psi_{\pi}^{\xi}(b)$ for some π, b, ξ such that $\{\pi, b, \xi\} \subset \mathcal{C}^{\alpha_1}(\mathcal{W})$.

 $\beta_1 = \psi_{\pi}^{\xi}(b) < \psi_{\kappa}^{\nu}(a) = \alpha_1$ holds iff one of the following holds: (1) $\pi \leq \alpha_1$. (2) b < a, $\beta_1 < \kappa$ and $\{\pi, b, \xi\} \subset \mathcal{H}_a(\alpha_1)$. (3) b = a, $\pi = \kappa$, $\xi \in \mathcal{H}_a(\alpha_1)$ and $\xi < \nu$. (4) $a \leq b$ and $\{\kappa, a, \nu\} \not\subset \mathcal{H}_b(\beta_1)$.

Case 1. $\pi \leq \alpha_1$: Then $\beta_1 \in \mathcal{W}$ by $\beta_1 \in \mathcal{C}^{\alpha_1}(\mathcal{W})$.

Case 2. b < a, $\beta_1 < \kappa$ and $\{\pi, b, \xi\} \subset \mathcal{H}_a(\alpha_1)$: Let B denote a set of subterms of β_1 defined recursively as follows. First $\{\pi, b\} \cup SC_{\mathbb{K}}(\xi) \subset B$. Let $\alpha_1 \leq \beta \in B$. If $\beta =_{NF} \gamma_m + \cdots + \gamma_0$, then $\{\gamma_i : i \leq m\} \subset B$. If $\beta =_{NF} \varphi \gamma \delta$, then $\{\gamma, \delta\} \subset B$. If $\beta = \psi^{\mu}_{\sigma}(c)$, then $\{\sigma, c\} \cup SC_{\mathbb{K}}(\mu) \subset B$.

Then from $\{\pi, b, \xi\} \subset \mathcal{C}^{\alpha_1}(\mathcal{W})$ we see inductively that $B \subset \mathcal{C}^{\alpha_1}(\mathcal{W})$. Hence by LIH we obtain $B \cap \alpha_1 \subset \mathcal{W}$. Moreover if $\alpha_1 \leq \psi_{\sigma}^{\mu}(c) \in B$, then we see c < a from $\{\pi, b, \xi\} \subset \mathcal{H}_a(\alpha_1)$. We claim that

$$\forall \beta \in B(\beta \in \mathcal{C}^{\mathbb{K}}(\mathcal{W})) \tag{28}$$

Proof of (28) by induction on $\ell\beta$. Let $\beta \in B$. We can assume that $\alpha_1 \leq \beta = \psi_{\sigma}^{\mu}(c)$ by induction hypothesis on the lengths. Then by induction hypothesis we have $\{\sigma, c\} \cup SC_{\mathbb{K}}(\mu) \subset \mathcal{C}^{\mathbb{K}}(\mathcal{W})$. On the other hand we have $\mu \leq c < a$ by (9). MIH(a) yields $\beta \in \mathcal{W}$. Thus (28) is shown.

In particular we obtain $\{\pi, b\} \cup SC_{\mathbb{K}}(\xi) \subset \mathcal{C}^{\mathbb{K}}(\mathcal{W})$. Moreover we have $\xi \leq b < a$ by (9). Therefore once again MIH(a) yields $\beta_1 \in \mathcal{W}$.

Case 3. $b = a, \pi = \kappa, \xi \in \mathcal{H}_a(\alpha_1)$ and $\xi < \nu \le a$: As in (28) we see that $SC_{\mathbb{K}}(\xi) \subset \mathcal{W}$ from MIH(a). $SIH(a, \nu)$ yields $\beta_1 \in \mathcal{W}$.

Case 4. $a \leq b$ and $\{\kappa, a, \nu\} \not\subset \mathcal{H}_b(\beta_1)$: It suffices to find a γ such that $\beta_1 \leq \gamma \in \mathcal{W} \cap \alpha_1$. Then $\beta_1 \in \mathcal{W}$ follows from $\beta_1 \in \mathcal{C}^{\alpha_1}(\mathcal{W})$ and Proposition 3.22.

 $k_{\delta}(\alpha)$ denotes the set in Definition 3.36. In general we see that $a \in K_{\delta}(\alpha)$ iff $\psi_{\sigma}^{h}(a) \in k_{\delta}(\alpha)$ for some σ, h , and for each $\psi_{\sigma}^{h}(a) \in k_{\delta}(\psi_{\sigma_{0}}^{h_{0}}(a_{0}))$ there exists a sequence $\{\alpha_{i}\}_{i \leq m}$ of subterms of $\alpha_{0} = \psi_{\sigma_{0}}^{h_{0}}(a_{0})$ such that $\alpha_{m} = \psi_{\sigma}^{h}(a)$, $\alpha_{i} = \psi_{\sigma_{i}}^{h_{i}}(a_{i})$ for some σ_{i}, a_{i}, h_{i} , and for each i < m, $\delta \leq \alpha_{i+1} \in \mathcal{E}(C_{i})$ for $C_{i} = \{\sigma_{i}, a_{i}\} \cup SC_{\mathbb{K}}(h_{i})$.

Let $\delta \in SC_{\mathbb{K}}(f) \cup \{\kappa, a\}$ such that $b \leq \gamma$ for a $\gamma \in K_{\beta_1}(\delta)$. Pick an $\alpha_2 = \psi_{\sigma_2}^{h_2}(a_2) \in \mathcal{E}(\delta)$ such that $\gamma \in K_{\beta_1}(\alpha_2)$, and an $\alpha_m = \psi_{\sigma_m}^{h_m}(a_m) \in k_{\beta_1}(\alpha_2)$ for some σ_m, h_m and $a_m \geq b \geq a$. We have $\alpha_2 \in \mathcal{W}$ by $\delta \in \mathcal{W}$. If $\alpha_2 < \alpha_1$, then $\beta_1 \leq \alpha_2 \in \mathcal{W} \cap \alpha_1$, and we are done. Assume $\alpha_2 \geq \alpha_1$. Then $a_2 \in K_{\alpha_1}(\alpha_2) < a \leq b$, and m > 2.

Let $\{\alpha_i\}_{2 \leq i \leq m}$ be the sequence of subterms of α_2 such that $\alpha_i = \psi_{\sigma_i}^{h_i}(a_i)$ for some σ_i, a_i, h_i , and for each $i < m, \beta_1 \leq \alpha_{i+1} \in \mathcal{E}(C_i)$ for $C_i = \{\sigma_i, a_i\} \cup SC_{\mathbb{K}}(h_i)$.

Let $\{n_j\}_{0 \leq j \leq k}$ $(0 < k \leq m-2)$ be the increasing sequence $n_0 < n_1 < \cdots < n_k \leq m$ defined recursively by $n_0 = 2$, and assuming n_j has been defined so that $n_j < m$ and $\alpha_{n_j} \geq \alpha_1$, n_{j+1} is defined by $n_{j+1} = \min(\{i: n_j < i < m, \alpha_i < \alpha_{n_j}\} \cup \{m\})$. If either $n_j = m$ or $\alpha_{n_j} < \alpha_1$, then k = j and n_{j+1} is undefined. Then we claim that

$$\forall j \le k(\alpha_{n_i} \in \mathcal{W}) \& \alpha_{n_k} < \alpha_1 \tag{29}$$

Proof of (29). By induction on $j \leq k$ we show first that $\forall j \leq k(\alpha_{n_j} \in \mathcal{W})$. We have $\alpha_{n_0} = \alpha_2 \in \mathcal{W}$. Assume $\alpha_{n_j} \in \mathcal{W}$ and j < k. Then $n_j < m$, i.e., $\alpha_{n_{j+1}} < \alpha_{n_j}$, and by $\alpha_{n_j} \in \mathcal{C}^{\alpha_{n_j}}(\mathcal{W})$, we have $C_{n_j} \subset \mathcal{C}^{\alpha_{n_j}}(\mathcal{W})$, and hence $\alpha_{n_j+1} \in \mathcal{E}(C_{n_j}) \subset \mathcal{C}^{\alpha_{n_j}}(\mathcal{W})$. We see inductively that $\alpha_i \in \mathcal{C}^{\alpha_{n_j}}(\mathcal{W})$ for any i with $n_j \leq i \leq n_{j+1}$. Therefore $\alpha_{n_{j+1}} \in \mathcal{C}^{\alpha_{n_j}}(\mathcal{W}) \cap \alpha_{n_j} \subset \mathcal{W}$ by Proposition 3.22.

Next we show that $\alpha_{n_k} < \alpha_1$. We can assume that $n_k = m$. This means that $\forall i (n_{k-1} \leq i < m \Rightarrow \alpha_i \geq \alpha_{n_{k-1}})$. We have $\alpha_2 = \alpha_{n_0} > \alpha_{n_1} > \dots > \alpha_{n_{k-1}} \geq \alpha_1$, and $\forall i < m(\alpha_i \geq \alpha_1)$. Therefore $\alpha_m \in k_{\alpha_1}(\alpha_2) \subset k_{\alpha_1}(\{\kappa, a\} \cup SC_{\mathbb{K}}(h))$, i.e., $a_m \in K_{\alpha_1}(\{\kappa, a\} \cup SC_{\mathbb{K}}(h))$ for $\alpha_m = \psi_{\sigma_m}^{h_m}(a_m)$. On the other hand we have $K_{\alpha_1}(\{\kappa, a\} \cup SC_{\mathbb{K}}(h)) < a$ for $\alpha_1 = \psi_{\sigma}^h(a)$. Thus $a \leq a_m < a$, a contradiction. (29) is shown, and we obtain $\beta_1 \leq \alpha_{n_k} \in \mathcal{W} \cap \alpha_1$.

This completes a proof of (27) and of the lemma.

Lemma 3.39 For each $\alpha \in OT(\Pi_3)$, $\alpha \in \mathcal{C}^{\mathbb{K}}(\mathcal{W})$.

Proof. This is seen by meta-induction on $\ell \alpha$. By Propositions 3.18, 3.19, and Lemma 3.32, we may assume $\alpha = \psi_{\kappa}^{\nu}(a)$. By IH pick an $n < \omega$ such that $\{\kappa, \nu, a\} \subset \mathcal{C}^{\mathbb{K}}(\mathcal{W}) \cap \omega_{n+1}(\mathbb{K}+1)$. Lemma 3.38 yields $\alpha \in \mathcal{W}$.

Theorem 3.1 follows from Lemma 3.39 and the fact $W \cap \Omega = W(\mathcal{C}^0(\emptyset)) \cap \Omega = W(OT(\Pi_3)) \cap \Omega$.

4 Π_4 -reflection

In this paper we focus on the ordinal analysis of Π_3 reflection. This means no genuine loss of generality, as the removal of Π_3 reflection rules in derivations already exhibits the pattern of cut elimination that applies for arbitrary Π_n reflection rules as well. ([Rathjen94])

In this section \mathbb{K} denotes either a Π_2^1 -indescribable cardinal or a Π_4 -reflecting ordinal. Skolem hull $\mathcal{H}_a(X)$ and a Mahlo class $Mh_3^a(\xi)$ are defined as in Definition 2.2: Let for $\xi > 0$,

$$\pi \in Mh_3^a(\xi) :\Leftrightarrow [\{a,\xi\} \subset \mathcal{H}_a(\pi) \& \forall \nu \in \mathcal{H}_a(\pi) \cap \xi (\pi \in M_3(Mh_3^a(\nu)))]$$

where $\alpha \in M_3(A)$ iff A is Π_1^1 -indescribable in α or α is Π_3 -reflecting on A. Then as in (8)

$$\psi_{\pi}^{\xi}(a) = \min\left(\left\{\pi\right\} \cup \left\{\kappa \in Mh_3^a(\xi) : \left\{\xi, \pi, a\right\} \subset \mathcal{H}_a(\kappa) \& \mathcal{H}_a(\kappa) \cap \pi \subset \kappa\right\}\right)$$

where $\xi = m_3(\psi_{\pi}^{\xi}(a))$.

As in Lemmas 2.3 and 2.4 we see the following for Π_2^1 -indescribable cardinal \mathbb{K} .

Lemma 4.1 Let $a \in \mathcal{H}_a(\mathbb{K}) \cap \varepsilon_{\mathbb{K}+1}$. Then $\mathbb{K} \in M_3(Mh_3^a(\varepsilon_{\mathbb{K}+1}))$. For every $\xi \in \mathcal{H}_a(\mathbb{K}) \cap \varepsilon_{\mathbb{K}+1}$, $\psi_{\mathbb{K}}^{\xi}(a) < \mathbb{K}$.

Operator controlled derivations for KP Π_4 are closed under the following inference rules. For convenience let us attach an assignment $\bar{m}: \pi \mapsto \bar{m}(\pi) = (\bar{m}_2(\pi), \bar{m}_3(\pi))$ to the derivations, where $\bar{m}_i(\pi) \leq m_i(\pi)$ for i = 2, 3. Although our derivability relation should be written as $(\mathcal{H}_{\gamma}[\Theta], \bar{m}) \vdash_b^a \Gamma$, let us write $\mathcal{H}_{\gamma}[\Theta] \vdash_b^a \Gamma$.

 $(\mathrm{rfl}_{\Pi_4}(\mathbb{K}))$ $b \geq \mathbb{K}$. There exist an ordinal $a_0 \in \mathcal{H}_{\gamma}[\Theta] \cap a$, and a $\Sigma_4(\mathbb{K})$ -sentence A enjoying the following conditions:

$$\frac{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a_0} \Gamma, \neg A \quad \{\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash_b^{a_0} \Gamma, A^{(\rho, \mathbb{K})} : \rho < \mathbb{K}\}}{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a} \Gamma} \ (\mathrm{rfl}_{\Pi_4}(\mathbb{K}))$$

(rfl_{Π_3} (α, π, ν)) There exist ordinals $\alpha < \pi \le b < \mathbb{K}$, $\nu < \bar{m}_3(\pi) \le m_3(\pi)$ with $SC_{\mathbb{K}}(\nu) \subset \pi$ and $\nu \le \gamma$, $a_0 < a$, and a finite set Δ of $\Sigma_3(\pi)$ -sentences enjoying the following conditions:

- 1. $\{\alpha, \pi, \nu\} \cup \bar{m}(\pi) \subset \mathcal{H}_{\gamma}[\Theta]$.
- 2. For each $\delta \in \Delta$, $\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a_0} \Gamma, \neg \delta$.
- 3. Let

$$\rho \in Mh_3(\nu) : \Leftrightarrow \nu \leq m_3(\rho).$$

Then for each $\alpha < \rho \in Mh_3(\nu) \cap \pi$, $\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash_b^{a_0} \Gamma, \Delta^{(\rho)}$.

$$\frac{\{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a_0} \Gamma, \neg \delta\}_{\delta \in \Delta} \quad \{\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash_b^{a_0} \Gamma, \Delta^{(\rho, \pi)}\}_{\alpha < \rho \in Mh_3(\nu) \cap \pi}}{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a} \Gamma} \quad (\text{rfl}_{\Pi_3}(\alpha, \pi, \nu))$$

Finite proofs in $\mathsf{KP}\Pi_4$ are embedded to controlled derivations with inferences $(\mathsf{rfl}_{\Pi_4}(\mathbb{K}))$, and then $(\mathsf{rfl}_{\Pi_4}(\mathbb{K}))$ is replaced by inferences $(\mathsf{rfl}_{\Pi_3}(\alpha,\pi,\nu))$ as in Lemma 2.5.

Lemma 4.2 Assume $\Gamma \subset \Sigma_3(\mathbb{K})$, $\Theta \subset \mathcal{H}_{\gamma}(\psi_{\mathbb{K}}(\gamma))$, and $\mathcal{H}_{\gamma}[\Theta] \vdash_{\mathbb{K}}^a \Gamma$ with $a \leq \gamma$. Then $\mathcal{H}_{\hat{a}+1}[\Theta \cup \{\kappa\}] \vdash_{\beta}^{\beta} \Gamma^{(\kappa,\mathbb{K})}$ holds for every $\kappa \in Mh_3(a) \cap \psi_{\mathbb{K}}(\gamma + \mathbb{K} \cdot \omega)$ such that $\psi_{\mathbb{K}}(\gamma + \mathbb{K}) < \kappa$, where $\hat{a} = \gamma + \omega^{\mathbb{K}+a}$ and $\beta = \psi_{\mathbb{K}}(\hat{a})$.

Let us try to eliminate inferences $(\text{rfl}_{\Pi_3}(\alpha, \pi, \nu))$ from the resulting derivations following the proof of Lemma 2.5. Let $Mh_2(\xi; a)$ be a Mahlo class for which the following holds.

Lemma 4.3 Let $\Gamma \subset \Sigma_2(\pi)$ with $\xi = m_3(\pi)$, and $\mathcal{H}_{\gamma}[\Theta] \vdash_{\pi}^a \Gamma$. Then for any $\kappa \in Mh_2(\xi; a) \cap \pi$, $\mathcal{H}_{\gamma}[\Theta \cup \{\kappa\}] \vdash_{\pi}^{\kappa + \omega a} \Gamma^{(\kappa, \pi)} \text{ holds}^1$.

¹Here we don't need to collapse derivations and cut ranks $< \pi$.

Consider the crucial case. Let $\Delta \subset \Sigma_3(\pi)$, $\pi \in Mh_3(\xi)$ and $\nu < \xi$.

$$\frac{\{\mathcal{H}_{\gamma}[\Theta] \vdash_{\pi}^{a_0} \Gamma, \neg \delta\}_{\delta \in \Delta} \quad \{\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash_{\pi}^{a_0} \Gamma, \Delta^{(\rho, \pi)} : \alpha < \rho \in Mh_3(\nu) \cap \pi\}}{\mathcal{H}_{\gamma}[\Theta] \vdash_{\pi}^{a} \Gamma} \quad (\text{rfl}_{\Pi_3}(\alpha, \pi, \nu))$$

Let $\sigma \in Mh_2(\xi; a_0) \cap \kappa$. By IH with Inversion we obtain $\mathcal{H}_{\gamma}[\Theta \cup \{\sigma\}] \vdash_{\pi}^{\kappa + \omega a_0 + 1} \Gamma^{(\sigma, \pi)}, \neg \delta^{(\sigma, \pi)}$ for each $\delta \in \Delta$.

On the other hand we have $\mathcal{H}_{\gamma}[\Theta \cup \{\sigma\}] \vdash_{\pi}^{a_0} \Gamma, \Delta^{(\sigma,\pi)}$ for $\alpha < \sigma \in Mh_3(\nu) \cap \pi$. Assume $Mh_2(\xi; a) \subset Mh_2(\xi; a_0)$. IH yields $\mathcal{H}_{\gamma}[\Theta \cup \{\kappa, \sigma\}] \vdash_{\pi}^{\kappa + \omega a_0} \Gamma^{(\kappa, \pi)}, \Delta^{(\sigma, \pi)}$.

Let $\alpha < \sigma \in Mh_2(\xi; a_0) \cap Mh_3(\nu) \cap \kappa$. A (cut) of the cut formulas $\delta^{(\sigma, \pi)}$ then yields $\mathcal{H}_{\gamma}[\Theta \cup \{\kappa, \sigma\}] \vdash_{\pi}^{\kappa + \omega a_0 + p} \Gamma^{(\kappa, \pi)}, \Gamma^{(\sigma, \pi)}$ for a $p < \omega$.

On the other hand we have $\mathcal{H}_{\gamma}[\Theta \cup \{\kappa\}] \vdash_{0}^{2d} \neg \theta^{(\kappa,\pi)}, \Gamma^{(\kappa,\pi)}$ for each $\theta \in \Gamma \subset \Sigma_{2}(\pi)$, where $d = \max\{\operatorname{rk}(\theta^{(\kappa,\pi)}) : \theta \in \Gamma\} < \kappa + \omega < \pi$.

Now $\kappa \in Mh_2(\xi; a) \cap \pi$ needs to reflect $\Pi_2(\kappa)$ -formulas $\neg \theta^{(\kappa, \pi)}$ down to some $\alpha < \sigma \in Mh_2(\xi; a_0) \cap Mh_3(\nu) \cap \kappa$.

$$a_0 < a \& \nu < \xi \Rightarrow Mh_2(\xi; a) \subset M_2(Mh_2(\xi; a_0) \cap Mh_3(\nu))$$

Thus we arrive at the following definition of the Mahlo classes $Mh_2^{\gamma}(\xi;a)$, which is a Π_3 -class in the sense that there is a Π_3 -formula $\theta(\gamma,\xi,a)$ such that $\alpha \in Mh_2^{\gamma}(\xi;a)$ iff $L_{\alpha} \models \theta(\gamma,\xi,a)$, while $Mh_3^{\gamma}(\nu)$ is a Π_4 -class.

$$\pi \in Mh_2^{\gamma}(\xi; a)$$
 iff $\{\gamma, \xi, a\} \subset \mathcal{H}_{\gamma}(\pi)$ and

$$\forall \{\nu, b\} \subset \mathcal{H}_{\gamma}(\pi) \left[\nu < \xi \& b < a \Rightarrow \pi \in M_2 \left(M h_2^{\gamma}(\xi; b) \cap M h_3^{\gamma}(\nu) \right) \right].$$

It turns out that we need Mahlo classes $Mh_2^{\gamma}(\bar{\xi}; \bar{a})$ for finite sequences $\bar{\xi}$ and \bar{a} in our proof-theoretic study, cf. Lemma 4.13. Let us explain the classes intuitively in the next subsection.

4.1 Mahlo classes

Let $M_i = RM_i$ and P, Q, ... denote transitive classes in $L \cup \{L\}$ for a Π_4 -reflecting universe L. For classes \mathcal{X}, \mathcal{Y} and i = 2, 3 let

$$\mathcal{X} \prec_i \mathcal{Y} : \Leftrightarrow \forall P \in \mathcal{Y}(P \in M_i(\mathcal{X}))$$

Definition 4.4 Let

$$M_2(\xi;a) := \bigcap \{ M_2\left(M_2(\xi;b) \cap M_3(\nu) \right) : \nu < \xi, b < a \}.$$

In general for classes \mathcal{Y} let

$$M_2^{\mathcal{Y}}(\xi;a) := \mathcal{Y} \cap \bigcap \{ M_2\left(M_2^{\mathcal{Y}}(\xi;b) \cap M_3(\nu)\right) : \nu < \xi, b < a \}.$$

Proposition 4.5 For a Π_3 -class \mathcal{Y} and $\mu < \xi$, $M_2^{\mathcal{Y}}(\xi; a) \cap M_3(\mu) \prec_2 \mathcal{Y} \cap M_3(\xi)$ and $M_2^{\mathcal{Y}}(\xi; a) \supset \mathcal{Y} \cap M_3(\xi)$.

Proof. By induction on a, we show $P \in \mathcal{Y} \cap M_3(\xi) \Rightarrow P \in M_2^{\mathcal{Y}}(\xi; a)$.

Let $P \in \mathcal{Y} \cap M_3(\xi)$, $\nu < \xi$ and b < a. By IH we obtain $P \in M_2^{\mathcal{Y}}(\xi;b)$. Since $M_2^{\mathcal{Y}}(\xi;b)$ is a Π_3 -class, we obtain $P \in M_2\left(M_2^{\mathcal{Y}}(\xi;b) \cap M_3(\nu)\right)$ by $P \in M_3(\xi)$. Therefore $P \in M_2^{\mathcal{Y}}(\xi; a)$.

Since $M_2^{\mathcal{Y}}(\xi; a)$ is a Π_3 -class and $P \in M_3(\xi) \subset M_3(M_3(\mu))$, we obtain $P \in$ $M_2(M_2^{\mathcal{Y}}(\xi; a) \cap M_3(\mu)).$

Let $\nu < \mu < \xi$. From Proposition 4.5 we see $M_2(\xi; a) \cap M_3(\mu) \prec_2 M_3(\xi)$, and $M_2^{\mathcal{Y}}(\mu;b) \cap M_3(\nu) \prec_2 \mathcal{Y} \cap M_3(\mu)$ for $\mathcal{Y} = M_2(\xi;a)$.

Let us write $M_2((\xi,\mu);(a,b))$ for $M_2^{\mathcal{V}}(\mu;b)$, where $\xi > \mu$. Let $\nu < \mu < \xi$. We obtain $M_2((\xi, \mu); (a, b)) \cap M_3(\nu) \prec_2 M_2(\xi; a) \cap M_3(\mu) \prec_2 M_3(\xi)$.

Proposition 4.6 Let $\xi_1, \zeta < \xi$, c < b and d < a. Then $M_2((\xi, \mu); (a, c)) \cap$ $M_3(\nu) \prec_2 M_2((\xi,\mu);(a,b))$ and $M_2((\xi,\xi_1);(d,e)) \cap M_3(\zeta) \prec_2 M_2((\xi,\mu);(a,b))$.

Proof. Let $\mathcal{Y} = M_2(\xi; a)$. Then $M_2((\xi, \mu); (a, c)) \cap M_3(\nu) = M_2^{\mathcal{Y}}(\mu; c) \cap$

M₃(ν) $\prec_2 M_2^{\mathcal{Y}}(\mu; b) = M_2((\xi, \mu); (a, b))$ by c < b and $\nu < \mu$. Next we show $M_2^{\mathcal{X}}(\xi_1; e) \cap M_3(\zeta) \prec_2 \mathcal{Y} \supset M_2^{\mathcal{Y}}(\mu; b)$, where $\mathcal{X} = M_2(\xi; d)$ and $M_2((\xi, \xi_1); (d, e)) = M_2^{\mathcal{X}}(\xi_1; e)$. We have $\mathcal{X} \cap M_3(\xi_1) \cap M_3(\zeta) = M_2(\xi; d) \cap M_3(\xi_1) \cap M_3(\zeta) \prec_2 M_2(\xi; a) = \mathcal{Y}$ by d < a and $\xi_1, \zeta < \xi$. On the other hand we have $M_2^{\mathcal{X}}(\xi_1; e) \supset \mathcal{X} \cap M_3(\xi_1)$ by Proposition 4.5. Hence $M_2^{\mathcal{X}}(\xi_1; e) \cap M_3(\zeta) \prec_2 M_2(\xi; a) = \mathcal{Y}$

The same argument applies not only to pairs $(\xi > \mu)$, (a, b), but also to triples, and so forth.

Let $\bar{\xi} = (\xi_0 > \xi_1 > \dots > \xi_n)$ and $\bar{a} = (a_0, a_1, \dots, a_n)$ be sequences in the same lengths. By iterating the process $\mathcal{Y} \mapsto \{M_2^{\mathcal{Y}}(\xi;a)\}_a$ with $M_3(\xi)$, we now define classes $M_2(\bar{\xi}; \bar{a})$ by induction on the length n of the sequences ξ, \bar{a} as follows.

 $M_2(\langle \rangle; \langle \rangle)$ denotes the class of transitive sets in $L \cup \{L\}$.

For $\xi * (\xi) = (\xi_0 > \dots > \xi_n > \xi)$ and $\bar{a} * (a) = (a_0, \dots, a_n, a)$ define for the Π_3 -class $\mathcal{Y} = M_2(\bar{\xi}; \bar{a})$

$$M_2(\bar{\xi} * (\xi); \bar{a} * (a)) = M_2^{\mathcal{Y}}(\xi; a)$$

Namely

$$M_2(\bar{\xi}*(\xi);\bar{a}*(a)) = M_2(\bar{\xi};\bar{a}) \cap \bigcap \{M_2\left(M_2(\bar{\xi}*(\xi);\bar{a}*(b)) \cap M_3(\nu)\right) : \nu < \xi, b < a\}$$

Proposition 4.6 is extended to finite sequences. To state an extension, let us redefine classes $M_2(\xi; \bar{a})$ through ordinals $\alpha = \Lambda^{\xi_0} a_0 + \cdots + \Lambda^{\xi_n} a_n$ as follows, where Λ is a big enough ordinal such that $\Lambda > a_0$.

Let $\alpha = \Lambda^{\xi_0} a_0 + \dots + \Lambda^{\xi_n} a_n$, where $\xi_0 > \dots > \xi_n$ and $a_0, \dots, a_n \neq 0$.

$$M_2(\alpha) := \bigcap \{ M_2(M_2(\beta) \cap M_3(\nu)) : (\beta, \nu) < \alpha \}$$

where for segments $\alpha_i = \Lambda^{\xi_0} a_0 + \cdots + \Lambda^{\xi_i} a_i$ of $\alpha = \Lambda^{\xi_0} a_0 + \cdots + \Lambda^{\xi_n} a_n$

$$(\beta, \nu) < \alpha : \Leftrightarrow \exists i \leq n \left[\beta < \alpha_i \& \nu < \xi_i \right].$$

F.e. in Proposition 4.6 we have $(\Lambda^{\xi}a + \Lambda^{\mu}c, \nu) < \Lambda^{\xi}a + \Lambda^{\mu}b$ and $(\Lambda^{\xi}d + \Lambda^{\xi_1}e, \zeta) < \Lambda^{\xi}a + \Lambda^{\mu}b$, but $(\Lambda^{\xi}a + \Lambda^{\mu}c, \mu) \not< \Lambda^{\xi}a + \Lambda^{\mu}b$, where $\nu < \mu < \xi, \, \xi_1, \, \zeta < \xi, \, c < b$ and d < a.

Proposition 4.7 $(\beta, \nu) < \alpha < \gamma \Rightarrow (\beta, \nu) < \gamma$.

 $\alpha + \beta$ designates that $\alpha + \beta = \alpha \# \beta$.

Lemma 4.8 (Cf. Lemma 3.2 in [A09].)

If $\xi > 0$ and $\beta < \Lambda^{\xi+1}$, then $M_2(\alpha + \beta) \prec_2 M_2(\alpha, \xi) := M_2(\alpha) \cap M_3(\xi)$.

Proof. Suppose $P \in M_2(\alpha, \xi) = M_2(\alpha) \cap M_3(\xi)$ and $\beta < \Lambda^{\xi+1}$.

We show $P \in M_2(\alpha + \beta)$ by induction on ordinals β . Let $(\gamma, \nu) < \alpha + \beta$. We need to show that $P \in M_2(M_2(\gamma, \nu))$.

Let δ be a segment of $\alpha + \beta$ such that $\gamma < \delta$ and $\nu < \mu$ where $\delta = \cdots + \Lambda^{\mu}b$. If δ is a segment of α , then $P \in M_2(M_2(\gamma, \nu))$ by $P \in M_2(\alpha)$.

Let $\delta = \alpha \dot{+} \beta_0$, where β_0 is a segment of β . Then $\nu < \mu \le \xi$. We claim that $P \in M_2(\gamma)$. If $\gamma < \alpha$, then Proposition 4.7 yields $P \in M_2(\alpha) \subset M_2(\gamma)$. Let $\gamma = \alpha \dot{+} \gamma_0 < \alpha \dot{+} \beta_0$. IH yields $P \in M_2(\gamma)$. Thus the claim is shown. On the other hand we have $P \in M_3(\xi)$ and $\nu < \xi$. Since $M_2(\gamma)$ is a Π_3 -class, we obtain $P \in M_3(M_2(\gamma, \nu)) \subset M_2(M_2(\gamma, \nu))$. $P \in M_2(\alpha \dot{+} \beta)$ is shown.

By $P \in M_2(\alpha + \beta)$ and $P \in M_3(\xi) \subset M_3$ with $\xi > 0$, we obtain $P \in M_3(M_2(\alpha + \beta)) \subset M_2(M_2(\alpha + \beta))$.

4.2 Skolem hulls and collapsing functions

We can assume $\xi < \varepsilon_{\mathbb{K}+1}$ and $a < \Lambda = \mathbb{K}$. For $\alpha < \Lambda^{\varepsilon_{\mathbb{K}+1}}$, let us define $Mh_2^{\gamma}(\alpha)$ as follows. (β, ν) denotes pairs of ordinals $\beta < \Lambda^{\varepsilon_{\mathbb{K}+1}}$ and $\nu < \varepsilon_{\mathbb{K}+1}$ such that $\beta + \Lambda^{\nu} = \beta \# \Lambda^{\nu}$. Let $\alpha = \Lambda^{\beta_0} a_0 + \cdots + \Lambda^{\beta_n} a_n$, where $\varepsilon_{\mathbb{K}+1} > \beta_0 > \cdots > \beta_n$ and $0 < a_0, \ldots, a_n < \Lambda$. Then $\pi \in Mh_2^{\gamma}(\alpha)$ iff $\{\gamma, \alpha\} \subset \mathcal{H}_{\gamma}(\pi)$ and

$$\forall \{\nu, \beta\} \subset \mathcal{H}_{\gamma}(\pi) \left[(\beta, \nu) < \alpha \Rightarrow \pi \in M_2 \left(M h_2^{\gamma}(\beta) \cap M h_3^{\gamma}(\nu) \right) \right]$$

where for segments $\alpha_i = \Lambda^{\beta_0} a_0 + \cdots + \Lambda^{\beta_i} a_i$ of $\alpha = \Lambda^{\beta_0} a_0 + \cdots + \Lambda^{\beta_n} a_n$

$$(\beta, \nu) < \alpha : \Leftrightarrow \exists i < n [\beta < \alpha_i \& \nu < \beta_i].$$

For example, if $\nu < \xi$ and $a_0 < a$, then $(\Lambda^{\xi} a_0, \nu) < \Lambda^{\xi} a$. The exponents β_i of α designate ' Π_3 -Mahlo degrees'.

Proposition 4.9 $(\beta, \nu) < \alpha < \gamma \Rightarrow (\beta, \nu) < \gamma$.

Definition 4.10 Define simultaneously by recursion on ordinals $a < \varepsilon_{\mathbb{K}+1}$ the classes $\mathcal{H}_a(X)$ $(X \subset \Gamma_{\mathbb{K}+1})$, $Mh_2^a(\alpha)$ $(\xi < \varepsilon_{\mathbb{K}+1})$, the ordinals $\psi_{\sigma}^{(\alpha,\xi)}(a)$ as follows.

1. $\mathcal{H}_a(X)$ denotes the Skolem hull of $\{0, \Omega, \mathbb{K}\} \cup X$ under the functions $+, \varphi$, and the following.

Let $\{\sigma, b, \alpha, \xi\} \subset \mathcal{H}_a(X)$, $\alpha \in \{0\} \cup [\Lambda, \Lambda^{\varepsilon_{\mathbb{K}+1}})$, $\xi \in [0, \varepsilon_{\mathbb{K}+1})$ and b < a. Then $\psi_{\sigma}^{(\alpha, \xi)}(b) \in \mathcal{H}_a(X)$.

- 2. $\pi \in Mh_3^a(\xi) :\Leftrightarrow \{a,\xi\} \subset \mathcal{H}_a(\pi) \& \forall \nu \in \mathcal{H}_a(\pi) \cap \xi (\pi \in M_3(Mh_3^a(\nu))),$ where $\alpha \in Mh_3^a(0)$ iff α is a limit ordinal.
- 3. For $\alpha < \Lambda^{\varepsilon_{\mathbb{K}+1}}$ and $a < \varepsilon_{\mathbb{K}+1}$, $\pi \in Mh_2^a(\alpha)$ iff $\{a, \alpha\} \subset \mathcal{H}_a(\pi)$ and

$$\forall \{\beta, \nu\} \subset \mathcal{H}_a(\pi) \left[(\beta, \nu) < \alpha \to \pi \in M_2 \left(M h_2^a(\beta, \nu) \right) \right]$$

where

$$Mh_2^a(\beta,\nu) = Mh_2^a(\beta) \cap Mh_3^a(\nu)$$

and $\alpha \in Mh_2^a(0)$ iff α is a limit ordinal. Note that $Mh_2^a(\alpha)$ is a Π_3 -class.

- 4. Let $m_2(\mathbb{K}) = 0$, $m_3(\mathbb{K}) = \varepsilon_{\mathbb{K}+1}$, $m_2(\Omega) = 1$ and $m_3(\Omega) = 0$.
 - (a) For $\{\xi, a\} \subset \mathcal{H}_a(\mathbb{K}) \cap \varepsilon_{\mathbb{K}+1}$ with $0 < \xi \le a$, let $\psi_{\mathbb{K}}^{(0,\xi)}(a) = \min(\{\mathbb{K}\} \cup \{\kappa \in Mh_3^a(\xi) : \{\xi, a\} \subset \mathcal{H}_a(\kappa) \& \mathcal{H}_a(\kappa) \cap \mathbb{K} \subset \kappa\}).$ $m_2(\psi_{\mathbb{K}}^{(0,\xi)}(a)) = 0$ and $m_3(\psi_{\mathbb{K}}^{(0,\xi)}(a)) = \xi.$
 - (b) Let $0 \le \alpha < \Lambda^{\varepsilon_{\mathbb{K}+1}}$ and $0 < \xi < \varepsilon_{\mathbb{K}+1}$ be ordinals, $0 < c \le a < \Lambda = \mathbb{K}$ with $c \in \mathcal{H}_a(\sigma)$ and $\sigma \in Mh_2^a(\alpha, \xi)$. Then for $\beta = \alpha \dot{+} \Lambda^{\xi} c$

$$\psi_{\sigma}^{(\beta,0)}(a) = \min\left(\left\{\sigma\right\} \cup \left\{\kappa \in Mh_2^a(\beta) : \left\{\sigma, \alpha, \xi, c, a\right\} \subset \mathcal{H}_a(\kappa) \& \mathcal{H}_a(\kappa) \cap \sigma \subset \kappa\right\}\right).$$

$$m_2(\psi_{\sigma}^{(\beta,0)}(a)) = \beta \text{ and } m_3(\psi_{\sigma}^{(\beta,0)}(a)) = 0.$$

(c) Let $0 < \beta, \alpha < \Lambda^{\varepsilon_{\mathbb{K}+1}}$ and $0 < \nu < \varepsilon_{\mathbb{K}+1}$ be such that $\{\beta, \nu\} \subset \mathcal{H}_a(\sigma)$, $SC_{\mathbb{K}}(\beta, \nu) \subset (a+1) < \mathbb{K}$ and $(\beta, \nu) < \alpha$. Then for $\sigma \in Mh_2^a(\alpha)$ with $m_3(\sigma) = 0$

$$\psi_{\sigma}^{(\beta,\nu)}(a) = \min\left(\{\sigma\} \cup \{\kappa \in Mh_2^a(\beta,\nu) : \{\sigma,\beta,\nu,a\} \subset \mathcal{H}_a(\kappa) \& \mathcal{H}_a(\kappa) \cap \sigma \subset \kappa\}\right).$$

$$m_2(\psi_{\sigma}^{(\beta,\nu)}(a)) = \beta$$
 and $m_3(\psi_{\sigma}^{(\beta,\nu)}(a)) = \nu$.

(d)

$$\psi_{\sigma}(a) = \min\{\kappa \leq \sigma : \{\sigma, a\} \subset \mathcal{H}_a(\kappa) \& \mathcal{H}_a(\kappa) \cap \sigma \subset \kappa\}.$$

We write $\psi_{\sigma}(a)$ for $\psi_{\sigma}^{(0,0)}(a)$.

Let \mathbb{K} be a Π_2^1 -indescribable cardinal. As in Lemmas 2.3 and 2.4 we see that $\psi_{\mathbb{K}}^{(0,\xi)}(a) < \mathbb{K}$ for every $\{a,\xi\} \subset \mathcal{H}_a(\mathbb{K}) \cap \varepsilon_{\mathbb{K}+1}$.

It is easy to see that $\psi_{\sigma}^{(\beta,\nu)}(a) < \sigma$ if $(\beta,\nu) < \alpha$, $\sigma \in Mh_2^a(\alpha)$ and $\{\beta,\nu\} \subset \mathcal{H}_a(\sigma)$.

Lemma 4.11 (Cf. Lemma 3.2 in [A09].) Assume $\mathbb{K} \geq \sigma \in Mh_2^a(\alpha, \xi)$ with $0 < \xi < \varepsilon_{\mathbb{K}+1}$, $\beta < \Lambda^{\xi+1}$ and $\beta \in \mathcal{H}_a(\sigma)$. Then $\sigma \in M_3(Mh_2^a(\alpha + \beta))$ holds, a fortiori $\sigma \in M_2(Mh_2^a(\alpha + \beta))$.

Proof. Suppose $\sigma \in Mh_2^a(\alpha, \xi) = Mh_2^a(\alpha) \cap Mh_3^a(\xi)$ and $\beta \in \mathcal{H}_a(\sigma)$ with $\beta < \Lambda^{\xi+1}$. We show $\sigma \in Mh_2^a(\alpha + \beta)$ by induction on ordinals β . Let $\{\gamma, \nu\} \subset \mathcal{H}_a(\sigma)$ and $(\gamma, \nu) < \alpha + \beta$. We need to show that $\sigma \in M_2(Mh_2^a(\gamma, \nu))$.

Let δ be a segment of $\alpha + \beta$ such that $\gamma < \delta$ and $\nu < \mu$ where $\delta = \cdots + \Lambda^{\mu}b$. If δ is a segment of α , then $\sigma \in M_2(Mh_2^a(\gamma, \nu))$ by $\sigma \in Mh_2^a(\alpha)$.

Let $\delta = \alpha \dot{+} \beta_0$, where β_0 is a segment of β . Then $\nu < \mu \leq \xi$. We claim that $\sigma \in Mh_2^a(\gamma)$. If $\gamma < \alpha$, then Proposition 4.9 with $\gamma \in \mathcal{H}_a(\sigma)$ yields $\sigma \in Mh_2^a(\alpha) \subset Mh_2^a(\gamma)$. Let $\gamma = \alpha \dot{+} \gamma_0 < \alpha \dot{+} \beta_0$ with $\gamma_0 \in \mathcal{H}_a(\sigma)$. IH yields $\sigma \in Mh_2^a(\gamma)$. Thus the claim is shown. On the other hand we have $\sigma \in Mh_3^a(\xi)$ and $\nu \in \mathcal{H}_a(\sigma) \cap \xi$. Since $Mh_2^a(\gamma)$ is a Π_3 -class, we obtain $\sigma \in M_3(Mh_2^a(\gamma, \nu)) \subset M_2(Mh_2^a(\gamma, \nu))$ with $Mh_2^a(\gamma, \nu) = Mh_2^a(\gamma) \cap Mh_3^a(\nu)$. $\sigma \in Mh_2^a(\alpha \dot{+} \beta)$ is shown.

By $\sigma \in Mh_2^a(\alpha + \beta)$ and $\sigma \in Mh_3^a(\xi) \subset M_3$ with $\xi > 0$, we obtain $\sigma \in M_3(Mh_2^a(\alpha + \beta))$.

Corollary 4.12 If $\sigma \in Mh_2^a(\alpha, \xi)$ and $c \in \mathcal{H}_a(\sigma) \cap \Lambda$ with $\xi > 0$, then $\psi_{\sigma}^{(\beta,0)}(a) < \sigma$ for $\beta = \alpha \dot{+} \Lambda^{\xi} c$.

Proof. We obtain $\sigma \in M_2(Mh_2^a(\beta))$ by Lemma 4.11. Since $\{\kappa < \sigma : \{\beta, a, \sigma\} \subset \mathcal{H}_a(\kappa), \mathcal{H}_a(\kappa) \cap \sigma \subset \kappa\}$ is a club subset of σ , we obtain $\psi_{\sigma}^{(\beta,0)}(a) < \sigma$.

 $OT(\Pi_4)$ denotes a computable notation system of ordinals with collapsing functions $\psi_{\sigma}^{(\alpha,\xi)}(a)$. Although in our well-foundedness proof in $\mathsf{KP}\Pi_4$, ordinal terms $\psi_{\sigma}^{(\beta,\nu)}(a)$ has to obey some restrictions such as (9) for $OT(\Pi_3)$, it is cumbersome to verify the conditions, and let us skip it.

Operator controlled derivations for $\mathsf{KP}\Pi_4$ are closed under the inference rules $(\mathsf{rfl}_{\Pi_4}(\mathbb{K}))$, $(\mathsf{rfl}_{\Pi_3}(\alpha, \pi, \nu))$ and the following.

(rfl_{Π_2} $(\alpha, \pi, \beta, \nu)$) There exist ordinals $\alpha < \pi \le b < \mathbb{K}$, $(\beta, \nu) < \bar{m}_2(\pi) \le m_2(\pi)$, $a_0 < a$, and a finite set Δ of $\Sigma_2(\pi)$ -sentences enjoying the following conditions:

- 1. $\{\alpha, \pi, \beta, \nu\} \cup \bar{m}(\pi) \subset \mathcal{H}_{\gamma}[\Theta]$.
- 2. For each $\delta \in \Delta$, $\mathcal{H}_{\gamma}[\Theta] \vdash_{b}^{a_0} \Gamma, \neg \delta$.
- 3. For each $\alpha < \rho \in Mh_2(\beta, \nu) \cap \pi$, $\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash_b^{a_0} \Gamma, \Delta^{(\rho, \pi)}$.

$$\frac{\{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a_0} \Gamma, \neg \delta\}_{\delta \in \Delta} \quad \{\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash_b^{a_0} \Gamma, \Delta^{(\rho, \pi)}\}_{\alpha < \rho \in Mh_2(\beta, \nu) \cap \pi}}{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a} \Gamma} \ \left(\mathrm{rfl}_{\Pi_2}(\alpha, \pi, \beta, \nu) \right)$$

This inference says that $\pi \in M_2(Mh_2^{\gamma}(\beta) \cap Mh_3^{\gamma}(\nu))$.

Lemma 4.13 Let $\Gamma \subset \Sigma_2(\pi)$. Assume $\mathcal{H}_{\gamma}[\Theta] \vdash_{\pi}^{a} \Gamma$ for $a \pi < \mathbb{K}$, and $\{\xi, \alpha\} \subset \mathcal{H}_{\gamma}[\Theta]$ for $\alpha = \bar{m}_2(\pi)$, $\xi = \bar{m}_3(\pi)$. Let η be the base for $(\mathrm{rfl}_{\Pi_3}(\eta, \pi, \nu))$ in $\mathcal{H}_{\gamma}[\Theta] \vdash_{\pi}^{a} \Gamma$. Then for any $\eta < \kappa \in Mh_2(\alpha \dot{+} \Lambda^{\xi}(1+a)) \cap \pi$, $\mathcal{H}_{\gamma}[\Theta \cup \{\kappa\}] \vdash_{\pi}^{\kappa + \omega a} \Gamma^{(\kappa,\pi)}$ holds, where $\alpha \dot{+} \Lambda^{\xi}(1+a) \leq \bar{m}_2(\kappa) \in \mathcal{H}_{\gamma}[\Theta]$. Moreover when $\Theta \subset \mathcal{H}_{\gamma}(\kappa)$, $\mathcal{H}_{\gamma}[\Theta \cup \{\kappa\}] \vdash_{\kappa}^{\kappa + \omega a} \Gamma^{(\kappa,\pi)}$ holds.

Proof. By induction on a. Let $\pi' = \kappa$ if $\Theta \subset \mathcal{H}_{\gamma}(\kappa)$. Otherwise $\pi' = \pi$. Note that there exists a κ such that $\kappa \in Mh_2(\alpha \dot{+} \Lambda^{\xi}(1+a)) \cap \pi$ if $\Theta \cup \{\pi\} \subset \mathcal{H}_{\gamma}(\pi)$. F.e. $\kappa = \psi_{\pi}^{(\alpha + \Lambda^{\xi}(1+a),0)}(\gamma + \max \Theta).$

Let η be the base for $(\operatorname{rfl}_{\Pi_3}(\eta, \pi, \nu))$ in $\mathcal{H}_{\gamma}[\Theta] \vdash_{\pi}^{a} \Gamma$.

Case 1. $(\text{rfl}_{\Pi_3}(\eta, \pi, \nu))$: Then $\eta < \pi$, $\{\eta, \pi, \nu\} \cup \tilde{m}(\pi) \subset \mathcal{H}_{\gamma}[\Theta], SC_{\mathbb{K}}(\nu) \subset \pi$, and $\nu < \bar{m}_3(\pi) \le m_3(\pi)$. Let $\Delta \subset \Sigma_3(\pi)$.

$$\frac{\{\mathcal{H}_{\gamma}[\Theta] \vdash_{\pi}^{a_0} \Gamma, \neg \delta\}_{\delta \in \Delta} \quad \{\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash_{\pi}^{a_0} \Gamma, \Delta^{(\rho, \pi)}\}_{\eta < \rho \in Mh_3(\nu) \cap \pi}}{\mathcal{H}_{\gamma}[\Theta] \vdash_{\pi}^{a} \Gamma} \quad (\text{rfl}_{\Pi_3}(\eta, \pi, \nu))$$

Let $\alpha_0 = \alpha \dot{+} \Lambda^{\xi} (1 + a_0)$. Then $(\alpha_0, \nu) < \alpha_1 = \alpha \dot{+} \Lambda^{\xi} (1 + a)$. We obtain $\{\kappa, \alpha_1, \nu, \alpha_0\} \subset \mathcal{H}_{\gamma}[\Theta \cup \{\kappa\}]$. In the following derivation $\alpha_1 \leq \bar{m}_2(\kappa)$ with $\bar{m}(\kappa) \subset \mathcal{H}_{\gamma}[\Theta].$

$$\frac{\{\mathcal{H}_{\gamma}[\Theta \cup \{\sigma\}] \vdash_{\pi'}^{\sigma + \omega a_0 + 1} \Gamma^{(\sigma, \pi)}, \neg \delta^{(\sigma, \pi)}\}_{\delta \in \Delta} \quad \mathcal{H}_{\gamma}[\Theta \cup \{\kappa, \sigma\}] \vdash_{\pi'}^{\kappa + \omega a_0} \Gamma^{(\kappa, \pi)}, \Delta^{(\sigma, \pi)}}{\{\mathcal{H}_{\gamma}[\Theta \cup \{\kappa, \sigma\}] \vdash_{\pi'}^{\kappa + \omega a_0 + p} \Gamma^{(\kappa, \pi)}, \Gamma^{(\sigma, \pi)}\}_{\eta < \sigma \in Mh_2(\alpha_0, \nu) \cap \pi}} \quad (\text{rfl}_{\Pi_2}(\eta, \kappa, \alpha_0, \nu)) \cap \mathcal{H}_{\gamma}[\Theta \cup \{\kappa\}] \vdash_{\pi'}^{\kappa + \omega a} \Gamma^{(\kappa, \pi)}$$

Case 2. $(\text{rfl}_{\Pi_2}(\mu, \pi, \beta, \nu)): (\beta, \nu) < \alpha = \bar{m}_2(\pi) \le m_2(\pi), \mu < \pi, \{\mu, \pi, \alpha, \beta, \nu\} \subset$ $\mathcal{H}_{\gamma}[\Theta]$ and $\Delta \subset \Sigma_2(\pi)$.

$$\frac{\{\mathcal{H}_{\gamma}[\Theta] \vdash_{\pi}^{a_0} \Gamma, \neg \delta\}_{\delta \in \Delta} \quad \{\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash_{\pi}^{a_0} \Gamma, \Delta^{(\rho, \pi)}\}_{\mu < \rho \in Mh_2(\beta, \nu) \cap \pi}}{\mathcal{H}_{\gamma}[\Theta] \vdash_{\pi}^{a} \Gamma} \quad (\mathrm{rfl}_{\Pi_2}(\pi, \beta, \nu))$$

Then $(\beta, \nu) < \alpha_1 = \alpha \dot{+} \Lambda^{\xi} (1+a) \leq \bar{m}_2(\kappa)$ with the segment α of $\alpha \dot{+} \Lambda^{\xi} (1+a)$. We have $\Delta^{(\rho,\pi)} = (\Delta^{(\kappa,\pi)})^{(\rho,\kappa)}$ and $\{\kappa,\alpha_1,\beta,\nu\} \subset \mathcal{H}_{\gamma}[\Theta \cup \{\kappa\}].$

$$\frac{\{\mathcal{H}_{\gamma}[\Theta \cup \{\kappa\}] \vdash_{\pi'}^{\kappa + \omega a_0 + 1} \Gamma^{(\kappa, \pi)}, \neg \delta^{(\kappa, \pi)}\}_{\delta \in \Delta} \ \{\mathcal{H}_{\gamma}[\Theta \cup \{\kappa, \rho\}] \vdash_{\pi'}^{\kappa + \omega a_0} \Gamma^{(\kappa, \pi)}, \Delta^{(\rho, \pi)}\}_{\mu < \rho \in Mh_2(\beta, \nu) \cap \kappa}}{\mathcal{H}_{\gamma}[\Theta \cup \{\kappa\}] \vdash_{\pi'}^{\kappa + \omega a} \Gamma^{(\kappa, \pi)}} \ (\mathrm{rfl}_{\Pi_2}(\mu, \kappa, \beta, \nu))$$

Case 3. The last inference is a (cut) of a cut formula C: Then $\mathrm{rk}(C) \in \mathcal{H}_{\gamma}[\Theta] \cap \pi$ and $C \in \Delta_0(\pi)$. If $\Theta \subset \mathcal{H}_{\gamma}(\kappa)$, then $\mathrm{rk}(C) < \kappa$.

Case 4. The last inference is either a $(\text{rfl}_{\Pi_3}(\sigma,\nu))$ or a $(\text{rfl}_{\Pi_2}(\sigma,\delta,\nu))$ with $\sigma \in \mathcal{H}_{\gamma}[\Theta] \cap \pi$: IH yields the lemma. If $\Theta \subset \mathcal{H}_{\gamma}(\kappa)$, then $\sigma < \kappa$.

We see from the above proof, if there is a base η for inferences $(\text{rfl}_{\Pi_3}(\mu_3, \sigma, \nu))$ and simultaneously for $(\text{rfl}_{\Pi_2}(\mu_2, \sigma, \delta, \nu))$ in $\mathcal{H}_{\gamma}[\Theta] \vdash_{\pi}^{a} \Gamma$ (in the sense that $\eta = \mu_3 = \mu_2$), then the same η is a base for inferences $(\text{rfl}_{\Pi_3}(\mu_3, \sigma, \nu))$ and simultaneously for $(\operatorname{rfl}_{\Pi_2}(\mu_2, \sigma, \delta, \nu))$ in $\mathcal{H}_{\gamma}[\Theta \cup {\kappa}] \vdash_{\pi'}^{\kappa + \omega a} \Gamma^{(\kappa, \pi)}$.

Lemma 4.14 Let $\Gamma \subset \Sigma_1(\lambda)$ and $\mathcal{H}_{\gamma}[\Theta] \vdash_b^a \Gamma$ with $a < \Lambda = \mathbb{K}$, $\mathcal{H}_{\gamma}[\Theta] \ni \lambda \leq 1$

 $b < \mathbb{K} \text{ and } \lambda \text{ regular, and assume } \forall \kappa \in [\lambda, b)(\Theta \subset \mathcal{H}_{\gamma}(\psi_{\kappa}(\gamma))).$ $\text{Let } \hat{a} = \gamma + \theta_{b}(a) \text{ and } \delta = \psi_{\lambda}^{(\beta, \nu)}(\hat{a}) \text{ when } \lambda \in Mh_{2}^{\gamma}(\alpha), \ m_{3}(\lambda) = 0 \text{ and } (\beta, \nu) < \alpha \text{ with } \{\beta, \nu\} \subset \mathcal{H}_{\gamma}[\Theta]. \text{ Then } \mathcal{H}_{\hat{a}+1}[\Theta] \vdash_{\delta}^{\delta} \Gamma \text{ holds.}$

Proof. By main induction on b with subsidiary induction on a as in Lemma 2.6. Let η be a base for reflection inferences in $\mathcal{H}_{\gamma}[\Theta] \vdash_b^a \Gamma$.

Case 1. Consider the case when the last inference is a $(\text{rfl}_{\Pi_3}(\eta, \sigma, \nu))$ with $b \geq \sigma$.

$$\frac{\{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a_0} \Gamma, \neg \delta\}_{\delta \in \Delta} \quad \{\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash_b^{a_0} \Gamma, \Delta^{(\rho, \sigma)}\}_{\eta < \rho \in Mh_3(\nu) \cap \sigma}}{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a} \Gamma} \quad (\text{rfl}_{\Pi_3}(\eta, \sigma, \nu))$$

where $\Delta \subset \Sigma_3(\sigma)$, $SC_{\mathbb{K}}(\nu) \subset \sigma$, $\nu < \xi = \bar{m}_3(\sigma) \leq m_3(\sigma)$, $\alpha = \bar{m}_2(\sigma) \leq m_2(\sigma)$, $\eta < \sigma$ and $\{\eta, \sigma, \xi, \alpha, \nu\} \subset \mathcal{H}_{\gamma}[\Theta]$. We may assume that $\sigma \geq \lambda$.

Case 1.1. There exists a regular $\pi \in \mathcal{H}_{\gamma}[\Theta]$ such that $\sigma < \pi \leq b$: Then $\Delta \subset \Delta_0(\pi)$ and $\sigma < b_0 = \psi_{\pi}(\widehat{a_0})$ for $\widehat{a_0} = \gamma + \theta_b(a_0)$. SIH yields $\mathcal{H}_{\widehat{a_0}+1}[\Theta] \vdash_{b_0}^{b_0} \Gamma, \neg \delta$ for each $\delta \in \Delta$, and $\mathcal{H}_{\widehat{a_0}+1}[\Theta \cup \{\rho\}] \vdash_{b_0}^{b_0} \Gamma, \Delta^{(\rho,\sigma)}$ for each $\eta < \rho \in Mh_3(\nu) \cap \sigma$. A $(\text{rfl}_{\Pi_3}(\eta,\sigma,\nu))$ yields $\mathcal{H}_{\widehat{a_0}+1}[\Theta] \vdash_{b_0}^{b_0+1} \Gamma$, where $b_0 < b$. Let $\delta_0 = \psi_{\lambda}(\widehat{a_1})$ with $\widehat{a_1} = \widehat{a_0} + \theta_{b_0}(b_0 + 1) = \gamma + \theta_b(a_0) + \theta_{b_0}(b_0 + 1) < \gamma + \theta_b(a) = \widehat{a}$. We obtain $\mathcal{H}_{\widehat{a_1}+1}[\Theta] \vdash_{\delta_0}^{\delta_0} \Gamma$ by MIH, and the lemma follows.

Case 1.2. Otherwise: By Cut-elimination we obtain $\mathcal{H}_{\gamma}[\Theta] \vdash_{\sigma}^{\theta_b(a_0)} \Gamma, \neg \delta$ for each $\delta \in \Delta$, and $\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash_{\sigma}^{\theta_b(a_0)} \Gamma, \Delta^{(\rho,\sigma)}$ for each $\eta < \rho \in Mh_3(\nu) \cap \sigma$. A $(\text{rfl}_{\Pi_3}(\eta, \sigma, \nu))$ yields $\mathcal{H}_{\gamma}[\Theta] \vdash_{\sigma}^{a_1} \Gamma$ for $a_1 = \theta_b(a_0) + 1$. Let $\beta = \alpha + \Lambda^{\xi}(1 + a_1)$ for $\alpha = \bar{m}_2(\sigma) \leq m_2(\sigma)$ and $\xi = \bar{m}_3(\pi) \leq m_3(\sigma)$, and $\kappa = \psi_{\sigma}^{(\beta,0)}(\gamma)$. We obtain $\Theta \subset \mathcal{H}_{\gamma}(\kappa)$ by the assumption. Hence $\{\gamma, \sigma, \beta\} \subset \mathcal{H}_{\gamma}(\kappa)$, and $\eta < \kappa \in Mh_2(\beta) \cap \sigma$, cf. Corollary 4.12. Moreover we have $\kappa \in \mathcal{H}_{\gamma+1}[\Theta]$.

Lemma 4.13 yields $\mathcal{H}_{\gamma}[\Theta \cup \{\kappa\}] \vdash_{\kappa}^{\kappa + \omega a_1} \Gamma^{(\kappa,\sigma)}$ and $\mathcal{H}_{\gamma+1}[\Theta] \vdash_{\kappa}^{\kappa + \omega a_1} \Gamma^{(\kappa,\sigma)}$, where $\beta \leq \bar{m}_2(\kappa)$ with $\bar{m}(\kappa) \subset \mathcal{H}_{\gamma}[\Theta]$, and $\Gamma^{(\kappa,\sigma)} = \Gamma$ if $\lambda < \sigma$, and $\Gamma^{(\kappa,\sigma)} = \Gamma^{(\kappa,\lambda)}$ otherwise. In each case we obtain $\mathcal{H}_{\gamma+1}[\Theta] \vdash_{\kappa}^{\kappa + \omega a_1} \Gamma$. MIH then yields $\mathcal{H}_{\widehat{a_1}+1}[\Theta] \vdash_{\delta_1}^{\delta_1} \Gamma$, where $\delta_1 = \psi_{\lambda}(\widehat{a_1})$ with $\widehat{a_1} = \gamma + \theta_{\kappa}(\kappa + \omega a_1) < \gamma + \theta_b(a) = \widehat{a}$ by $\kappa < \sigma \leq b$ and $a_1 < \theta_b(a)$.

Case 2. Consider the case when the last inference is a $(\text{rfl}_{\Pi_2}(\eta, \sigma, \beta, \nu))$ with $b > \sigma$.

$$\frac{\{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a_0} \Gamma, \neg \delta\}_{\delta \in \Delta} \quad \{\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash_b^{a_0} \Gamma, \Delta^{(\rho, \sigma)}\}_{\eta < \rho \in Mh_2(\beta, \nu) \cap \sigma}}{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a} \Gamma} \quad (\text{rfl}_{\Pi_2}(\eta, \sigma, \beta, \nu))$$

where $\Delta \subset \Sigma_2(\sigma)$, $(\beta, \nu) < \alpha = \bar{m}_2(\sigma) \le m_2(\sigma)$, $\xi = \bar{m}_3(\sigma) \le m_3(\sigma)$, $\eta < \sigma$ and $\{\eta, \sigma, \alpha, \xi, \beta, \nu\} \subset \mathcal{H}_{\gamma}[\Theta]$.

We may assume that $\sigma \geq \lambda$. For each $\delta \in \Delta$, let $\delta \simeq \bigvee(\delta_i)_{i \in J}$. We may assume $J = Tm(\sigma)$. Inversion yields $\mathcal{H}_{\gamma+|i|}[\Theta \cup \mathsf{k}(i)] \vdash_b^{a_0} \Gamma, \neg \delta_i$, where $\Gamma \cup \{\neg \delta_i\} \subset \Sigma_1(\sigma)$. Let $\widehat{a_0} = \gamma + \theta_b(a_0)$ and $\rho = \psi_{\sigma}^{(\beta,\nu)}(\widehat{a_0})$, where $\Theta \subset \mathcal{H}_{\gamma}(\rho)$ by the assumption, $\{\eta, \sigma, \beta, \nu, \widehat{a_0}\} \subset \mathcal{H}_{\gamma}[\Theta]$ with $(\beta, \nu) < m_2(\sigma)$. Hence $\{\eta, \sigma, \beta, \nu, \widehat{a_0}\} \subset \mathcal{H}_{\gamma}(\rho)$ and $\mathcal{H}_{\gamma}(\rho) \cap \sigma \subset \rho$. Therefore $< \eta < \rho \in Mh_2(\beta, \nu) \cap \sigma \cap \mathcal{H}_{\widehat{a_0}+1}[\Theta]$.

We see the lemma as in Lemma 2.6 by Inversion, picking the ρ -th branch from the right upper sequents, and then introducing several (cut)'s instead of $(\mathrm{rfl}_{\Pi_2}(\eta,\sigma,\beta,\nu))$. Use MIH when $\lambda<\sigma$.

Case 3. As in Lemma 2.6 we see the case when the last inference is a (cut) of a cut formula C with d = rk(C) < b.

Theorem 4.15 Assume $\mathsf{KP}\Pi_4 \vdash \theta^{L_\Omega}$ for $\theta \in \Sigma$. Then there exists an $n < \omega$ such that $L_\alpha \models \theta$ for $\alpha = \psi_\Omega(\omega_n(\mathbb{K} + 1))$ in $OT(\Pi_4)$.

Proof. By Embedding there exists an m > 0 such that $\mathcal{H}_0[\emptyset] \vdash_{\mathbb{K}+m}^{\mathbb{K}+m} \theta^{L_\Omega}$. By Cut-elimination, $\mathcal{H}_0[\emptyset] \vdash_{\mathbb{K}}^a \theta^{L_\Omega}$ for $a = \omega_m(\mathbb{K} + m)$. By Lemma 4.2 we obtain $\mathcal{H}_{\omega^a+1}[\{\kappa\}] \vdash_{\beta}^{\beta} \theta^{L_\Omega}$, where $\beta = \psi_{\mathbb{K}}(\omega^a)$, $\mathbb{K} + a = a$, $(\theta^{L_\Omega})^{(\kappa,\mathbb{K})} \equiv \theta^{L_\Omega}$ and $\kappa \in Mh_2(a) \cap \psi_{\mathbb{K}}(\mathbb{K})$. F.e. $\kappa = \psi_{\mathbb{K}}^{(0,a)}(0) \in \mathcal{H}_1[\emptyset]$. Hence $\mathcal{H}_{\omega^a+1}[\emptyset] \vdash_{\beta}^{\beta} \theta^{L_\Omega}$. Lemma 4.14 then yields $\mathcal{H}_{\gamma+1}[\emptyset] \vdash_{\beta_1}^{\beta_1} \theta^{L_\Omega}$ for $\gamma = \omega^a + \theta_{\beta}(\beta)$ and $\beta_1 = \psi_{\Omega}(\gamma) < \psi_{\Omega}(\omega^a + \mathbb{K}) < \psi_{\Omega}(\omega_{m+2}(\mathbb{K} + 1)) = \alpha$. Therefore $L_\alpha \models \theta$.

5 First order reflection

Having established an ordinal analysis for Π_4 -reflection in section 4, it is not hard to extend it to first-order reflection. As expected, an exponential ordinal structure emerges in resolving higher Mahlo classes.

Let $\mathbb{K}=\Lambda$ be either a Π^1_{N-2} -indescribable cardinal or a Π_N -reflecting ordinal for an integer $N\geq 3$. Let for k>0, $\alpha\in M_{k+2}(A)$ iff A is Π^1_k -indescribable in α or α is Π_{k+2} -reflecting on A. Let $(\nu_k,\nu_{k+1},\ldots,\nu_{N-1})$ be a sequence of ordinals $\nu_i<\varepsilon_{\Lambda+1}$, and $\varepsilon_{\Lambda+1}>\alpha=\Lambda^{\beta_0}a_0+\cdots+\Lambda^{\beta_n}a_n$ with $\beta_0>\cdots>\beta_n$ and $0< a_0,\ldots,a_n<\Lambda$. Then $(\nu_k,\nu_{k+1},\ldots,\nu_{N-1})<\alpha$ iff there exists a segment $\alpha_i=\Lambda^{\beta_0}a_0+\cdots+\Lambda^{\beta_i}a_i$ of α such that $\nu_k<\alpha_i$ and $(\nu_{k+1},\ldots,\nu_{N-1})<\beta_i$.

Proposition 5.1 $\vec{\nu} < \alpha < \gamma \Rightarrow \vec{\nu} < \gamma$.

5.1 Mahlo classes for Π_N -reflection

As in subsection 4.1 $P \in M_i(\mathcal{X})$ designates that P is Π_i -reflecting on \mathcal{X} . Let

$$M_k(\alpha) := \bigcap \{ M_k(M_k(\bar{\nu})) : \bar{\nu} = (\nu_k, \nu_{k+1}, \dots, \nu_{N-1}) < \alpha \}$$

where

$$M_k((\nu_k,\nu_{k+1},\ldots,\nu_{N-1})) := \bigcap_{i\geq k} M_i(\nu_i).$$

By Proposition 5.1 we obtain $\alpha_0 > \alpha \Rightarrow M_k(\alpha_0) \subset M_k(\alpha)$. Hence for $(\max\{\bar{\nu}, \bar{\mu}\})_i = \max\{\nu_i, \mu_i\}$, cf. Case 1 in Lemma 5.8,

$$M_2(\bar{\nu}) \cap M_2(\bar{\mu}) = M_2(\max\{\bar{\nu}, \bar{\mu}\}).$$

Let $\bar{\nu} = (\nu_2, ..., \nu_{N-1})$ and $\bar{\mu} = (\mu_2, ..., \mu_{N-1})$. Then let

$$\bar{\nu} \prec_k \bar{\mu} :\Leftrightarrow M_2(\bar{\nu}) \prec_k M_2(\bar{\mu}).$$

Proposition 5.2 Let $\bar{\mu} = (\mu_2, ..., \mu_{k-1}), \ \bar{\nu} = (\nu_{k+1}, ..., \nu_{N-1}), \ and \ \bar{\xi} = (\xi_{k+1}, ..., \xi_{N-1}).$

- 1. If $(\nu_k) * \bar{\nu} < \xi_k$, then $\bar{\mu} * (\nu_k) * \bar{\nu} \prec_k \bar{\mu} * (\xi_k) * \bar{\xi}$.
- 2. (Cf. Lemma 4.8) If $\xi_{k+1}, a > 0$, then $\bar{\mu} * (\xi_k + \Lambda^{\xi_{k+1}} a) * \bar{0} \prec_k \bar{\mu} * (\xi_k) * \bar{\xi}$.

Proof. 5.2.1. Let $P \in M_2(\bar{\mu} * (\xi_k) * \bar{\xi}) \subset M_2(\bar{\mu} * \bar{0}) \cap M_k(\xi_k)$. By $(\nu_k) * \bar{\nu} < \xi_k$ we obtain $P \in M_k(M_k((\nu_k) * \bar{\nu}))$. Since $P \in M_2(\bar{\mu} * \bar{0})$ is Π_k on P, we conclude $P \in M_k(M_2(\bar{\mu} * \bar{0}) \cap M_k((\nu_k) * \bar{\nu})) = M_k(M_k(\bar{\mu} * (\nu_k) * \bar{\nu}))$. 5.2.2. It suffices to show that $M_k(\xi_k \dot{+} \Lambda^{\xi_{k+1}} a) \prec_k M_k(\xi_k) \cap M_{k+1}(\xi_{k+1})$, and this follows from $M_k(\xi_k) \cap M_{k+1}(\xi_{k+1}) \subset M_k(\xi_k \dot{+} \Lambda^{\xi_{k+1}} a)$. The latter is shown by induction on a as in Lemma 4.8 using the fact that $P \in M_k(\gamma) \cap M_{k+1}(\xi_{k+1}) \Rightarrow P \in M_k(M_k(\gamma) \cap M_{k+1}(\nu))$ for $\nu < \xi_{k+1}$.

5.2 Ordinals for first order reflection

Definition 5.3 Define simultaneously by recursion on ordinals $a < \varepsilon_{\mathbb{K}+1}$ the classes $\mathcal{H}_a(X)$ $(X \subset \Gamma_{\mathbb{K}+1})$, $Mh_k^a(\vec{\nu})$ $(lh(\vec{\nu}) = N - k)$, the ordinals $\psi_{\sigma}^{\vec{\nu}}(a)$ as follows.

1. $\mathcal{H}_a(X)$ denotes the Skolem hull of $\{0, \Omega, \mathbb{K}\} \cup X$ under the functions $+, \varphi$, and the following.

Let
$$\vec{\nu} = (\nu_2, \dots, \nu_{N-1}), \{\sigma, b\} \cup \vec{\nu} \subset \mathcal{H}_a(X)$$
 and $b < a$. Then $\psi^{\vec{\nu}}_{\sigma}(b) \in \mathcal{H}_a(X)$.

2. For $2 \leq k < N$, $\pi \in Mh_k^a(\alpha)$ iff $\{a, \alpha\} \subset \mathcal{H}_a(\pi)$ and

$$\forall \vec{\nu} = (\nu_k, \dots, \nu_{N-1}) \subset \mathcal{H}_a(\pi) \left[\vec{\nu} < \alpha \to \pi \in M_k \left(M h_k^a(\vec{\nu}) \right) \right]$$

where

$$Mh_k^a(\vec{\nu}) = \bigcap_{i \ge k} Mh_i^a(\nu_i).$$

Note that $Mh_k^a(\alpha)$ is a Π_{k+1} -class.

- 3. $\psi_{\sigma}(a) = \min(\{\sigma\} \cup \{\kappa < \sigma : \{a, \sigma\} \subset \mathcal{H}_a(\kappa) \& \mathcal{H}_a(\kappa) \cap \sigma \subset \kappa\}).$ $m_i(\psi_{\sigma}(a)) = 0 \text{ for } i < N.$
- 4. Let $\sigma \in Mh_2^a(\vec{\xi})$ for $\vec{\xi} = (\xi_2, \dots, \xi_{N-1})$ with $\xi_{k+1} > 0$, and $0 < c < \Lambda = \mathbb{K}$ with $c \in \mathcal{H}_a(\sigma)$. Let $\vec{\nu} = (\xi_2, \dots, \xi_{k-1}, \xi_k \dotplus \Lambda^{\xi_{k+1}} c, 0, \dots, 0)$. Then

$$\psi_{\sigma}^{\vec{\nu}}(a) = \min\left(\left\{\sigma\right\} \cup \left\{\kappa \in Mh_2^a(\vec{\nu}) \cap \sigma : \left\{a\right\} \cup \vec{\nu} \subset \mathcal{H}_a(\kappa) \& \mathcal{H}_a(\kappa) \cap \sigma \subset \kappa\right\}\right).$$

$$m_i(\psi^{\vec{\nu}}_{\sigma}(a)) = \nu_i$$
 for $i < N$, cf. Proposition 5.2.2.

5. Let $\sigma \in Mh_2^a(\vec{\mu} * \vec{\xi})$ with $\vec{\mu} = (\mu_2, \dots, \mu_{k-1})$ and $\vec{\xi} = (\xi_k, \dots, \xi_{N-1})$, and $\vec{\nu} = (\nu_k, \dots, \nu_{N-1}) < \xi_k$, cf. Proposition 5.2.1.

$$\psi_{\sigma}^{\vec{\mu}*\vec{\nu}}(a) = \min\left(\{\sigma\} \cup \{\kappa \in Mh_2^a(\vec{\mu}*\vec{\nu}) \cap \sigma : \{a\} \cup \vec{\mu} \cup \vec{\nu} \subset \mathcal{H}_a(\kappa) \& \mathcal{H}_a(\kappa) \cap \sigma \subset \kappa\}\right).$$

$$m_i(\psi^{\vec{\mu} * \vec{\nu}}_{\sigma}(a)) = \mu_i \text{ for } i < k, \text{ and } m_i(\psi^{\vec{\mu} * \vec{\nu}}_{\sigma}(a)) = \nu_i \text{ for } i \geq k.$$

As in section 4 for Π_4 -reflection we see the following lemmas for Π^1_{N-2} -indescribable cardinal \mathbb{K} .

Lemma 5.4 Let $a \in \mathcal{H}_a(\mathbb{K}) \cap \varepsilon_{\mathbb{K}+1}$. Then $\mathbb{K} \in M_{N-1}(Mh_{N-1}^a(\varepsilon_{\mathbb{K}+1}))$, where $\varepsilon_{\mathbb{K}+1}$ denotes the sequence $\vec{\nu} = \vec{0} * (\nu_{N-1})$ with $\nu_{N-1} = \varepsilon_{\mathbb{K}+1}$. For every $\xi \in \mathcal{H}_a(\mathbb{K}) \cap \varepsilon_{\mathbb{K}+1}$, $\psi_{\mathbb{K}}^{\vec{0}*(\xi)}(a) < \mathbb{K}$.

Lemma 5.5 Let $\vec{v} = (\xi_2, \dots, \xi_{k-1}, \xi_k + \Lambda^{\xi_{k+1}} c, 0, \dots, 0)$, where $\vec{\xi} = (\xi_2, \dots, \xi_{N-1})$ with $\xi_{k+1} > 0$, and $0 < c < \Lambda$ with $c \in \mathcal{H}_a(\sigma)$.

Assume $\sigma \in Mh_2^a(\vec{\xi})$. Then $\sigma \in M_2(Mh_2^a(\vec{\nu}))$ and $\psi_{\sigma}^{\vec{\nu}}(a) < \sigma$, cf. Proposition 5.2.2.

Lemma 5.6 Let $\vec{\mu} = (\mu_2, \dots, \mu_{k-1})$ and $\vec{\nu} = (\nu_k, \dots, \nu_{N-1}) < \xi$. Assume $\vec{\nu} \subset \mathcal{H}_a(\sigma)$ and $\sigma \in Mh_2^a(\vec{\mu} * (\xi))$. Then $\psi_{\sigma}^{\vec{\mu} * \vec{\nu}}(a) < \sigma$, cf. Proposition 5.2.1.

5.3 Operator controlled derivations for first order reflection

Operator controlled derivations for $\mathsf{KP\Pi}_N$ are closed under the following inference rules. $\bar{m}: \pi \mapsto \bar{m}(\pi) = (\bar{m}_2(\pi), \dots, \bar{m}_{N-1}(\pi))$ is an additional data for the derivations, where $\bar{m}_i(\pi) \leq m_i(\pi)$ for $2 \leq i \leq N-1$.

 $(\mathrm{rfl}_{\Pi_N}(\mathbb{K}))$ $b \geq \mathbb{K}$. There exist an ordinal $a_0 \in \mathcal{H}_{\gamma}[\Theta] \cap a$, and a $\Sigma_N(\mathbb{K})$ -sentence A enjoying the following conditions:

$$\frac{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a_0} \Gamma, \neg A \quad \{\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash_b^{a_0} \Gamma, A^{(\rho, \mathbb{K})} : \rho < \mathbb{K}\}}{\mathcal{H}_{\gamma}[\Theta] \vdash_b^a \Gamma} \ (\mathrm{rfl}_{\Pi_N}(\mathbb{K}))$$

 $(\operatorname{rfl}_{\Pi_k}(\eta, \pi, \vec{\nu}))$ for each $2 \leq k \leq N-1$, cf. Proposition 5.2.1.

There exist ordinals $\eta < \pi \leq b < \mathbb{K}$, $\vec{\nu} = (\nu_k, \dots, \nu_{N-1}) < \bar{m}_k(\pi) \leq m_k(\pi)$, $a_0 < a$, and a finite set Δ of $\Sigma_k(\pi)$ -sentences enjoying the following conditions:

- 1. $\{\eta, \pi\} \cup \vec{\nu} \cup \bar{m}(\pi) \subset \mathcal{H}_{\gamma}[\Theta]$.
- 2. For each $\delta \in \Delta$, $\mathcal{H}_{\gamma}[\Theta] \vdash_{b}^{a_0} \Gamma, \neg \delta$.
- 3. For any $\eta < \rho \in Mh_2(\bar{m}_{< k}(\pi) * \vec{\nu}) \cap \pi$, $\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash_b^{a_0} \Gamma, \Delta^{(\rho, \pi)}$, where $\bar{m}_{< k}(\pi) = (\bar{m}_2(\pi), \dots, \bar{m}_{k-1}(\pi))$ and $\rho \in Mh_k(\vec{\nu})$ iff $\nu_i \leq m_i(\rho)$ for every $k \leq i \leq N-1$.

$$\frac{\{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a_0} \Gamma, \neg \delta\}_{\delta \in \Delta} \quad \{\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash_b^{a_0} \Gamma, \Delta^{(\rho, \pi)}\}_{\eta < \rho \in Mh_2(\bar{m}_{< k}(\pi) * \vec{\nu}) \cap \pi}}{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a} \Gamma} \quad (\text{rfl}_{\Pi_k}(\eta, \pi, \vec{\nu}))$$

Lemma 5.7 Assume $\Gamma \subset \Sigma_{N-1}(\mathbb{K})$, $\Theta \subset \mathcal{H}_{\gamma}(\psi_{\mathbb{K}}(\gamma))$, and $\mathcal{H}_{\gamma}[\Theta] \vdash_{\mathbb{K}}^{a} \Gamma$. Then $\mathcal{H}_{\hat{a}+1}[\Theta \cup \{\kappa\}] \vdash_{\beta}^{\beta} \Gamma^{(\kappa,\mathbb{K})}$ holds for any $\eta = \psi_{\mathbb{K}}(\gamma + \mathbb{K}) < \kappa \in Mh_{N-1}(a) \cap \psi_{\mathbb{K}}(\gamma + \mathbb{K} \cdot \omega)$, where $\hat{a} = \gamma + \omega^{\mathbb{K}+a}$ and $\beta = \psi_{\mathbb{K}}(\hat{a})$.

Lemma 5.8 Assume $\bar{m}(\pi) \subset \mathcal{H}_{\gamma}[\Theta]$, and there exists a $2 \leq k < N-1$ such that $\bar{m}_{k+1}(\pi) > 0$, and let $k = \max\{k : \bar{m}_{k+1}(\pi) > 0\}$ and $\alpha = \bar{m}_k(\pi)$, $\xi = \bar{m}_{k+1}(\pi)$. Moreover assume $\mathcal{H}_{\gamma}[\Theta] \vdash_{\pi}^{\alpha} \Gamma$ for $\alpha, \pi < \mathbb{K}$ and $\Gamma \subset \Sigma_k(\pi)$.

Then for any $\eta < \kappa \in Mh_2(\bar{m}_{< k}(\pi)) \cap Mh_k(\alpha + \Lambda^{\xi}(1+a)) \cap \pi$, $\mathcal{H}_{\gamma}[\Theta \cup \{\kappa\}] \vdash_{\pi}^{\kappa + \omega a} \Gamma^{(\kappa,\pi)} \text{ holds, where } \eta \text{ is a base, } \alpha + \Lambda^{\xi}(1+a) \leq \bar{m}_k(\kappa) \in \mathcal{H}_{\gamma}[\Theta] \text{ and } \bar{m}_{< k}(\kappa) = \bar{m}_{< k}(\pi). \text{ Moreover when } \Theta \subset \mathcal{H}_{\gamma}(\kappa), \mathcal{H}_{\gamma}[\Theta \cup \{\kappa\}] \vdash_{\kappa}^{\kappa + \omega a} \Gamma^{(\kappa,\pi)} \text{ holds.}$

Proof. This is seen as in Lemma 4.13 by induction on a. Let $\pi' = \kappa$ if $\Theta \subset \mathcal{H}_{\gamma}(\kappa)$. Otherwise $\pi' = \pi$. Consider the cases when the last inference is a $(\mathrm{rfl}_{\Pi_n}(\eta,\pi,\vec{\nu}))$. We have $n \leq k+1, \ \eta < \pi, \ \{\eta,\pi\} \cup \vec{\nu} \cup \bar{m}(\pi) \subset \mathcal{H}_{\gamma}[\Theta], \ \vec{\nu} = (\nu_n,\ldots,\nu_{N-1}) < \bar{m}_n(\pi) \leq m_n(\pi) \text{ and } \Delta \subset \Sigma_n(\pi).$

$$\frac{\{\mathcal{H}_{\gamma}[\Theta] \vdash_{\pi}^{a_0} \Gamma, \neg \delta\}_{\delta \in \Delta} \quad \{\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash_{\pi}^{a_0} \Gamma, \Delta^{(\rho, \pi)}\}_{\eta < \rho \in Mh_2(\bar{m}_{< n}(\pi) * \vec{\nu}) \cap \pi}}{\mathcal{H}_{\gamma}[\Theta] \vdash_{\pi}^{a} \Gamma} \quad (\mathrm{rfl}_{\Pi_n}(\eta, \pi, \vec{\nu}))$$

Case 1. n = k + 1: Let $\alpha_0 = \alpha \dotplus \Lambda^{\xi}(1 + a_0)$. Then $\vec{\mu} = (\alpha_0) * \vec{\nu} < \alpha_1 = \alpha \dotplus \Lambda^{\xi}(1 + a)$ by $\vec{\nu} < \xi = \bar{m}_{k+1}(\pi)$. We obtain $\eta < \kappa$, $\{\eta, \kappa, \alpha_0\} \cup \bar{m}(\kappa) \cup \vec{\nu} \subset \mathcal{H}_{\gamma}[\Theta \cup \{\kappa\}]$. In the following derivation $\alpha_1 \leq \bar{m}_k(\kappa)$ with $\bar{m}(\kappa) \subset \mathcal{H}_{\gamma}[\Theta]$. Note that $\bar{m}_{< k}(\kappa) * \vec{\mu} = \bar{m}_{< k}(\pi) * (\alpha_0) * \vec{\nu} = \max\{(\bar{m}_{< k}(\pi) * (\alpha_0) * \bar{0}), (\bar{m}_{< k}(\pi) * (\alpha) * \bar{\nu})\}$.

$$\frac{\{\mathcal{H}_{\gamma}[\Theta \cup \{\sigma\}] \vdash_{\pi'}^{\sigma + \omega a_0 + 1} \Gamma^{(\sigma, \pi)}, \neg \delta^{(\sigma, \pi)}\}_{\delta \in \Delta} \quad \mathcal{H}_{\gamma}[\Theta \cup \{\kappa, \sigma\}] \vdash_{\pi'}^{\kappa + \omega a_0} \Gamma^{(\kappa, \pi)}, \Delta^{(\sigma, \pi)}}{\{\mathcal{H}_{\gamma}[\Theta \cup \{\kappa, \sigma\}] \vdash_{\pi'}^{\kappa + \omega a_0 + p} \Gamma^{(\kappa, \pi)}, \Gamma^{(\sigma, \pi)}\}_{\eta < \sigma \in Mh_2(\bar{m}_{<\kappa}(\kappa) * \vec{\mu}) \cap \kappa}} \quad (\text{rfl}_{\Pi_k}(\eta, \kappa, \vec{\mu})) \cap \mathcal{H}_{\gamma}[\Theta \cup \{\kappa\}] \vdash_{\pi'}^{\kappa + \omega a_0 + p} \Gamma^{(\kappa, \pi)})$$

Case 2. $n \leq k$: If n < k, then $\vec{\nu} < \bar{m}_n(\pi) = \bar{m}_n(\kappa) \leq m_n(\kappa)$. If n = k, then $\vec{\nu} < \alpha + \Lambda^{\xi}(1+a) \leq \bar{m}_k(\kappa)$ with the segment α of $\alpha + \Lambda^{\xi}(1+a)$.

$$\frac{\{\mathcal{H}_{\gamma}[\Theta \cup \{\kappa\}] \vdash_{\pi'}^{\kappa + \omega a_0 + 1} \Gamma^{(\kappa, \pi)}, \neg \delta^{(\kappa, \pi)}\}_{\delta \in \Delta} \ \{\mathcal{H}_{\gamma}[\Theta \cup \{\kappa, \rho\}] \vdash_{\pi'}^{\kappa + \omega a_0} \Gamma^{(\kappa, \pi)}, \Delta^{(\rho, \pi)}\}_{\eta < \rho \in Mh_2(\bar{m}_{< n}(\kappa) * \vec{\nu}) \cap \kappa}}{\mathcal{H}_{\gamma}[\Theta \cup \{\kappa\}] \vdash_{\pi'}^{\kappa + \omega a} \Gamma^{(\kappa, \pi)}} \ (\mathrm{rfl}_{\Pi_n}(\eta, \kappa, \vec{\nu}))$$

Lemma 5.9 Let $\Gamma \subset \Sigma_1(\lambda)$ and $\mathcal{H}_{\gamma}[\Theta] \vdash_b^a \Gamma$ with $a < \mathbb{K}$, $\mathcal{H}_{\gamma}[\Theta] \ni \lambda \leq b < \mathbb{K}$ and λ regular. Assume $\forall \kappa \in [\lambda, b)(\Theta \subset \mathcal{H}_{\gamma}(\psi_{\kappa}(\gamma)))$.

Let $\hat{a} = \gamma + \theta_b(a)$ and $\delta = \psi_{\lambda}^{\vec{\nu}}(\hat{a})$ when $\lambda \in Mh_k^{\gamma}(\alpha)$ and $\vec{\nu} < \alpha$ with $\vec{\nu} \subset \mathcal{H}_{\gamma}[\Theta]$. Then $\mathcal{H}_{\hat{a}+1}[\Theta] \vdash_{\delta}^{\delta} \Gamma$ holds.

Proof. This is seen as in Lemma 4.14 by main induction on b with subsidiary induction on a. Let η be a base.

Case 1. Consider the case when the last inference is a $(\text{rfl}_{\Pi_{k+1}}(\eta, \sigma, \vec{\nu}))$ with $2 \le k < N-1$ and $b \ge \sigma$.

$$\frac{\{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a_0} \Gamma, \neg \delta\}_{\delta \in \Delta} \quad \{\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash_b^{a_0} \Gamma, \Delta^{(\rho, \sigma)}\}_{\eta < \rho \in Mh_2(\bar{m}_{\leq k}(\sigma) * \vec{\nu}) \cap \sigma}}{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a} \Gamma} \quad (\text{rfl}_{\Pi_{k+1}}(\eta, \sigma, \vec{\nu}))$$

where $\Delta \subset \Sigma_{k+1}(\sigma)$, $\vec{\nu} < \xi = \bar{m}_{k+1}(\sigma) \le m_{k+1}(\sigma)$, $\eta < \sigma$ and $\{\eta, \sigma\} \cup \bar{m}(\sigma) \cup \vec{\nu} \subset \mathcal{H}_{\gamma}[\Theta]$. We may assume that $\sigma \ge \lambda$ and there is no regular $\pi \in \mathcal{H}_{\gamma}[\Theta]$ such that $\sigma < \pi \le b$.

We obtain the lemma by Cut-elimination, Lemma 5.8 for $\kappa = \psi_{\sigma}^{\bar{m}_{< k}(\sigma)*(\beta)*\vec{0}}(\gamma)$ with $\beta = \bar{m}_k(\sigma) \dot{+} \Lambda^{\bar{m}_{k+1}(\sigma)}(1+a_1)$ and $a_1 = \theta_b(a_0) + 1$, and MIH. Case 2. Next consider the case when the last inference is a $(\text{rfl}_{\Pi_2}(\eta, \sigma, \vec{\nu}))$ with $b > \sigma$.

$$\frac{\{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a_0} \Gamma, \neg \delta\}_{\delta \in \Delta} \quad \{\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash_b^{a_0} \Gamma, \Delta^{(\rho, \sigma)}\}_{\eta < \rho \in Mh_2(\vec{\nu}) \cap \sigma}}{\mathcal{H}_{\gamma}[\Theta] \vdash_b^{a} \Gamma} \quad (\mathrm{rfl}_{\Pi_2}(\eta, \sigma, \vec{\nu}))$$

where $\Delta \subset \Sigma_2(\sigma)$, $\vec{\nu} < \xi = \bar{m}_2(\sigma) \le m_2(\sigma)$, $\eta < \sigma$ and $\{\eta, \sigma\} \cup \bar{m}(\sigma) \cup \vec{\nu} \subset \mathcal{H}_{\gamma}[\Theta]$. We may assume that $\sigma \ge \lambda$. Let $\rho = \psi^{\vec{\nu}}_{\sigma}(\hat{a_0})$. We see $\eta < \rho \in Mh_2(\vec{\nu}) \cap \sigma \cap \mathcal{H}_{\widehat{a_0}+1}[\Theta]$ from the assumption $\Theta \subset \mathcal{H}_{\gamma}(\rho)$.

We see the lemma as in Lemma 2.6 by Inversion, picking the ρ -th branch from the right upper sequents, and then introducing several (cut)'s instead of $(\text{rfl}_{\Pi_2}(\sigma, \vec{\nu}))$. Use MIH when $\lambda < \sigma$.

 $OT(\Pi_N)$ denotes a computable notation system of ordinals with collapsing functions $\psi^{\vec{\nu}}_{\sigma}(a)$.

Theorem 5.10 Assume $\mathsf{KP}\Pi_N \vdash \theta^{L_\Omega}$ for $\theta \in \Sigma$. Then there exists an $n < \omega$ such that $L_\alpha \models \theta$ for $\alpha = \psi_\Omega(\omega_n(\mathbb{K} + 1))$ in $OT(\Pi_N)$.

Proof. This is seen from Lemmas 5.7 and 5.9.

6 Π_1^1 -reflection

Definition 6.1 σ is said to be α -stable for $\alpha > \sigma$ if $L_{\sigma} \prec_{\Sigma_1} L_{\alpha}$.

It is known that σ is $(\sigma + 1)$ -stable iff σ is Π_0^1 -reflecting, and σ is σ^+ -stable iff σ is Π_1^1 -reflecting, where σ^+ denotes the next admissible ordinal above σ , cf. [Richter-Aczel74].

Let S_1 denote the theory obtained from $\mathsf{KP}\omega + (V = L)$ by adding the following axioms for an individual constant \mathbb{S} : \mathbb{S} is a limit ordinal and

$$L_{\mathbb{S}} \prec_{\Sigma_1} L$$
.

The latter denotes a schema

$$\exists x \, B(x, v) \land v \in L_{\mathbb{S}} \to \exists x \in L_{\mathbb{S}} \, B(x, v)$$

for each Δ_0 -formula B. Let $L = L_{\mathbb{S}^+} \models S_1$.

An exponential structure emerges in iterating (recursively) Mahlo operations to resolve first-order reflections M_N in terms of Mahlo classes $Mh_k^a(\alpha)$ and $Mh_k^a(\vec{\nu})$. Viewing the vector $\vec{\nu}=(\nu_2,\nu_3,\ldots,\nu_{N-1})$ as a function $\{2,3,\ldots,N-1\}$ $\ni k\mapsto \nu_k$, each k in its domain designates the class of Π_k -formulas or the Mahlo operation M_k , while its value ν_k corresponds to the height of derivations, cf. Case 1 in the proof of Lemma 5.8.

On the other side, the axiom $L_{\mathbb{S}} \prec_{\Sigma_1} L_{\mathbb{S}^+}$ says that \mathbb{S} 'reflects' $\Pi_{\mathbb{S}^+}$ -formulas in transfinite levels. In place of vectors in finite lengths, we need functions

 $f:\mathbb{S}^+ \to ON$. Each c in the domain of the function f corresponds to formulas of ranks < c in inference rules for higher reflections. Its support $\sup(f) = \{c < \mathbb{S}^+ : f(c) \neq 0\}$ may be assumed to be finite, while its value $f(c) < \varepsilon_{\mathbb{S}^++1}$. A Veblen function $\tilde{\theta}_b(\xi)$ is used to denote ordinals instead of the exponential function $\tilde{\theta}_1(\xi) = (\mathbb{S}^+)^\xi$. The relation $\vec{\nu} < \alpha$ in section 5 is replaced by a relation f < c ξ for ordinals c, ξ and finite function f. f < c ξ holds if $f(c) < \mu$ for a segment $\mu = \cdots + \tilde{\theta}_b(\nu)$ of ξ , and $f(c+d) < \tilde{\theta}_{-d}(\tilde{\theta}_b(\nu))$ for $d = \min\{d > 0 : c+d \in \sup(f)\}$, and so forth, where $\tilde{\theta}_{-d}(\xi)$ denotes an inverse of the function $\xi \mapsto \tilde{\theta}_d(\xi)$.

Mahlo classes $Mh_c^a(\xi)$ introduced in (32) reflects every fact $\pi \in Mh_0^a(g_c) = \bigcap \{Mh_d^a(g(d)) : c > d \in \operatorname{supp}(g)\}$ on the ordinals $\pi \in Mh_c^a(\xi)$ in lower level, down to 'smaller' Mahlo classes $Mh_c^a(f) = \bigcap \{Mh_d^a(f(d)) : c \leq d \in \operatorname{supp}(f)\}$, where $f <^c \xi$.

This apparatus would suffice to analyze reflections in transfinite levels. We need another for the axiom $L_{\mathbb{S}} \prec_{\Sigma_1} L_{\mathbb{S}^+}$ of Π^1_1 -reflection, i.e., a (formal) Mostowskii collapsing: Assume that B(u,v) with $v \in L_{\mathbb{S}}$ for a Δ_0 -formula B. We need to find a substitute $u' \in L_{\mathbb{S}}$ for $u \in L_{\mathbb{S}^+}$, i.e., B(u',v). For simplicity let us assume that $v = \beta < \mathbb{S}$ and $u = \alpha < \mathbb{S}^+$ are ordinals. We may assume that $\alpha \geq \mathbb{S}$. Let $\rho < \mathbb{S}$ be an ordinal, which is bigger than every ordinal $< \mathbb{S}$ occurring in the 'context' of $B(\alpha,\beta)$. This means that if an ordinal $\delta < \mathbb{S}$ occurs in a 'relevant' branch of a derivation of $B(\alpha,\beta)$, $\delta < \rho$ holds. Then we can define a Mostwosiki collapsing $\alpha \mapsto \alpha[\rho/\mathbb{S}]$ for ordinal terms α such that $\beta[\rho/\mathbb{S}] = \beta$ for each relevant $\beta < \mathbb{S}$, $\mathbb{S}[\rho/\mathbb{S}] = \rho$ and $\alpha[\rho/\mathbb{S}] < (\mathbb{S}^+)[\rho/\mathbb{S}] = \rho^+ < \mathbb{S}$, cf. Definition 6.22. Then we see that $B(\alpha[\rho/\mathbb{S}],\beta)$ holds.

Although the above scheme would seem to work, how to implement the plan? Let $E_{\rho}^{\mathbb{S}}$ denote the set of ordinal terms α such that every subterm $\beta < \mathbb{S}$ of α is smaller than ρ . It turns out that $\mathcal{H}_{\gamma}(E_{\rho}^{\mathbb{S}}) \subset E_{\rho}^{\mathbb{S}}$ if $\mathcal{H}_{\gamma}(\rho) \cap \mathbb{S} \subset \rho$. Let $\mathcal{H}_{\gamma}[\Theta] \vdash_{b}^{a} \Gamma$, and assume that (3), $\{\gamma, a, b\} \cup \mathsf{k}(\Gamma) \subset \mathcal{H}_{\gamma}[\Theta]$ holds in Definition 1.16. Moreover let us assume that $\Theta \subset E_{\rho}^{\mathbb{S}}$ holds. Then we obtain $\{\gamma, a, b\} \cup \mathsf{k}(\Gamma) \subset \mathcal{H}_{\gamma}[\Theta] \subset \mathcal{H}_{\gamma}(E_{\rho}^{\mathbb{S}}) \subset E_{\rho}^{\mathbb{S}}$. This means that $\mathsf{k}(\Gamma) \subset E_{\rho}^{\mathbb{S}}$ holds as long as $\Theta \subset E_{\rho}^{\mathbb{S}}$ holds, i.e., as long as we are concerned with branches for $\mathsf{k}(\iota) \subset E_{\rho}^{\mathbb{S}}$ in, e.g., inferences (Λ) : $A \simeq \Lambda(A_{\iota})_{\iota \in J}$

$$\frac{\{\mathcal{H}_{\gamma}[\Theta]\vdash_b^{a_0}\Gamma,A,A_\iota\}_{\iota\in J}}{\mathcal{H}_{\gamma}[\Theta]\vdash_b^a\Gamma,A}\left(\bigwedge\right)\underset{\sim}{\longrightarrow}\frac{\{\mathcal{H}_{\gamma}[\Theta]\vdash_b^{a_0}\Gamma,A,A_\iota\}_{\iota\in J,\mathsf{k}(\iota)\subset E_\rho^{\mathbb{S}}}}{\mathcal{H}_{\gamma}[\Theta]\vdash_b^a\Gamma,A}\left(\bigwedge\right)$$

and dually $\mathsf{k}(\iota) \subset E_{\rho}^{\mathbb{S}}$ for a minor formula A_{ι} of a (\bigvee) with the main formula $A \simeq \bigvee (A_{\iota})_{\iota \in J}$, provided that $\mathcal{H}_{\gamma}(\rho) \cap \mathbb{S} \subset \rho$. The proviso means that $\gamma_1 \geq \gamma$ when $\rho = \psi_{\mathbb{S}}^f(\gamma_1)$. Such a $\rho \in \mathcal{H}_{\gamma}[\Theta]$ only when $\rho \in \Theta$. Let us try to replace the inferences for the stability of \mathbb{S}

$$\frac{(\mathcal{H}_{\gamma},\Theta) \vdash \Gamma, B(u) \quad \{(\mathcal{H}_{\gamma},\Theta \cup \{\sigma\}) \vdash \Gamma, \neg B(u)^{[\sigma/\mathbb{S}]}\}_{\Theta \subset E_{\sigma}^{\mathbb{S}}}}{(\mathcal{H}_{\gamma},\Theta) \vdash \Gamma} \text{ (stbl)}$$

by inferences for reflection of ρ with $\Theta \subset E_{\rho}^{\mathbb{S}}$: If $B(u)^{[\rho/\mathbb{S}]}$ holds, then $B(u)^{[\sigma/\mathbb{S}]}$

holds for some $\sigma < \rho$.

$$\frac{(\mathcal{H}_{\gamma},\Theta \cup \{\rho\}) \vdash \Gamma^{[\rho/\mathbb{S}]}, B(u)^{[\rho/\mathbb{S}]} \quad \{(\mathcal{H}_{\gamma},\Theta \cup \{\rho,\sigma\}) \vdash \Gamma^{[\rho/\mathbb{S}]}, \neg B(u)^{[\sigma/\mathbb{S}]}\}_{\Theta \subset E_{\sigma}^{\mathbb{S}}, \sigma < \rho}}{(\mathcal{H}_{\gamma},\Theta \cup \{\rho\}) \vdash \Gamma^{[\rho/\mathbb{S}]}} \quad \text{(rfl)}$$

However we need to eliminate the inferences for reflections in transfinite levels. In view of analysis in section 5 for first-order reflection, $\Gamma^{[\rho/\mathbb{S}]}$, $B(u)^{[\rho/\mathbb{S}]}$ is replaced by $\Gamma^{[\sigma/\mathbb{S}]}$, $B(u)^{[\sigma/\mathbb{S}]}$, and $\Gamma^{[\rho/\mathbb{S}]}$, $\neg B(u)^{[\sigma/\mathbb{S}]}$ by $\Gamma^{[\kappa/\mathbb{S}]}$, $\neg B(u)^{[\sigma/\mathbb{S}]}$ with $\sigma < \kappa < \rho$.

$$\frac{\{(\mathcal{H}_{\gamma}, \Theta \cup \{\kappa\}) \vdash \Gamma^{[\kappa/\mathbb{S}]}, B(u)^{[\sigma/\mathbb{S}]} \quad (\mathcal{H}_{\gamma}, \Theta \cup \{\kappa, \rho, \sigma\}) \vdash \Gamma^{[\kappa/\mathbb{S}]}, \neg B(u)^{[\sigma/\mathbb{S}]}}{\{(\mathcal{H}_{\gamma}, \Theta \cup \{\kappa\}) \vdash \Gamma^{[\kappa/\mathbb{S}]}, \neg \theta^{[\kappa/\mathbb{S}]}\}_{\theta \in \Gamma} \quad \{(\mathcal{H}_{\gamma}, \Theta \cup \{\kappa, \rho, \sigma\}) \vdash \Gamma^{[\kappa/\mathbb{S}]}, \Gamma^{[\sigma/\mathbb{S}]}\}_{\sigma}} \quad (cut)}{(\mathcal{H}_{\gamma}, \Theta \cup \{\kappa, \rho\}) \vdash \Gamma^{[\kappa/\mathbb{S}]}}$$

We are replacing formulas $\Gamma^{[\rho/\mathbb{S}]}$ by $\Gamma^{[\sigma/\mathbb{S}]}$ or by $\Gamma^{[\kappa/\mathbb{S}]}$. This means that $\alpha[\sigma/\mathbb{S}]$ is substituted for each $\alpha[\rho/\mathbb{S}]$. Namely a composition of uncollapsing and collapsing $\alpha[\rho/\mathbb{S}] \mapsto \alpha \mapsto \alpha[\sigma/\mathbb{S}]$ arises. Hence we need $\alpha \in E_{\sigma}^{\mathbb{S}} \subsetneq E_{\rho}^{\mathbb{S}}$ for $\sigma < \rho$. However we have $\Theta \cup \{\rho\} \not\subset E_{\sigma}^{\mathbb{S}}$, and the schema seems to be broken. Moreover the finite sets $\Theta \cup \{\rho\}$ becomes bigger to $\Theta \cup \{\kappa, \rho\}$. Is it remain finite in eliminating inferences of reflections in transfinite level?

Looking back at the proof of Lemma 4.13, for $\Gamma \subset \Sigma_2$ and $\Delta \subset \Pi_2$

$$\frac{\{\mathcal{H}_{\gamma}[\Theta] \vdash \Gamma^{(\pi,\mathbb{K})}, \neg \delta^{(\pi,\mathbb{K})}\}_{\delta \in \Delta} \quad \{\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash \Gamma^{(\pi,\mathbb{K})}, \Delta^{(\rho,\mathbb{K})}\}_{\rho}}{\mathcal{H}_{\gamma}[\Theta] \vdash \Gamma^{(\pi,\mathbb{K})}} \ (\mathrm{rfl}_{\Pi_{3}})$$

is rewritten to

$$\frac{\{\mathcal{H}_{\gamma}[\Theta \cup \{\kappa\}] \vdash \Gamma^{(\sigma,\mathbb{K})}, \neg \delta^{(\sigma,\mathbb{K})}\}_{\delta \in \Delta} \quad \mathcal{H}_{\gamma}[\Theta \cup \{\kappa,\sigma\}] \vdash \Gamma^{(\kappa,\mathbb{K})}, \Delta^{(\sigma,\mathbb{K})}}{\{\mathcal{H}_{\gamma}[\Theta \cup \{\kappa\}] \vdash \Gamma^{(\kappa,\mathbb{K})}, \Gamma^{(\sigma,\mathbb{K})}\}_{\theta \in \Gamma} \qquad \{\mathcal{H}_{\gamma}[\Theta \cup \{\kappa,\sigma\}] \vdash \Gamma^{(\kappa,\mathbb{K})}, \Gamma^{(\sigma,\mathbb{K})}\}_{\sigma}}{\mathcal{H}_{\gamma}[\Theta \cup \{\kappa\}] \vdash \Gamma^{(\kappa,\mathbb{K})}} \quad (\mathrm{rfl}_{\Pi_2})$$

This is done by replacing the restriction (π,\mathbb{K}) by (σ,\mathbb{K}) or (κ,\mathbb{K}) , and ordinals π,σ,κ enter derivations, but do we need to control these ordinals? Instead of the restriction (π,\mathbb{K}) , formulas could put on $caps \ \pi,\sigma,\kappa$ in such a way that $\mathsf{k}(A^{(\sigma)}) = \mathsf{k}(A)$. This means that the cap σ does not 'occur' in a capped formula $A^{(\sigma)}$. If we choose an ordinal γ_0 big enough (depending on a given finite proof figure), every ordinal 'occurring' in derivations (including the subscript $\gamma \leq \gamma_0$ in the operators \mathcal{H}_{γ}) is in $\mathcal{H}_{\gamma_0} = \mathcal{H}_{\gamma_0}(\emptyset)$ for the ordinal γ_0 , while each cap ρ exceeds the *threshold* γ_0 in the sense that $\rho \notin \mathcal{H}_{\gamma_0}(\rho) \cap \mathbb{S} \subset \rho$. Then every ordinal 'occurring' in derivations is in the domain $E_{\rho}^{\mathbb{S}}$ of the Mostowski collapsing $\alpha \mapsto \alpha[\rho/\mathbb{S}]$. Now details follow.

6.1 Ordinals for one stable ordinal

For a while, S denotes a weakly inaccessible cardinal.

Definition 6.2 Let $\Lambda = \omega_{\mathbb{S}+1}$ or $\Lambda = \mathbb{S}^+$. $\varphi_b(\xi)$ denotes the binary Veblen function on Λ^+ with $\varphi_0(\xi) = \omega^{\xi}$, and $\tilde{\varphi}_b(\xi) := \varphi_b(\Lambda \cdot \xi)$ for the epsilon number Λ

Let $b, \xi < \Lambda^+$. $\theta_b(\xi)$ $[\tilde{\theta}_b(\xi)]$ denotes a b-th iterate of $\varphi_0(\xi) = \omega^{\xi}$ [of $\tilde{\varphi}_0(\xi) = \Lambda^{\xi}$], resp.

Definition 6.3 Let $\xi < \varphi_{\Lambda}(0)$ be a non-zero ordinal with its normal form:

$$\xi = \sum_{i \le m} \tilde{\theta}_{b_i}(\xi_i) \cdot a_i =_{NF} \tilde{\theta}_{b_m}(\xi_m) \cdot a_m + \dots + \tilde{\theta}_{b_0}(\xi_0) \cdot a_0$$
 (30)

where $\tilde{\theta}_{b_i}(\xi_i) > \xi_i$, $\tilde{\theta}_{b_m}(\xi_m) > \dots > \tilde{\theta}_{b_0}(\xi_0)$, $b_i = \omega^{c_i} < \Lambda$, and $0 < a_0, \dots, a_m < \Lambda$. $SC_{\Lambda}(\xi) = \bigcup_{i < m} (\{a_i\} \cup SC_{\Lambda}(\xi_i))$.

 $\tilde{\theta}_{b_0}(\xi_0)$ is said to be the *tail* of ξ , denoted $\tilde{\theta}_{b_0}(\xi_0) = tl(\xi)$, and $\tilde{\theta}_{b_m}(\xi_m)$ the head of ξ , denoted $\tilde{\theta}_{b_m}(\xi_m) = hd(\xi)$.

- 1. ζ is a segment of ξ iff there exists an $n (0 \le n \le m+1)$ such that $\zeta =_{NF} \sum_{i \ge n} \tilde{\theta}_{b_i}(\xi_i) \cdot a_i = \tilde{\theta}_{b_m}(\xi_m) \cdot a_m + \dots + \tilde{\theta}_{b_n}(\xi_n) \cdot a_n$ for ξ in (30).
- 2. Let $\zeta =_{NF} \tilde{\theta}_b(\xi)$ with $\tilde{\theta}_b(\xi) > \xi$ and $b = \omega^{b_0}$, and c be ordinals. An ordinal $\tilde{\theta}_{-c}(\zeta)$ is defined recursively as follows. If $b \geq c$, then $\tilde{\theta}_{-c}(\zeta) = \tilde{\theta}_{b-c}(\xi)$. Let c > b. If $\xi > 0$, then $\tilde{\theta}_{-c}(\zeta) = \tilde{\theta}_{-(c-b)}(\tilde{\theta}_{b_m}(\xi_m))$ for the head term $hd(\xi) = \tilde{\theta}_{b_m}(\xi_m)$ of ξ in (30). If $\xi = 0$, then let $\tilde{\theta}_{-c}(\zeta) = 0$.
- **Definition 6.4** 1. A function $f: \Lambda \to \varphi_{\Lambda}(0)$ with a finite support supp $(f) = \{c < \Lambda : f(c) \neq 0\} \subset \Lambda$ is said to be a finite function if $\forall i > 0 (a_i = 1)$ and $a_0 = 1$ when $b_0 > 1$ in $f(c) =_{NF} \tilde{\theta}_{b_m}(\xi_m) \cdot a_m + \cdots + \tilde{\theta}_{b_0}(\xi_0) \cdot a_0$ for any $c \in \text{supp}(f)$.

It is identified with the finite function $f \upharpoonright \operatorname{supp}(f)$. When $c \not\in \operatorname{supp}(f)$, let f(c) := 0. $SC_{\Lambda}(f) := \bigcup \{\{c\} \cup SC_{\Lambda}(f(c))\} : c \in \operatorname{supp}(f)\}$. f, g, h, \ldots range over finite functions.

For an ordinal c, f_c and f^c are restrictions of f to the domains $\operatorname{supp}(f_c) = \{d \in \operatorname{supp}(f) : d < c\}$ and $\operatorname{supp}(f^c) = \{d \in \operatorname{supp}(f) : d \geq c\}$. $g_c * f^c$ denotes the concatenated function such that $\operatorname{supp}(g_c * f^c) = \operatorname{supp}(g_c) \cup \operatorname{supp}(f^c)$, $(g_c * f^c)(a) = g(a)$ for a < c, and $(g_c * f^c)(a) = f(a)$ for $a \geq c$.

2. Let f be a finite function and c, ξ ordinals. A relation $f <^c \xi$ is defined by induction on the cardinality of the finite set $\{d \in \operatorname{supp}(f) : d > c\}$ as follows. If $f^c = \emptyset$, then $f <^c \xi$ holds. For $f^c \neq \emptyset$, $f <^c \xi$ iff there exists a segment μ of ξ such that $f(c) < \mu$ and $f <^{c+d} \tilde{\theta}_{-d}(tl(\mu))$ for $d = \min\{c + d \in \operatorname{supp}(f) : d > 0\}$.

Proposition 6.5 $f <^c \xi \le \zeta \Rightarrow f <^c \zeta$.

6.2 Mahlo classes for Π_1^1 -reflection

In Lemma 4.8 and Proposition 5.2.2, it is crucial the fact that $P \in M_k(\gamma) \Rightarrow P \in M_k(M_k(\gamma) \cap M_{k+1}(\nu))$ if $P \in M_{k+1}(\xi_{k+1})$ and $\nu < \xi_{k+1}$. This means that if P is in a higher Mahlo class, then P reflects a fact on P in lower Mahlo classes. $P \in M_c(\xi)$ is defined by main induction on c with subsidiary induction on P.

$$P \in M_c(\xi) : \Leftrightarrow \forall f <^c \xi \forall g \left[P \in M_0(g_c) \Rightarrow P \in M_2(M_0(g_c * f^c)) \right]$$
 (31)

where f, g range over finite functions and

$$M_c(f) := \bigcap \{ M_d(f(d)) : d \in \text{supp}(f^c) \} = \bigcap \{ M_d(f(d)) : c \le d \in \text{supp}(f) \}.$$

From Proposition 6.5 we see $\xi < \zeta \Rightarrow M_c(\xi) \supset M_c(\zeta)$.

For classes \mathcal{X} let

$$P \in M_c(\mathcal{X}) : \Leftrightarrow \forall g \left[P \in M_0(g_c) \Rightarrow P \in M_2(M_0(g_c) \cap \mathcal{X}) \right].$$

Then by $M_0(g_c*f^c) = M_0(g_c) \cap M_c(f^c)$, $P \in M_c(\xi) \Leftrightarrow \forall f <^c \xi [P \in M_c(M_c(f^c))]$, i.e., $M_c(\xi) = \bigcap_{f < c\xi} M_c(M_c(f^c))$.

Proposition 6.6 Suppose $P \in M_c(\xi)$.

- 1. Let $f <^c \xi$. Then $P \in M_c(M_c(f^c))$.
- 2. Let $P \in M_d(\mathcal{X})$ for d > c. Then $P \in M_c(M_c(\xi) \cap \mathcal{X})$.

Proof. 6.6.1. Let g be a function such that $P \in M_0(g_c)$. By the definition (31) of $P \in M_c(\xi)$ we obtain $P \in M_2(M_0(g_c) \cap M_c(f^c))$.

6.6.2. Let $P \in M_d(\mathcal{X})$ for d > c. Let g be a function such that $P \in M_0(g_c)$. We obtain by d > c with the function $g_c * h$, $P \in M_2(M_0(g_c) \cap M_c(\xi) \cap \mathcal{X})$, where $\operatorname{supp}(h) = \{c\}$ and $h(c) = \xi$.

Lemma 6.7 Assume $P \in M_d(\xi) \cap M_c(\xi_0)$, $\xi_0 \neq 0$, and d < c. Moreover let $\xi_1 \leq \tilde{\theta}_{c-d}(\xi_0)$. Then $P \in M_d(\xi + \xi_1) \cap M_d(M_d(\xi + \xi_1))$.

Proof. This is seen as in Lemma 4.11.

We obtain $P \in M_c(\xi_0) \subset M_c(M_c(\emptyset))$ by Proposition 6.6.1. Let $P \in M_d(\xi \dot{+} \xi_1) \cap M_0(g_d)$ for a function g. We show $P \in M_2(M_0(g_d) \cap M_d(\xi \dot{+} \xi_1))$. Let $h = g_d \cup \{(d, \xi \dot{+} \xi_1)\}$. Then $P \in M_0(h_c)$ by d < c. $P \in M_c(M_c(\emptyset))$ yields $P \in M_2(M_0(h_c) \cap M_c(\emptyset))$, and hence $P \in M_2(M_0(g_d) \cap M_d(\xi \dot{+} \xi_1))$. Therefore $P \in M_d(M_d(\xi \dot{+} \xi_1))$.

Let f be a finite function such that $f <^d \xi + \xi_1$. We show $P \in M_d(M_d(f^d))$ by main induction on the cardinality of the finite set $\{e \in \text{supp}(f) : e > d\}$ with subsidiary induction on ξ_1 .

First let $f <^d \mu$ for a segment μ of ξ . We obtain $P \in M_d(\mu)$ and $P \in M_d(M_d(f^d))$.

In what follows let $f(d) = \xi + \zeta$ with $\zeta < \xi_1$. By SIH we obtain $P \in M_d(f(d)) \cap M_d(M_d(f(d)))$. If $\{e \in \text{supp}(f) : e > d\} = \emptyset$, then $M_d(f^d) = M_d(f(d))$, and we are done. Otherwise let $e = \min\{e \in \text{supp}(f) : e > d\}$.

By SIH we can assume $f <^e \tilde{\theta}_{-(e-d)}(tl(\xi_1))$. By $\xi_1 \leq \tilde{\theta}_{c-d}(\xi_0)$, we obtain $f <^e \tilde{\theta}_{-(e-d)}(\tilde{\theta}_{c-d}(\xi_0)) = \tilde{\theta}_{-e}(\tilde{\theta}_c(\xi_0))$. We claim that $P \in M_{c_0}(M_{c_0}(f^{c_0}))$ for $c_0 = \min\{c, e\}$. If c = e, then the claim follows from the assumption $P \in M_c(\xi_0)$ and $f <^e \xi_0$. Let $e = c + e_0 > c$. Then $\tilde{\theta}_{-e}(\tilde{\theta}_c(\xi_0)) = \tilde{\theta}_{-e_0}(hd(\xi_0))$, and $f <^c \xi_0$ with f(c) = 0 yields the claim. Let $c = e + c_1 > e$. Then $\tilde{\theta}_{-e}(\tilde{\theta}_c(\xi_0)) = \tilde{\theta}_{c_1}(\xi_0)$. MIH yields the claim.

On the other hand we have $M_d(f^d) = M_d(f(d)) \cap M_{c_0}(f^{c_0})$. $P \in M_d(f(d)) \cap M_{c_0}(M_{c_0}(f^{c_0}))$ with $d < c_0$ yields by Proposition 6.6.2, $P \in M_d(M_d(f(d)) \cap M_{c_0}(f^{c_0}))$, i.e., $P \in M_d(M_d(f^d))$.

For finite functions f and g,

$$M_0(g) \prec M_0(f) : \Leftrightarrow \forall P \in M_0(f) (P \in M_2(M_0(g))).$$

Corollary 6.8 Let f, g be finite functions and $c \in \text{supp}(f)$. Assume that there exists an ordinal d < c such that $(d, c) \cap \text{supp}(f) = (d, c) \cap \text{supp}(g) = \emptyset$, $g_d = f_d$, $g(d) < f(d) + \tilde{\theta}_{c-d}(f(c)) \cdot \omega$, and $g <^c f(c)$. Then $M_0(g) \prec M_0(f)$ holds.

Proof. By Lemma 6.7.

Definition 6.9 An *irreducibility* of finite functions f is defined by induction on the cardinality n of the finite set $\operatorname{supp}(f)$. If $n \leq 1$, f is defined to be irreducible. Let $n \geq 2$ and c < c + d be the largest two elements in $\operatorname{supp}(f)$, and let g be a finite function such that $\operatorname{supp}(g) = \operatorname{supp}(f_c) \cup \{c\}$, $g_c = f_c$ and $g(c) = f(c) + \tilde{\theta}_d(f(c+d))$.

Then f is irreducible iff $tl(f(c)) > \tilde{\theta}_d(f(c+d))$ and g is irreducible.

Definition 6.10 Let f,g be irreducible finite functions, and b an ordinal. Let us define a relation $f<^b_{lx}g$ by induction on the cardinality $\#\{e\in \operatorname{supp}(f)\cup \operatorname{supp}(g):e\geq b\}$ as follows. $f<^b_{lx}g$ holds iff $f^b\neq g^b$ and for the ordinal $c=\min\{c\geq b:f(c)\neq g(c)\}$, one of the following conditions is met:

- 1. f(c) < g(c) and let μ be the shortest part of g(c) such that $f(c) < \mu$. Then for any $c < c + d \in \text{supp}(f)$, if $tl(\mu) \le \tilde{\theta}_d(f(c+d))$, then $f <_{lx}^{c+d} g$ holds.
- 2. f(c) > g(c) and let ν be the shortest part of f(c) such that $\nu > g(c)$. Then there exist a $c < c + d \in \text{supp}(g)$ such that $f <_{lx}^{c+d} g$ and $tl(\nu) \leq \tilde{\theta}_d(g(c+d))$.

Proposition 6.11 If $f <_{lx}^0 g$, then $M_0(f) \prec M_0(g)$.

Proof. This is seen from Corollary 6.8.

6.3 Skolem hulls and collapsing functions

Definition 6.12 Let $\mathbb{K} = \omega_{\mathbb{S}+1}$, $a < \varepsilon_{\mathbb{K}+1}$ and $X \subset \Gamma_{\mathbb{K}+1}$.

- 1. $\mathcal{H}_a(X)$ denotes the Skolem hull of $\{0, \Omega, \mathbb{S}, \mathbb{K}\} \cup X$ under the functions $+, \varphi, \beta \mapsto \psi_{\Omega}(\beta)$ $(\beta < a), \mathbb{S} > \alpha \mapsto \alpha^+$ and $(\pi, b, f) \mapsto \psi_{\pi}^f(b)$, where b < a and f is a finite function such that $f \in \mathcal{H}_a(X) :\Leftrightarrow SC_{\mathbb{K}}(f) \subset \mathcal{H}_a(X)$.
- 2. Let $c < \mathbb{K}$, $a < \varepsilon_{\mathbb{K}+1}$ and $\xi < \varphi_{\mathbb{K}}(0)$. $\pi \in Mh_c^a(\xi)$ iff $\{a, c, \xi\} \subset \mathcal{H}_a(\pi)$ and $\forall f <^c \xi \forall g \left(SC_{\mathbb{K}}(f) \cup SC_{\mathbb{K}}(g) \subset \mathcal{H}_a(\pi) \& \pi \in Mh_0^a(g_c) \Rightarrow \pi \in M_2(Mh_0^a(g_c * f^c))\right)$ where

$$Mh_c^a(f) := \bigcap \{ Mh_d^a(f(d)) : d \in \text{supp}(f^c) \} = \bigcap \{ Mh_d^a(f(d)) : c \le d \in \text{supp}(f) \}.$$

3.

$$\psi_{\pi}^{f}(a) := \min(\{\pi\} \cup \{\kappa \in Mh_0^{a}(f) \cap \pi : \mathcal{H}_a(\kappa) \cap \pi \subset \kappa, \{\pi, a\} \cup SC_{\mathbb{K}}(f) \subset \mathcal{H}_a(\kappa)\})$$
(33)

Shrewd cardinals are introduced by [Rathjen05b]. A cardinal κ is shrewd iff for any $\eta > 0$, $P \subset V_{\kappa}$, and formula $\varphi(x,y)$, if $V_{\kappa+\eta} \models \varphi[P,\kappa]$, then there are $0 < \kappa_0, \eta_0 < \kappa$ such that $V_{\kappa_0+\eta_0} \models \varphi[P \cap V_{\kappa_0}, \kappa_0]$. \tilde{T} denotes the extension of ZFC by the axiom stating that $\mathbb S$ is a shrewd cardinal.

Lemma 6.13 \tilde{T} proves that $\mathbb{S} \in Mh_c^a(\xi) \cap M_2(Mh_c^a(\xi))$ for every $a < \varepsilon_{\mathbb{K}+1}$, $c < \mathbb{K}$, $\xi < \varphi_{\mathbb{K}}(0)$ such that $\{a, c, \xi\} \subset \mathcal{H}_a(\mathbb{S})$.

Proof. We show the lemma by induction on $\xi < \varphi_{\mathbb{K}}(0)$.

Let $\{a, c, \xi\} \cup SC_{\mathbb{K}}(f) \subset \mathcal{H}_a(\mathbb{S})$ and $f <^c \xi$. We show $\mathbb{S} \in Mh_c^a(f^c)$, and $\mathbb{S} \in M_2(Mh_0^a(g_c) \cap Mh_c^a(f^c))$ assuming $\mathbb{S} \in Mh_0^a(g_c)$ and $SC_{\mathbb{K}}(g_c) \subset \mathcal{H}_a(\mathbb{S})$.

For each $d \in \text{supp}(f^c)$ we obtain $f(d) < \xi$ by $\tilde{\theta}_{-e}(\zeta) \le \zeta$. IH yields $\mathbb{S} \in Mh_c^a(f^c)$.

We have to show $\mathbb{S} \in M_2(A \cap B)$ for $A = Mh_0^a(g_c) \cap \mathbb{S}$ and $B = Mh_c^a(f^c) \cap \mathbb{S}$. Let C be a club subset of \mathbb{S} .

We have $\mathbb{S} \in Mh_0^a(g_c) \cap Mh_c^a(f^c)$, and $\{a,c\} \cup SC_{\mathbb{K}}(g_c,f^c) \subset \mathcal{H}_a(\mathbb{S})$. Pick a $b < \mathbb{S}$ so that $\{a,c\} \cup SC_{\mathbb{K}}(g_c,f^c) \subset \mathcal{H}_a(b)$, and a bijection $F: \mathbb{S} \to \mathcal{H}_a(\mathbb{S})$. Each $\alpha \in \mathcal{H}_a(\mathbb{S}) \cap \Gamma_{\mathbb{K}+1}$ is identified with its code, denoted by $F^{-1}(\alpha)$. Let P be the class $P = \{(\pi,d,\alpha) \in \mathbb{S}^3 : \pi \in Mh_{F(d)}^a(F(\alpha))\}$, where $F(d) < \mathbb{K}$ and $F(\alpha) < \varphi_{\mathbb{K}}(0)$ with $\{F(d),F(\alpha)\} \subset \mathcal{H}_a(\pi)$. For fixed a, the set $\{(d,\eta) \in \mathbb{K} \times \varphi_{\mathbb{K}}(0) : \mathbb{S} \in Mh_d^a(\eta)\}$ is defined from the class P by recursion on ordinals $d < \mathbb{K}$. Let φ be a formula such that $V_{\mathbb{S}+\mathbb{K}} \models \varphi[P,C,\mathbb{S},b]$ iff $\mathbb{S} \in Mh_0^a(g_c) \cap Mh_c^a(f^c)$ and C is a club subset of \mathbb{S} . Since \mathbb{S} is shrewd, pick $b < \mathbb{S}_0 < \mathbb{K}_0 < \mathbb{S}$ such that $V_{\mathbb{S}_0+\mathbb{K}_0} \models \varphi[P \cap \mathbb{S}_0,C \cap \mathbb{S}_0,\mathbb{S}_0,b]$. We obtain $\mathbb{S}_0 \in A \cap B \cap C$. Therefore $\mathbb{S} \in Mh_c^a(\xi)$ is shown. $\mathbb{S} \in M_2(Mh_c^a(\xi))$ is seen from the shrewdness of \mathbb{S} .

Corollary 6.14 \tilde{T} proves that $\forall a < \varepsilon_{\mathbb{K}+1} \forall c < \mathbb{K}[\{a,c,\xi\} \subset \mathcal{H}_a(\mathbb{S}) \to \psi_{\mathbb{S}}^f(a) < \mathbb{S}]$ for every $\xi < \varphi_{\mathbb{K}}(0)$ and finite functions f such that $\operatorname{supp}(f) = \{c\}, c < \mathbb{K}$ and $f(c) = \xi$.

Lemma 6.15 Assume $\mathbb{S} \geq \pi \in Mh_d^a(\xi) \cap Mh_c^a(\xi_0)$, $\xi_0 \neq 0$, and d < c. Moreover let $\xi_1 \in \mathcal{H}_a(\pi)$ for $\xi_1 \leq \tilde{\theta}_{c-d}(\xi_0)$. Then $\pi \in Mh_d^a(\xi \dot{+}\xi_1) \cap M_d^a(Mh_d^a(\xi \dot{+}\xi_1))$.

Proof. As in Lemma 6.7.

Definition 6.16 For finite functions f and g,

$$Mh_0^a(g) \prec Mh_0^a(f) : \Leftrightarrow \forall \pi \in Mh_0^a(f) \left(SC_{\mathbb{K}}(g) \subset \mathcal{H}_a(\pi) \Rightarrow \pi \in M_2(Mh_0^a(g))\right).$$

Corollary 6.17 Let f, g be finite functions and $c \in \text{supp}(f)$. Assume that there exists an ordinal d < c such that $(d, c) \cap \text{supp}(f) = (d, c) \cap \text{supp}(g) = \emptyset$, $g_d = f_d$, $g(d) < f(d) + \tilde{\theta}_{c-d}(f(c)) \cdot \omega$, and $g <^c f(c)$. Then $Mh_0^a(g) \prec Mh_0^a(f)$ holds. In particular if $\pi \in Mh_0^a(f)$ and $SC_{\mathbb{K}}(g) \subset \mathcal{H}_a(\pi)$, then $\psi_{\pi}^g(a) < \pi$.

Proposition 6.18 Let $f, g : \mathbb{K} \to \varphi_{\mathbb{K}}(0)$. If $f <_{lx}^{0} g$, then $Mh_{0}^{a}(f) \prec Mh_{0}^{a}(g)$.

Proof. This is seen from Corollary 6.17.

6.4 A Mostowski collapsing

 $OT(\Pi_1^1)$ denotes a computable notation system of ordinals with a constant $\mathbb S$ for a stable ordinal, collapsing functions $\psi_\sigma^g(a)$ for finite functions g, where $\operatorname{supp}(g)=\{d\}$ for a $d<\mathbb K=\mathbb S^+$ and $g(d)<\varepsilon_{\mathbb K+1}$ if $\sigma=\mathbb S$. Let $m(\alpha)=g$ for $\alpha=\psi_\sigma^g(a)$ and $\sigma<\mathbb S$. For $g\neq\emptyset$, $\alpha=\psi_\sigma^g(a)\in OT(\Pi_1^1)$ only when g is obtained from $f=m(\sigma)$ as follows, cf. Corollary 6.17. There are c and d such that $d< c\in\operatorname{supp}(f)$, and $(d,c)\cap\operatorname{supp}(f)=\emptyset$. Then $g_d=f_d,\ (d,c)\cap\operatorname{supp}(g)=\emptyset$ $g(d)< f(d)+\widetilde\theta_{c-d}(f(c))\cdot\omega$, and $g<^cf(c)$.

In what follows, by ordinals we mean ordinal terms in $OT(\Pi_1^1)$. $\Psi_{\mathbb{S}}$ denotes the set of ordinal terms $\psi_{\sigma}^f(a)$ for some a, f and $\sigma \in \Psi_{\mathbb{S}} \cup \{\mathbb{S}\}$. Note that in $OT(\Pi_1^1)$, $\psi_{\sigma}^f(a) \geq \mathbb{S}$ only if $\sigma = \mathbb{K} = \mathbb{S}^+$ and $f = \emptyset$.

We define a Mostowski collapsing $\alpha \mapsto \alpha[\rho/\mathbb{S}]$, which is needed to replace inference rules for stability by ones of reflections. The domain of the collapsing $\alpha \mapsto \alpha[\rho/\mathbb{S}]$ is a subset M_{ρ} of $E_{\rho}^{\mathbb{S}}$. For a reason of the restriction, see the beginning of subsection 6.5.

Definition 6.19 For ordinal terms $\psi_{\sigma}^f(a) \in \Psi_{\mathbb{S}} \subset OT(\Pi_1^1)$, define $m(\psi_{\sigma}^f(a)) := f$ and $s(\psi_{\sigma}^f(a)) := \max(\operatorname{supp}(f))$. Also $\operatorname{p}_0(\psi_{\sigma}^f(a)) = \operatorname{p}_0(\sigma)$ if $\sigma < \mathbb{S}$, and $\operatorname{p}_0(\psi_{\mathbb{S}}^f(a)) = a$.

Definition 6.20 $M_{\rho} := \mathcal{H}_b(\rho)$ for $b = p_0(\rho)$ and $\rho \in \Psi_{\mathbb{S}}$.

 $\alpha = \psi_{\sigma}^g(a) \in OT(\Pi_1^1)$ only when $\{\sigma, a\} \subset \mathcal{H}_a(\alpha)$ and $SC_{\mathbb{K}}(g) \subset M_{\alpha}$. $OT(\Pi_1^1)$ is defined to be closed under $\alpha \mapsto \alpha[\rho/\mathbb{S}]$ for $\alpha \in M_{\rho}$. Specifically if $\{\alpha, \rho\} \subset OT(\Pi_1^1)$ with $\alpha \in M_{\rho}$ and $\rho \in \Psi_{\mathbb{S}}$, then $\alpha[\rho/\mathbb{S}] \in OT(\Pi_1^1)$.

Proposition 6.21 Let $\rho \in \Psi_{\mathbb{S}}$.

- 1. $\mathcal{H}_{\gamma}(M_{\rho}) \subset M_{\rho} \text{ if } \gamma \leq p_0(\rho).$
- 2. $M_{\rho} \cap \mathbb{S} = \rho$ and $\rho \notin M_{\rho}$.
- 3. If $\sigma < \rho$ and $p_0(\sigma) \leq p_0(\rho)$, then $M_{\sigma} \subset M_{\rho}$.

Definition 6.22 Let $\alpha \in M_{\rho}$ with $\rho \in \Psi_{\mathbb{S}}$. We define an ordinal $\alpha[\rho/\mathbb{S}]$ recursively as follows. $\alpha[\rho/\mathbb{S}] := \alpha$ when $\alpha < \mathbb{S}$. In what follows assume $\alpha \geq \mathbb{S}$. $\mathbb{S}[\rho/\mathbb{S}] := \rho$. $\mathbb{K}[\rho/\mathbb{S}] \equiv (\mathbb{S}^+)[\rho/\mathbb{S}] := \rho^+$. $(\psi_{\mathbb{K}}(a))[\rho/\mathbb{S}] = (\psi_{\mathbb{S}^+}(a))[\rho/\mathbb{S}] = \psi_{\rho^+}(a[\rho/\mathbb{S}])$. The map commutes with + and φ .

Lemma 6.23 For $\rho \in \Psi_{\mathbb{S}}$, $\{\alpha[\rho/\mathbb{S}] : \alpha \in M_{\rho}\}$ is a transitive collapse of M_{ρ} in the sense that $\beta < \alpha \Leftrightarrow \beta[\rho/\mathbb{S}] < \alpha[\rho/\mathbb{S}], \ \beta \in \mathcal{H}_{\alpha}(\gamma) \Leftrightarrow \beta[\rho/\mathbb{S}] \in \mathcal{H}_{\alpha[\rho/\mathbb{S}]}(\gamma[\rho/\mathbb{S}]))$ for $\gamma > \mathbb{S}$, and $OT(\Pi_{1}^{1}) \cap \alpha[\rho/\mathbb{S}] = \{\beta[\rho/\mathbb{S}] : \beta \in M_{\rho} \cap \alpha\}$ for $\alpha, \beta, \gamma \in M_{\rho}$.

Let $\rho \leq \mathbb{S}$, and ι an RS-term or an RS-formula such that $\mathsf{k}(\iota) \subset M_{\rho}$, where $M_{\mathbb{S}} = \mathbb{K}$. Then $\iota^{[\rho/\mathbb{S}]}$ denotes the result of replacing each unbounded quantifier Qx by $Qx \in L_{\mathbb{K}[\rho/\mathbb{S}]}$, and each ordinal term $\alpha \in \mathsf{k}(\iota)$ by $\alpha[\rho/\mathbb{S}]$ for the Mostowski collapse in Definition 6.22.

Proposition 6.24 Let $\rho \in \Psi_{\mathbb{S}} \cup \{\mathbb{S}\}.$

- 1. Let v be an RS-term with $k(v) \subset M_{\rho}$, and $\alpha = |v|$. Then $v^{[\rho/\mathbb{S}]}$ is an RS-term of level $\alpha[\rho/\mathbb{S}]$, $|v^{[\rho/\mathbb{S}]}| = \alpha[\rho/\mathbb{S}]$ and $k(v^{[\rho/\mathbb{S}]}) = (k(v))^{[\rho/\mathbb{S}]}$.
- 2. Let $\alpha \leq \mathbb{K}$ be such that $\alpha \in M_{\rho}$. Then $(Tm(\alpha))^{[\rho/\mathbb{S}]} := \{v^{[\rho/\mathbb{S}]} : v \in Tm(\alpha), k(v) \subset M_{\rho}\} = Tm(\alpha[\rho/\mathbb{S}]).$
- 3. Assume $\mathcal{H}_{\gamma}(\rho) \cap \mathbb{S} \subset \rho$. For an RS-formula A with $\mathsf{k}(A) \subset \mathcal{H}_{\gamma}(\rho)$, $A^{[\rho/\mathbb{S}]}$ is an RS-formula such that $\mathsf{k}(A^{[\rho/\mathbb{S}]}) \subset \{\alpha[\rho/\mathbb{S}] : \alpha \in \mathsf{k}(A)\} \cup \{\mathbb{K}[\rho/\mathbb{S}]\}$.

For each sentence A, either a disjunction is assigned as $A \simeq \bigvee (A_{\iota})_{\iota \in J}$, or a conjunction is assigned as $A \simeq \bigwedge (A_{\iota})_{\iota \in J}$. In the former case A is said to be a \bigvee -formula, and in the latter A is a \bigwedge -formula.

Definition 6.25 Let $[\rho]Tm(\alpha) := \{u \in Tm(\alpha) : k(u) \subset M_{\rho}\}.$

Proposition 6.26 Let $\rho \in \Psi_{\mathbb{S}} \cup \{\mathbb{S}\}$. For RS-formulas A, let $A \simeq \bigvee(A_{\iota})_{\iota \in J}$ and assume $\mathsf{k}(A) \subset M_{\rho}$. Then $A^{[\rho/\mathbb{S}]} \simeq \bigvee((A_{\iota})^{[\rho/\mathbb{S}]})_{\iota \in [\rho]J}$. The case $A \simeq \bigwedge(A_{\iota})_{\iota \in J}$ is similar.

6.5 Operator controlled derivations for Π_1^1 -reflection

We define a derivability relation $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a} \Gamma; \Pi^{[\cdot]}$ where \mathbb{Q}_{Π} is a finite set of ordinals in $\Psi_{\mathbb{S}}$, c is a bound of ranks of the inference rules (stbl) and of ranks of cut formulas. The relation depends on an ordinal γ_{0} , and should be written as $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c,\gamma_{0}}^{*a} \Gamma; \Pi^{[\cdot]}$. However the ordinal γ_{0} will be fixed. So let us omit it.

The rôle of the calculus \vdash_c^{*a} is twofold: first finite proof figures are embedded in the calculus, and second the cut rank c in \vdash_c^{*a} is lowered to $\mathbb{K} = \mathbb{S}^+$. In the next subsection 6.6 the relation \vdash_c^{*a} is embedded in another derivability relation \vdash_c^a , $A^{(\rho)}$ with caps ρ . In the latter calculus, cut ranks c as well as the ranks of formulas to be reflected are lowered to \mathbb{S} , and the inferences for reflections are removed. For this we need to distinguish formulas with smaller ranks $< \mathbb{S}$ from higher ones.

As in Lemma 4.13, in eliminating of inferences for reflections,

$$\frac{\{\mathcal{H}_{\gamma}[\Theta] \vdash \Gamma^{(\rho)}, \neg \delta^{(\rho)}\}_{\delta \in \Delta} \quad \{\mathcal{H}_{\gamma}[\Theta \cup \{\sigma\}] \vdash \Gamma^{(\rho)}, \Delta^{(\sigma)}\}_{\sigma}}{\mathcal{H}_{\gamma}[\Theta] \vdash^{a} \Gamma^{(\rho)}} \ (rfl_{\rho})$$

is rewritten to, cf. Recapping 6.47

$$\frac{\vdots \rho \sim \sigma}{\vdots \rho \sim \sigma} \quad \vdots \rho \sim \kappa \\
\frac{\{\mathcal{H}_{\gamma}[\Theta] \vdash \Gamma^{(\sigma)}, \neg \delta^{(\sigma)}\}_{\delta \in \Delta} \quad \mathcal{H}_{\gamma}[\Theta \cup \{\sigma\}] \vdash \Gamma^{(\kappa)}, \Delta^{(\sigma)}}{\Gamma^{(\kappa)}, \Gamma^{(\kappa)}\}_{\theta \in \Gamma} \quad \{\mathcal{H}_{\gamma}[\Theta \cup \{\sigma\}] \vdash \Gamma^{(\kappa)}, \Gamma^{(\sigma)}\}_{\sigma}} \quad (cut)}{\mathcal{H}_{\gamma}[\Theta] \vdash \Gamma^{(\kappa)}}$$

where $\sigma < \kappa < \rho$. In the rewriting, the inference (rfl_{ρ}) is replaced by (rfl_{κ}) for a smaller $\kappa < \rho$. This means that (rfl_{ρ}) is replaced by (rfl_{σ}) in the part $\rho \leadsto \sigma$. κ reflects Γ to some σ , and σ has to reflect Δ , where $\text{rk}(\Delta) > \text{rk}(\Gamma)$ is possible. Therefore the termination of the whole process of removing is seen to be by induction on reflecting ordinals ρ , cf. Lemma 6.48.

The Mahlo degree $g = m(\kappa)$ in $\kappa = \psi_{\rho}^g(\alpha)$ is obtained by (an iteration of) a stepping-down $(f,d,c) \mapsto g$, where $f = m(\rho), d < c \in \operatorname{supp}(f), (d,c) \cap \operatorname{supp}(f) = \emptyset$, $g_d = f_d$, $(d,c) \cap \operatorname{supp}(g) = \emptyset$, $g(d) < f(d) + \tilde{\theta}_{c-d}(f(c)) \cdot \omega$, and $g <^c f(c)$. g depends on a, ρ and $\operatorname{rk}(\Gamma^{(\rho)}) := \operatorname{rk}(\Gamma)$. In showing

$$SC_{\mathbb{K}}(g) \subset \mathcal{H}_{\alpha}(\kappa)$$

 ρ and $\operatorname{rk}(\Gamma^{(\rho)})$ are harmless since these relates to the given ordinal ρ , while the ordinal a causes trouble, since all of the reflecting ordinals ρ, \ldots share the ordinal depth a of the derivation. We need $a \in \mathcal{H}_{\alpha_0}(\rho)$ if $\rho = \psi_{\sigma}^f(\alpha_0)$, and $a \in \mathcal{H}_{\beta}(\tau)$ if $\tau = \psi_{\lambda}^h(\beta)$, and so forth. This leads us to the set $M_{\rho} = \mathcal{H}_b(\rho)$ for $b = \mathbf{p}_0(\rho)$, where $\rho = \psi^f$ (α_0), and the condition (35) that a as well as

ordinals occurring in the derivation should be in M_{ρ} for every reflecting ordinal ρ occurring in derivations. Note that $M_{\rho} = \mathcal{H}_b(\rho) \subset \mathcal{H}_{\alpha_0}(\rho)$ by $b \leq \alpha_0$, but $E_{\rho}^{\mathbb{S}} \not\subset \mathcal{H}_{\alpha_0}(\rho)$. This is the reason why we restrict the domain of the Mostowski collapsing $\alpha \mapsto \alpha[\rho/\mathbb{S}]$ to $\alpha \in M_{\rho} \subsetneq E_{\rho}^{\mathbb{S}}$.

 Q_{Π} in $(\mathcal{H}_{\gamma}, \Theta; Q_{\Pi}) \vdash_{c}^{*a} \Gamma; \Pi^{[\cdot]}$, is the set of ordinals σ which is introduced in a right upper sequent $(\mathcal{H}_{\gamma}, \Theta \cup \{\sigma\}; Q_{\Pi} \cup \{\sigma\}) \vdash_{c}^{*a_{0}} \Gamma; \Pi^{[\cdot]}, \neg B(u)^{[\sigma/\mathbb{S}]}$ of an inference (stbl) for stability occurring below $(\mathcal{H}_{\gamma}, \Theta; Q_{\Pi}) \vdash_{c}^{*a} \Gamma; \Pi^{[\cdot]}$, while the set $\Pi^{[\cdot]} = \bigcup \{\Pi_{\sigma}^{[\sigma/\mathbb{S}]} : \sigma \in Q_{\Pi}\}$ is the collection of formulas $\neg B(u)^{[\sigma/\mathbb{S}]}$.

$$\frac{(\mathcal{H}_{\gamma},\Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a_{0}} \Gamma, B(u); \Pi^{[\cdot]} \quad \{(\mathcal{H}_{\gamma},\Theta \cup \{\sigma\}; \mathbb{Q}_{\Pi} \cup \{\sigma\}) \vdash_{c}^{*a_{0}} \Gamma; \Pi^{[\cdot]}, \neg B(u)^{[\sigma/\mathbb{S}]}\}_{\sigma}}{(\mathcal{H}_{\gamma},\Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a} \Gamma; \Pi^{[\cdot]}}$$
(stbl)

These motivates the following Definitions 6.27, 6.28 and 6.40.

Definition 6.27 Let $\mathbb{Q} \subset \Psi_{\mathbb{S}}$ be a finite set of ordinals, and $A \simeq \bigvee (A_{\iota})_{\iota \in J}$. Define $M_{\mathbb{Q}} := \bigcap_{\sigma \in \mathbb{Q}} M_{\sigma}$,

$$\begin{split} [\mathbb{Q}]_A J := [\mathbb{Q}]_{\neg A} J := \{ \iota \in J : \mathrm{rk}(A_\iota) \geq \mathbb{S} \Rightarrow \mathsf{k}(\iota) \subset M_{\mathbb{Q}} \} \\ \\ \mathsf{k}^{\mathbb{S}}(\Gamma) := \left\{ \begin{array}{l} \int \{ \mathsf{k}(A) : A \in \Gamma, \mathrm{rk}(A) \geq \mathbb{S} \} \end{array} \right. \end{split}$$

Definition 6.28 Let Θ be a finite set of ordinals, $\gamma \leq \gamma_0$ and a, c ordinals², and $\mathbb{Q}_{\Pi} \subset \Psi_{\mathbb{S}}$ a finite set of ordinals such that $p_0(\sigma) \geq \gamma_0$ for each $\sigma \in \mathbb{Q}_{\Pi}$. Let $\Pi = \bigcup \{\Pi_{\sigma} : \sigma \in \mathbb{Q}_{\Pi}\} \subset \Delta_0(\mathbb{K})$ be a set of formulas such that $\mathsf{k}(\Pi_{\sigma}) \subset M_{\sigma}$ for each $\sigma \in \mathbb{Q}_{\Pi}$, $\Pi^{[\cdot]} = \bigcup \{\Pi_{\sigma}^{[\sigma/\mathbb{S}]} : \sigma \in \mathbb{Q}_{\Pi}\}$, $\Theta^{(\sigma)} = \Theta \cap M_{\sigma}$ and $\Theta_{\mathbb{Q}_{\Pi}} = \Theta \cap M_{\mathbb{Q}_{\Pi}}$. $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a} \Gamma; \Pi^{[\cdot]}$ holds for a set Γ of formulas if

$$\mathsf{k}(\Gamma) \subset \mathcal{H}_{\gamma}[\Theta] \& \forall \sigma \in \mathsf{Q}_{\Pi} \left(\mathsf{k}(\Pi_{\sigma}) \subset \mathcal{H}_{\gamma}[\Theta^{(\sigma)}] \right)$$
 (34)

$$\{\gamma, a, c\} \cup \mathsf{k}^{\mathbb{S}}(\Gamma) \cup \mathsf{k}^{\mathbb{S}}(\Pi) \subset \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}_{\Pi}}]$$
 (35)

and one of the following cases holds:

- (V) ³ There exist $A \simeq \bigvee (A_{\iota})_{\iota \in J}$, an ordinal $a(\iota) < a$ and an $\iota \in J$ such that $A \in \Gamma$, $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a(\iota)} \Gamma, A_{\iota}; \Pi^{[\cdot]}$.
- $(\bigvee)^{[\cdot]} \text{ There exist } A \equiv B^{[\sigma/\mathbb{S}]} \in \Pi^{[\cdot]}, \ B \simeq \bigvee(B_{\iota})_{\iota \in J}, \text{ an ordinal } a(\iota) < a \text{ and an } \iota \in [\sigma]J \text{ such that } (\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a(\iota)} \Gamma; \Pi^{[\cdot]}, A_{\iota} \text{ with } A_{\iota} \equiv B_{\iota}^{[\sigma/\mathbb{S}]}.$
- (\bigwedge) There exist $A \simeq \bigwedge(A_{\iota})_{\iota \in J}$, ordinals $a(\iota) < a$ such that $A \in \Gamma$ and $(\mathcal{H}_{\gamma}, \Theta \cup \mathsf{k}(\iota); \mathsf{Q}_{\Pi}) \vdash_{c}^{*a(\iota)} \Gamma, A_{\iota}; \Pi^{[\cdot]}$ for each $\iota \in [\mathsf{Q}_{\Pi}]_{A}J$.
- $\begin{array}{l} (\bigwedge)^{[\cdot]} \ \ \text{There exist } A \equiv B^{[\sigma/\mathbb{S}]} \in \Pi^{[\cdot]}, \, B \simeq \bigwedge(B_\iota)_{\iota \in J}, \, \text{ordinals } a(\iota) < a \, \, \text{such that} \\ (\mathcal{H}_\gamma, \Theta \cup \mathsf{k}(\iota); \mathbb{Q}_\Pi) \vdash_c^{*a(\iota)} \Gamma; A_\iota, \Pi^{[\cdot]} \, \, \text{for each} \, \, \iota \in [\mathbb{Q}_\Pi]_B J \cap [\sigma] J. \end{array}$
- (cut) There exist an ordinal $a_0 < a$ and a formula C such that $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a_0} \Gamma, \neg C; \Pi^{[\cdot]}$ and $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a_0} C, \Gamma; \Pi^{[\cdot]}$ with $\mathrm{rk}(C) < c$.

²In this subsection 6.5 we can set $\gamma = \mathbb{S}$.

³The condition (4), $|\iota| < a$ is absent in the inference (\bigvee), cf. Case 3 in Lemma 6.44.

- (Σ -rfl) There exist ordinals $a_{\ell}, a_r < a$ and a formula $C \in \Sigma(\pi)$ for a $\pi \in \{\Omega, \mathbb{K} = \mathbb{S}^+\}$ such that $c \geq \pi$, $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a_{\ell}} \Gamma, C; \Pi^{[\cdot]}$ and $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a_{r}} \neg \exists x < \pi C^{(x,\pi)}, \Gamma; \Pi^{[\cdot]}$.
- (stbl) There exist an ordinal $a_0 < a$, a Λ -formula $B(0) \in \Delta_0(\mathbb{S})$, and a $u \in Tm(\mathbb{K})$ for which the following hold: $\mathbb{S} \leq \text{rk}(B(u)) < c$, $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_c^{*a_0} \Gamma, B(u); \Pi^{[\cdot]}$, and $(\mathcal{H}_{\gamma}, \Theta \cup \{\sigma\}; \mathbb{Q}_{\Pi} \cup \{\sigma\}) \vdash_c^{*a_0} \Gamma; \Pi^{[\cdot]}, \neg B(u)^{[\sigma/\mathbb{S}]}$ holds for every ordinal $\sigma \in \Psi_{\mathbb{S}}$ such that $\Theta \subset M_{\sigma}$.

$$\frac{(\mathcal{H}_{\gamma},\Theta;\mathbb{Q}_{\Pi})\vdash_{c}^{*a_{0}}\Gamma,B(u);\Pi^{[\cdot]}}{(\mathcal{H}_{\gamma},\Theta;\mathbb{Q}_{\Pi})\vdash_{c}^{*a_{0}}\Gamma;\Pi^{[\cdot]},\neg B(u)^{[\sigma/\mathbb{S}]}\}_{\Theta\subset M_{\sigma}}}{(\mathcal{H}_{\gamma},\Theta;\mathbb{Q}_{\Pi})\vdash_{c}^{*a}\Gamma;\Pi^{[\cdot]}} \text{ (stbl)}$$

Note that $(\Theta \cup \{\sigma\})_{\mathbb{Q}_{\Pi} \cup \{\sigma\}} = \Theta_{\mathbb{Q}_{\Pi}}$ if $\Theta_{\mathbb{Q}_{\Pi}} \subset M_{\sigma}$.

Proposition 6.29 (Tautology) Let $\gamma \in \mathcal{H}_{\gamma}[\mathsf{k}(A)]$ and $d = \mathrm{rk}(A)$.

1.
$$(\mathcal{H}_{\gamma}, \mathsf{k}(A); \emptyset) \vdash_{0}^{*2d} \neg A, A; \emptyset$$
.

$$2. \ (\mathcal{H}_{\gamma},\mathsf{k}(A)\cup\{\sigma\};\{\sigma\})\vdash_{0}^{*2d}\neg A^{[\sigma/\mathbb{S}]};A^{[\sigma/\mathbb{S}]} \ \textit{if} \ \mathsf{k}(A)\subset M_{\sigma} \ \textit{and} \ \gamma\geq\mathbb{S}.$$

Proof. Both are seen by induction on d. Consider Proposition 6.29.2.

We have $(\mathsf{k}(A) \cup \{\sigma\}) \cap M_{\sigma} = \mathsf{k}(A)$ for (34) and (35), and $\mathsf{k}(A^{[\sigma/\mathbb{S}]}) \subset \mathcal{H}_{\mathbb{S}}((\mathsf{k}(A) \cap \mathbb{S}) \cup \{\sigma\})$ for (34). Note that $\sigma \notin \mathcal{H}_{\gamma}[\mathsf{k}(A)]$ since $\sigma \notin \mathsf{k}(A) \subset M_{\sigma}$ and $\gamma \leq \gamma_0 \leq \mathsf{p}_0(\sigma)$, and $\mathsf{rk}(A^{[\sigma/\mathbb{S}]}) \notin \mathcal{H}_{\gamma}[(\mathsf{k}(A) \cup \{\sigma\}) \cap M_{\sigma}]$.

Let $A \simeq \bigvee (A_{\iota})_{\iota \in J}$. Then $A^{[\sigma/\mathbb{S}]} \simeq \bigvee (A_{\iota}^{[\sigma/\mathbb{S}]})_{\iota \in [\sigma]J}$ by Proposition 6.26 and $\mathsf{k}(\iota^{[\sigma/\mathbb{S}]}) \subset \mathcal{H}_{\mathbb{S}}[(\mathsf{k}(\iota) \cap \mathbb{S}) \cup \{\sigma\}]$. Let $I = \{\iota^{[\sigma/\mathbb{S}]} : \iota \in [\sigma]J\}$. Then $A^{[\sigma/\mathbb{S}]} \simeq \bigvee (B_{\nu})_{\nu \in I}$ with $B_{\nu} \equiv A_{\iota}^{[\sigma/\mathbb{S}]}$ for $\nu = \iota^{[\sigma/\mathbb{S}]}$, and $[\{\sigma\}]_{A^{[\sigma/\mathbb{S}]}}I = I$ by $\mathsf{rk}(A^{[\sigma/\mathbb{S}]}) < \mathbb{S}$. For $d_{\iota} = \mathsf{rk}(A_{\iota}) \in \mathcal{H}_{\gamma}[\mathsf{k}(A, \iota)]$ with $\iota \in [\sigma]J = [\{\sigma\}]_{A^{(\sigma)}}J$ we obtain

$$\frac{(\mathcal{H}_{\gamma},\mathsf{k}(A,\iota)\cup\{\sigma\};\{\sigma\})\vdash_{0}^{*2d_{\iota}}\neg A_{\iota}^{[\sigma/\mathbb{S}]};A_{\iota}^{[\sigma/\mathbb{S}]}}{(\mathcal{H}_{\gamma},\mathsf{k}(A,\iota)\cup\{\sigma\};\{\sigma\})\vdash_{0}^{*2d_{\iota}+1}\neg A_{\iota}^{[\sigma/\mathbb{S}]};A^{[\sigma/\mathbb{S}]}}}{(\mathcal{H}_{\gamma},\mathsf{k}(A)\cup\{\sigma\};\{\sigma\})\vdash_{0}^{*2d}\neg A^{[\sigma/\mathbb{S}]};A^{[\sigma/\mathbb{S}]}}} \; (\bigvee)^{[\cdot]}$$

and

$$\frac{(\mathcal{H}_{\gamma},\mathsf{k}(A)\cup\mathsf{k}(\iota)\cup\{\sigma\};\{\sigma\})\vdash_{0}^{*2d_{\iota}}A_{\iota}^{[\sigma/\mathbb{S}]};\neg A_{\iota}^{[\sigma/\mathbb{S}]}}{(\mathcal{H}_{\gamma},\mathsf{k}(A)\cup\mathsf{k}(\iota)\cup\{\sigma\};\{\sigma\})\vdash_{0}^{*2d_{\iota}+1}A^{[\sigma/\mathbb{S}]};\neg A_{\iota}^{[\sigma/\mathbb{S}]}}} \underset{(\bigwedge)^{[\cdot]}}{(\bigvee)}$$

Lemma 6.30 (Embedding of Axioms) For each axiom A in S_1 , there is an $m < \omega$ such that $(\mathcal{H}_{\mathbb{S}}, \emptyset; \emptyset) \vdash_{\mathbb{K}+m}^{*\mathbb{K} \cdot 2} A$; holds for $\mathbb{K} = \mathbb{S}^+$.

Proof. We show that the axiom $\exists x \, B(x,v) \land v \in L_{\mathbb{S}} \to \exists x \in L_{\mathbb{S}} \, B(x,v) \, (B \in \Delta_0)$ follows by an inference (stbl). In the proof let us omit the operator $\mathcal{H}_{\mathbb{S}}$. Let $B(0) \in \Delta_0(\mathbb{S})$ be a Λ -formula and $u \in Tm(\mathbb{K})$. We may assume that $\mathbb{K} > d = \mathrm{rk}(B(u)) \geq \mathbb{S}$. Let $\mathsf{k}_0 = \mathsf{k}(B(0))$ and $\mathsf{k}_u = \mathsf{k}(u)$. Let $\mathsf{k}_0 \cup \mathsf{k}_u \subset M_{\sigma}$.

Then for $\exists x \in L_{\mathbb{S}}B(x) \simeq \bigvee (B(v))_{v \in J}$, we obtain $u^{[\sigma/\mathbb{S}]} \in J = Tm(\mathbb{S})$ by $\operatorname{rk}(\exists x \in L_{\mathbb{S}}B(x)) = \mathbb{S}$. We have $B(u^{[\sigma/\mathbb{S}]}) \equiv B(u)^{[\sigma/\mathbb{S}]}$, $\mathsf{k}_{u}^{[\sigma/\mathbb{S}]} = \mathsf{k}(u^{[\sigma/\mathbb{S}]}) \subset \mathcal{H}_{\mathbb{S}}[\mathsf{k}(u) \cup \{\sigma\}]$, $(\mathsf{k}_{0} \cup \mathsf{k}_{u})_{\emptyset} = \mathsf{k}_{0} \cup \mathsf{k}_{u}$ and $(\mathsf{k}_{0} \cup \mathsf{k}_{u} \cup \{\sigma\}) \cap M_{\sigma} = \mathsf{k}_{0} \cup \mathsf{k}_{u}$.

$$\frac{\mathsf{k}_0 \cup \mathsf{k}_u \cup \{\sigma\}; \{\sigma\} \vdash_0^{*2d} B(u^{[\sigma/\mathbb{S}]}); \neg B(u)^{[\sigma/\mathbb{S}]}}{\{\mathsf{k}_0 \cup \mathsf{k}_u \cup \{\sigma\}; \{\sigma\} \vdash_0^{*2d+1} \exists x \in L_{\mathbb{S}} B(x); \neg B(u)^{[\sigma/\mathbb{S}]}\}_{\mathsf{k}_0 \cup \mathsf{k}_u \subset M_{\sigma}}}{\{\mathsf{k}_0 \cup \mathsf{k}_u : \vdash_{\mathbb{K}}^{*\mathbb{K}} \neg B(u), \exists x \in L_{\mathbb{S}} B(x); \\ \hline \frac{\mathsf{k}_0 \cup \mathsf{k}_u : \vdash_{\mathbb{K}}^{*\mathbb{K}} \neg B(u), \exists x \in L_{\mathbb{S}} B(x);}{\mathsf{k}_0 : \vdash_{\mathbb{K}}^{*\mathbb{K}+1} \neg \exists x B(x), \exists x \in L_{\mathbb{S}} B(x);} (\bigwedge)}$$
(vb)

Proposition 6.31 (Inversion) Let $A \simeq \bigwedge (A_{\iota})_{\iota \in J}$ with $A \in \Gamma$, $\iota \in [\mathbb{Q}_{\Pi}]_A J$ and $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_c^{*a} \Gamma; \Pi^{[\cdot]}$. Then $(\mathcal{H}_{\gamma}, \Theta \cup \mathsf{k}(\iota); \mathbb{Q}_{\Pi}) \vdash_c^{*a} \Gamma, A_{\iota}; \Pi^{[\cdot]}$.

Proposition 6.32 Let $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a} \Gamma; \Pi^{[\cdot]}$. Assume $\Theta \subset M_{\sigma}$. Then $(\mathcal{H}_{\gamma}, \Theta \cup \{\sigma\}; \mathbb{Q}_{\Pi} \cup \{\sigma\}) \vdash_{c}^{*a} \Gamma; \Pi^{[\cdot]}$.

Proof. By induction on a. We obtain $(\Theta \cup \{\sigma\})_{\mathbb{Q}_{\Pi} \cup \{\sigma\}} = \Theta_{\mathbb{Q}_{\Pi}}$ by the assumption. In an inference (stbl), the right upper sequents are restricted to τ such that $\sigma \in M_{\tau}$. Also we need to prune some branches at (\bigwedge) and $(\bigwedge)^{[\cdot]}$ since $[(\mathbb{Q}_{\Pi} \cup \{\sigma\})]_{A}J \subset [\mathbb{Q}_{\Pi}]_{A}J$.

Proposition 6.33 (Reduction) Let $C \simeq \bigvee (C_{\iota})_{\iota \in J}$ and $\mathbb{K} = \mathbb{S}^+ \leq \operatorname{rk}(C) \leq c$. Assume $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a} \Gamma, \neg C; \Pi^{[\cdot]}$ and $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*b} C, \Gamma; \Pi^{[\cdot]}$. Then $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a+b} \Gamma; \Pi^{[\cdot]}$.

Proof. By induction on b using Inversion 6.31 and Proposition 6.32.

Note that if $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*b(\iota)} C_{\iota}, \Gamma; \Pi^{[\cdot]}$ for an $\iota \in J$ such that $\mathrm{rk}(C_{\iota}) \geq \mathbb{K}$, we obtain $\mathsf{k}(C_{\iota}) \subset \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}_{\Pi}(\mathbb{S})}] \subset M_{\mathbb{Q}_{\Pi}(\mathbb{S})}$ by (35) and Proposition 6.21 with $\gamma \leq \gamma_{0} \leq \mathsf{p}_{0}(\sigma)$ for $\sigma \in \mathbb{Q}_{\Pi}$. Hence $\iota \in [\mathbb{Q}_{\Pi}]_{C}J$ if $\mathsf{k}(\iota) \subset \mathsf{k}(C_{\iota})$.

Proposition 6.34 (Cut-elimination) Assume $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c+1}^{*a} \Gamma; \Pi^{[\cdot]}$ with $c \geq \mathbb{S}^+ = \mathbb{K}$. Then $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*\omega^a} \Gamma; \Pi^{[\cdot]}$.

Proof. This is seen by induction on a using Reduction 6.33.

Lemma 6.35 (Collapsing) Let $\Gamma \subset \Sigma$ be a set of formulas, and $\Pi \subset \Delta_0(\mathbb{K})$. Suppose $\Theta \subset \mathcal{H}_{\gamma}(\psi_{\mathbb{K}}(\gamma))$ and $(\mathcal{H}_{\gamma},\Theta;Q_{\Pi}) \vdash_{\mathbb{K}}^{*a} \Gamma;\Pi^{[\cdot]}$. Let $\beta = \psi_{\mathbb{K}}(\hat{a})$ with $\hat{a} = \gamma + \omega^a$. Then $(\mathcal{H}_{\hat{a}+1},\Theta;Q_{\Pi}) \vdash_{\beta}^{*\beta} \Gamma^{(\beta,\mathbb{K})};\Pi^{[\cdot]}$ holds.

Proof. By induction on a as in Theorem 1.22. We have $\{\gamma, a\} \subset \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}_{\Pi}}]$ by (35), and $\beta \in \mathcal{H}_{\hat{a}+1}[\Theta_{\mathbb{Q}_{\Pi}}]$.

When the last inference is a (stbl), let $B(0) \in \Delta_0(\mathbb{S})$ be a Λ -formula and a term $u \in Tm(\mathbb{K})$ such that $\mathbb{S} \leq \mathrm{rk}(B(u)) < \mathbb{K}$, $\mathrm{k}(B(u)) \subset \mathcal{H}_{\gamma}[\Theta]$, and $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{\mathbb{K}}^{*a_0} \Gamma, B(u); \Pi^{[\cdot]}$ for an ordinal $a_0 \in \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}_{\Pi}}] \cap a$. Then we obtain $\mathrm{rk}(B(u)) < \beta$.

Consider the case when the last inference is a $(\Sigma$ -rfl) on \mathbb{K} . We have ordinals $a_{\ell}, a_r < a$ and a formula $C \in \Sigma$ such that $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{\mathbb{K}}^{*a_{\ell}} \Gamma, C; \Pi^{[\cdot]}$ and $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{\mathbb{K}}^{*a_{\ell}} \neg \exists x \, C^{(x,\mathbb{K})}, \Gamma; \Pi^{[\cdot]}$.

Let $\beta_{\ell} = \psi_{\mathbb{K}}(\widehat{a_{\ell}}) \in \mathcal{H}_{\widehat{a_{\ell}}+1}[\Theta_{\mathbb{Q}_{\Pi}}] \cap \beta$ with $\widehat{a_{\ell}} = \gamma + \omega^{a_{\ell}}$. IH yields $(\mathcal{H}_{\hat{a}+1}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{\beta}^{*\beta_{\ell}} \Gamma^{(\beta,\mathbb{K})}, C^{(\beta_{\ell},\mathbb{K})}; \Pi^{[\cdot]}$. On the other, Inversion 6.31 yields $(\mathcal{H}_{\widehat{a_{\ell}}+1}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{\mathbb{K}}^{*a_{r}} \neg C^{(\beta_{\ell},\mathbb{K})}, \Gamma; \Pi^{[\cdot]}$. For $\beta_{r} = \psi_{\mathbb{K}}(\widehat{a_{r}}) \in \mathcal{H}_{\hat{a}+1}[\Theta_{\mathbb{Q}_{\Pi}}] \cap \beta$ with $\widehat{a_{r}} = \widehat{a_{\ell}} + \omega^{a_{r}}$, IH yields $(\mathcal{H}_{\hat{a}+1}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{\beta}^{*\beta_{r}} \neg C^{(\beta_{\ell},\mathbb{K})}, \Gamma^{(\beta,\mathbb{K})}; \Pi^{[\cdot]}$. We obtain $(\mathcal{H}_{\hat{a}+1}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{\beta}^{*\beta} \Gamma^{(\beta,\mathbb{K})}; \Pi^{[\cdot]}$ by a (cut).

Note that since $\Pi \subset \Delta_0(\mathbb{K})$, inferences $(\bigwedge)^{[\cdot]}$ are harmless for the condition $\Theta \subset \mathcal{H}_{\gamma}(\psi_{\mathbb{K}}(\gamma))$.

6.6 Operator controlled derivations with caps

In this subsection we introduce another derivability relation $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c,e,b_1}^{a} \Gamma$, which depends again on an ordinal γ_0 , and should be written as $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c,e,\gamma_0,b_1}^{a} \Gamma$. However the ordinal γ_0 will be fixed, and specified in the proof of Theorem 6.51. So let us omit it.

The inference rules (stbl) are replaced by inferences $(\operatorname{rfl}(\rho,d,f,b_1))$ by putting a $\operatorname{cap}\,\rho$ on formulas in Lemma 6.44. In $(\mathcal{H}_{\gamma},\Theta,\mathbb{Q}) \vdash_{c,e,b_1}^a \Gamma, c$ is a bound for cut ranks and e a bound for ordinals ρ in the inferences $(\operatorname{rfl}(\rho,d,f,b_1))$ occurring in the derivation. b_1 is a bound such that $s(\rho) = \max(\sup p(m(\rho))) \leq b_1$. Although the capped formula $A^{(\rho)}$ in Definition 6.36, is intended to denote the formula $A^{[\rho/\mathbb{S}]}$, we need to distinguish it from $A^{[\rho/\mathbb{S}]}$. Our main task is to eliminate inferences $(\operatorname{rfl}(\rho,d,f))$ from a resulting derivation \mathcal{D}_1 . In Recapping 6.47 the cap ρ in inferences $(\operatorname{rfl}(\rho,d,f,b_1))$ are replaced by another cap $\kappa < \rho$. In this process new inferences $(\operatorname{rfl}(\sigma,d_1,f_1,b_1))$ arise with $\sigma < \kappa$. Iterating this process, we arrive at a derivation \mathcal{D}_2 such that $s(\rho) \leq \mathbb{S}$, i.e., $\sup p(m(\rho)) \subset \mathbb{S}+1$. Then caps play no rôle, i.e., $A^{(\rho)}$ is 'equivalent' to A for $A \in \Delta_0(\mathbb{S})$. Finally inferences $(\operatorname{rfl}(\rho,d,f,b_1))$ are removed from \mathcal{D}_2 by throwing up caps and replacing these by a series of (cut) 's, cf. Lemma 6.48.

The ordinal, i.e., the threshold γ_0 will be specified in the end of this section.

Definition 6.36 By a capped formula we mean a pair (A, ρ) of RS-sentence A and an ordinal $\rho < \mathbb{S}$ such that $\mathsf{k}(A) \subset M_{\rho}$. Such a pair is denoted by $A^{(\rho)}$. A sequent is a finite set of capped formulas, denoted by $\Gamma_0^{(\rho_0)}, \ldots, \Gamma_n^{(\rho_n)}$, where each formula in the set $\Gamma_i^{(\rho_i)}$ puts on the cap $\rho_i \in \mathbb{S}$. When we write $\Gamma^{(\rho)}$, we tacitly assume that $\mathsf{k}(\Gamma) \subset M_{\rho}$. A capped formula $A^{(\rho)}$ is said to be a $\Sigma(\pi)$ -formula if $A \in \Sigma(\pi)$. Let $\mathsf{k}(A^{(\rho)}) := \mathsf{k}(A)$.

Definition 6.37 Let f be a non-empty (and irreducible) finite function. Then f is said to be special if there exists an ordinal α such that $f(c_{\max}) = \alpha + \mathbb{K}$ for $c_{\max} = \max(\sup(f))$. For a special finite function f, f' denotes a finite function such that $\sup(f') = \sup(f)$, f'(c) = f(c) for $c \neq c_{\max}$, and $f'(c_{\max}) = \alpha$ with $f(c_{\max}) = \alpha + \mathbb{K}$.

The ordinal \mathbb{K} in $f(c_{\text{max}}) = \alpha + \mathbb{K}$ is a 'room' to be replaced by a smaller ordinal, cf. Definition 6.45.

Definition 6.38 A finite set $\mathbb{Q} \subset \Psi_{\mathbb{S}}$ is said to be a *finite family* for ordinals γ_0 and b_1 if $\rho \in \mathcal{H}_{\gamma_0 + \mathbb{S}} = \mathcal{H}_{\gamma_0 + \mathbb{S}}(0)$, $m(\rho) : \mathbb{K} \to \varphi_{\mathbb{K}}(0)$ is special such that $s(\rho) = \max(\sup(m(\rho))) \leq b_1$ and $p_0(\rho) \geq \gamma_0$ for each $\rho \in \mathbb{Q}$.

The resolvent class $H_{\rho}(f,b_1,\gamma_0,\Theta)$ in the following Definition 6.39 is the set of ordinals $\sigma < \rho$, which are candidates of substitutes for ρ in the inference $(\text{rfl}(\rho,d,f,b_1))$ for reflection. Note that if $p_0(\sigma) \leq p_0(\rho)$ and $\sigma < \rho$, then $M_{\sigma} \subset M_{\rho} = \mathcal{H}_{p_0(\rho)}(\rho)$. Moreover if $p_0(\sigma) \geq \gamma_0 \geq \gamma$ and $\Theta \subset M_{\sigma}$, then $\mathcal{H}_{\gamma}[\Theta] \subset M_{\sigma}$ by Proposition 6.21.

Definition 6.39 $H_{\rho}(f, b_1, \gamma_0, \Theta)$ denotes the resolvent class for finite functions f, ordinals ρ, b_1, γ_0 and finite sets Θ of ordinals defined by $\sigma \in H_{\rho}(f, b_1, \gamma_0, \Theta)$ iff $\sigma \in \mathcal{H}_{\gamma_0 + \mathbb{S}} \cap \rho$, $SC_{\mathbb{K}}(m(\sigma)) \subset \mathcal{H}_{\gamma_0}[\Theta]$, $\Theta \subset M_{\sigma}$, $p_0(\sigma) = p_0(\rho) \geq \gamma_0$, and $m(\sigma)$ is special such that $s(f) = \max(\sup f) \leq s(\sigma) \leq b_1$ and $f' \leq (m(\sigma))'$, where $f \leq g \Leftrightarrow \forall i (f(i) \leq g(i))$.

We define a derivability relation $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c,e}^{a} \Gamma$, where $\mathbb{S} \leq \gamma \leq \gamma_{0}$ is an ordinal, Θ a finite set of ordinals, \mathbb{Q} a finite family for γ_{0}, b_{1} , and $a, c < \mathbb{K} = \mathbb{S}^{+}$. c a bound of cut ranks, e a bound of ρ in inference rules $(\text{rfl}(\rho, d, f, b_{1}))$, and b_{1} a bound on $s(\rho)$. The relation $\vdash_{c,e}^{a}$ depends on fixed ordinals γ_{0} and b_{1} .

For $d = \operatorname{rk}(A) < \mathbb{S}$, it may be $k(A) \cup \{d\} \not\subset M_{\mathbb{Q}}$. Let us avoid deriving the tautology $\neg A, A$ by a standard derivation to show $\vdash^{2d} \neg A, A$.

Definition 6.40 Let $\Theta^{(\rho)} = \Theta \cap M_{\rho}$, $[\mathbb{Q}]_{A^{(\rho)}}J = [\mathbb{Q}]_AJ \cap [\rho]J$, $\mathbb{S} \leq \gamma \leq \gamma_0$ and $e \in \mathcal{H}_{\gamma_0 + \mathbb{S}}(0)$.

 $(\mathcal{H}_{\gamma},\Theta,\mathbb{Q})\vdash^{a}_{c,e,\gamma_{0},b_{1}}\Gamma$ holds for a set $\Gamma=\bigcup\{\Gamma^{(\rho)}_{\rho}:\rho\in\mathbb{Q}\}$ of formulas if

$$\forall \rho \in \mathbb{Q} \left(\mathsf{k}(\Gamma_{\rho}) \subset \mathcal{H}_{\gamma}[\Theta^{(\rho)}] \right) \tag{36}$$

$$\{\gamma, a, c, b_1\} \cup \mathsf{k}^{\mathbb{S}}(\Gamma) \subset \mathcal{H}_{\gamma}[\Theta_{\mathsf{Q}}]$$
 (37)

and one of the following cases holds:

(Taut) $\{\neg A^{(\rho)}, A^{(\rho)}\} \subset \Gamma$ for a $\rho \in \mathbb{Q}$ and a formula A such that $\operatorname{rk}(A) < \mathbb{S}$.

- (V) There exist $A \simeq \bigvee (A_{\iota})_{\iota \in J}$, a cap $\rho \in \mathbb{Q}$, an ordinal $a_{\iota} < a$ and an $\iota \in [\rho]J$ such that $A^{(\rho)} \in \Gamma$ and $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c,e,\gamma_{0},b_{1}}^{a_{\iota}} \Gamma, (A_{\iota})^{(\rho)}$. Note that if $\operatorname{rk}(A_{\iota}) \geq \mathbb{S}$, then $\operatorname{k}(A_{\iota}) \subset \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}}] \subset M_{\mathbb{Q}}$ by (37). Hence $\iota \in [\mathbb{Q}]_{A}J = \{\iota \in J : \operatorname{rk}(A_{\iota}) \geq \mathbb{S} \Rightarrow \operatorname{k}(\iota) \subset M_{\mathbb{Q}}\}$.
- (\bigwedge) There exist $A \simeq \bigwedge(A_{\iota})_{\iota \in J}$, a cap $\rho \in \mathbb{Q}$, ordinals $a_{\iota} < a$ for each $\iota \in [\mathbb{Q}]_{A^{(\rho)}}J$ such that $A^{(\rho)} \in \Gamma$ and $(\mathcal{H}_{\gamma}, \Theta \cup \mathsf{k}(\iota), \mathbb{Q}) \vdash_{c,e,\gamma_0,b_1}^{a_{\iota}} \Gamma, (A_{\iota})^{(\rho)}$. Note that if $\mathrm{rk}(A_{\iota}) \geq \mathbb{S}$, then $\mathsf{k}(\iota) \subset M_{\mathbb{Q}}$ by $\iota \in [\mathbb{Q}]_{A^{(\rho)}}J$. Hence $\mathsf{k}^{\mathbb{S}}(A_{\iota}) \subset \mathcal{H}_{\gamma}[(\Theta \cup \mathsf{k}(\iota))_{\mathbb{Q}}]$ for (37), where $(\Theta \cup \mathsf{k}(\iota))_{\mathbb{Q}} = \Theta_{\mathbb{Q}} \cup \mathsf{k}(\iota)$.

- (cut) There exist a cap $\rho \in \mathbb{Q}$, an ordinal $a_0 < a$ and a formula C such that $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c,e,\gamma_0,b_1}^{a_0} \Gamma, \neg C^{(\rho)}$ and $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c,e,\gamma_0,b_1}^{a_0} C^{(\rho)}, \Gamma$ with $\mathrm{rk}(C) < c$.
- $(\text{rfl}(\rho, d, f, b_1))$ There exist a cap $\rho \in \mathbb{Q}$ such that $\Theta \subset M_{\rho}$, ordinals $d \in \text{supp}(m(\rho))$, and $a_0 < a$, a special finite function f, and a finite set Δ of uncapped formulas enjoying the following conditions.
 - (r0) $\rho < e \text{ if } s(\rho) > \mathbb{S}.$
 - (r1) $\Delta \subset \bigvee(d) := \{\delta : \operatorname{rk}(\delta) < d, \delta \text{ is a } \bigvee \text{-formula}\} \cup \{\delta : \operatorname{rk}(\delta) < \mathbb{S}\}.$
 - (r2) For the special finite function $g = m(\rho)$, $s(f) \leq b_1$, $SC_{\mathbb{K}}(f,g) \subset \mathcal{H}_{\gamma_0}[\Theta^{(\rho)}]$ and $f_d = g_d \& f^d <^d g'(d)$.
 - (r3) For each $\delta \in \Delta$, $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c,e,\gamma_0,b_1}^{a_0} \Gamma, \neg \delta^{(\rho)}$.
 - (r4) $(\mathcal{H}_{\gamma}, \Theta \cup \{\sigma\}, \mathbb{Q} \cup \{\sigma\}) \vdash_{c.e.,\gamma_0,b_1}^{a_0} \Gamma, \Delta^{(\sigma)} \text{ holds for every } \sigma \in H_{\rho}(f, b_1, \gamma_0, \Theta^{(\rho)}).$

$$\frac{\{(\mathcal{H}_{\gamma},\Theta,\mathbb{Q})\vdash_{c,e}^{a_0}\Gamma,\neg\delta^{(\rho)}\}_{\delta\in\Delta}\quad\{(\mathcal{H}_{\gamma},\Theta\cup\{\sigma\},\mathbb{Q}\cup\{\sigma\})\vdash_{c,e}^{a_0}\Gamma,\Delta^{(\sigma)}\}_{\sigma\in H_{\rho}(f,b_1,\gamma_0,\Theta^{(\rho)})}}{(\mathcal{H}_{\gamma},\Theta,\mathbb{Q})\vdash_{c,e}^{a}\Gamma}\ (\mathrm{rfl}(\rho,d,f,b_1))$$

Note that $(\Theta \cup \{\sigma\})_{\mathbb{Q} \cup \{\sigma\}} = \Theta_{\mathbb{Q} \cup \{\sigma\}} = \Theta_{\mathbb{Q}}$ by $\Theta^{(\rho)} \subset M_{\sigma}$ and $\rho \in \mathbb{Q}$.

 $\{e\} \cup \mathbb{Q} \subset \mathcal{H}_{\gamma}[\Theta]$ need not to hold.

Suppose $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c,e}^{a} \Gamma$ holds with $A^{(\rho)} \in \Gamma$ and $\rho \in \mathbb{Q}$. By (36) we have $\mathsf{k}(A) \subset \mathcal{H}_{\gamma}[\Theta^{(\rho)}]$. We obtain $\mathsf{k}(A) \subset M_{\rho}$ by Proposition 6.21.

In this subsection the ordinals γ_0 and b_1 will be fixed, and we write $\vdash^a_{c,e}$ for $\vdash^a_{c,e,\gamma_0,b_1}$.

Proposition 6.41 (Tautology) Let $\{\gamma\} \cup \mathsf{k}^{\mathbb{S}}(A) \subset \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}}] \text{ and } \sigma \in \mathbb{Q}, \ \mathsf{k}(A) \subset \mathcal{H}_{\gamma}[\Theta^{(\sigma)}].$ Then $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{0,0}^{2d} \neg A^{(\sigma)}, A^{(\sigma)} \text{ holds for } d = \max\{\mathbb{S}, \mathrm{rk}(A)\}.$

Proof. By induction on d. Let $A \simeq \bigvee (A_{\iota})_{\iota \in J}$ with $\operatorname{rk}(A) \geq \mathbb{S}$. For $\iota \in [\mathbb{Q}]_{A^{(\sigma)}} J \subset [\sigma] J$, let $d_{\iota} = 0$ if $\operatorname{rk}(A_{\iota}) < \mathbb{S}$. Otherwise $d_{\iota} = \max\{\mathbb{S}, \operatorname{rk}(A_{\iota})\}$. In each case we have $d_{\iota} < d$. IH yields

$$\frac{(\mathcal{H}_{\gamma},\Theta \cup \mathsf{k}(\iota),\mathbb{Q}) \vdash_{0,0}^{2d_{\iota}} \neg A_{\iota}^{(\sigma)}, A_{\iota}^{(\sigma)}}{(\mathcal{H}_{\gamma},\Theta \cup \mathsf{k}(\iota),\mathbb{Q}) \vdash_{0,0}^{2d_{\iota}+1} \neg A_{\iota}^{(\sigma)}, A^{(\sigma)}}} \ (\bigvee)}{(\mathcal{H}_{\gamma},\Theta,\mathbb{Q}) \vdash_{0,0}^{2d} \neg A^{(\sigma)}, A^{(\sigma)}} \ (\bigwedge)$$

Proposition 6.42 (Inversion) Let $A \simeq \bigwedge (A_{\iota})_{\iota \in J}$ with $A^{(\rho)} \in \Gamma$ and $\operatorname{rk}(A) \geq \mathbb{S}$, $\iota \in [\mathbb{Q}]_{A^{(\rho)}}J$ with $\rho \in \mathbb{Q}$ and $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c,e}^{a} \Gamma$. Then $(\mathcal{H}_{\gamma}, \Theta \cup \mathsf{k}(\iota), \mathbb{Q}) \vdash_{c,e}^{a} \Gamma, A_{\iota}$.

57

Proposition 6.43 (Cut-elimination) Let $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c+d,e}^{a} \Gamma$ with $\mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}}] \ni c \geq \mathbb{S}$. Then $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c,e}^{\varphi_{d}(a)} \Gamma$.

Proof. By main induction on d with subsidiary induction on a using an analogue to Reduction 6.33 with (37). Note that $\operatorname{rk}(C) \in \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}}]$ when $\operatorname{rk}(C) \geq \mathbb{S}$ and $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c,e}^{a} \Gamma, C$.

Lemma 6.44 (Capping) Let $\Gamma \cup \Pi \subset \Delta_0(\mathbb{K})$ with $\Pi = \bigcup \{\Pi_{\sigma} : \sigma \in \mathbb{Q}_{\Pi}\}$. Suppose $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c, \gamma_0}^{*a} \Gamma; \Pi^{[\cdot]} \text{ for } a, c < \mathbb{K} \text{ and } \Pi^{[\cdot]} = \bigcup \{\Pi_{\sigma}^{[\sigma/\mathbb{S}]} : \sigma \in \mathbb{Q}_{\Pi}\}$. Let $\rho = \psi_{\mathbb{S}}^{g}(\gamma_1)$ be an ordinal such that $\mathbb{Q}_{\Pi} \subset \rho$,

$$\Theta \subset M_{\rho} \tag{38}$$

and $g = m(\rho)$ a special finite function such that $\operatorname{supp}(g) = \{c\}$ and $g(c) = \alpha_0 + \mathbb{K}$, where $\mathbb{K}(2a+1) \leq \alpha_0 + \mathbb{K} \leq \gamma_0 \leq \gamma_1$ with $\{\gamma_1, c, \alpha_0\} \subset \mathcal{H}_{\gamma}[\Theta] \cap \mathcal{H}_{\gamma_0}$, and $\operatorname{p}_0(\sigma) \leq \operatorname{p}_0(\rho) = \gamma_1$ for each $\sigma \in \operatorname{Q}_{\Pi}$. Let $\widehat{\Gamma} = \bigcup \{A^{(\rho)} : A \in \Gamma\}$, $\widehat{\Pi} = \bigcup \{\Pi_{\sigma}^{(\sigma)} : \sigma \in \operatorname{Q}_{\Pi}\}$ and $\operatorname{Q} = \operatorname{Q}_{\Pi} \cup \{\rho\}$.

Then $(\mathcal{H}_{\gamma}, \Theta_{\Pi}, \mathbb{Q}) \vdash_{c,\rho+1,\gamma_0,c}^a \widehat{\widehat{\Gamma}}, \widehat{\widehat{\Pi}} \text{ holds holds for } \Theta_{\Pi} = \Theta \cup \mathbb{Q}_{\Pi}.$

Proof. By induction on a. Let us write \vdash_c^a for \vdash_c^a , $\rho \vdash_{c,\rho+1,\gamma_0,c}^a$ in the proof. By assumptions we have $\Theta \subset M_\rho$ and $\mathbb{Q}_\Pi \subset \rho$. Hence $\Theta = \Theta^{(\rho)}$ and $\Theta_{\mathbb{Q}_\Pi} = \Theta_{\mathbb{Q}}$. On the other hand we have $\mathsf{k}(\Gamma) \subset \mathcal{H}_\gamma[\Theta]$ and for $\sigma \in \mathbb{Q}_\Pi$, $\mathsf{k}(\Pi_\sigma) \subset \mathcal{H}_\gamma[\Theta^{(\sigma)}]$ by (34). Therefore (36) is enjoyed. We have $\{\gamma, a, c\} \subset \mathcal{H}_\gamma[\Theta_{\mathbb{Q}_\Pi}]$ by (35). Hence (37) is enjoyed. Moreover we have $SC_\mathbb{K}(g) \subset \mathcal{H}_\gamma[\Theta] \subset M_\rho$.

Case 1. First consider the case when the last inference is a (stbl):

$$\frac{(\mathcal{H}_{\gamma},\Theta;\mathbb{Q}_{\Pi})\vdash_{c}^{*a_{0}}\Gamma,B(u);\Pi^{[\cdot]}\quad\{(\mathcal{H}_{\gamma},\Theta\cup\{\sigma\};\mathbb{Q}_{\Pi}\cup\{\sigma\})\vdash_{c}^{*a_{0}}\Gamma;\neg B(u)^{[\sigma/\mathbb{S}]},\Pi^{[\cdot]}\}_{\Theta\subset M_{\sigma}}}{(\mathcal{H}_{\gamma},\Theta;\mathbb{Q}_{\Pi})\vdash_{c}^{*a}\Gamma;\Pi^{[\cdot]}}\text{ (stbl)}$$

Note that it may be the formula $B(u)^{[\sigma/\mathbb{S}]}$ is in Γ , cf. Embedding 6.30. σ in $\Theta \cup \{\sigma\}$ ensures us $\mathsf{k}(B(u)^{[\sigma/\mathbb{S}]}) \subset \mathcal{H}_{\gamma}[\Theta \cup \{\sigma\}]$ in (34). This explains the additional set \mathbb{Q}_{Π} in $(\mathcal{H}_{\gamma}, \Theta_{\Pi}, \mathbb{Q}) \vdash_{c}^{a} \widehat{\Gamma}, \widehat{\Pi}$, and the addition would be an obstacle to $a \in \Theta_{\mathbb{Q}}$ in (37).

We have an ordinal $a_0 < a$, a \bigwedge -formula $B(0) \in \Delta_0(\mathbb{S})$, and a term $u \in Tm(\mathbb{K})$ such that $\mathbb{S} \leq \text{rk}(B(u)) < c$. We have $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_c^{*a_0} \Gamma, B(u); \Pi^{[\cdot]}$. $(\mathcal{H}_{\gamma}, \Theta_{\Pi}, \mathbb{Q}) \vdash_c^{a_0} \widehat{\Gamma}, (B(u))^{(\rho)}, \widehat{\Pi}$ follows from IH.

On the other hand we have $(\mathcal{H}_{\gamma}, \Theta \cup \{\sigma\}; \mathbb{Q}_{\Pi} \cup \{\sigma\}) \vdash_{c}^{*a_{0}} \Gamma; \neg B(u)^{[\sigma/\mathbb{S}]}, \Pi^{[\cdot]}$ for every ordinal σ such that $\Theta \subset M_{\sigma}$.

Let h be a special finite function such that $\operatorname{supp}(h) = \{c\}$ and $h(c) = \mathbb{K}(2a_0 + 1)$. Then $h_c = g_c = \emptyset$ and $h^c <^c g'(c)$ by $h(c) = \mathbb{K}(2a_0 + 1) < \mathbb{K}(2a) \le \alpha_0 = g'(c)$. Let $\sigma \in H_\rho(h, c, \gamma_0, \Theta)$. For example $\sigma = \psi_\rho^h(\gamma_1 + \eta)$ with $\eta = \max(\{1\} \cup E_{\mathbb{S}}(\Theta))$, where $E_{\mathbb{S}}(\Theta) = \bigcup_{\alpha \in \Theta} E_{\mathbb{S}}(\alpha)$ with the set $E_{\mathbb{S}}(\alpha)$ of subterms< \mathbb{S} of α . We obtain $\Theta \subset \mathcal{H}_{\gamma_1}(\sigma) = M_\sigma$ by $\Theta \subset M_\rho$, and $\{\gamma_1, c, a_0\} \subset \mathcal{H}_\gamma[\Theta] \subset \mathcal{H}_{\gamma_1}(\sigma)$.

We have $\mathsf{k}^{\mathbb{S}}(B(u)) = \mathsf{k}(B(u)) \subset \mathcal{H}_{\gamma}[\Theta_{\mathfrak{q}}] \subset M_{\sigma}$ for (37), and $(\mathcal{H}_{\gamma}, \Theta_{\Pi} \cup \{\sigma\}, \mathbb{Q} \cup \{\sigma\}) \vdash_{c}^{a_{0}} \widehat{\Gamma}, \neg B(u)^{(\sigma)}, \widehat{\Pi}$ follows from IH with $\sigma \in M_{\rho}$. Since this holds

for every such σ , we obtain $(\mathcal{H}_{\gamma}, \Theta_{\Pi}, \mathbb{Q}) \vdash_{c,\rho+1}^{a} \widehat{\Gamma}, \widehat{\Pi}$ by an inference $(\text{rfl}(\rho, c, h, c))$ with $\text{rk}(B(u)) < c \in \text{supp}(m(\rho))$. In the following figure let us omit the operator \mathcal{H}_{γ} .

$$\frac{(\Theta_{\Pi}, \mathbb{Q}) \vdash_{c}^{a_{0}} \widehat{\Gamma}, B(u)^{(\rho)}, \widehat{\Pi} \quad \{(\Theta_{\Pi} \cup \{\sigma\}, \mathbb{Q} \cup \{\sigma\}) \vdash_{c}^{a_{0}} \widehat{\Gamma}, \neg B(u)^{(\sigma)}, \widehat{\Pi}\}_{\sigma}}{(\Theta_{\Pi}, \mathbb{Q}) \vdash_{c}^{a} \widehat{\Gamma}, \widehat{\Pi}} \quad (\mathrm{rfl}(\rho, c, h, c))$$

Case 2. Second the last inference introduces a \bigvee -formula A.

Case 2.1. First let $A \in \Gamma$ be introduced by a (\bigvee) , and $A \simeq \bigvee (A_{\iota})_{\iota \in J}$. There are an $\iota \in J$ an ordinal $a(\iota) < a$ such that $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a(\iota)} \Gamma, A_{\iota}; \Pi^{[\cdot]}$. Let $\mathsf{k}(\iota) \subset \mathsf{k}(A_{\iota})$. We obtain $\mathsf{k}(\iota) \subset \mathcal{H}_{\gamma}[\Theta] \subset M_{\rho}$ by (34), $\Theta \subset M_{\rho}$ and $\gamma \leq \gamma_{0} \leq \gamma_{1}$. Hence $\iota \in [\rho]J$. IH yields $(\mathcal{H}_{\gamma}, \Theta_{\Pi}, \mathbb{Q}) \vdash_{c}^{a(\iota)} \widehat{\Pi}, \widehat{\Gamma}, (A_{\iota})^{(\rho)}$. $(\mathcal{H}_{\gamma}, \Theta_{\Pi}, \mathbb{Q}) \vdash_{c}^{a} \widehat{\Pi}, \widehat{\Gamma}$ follows from a (\bigvee) .

Case 2.2. Second $A \equiv B^{[\sigma/\mathbb{S}]} \in \Pi^{[\cdot]}$ is introduced by a $(\bigvee)^{[\cdot]}$ with $B^{(\sigma)} \in \widehat{\Pi}$ and $\sigma \in \mathbb{Q}_{\Pi}$. Let $B \simeq \bigvee (B_{\iota})_{\iota \in J}$. Then $A \simeq \bigvee \left(B_{\iota}^{[\sigma,\mathbb{S}]}\right)_{\iota \in [\sigma]J}$ by Proposition 6.26. There are an $\iota \in [\sigma]J$ and an ordinal $a(\iota) < a$ such that $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{a(\iota)} \Gamma; B_{\iota}^{[\sigma/\mathbb{S}]}, \Pi^{[\cdot]}$ for $A_{\iota} \equiv B_{\iota}^{[\sigma/\mathbb{S}]}$. IH yields $(\mathcal{H}_{\gamma}, \Theta_{\Pi}, \mathbb{Q}) \vdash_{c}^{a(\iota)} \widehat{\Pi}, \widehat{\Gamma}, (B_{\iota})^{(\sigma)}$. We obtain $(\mathcal{H}_{\gamma}, \Theta_{\Pi}, \mathbb{Q}) \vdash_{c}^{a} \widehat{\Pi}, \widehat{\Gamma}$ by a (\bigvee) .

Case 3. Third the last inference introduces a \bigwedge -formula A.

Case 3.1. First let $A \in \Gamma$ be introduced by a (\bigwedge) , and $A \simeq \bigwedge (A_{\iota})_{\iota \in J}$. For every $\iota \in [\mathbb{Q}_{\Pi}]_A J$ there exists an $a(\iota) < a$ such that $(\mathcal{H}_{\gamma}, \Theta \cup \mathsf{k}(\iota); \mathbb{Q}_{\Pi}) \vdash_c^{*a(\iota)} \Gamma, A_{\iota}; \Pi^{[\cdot]}$. IH yields $(\mathcal{H}_{\gamma}, \Theta_{\Pi} \cup \mathsf{k}(\iota), \mathbb{Q}) \vdash_c^{a(\iota)} \widehat{\Pi}, \widehat{\Gamma}, (A_{\iota})^{(\rho)}$ for each $\iota \in [\mathbb{Q}]_{A^{(\rho)}} J \subset [\mathbb{Q}_{\Pi}]_A J$, where $\mathsf{k}(\iota) \subset M_{\rho}$. We obtain $(\mathcal{H}_{\gamma}, \Theta_{\Pi}, \mathbb{Q}) \vdash_c^a \widehat{\Pi}, \widehat{\Gamma}$ by a (\bigwedge) .

Case 3.2. Second $A \equiv B^{[\sigma/\mathbb{S}]} \in \Pi^{[\cdot]}$ is introduced by a $(\bigwedge)^{[\cdot]}$ with $B^{(\sigma)} \in \widehat{\Pi}$ and $\sigma \in \mathbb{Q}_{\Pi}$. Let $B \simeq \bigwedge(B_{\iota})_{\iota \in J}$ with $A \simeq \bigwedge(B_{\iota}^{[\sigma/\mathbb{S}]})_{\iota \in [\sigma]J}$. For each $\iota \in [\mathbb{Q}_{\Pi}]_{B}J \cap [\sigma]J$ there is an ordinal $a(\iota) < a$ such that $(\mathcal{H}_{\gamma}, \Theta \cup \mathsf{k}(\iota); \mathbb{Q}_{\Pi}) \vdash_{c}^{*a(\iota)} \Gamma; A_{\iota}, \Pi^{[\cdot]}$ for $A_{\iota} \equiv B_{\iota}^{[\sigma/\mathbb{S}]}$. IH yields $(\mathcal{H}_{\gamma}, \Theta_{\Pi} \cup \mathsf{k}(\iota), \mathbb{Q}) \vdash_{c}^{a(\iota)} \widehat{\Pi}, \widehat{\Gamma}, (B_{\iota})^{(\sigma)}$ for each $\iota \in [\mathbb{Q}]_{B^{(\sigma)}}J \subset [\mathbb{Q}_{\Pi}]_{B}J \cap [\sigma]J$, where $\mathsf{k}(\iota) \subset M_{\sigma} \subset M_{\rho}$. $(\mathcal{H}_{\gamma}, \Theta_{\Pi}, \mathbb{Q}) \vdash_{c}^{a} \widehat{\Pi}, \widehat{\Gamma}$ follows from a (\bigwedge) .

The other cases (cut) or $(\Sigma$ -rfl) on Ω are seen from IH.

6.7 Eliminations of inferences (rfl)

In this subsection, $(\text{rfl}(\rho, c, \gamma))$ are removed from operator controlled derivations of Σ_1 -sentences $\theta^{L_{\Omega}}$ over Ω .

Definition 6.45 For a special finite function g and ordinals $a < \mathbb{K}$, $b < c_{\max} = \max(\operatorname{supp}(g)) < \mathbb{K}$, let us define a special finite function $h = h^b(g; a)$ as follows. $\max(\operatorname{supp}(h)) = b$, and $h_b = g_b$. To define h(b), let $\{b = b_0 < b_1 < \cdots < b_n = c_{\max}\} = \{b, c_{\max}\} \cup ((b, c_{\max}) \cap \operatorname{supp}(g))$. Define recursively ordinals α_i by $\alpha_n = \alpha + a$ with $g(c_{\max}) = \alpha + \mathbb{K}$. $\alpha_i = g(b_i) + \tilde{\theta}_{c_i}(\alpha_{i+1})$ for $c_i = b_{i+1} - b_i$. Finally put $h(b) = \alpha_0 + \mathbb{K}$.

Proposition 6.46 Let f and g be special finite functions with $c_{\text{max}} = \max(\text{supp}(g))$.

- 1. Let $b < e < c_{\max}$ and $a_0, a_1 < a$. Then $h^b(h^e(g; a_0); a_1) \le (h^b(g; a))'$.
- 2. Suppose $f <^d g'(d)$ for $a \ d \in \text{supp}(g)$. Let b < d. Then $f_b = (h^b(g;a))_b$ and $f <^b (h^b(g;a))'(b)$.

Recall that $s(\rho) = \max(\text{supp}(m(\rho))).$

Lemma 6.47 (Recapping)

Let $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c_1, e, \gamma_0, b_2}^a \Pi, \widehat{\Gamma}$ for a finite family \mathbb{Q} for $\gamma_0, b_2, \mathbb{Q}^t \subset \mathbb{Q}$, $\forall \rho \in \mathbb{Q}^t(s(\rho) > \mathbb{S})$ and $\mathbb{Q}^f = \mathbb{Q} \setminus \mathbb{Q}^t$, $\Gamma \cup \Pi \subset \Delta_0(\mathbb{K})$, $\widehat{\Gamma} = \bigcup \{\Gamma_{\rho}^{(\rho)} : \rho \in \mathbb{Q}^t\}$, where each $\theta \in \Gamma$ is either a \bigvee -formula or $\mathrm{rk}(\theta) < \mathbb{S}$, and Π a set of formulas such that $\tau \in \mathbb{Q}^f$ for every $A^{(\tau)} \in \Pi$.

Let $\max\{s(\rho): \rho \in \mathbb{Q}^t\} \leq b_1$. For each $\rho \in \mathbb{Q}^t$, let $\mathbb{S} \leq b^{(\rho)} \in \mathcal{H}_{\gamma}[\Theta^{(\rho)}]$ with $\mathrm{rk}(\Gamma_{\rho}) < b^{(\rho)} < s(\rho)$, and $\kappa(\rho) \in \mathcal{H}_{\rho}(h^{b^{(\rho)}}(m(\rho); \omega(b_1, a)), b_2, \gamma_0, \Theta^{(\rho)})$ with $\omega(b, a) = \omega^{\omega^b} a$. Assume $b_1 \in \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}}]$.

Then $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}(\kappa)) \vdash_{c_{b_1}, e^{\kappa}, \gamma_0, b_2}^{\omega(b_1, a)} \Pi, \widehat{\Gamma}_{\kappa} \text{ holds, where } \mathbb{Q}(\kappa) = \mathbb{Q}^f \cup \{\kappa(\rho) : \rho \in \mathbb{Q}^t\}, c_{b_1} = \max\{c_1, b_1\}, e^{\kappa} = \max\{\{\tau \in \mathbb{Q}^f : s(\tau) > \mathbb{S}\} \cup \{\kappa(\rho) : \rho \in \mathbb{Q}^t\}\} + 1, \widehat{\Gamma}_{\kappa} = \bigcup\{\Gamma_{\rho}^{(\kappa(\rho))} : \rho \in \mathbb{Q}^t\}.$

 $e^{\kappa} < e \text{ holds when } \mathbb{Q}^t = \{ \rho \in \mathbb{Q} : s(\rho) > \mathbb{S} \} \neq \emptyset.$

Proof. We show the lemma by main induction on b_1 with subsidiary induction on a. The subscripts γ_0, b_2 are omitted in the proof. We obtain $\{\gamma, b_1, a, c_1\} \cup \mathbb{k}^{\mathbb{S}}(\Pi, \Gamma) \subset \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}}]$ by the assumption and (37). Then $\{\gamma, \omega(b_1, a), c_{b_1}\} \cup \mathbb{k}^{\mathbb{S}}(\Pi, \Gamma) \subset \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}(\kappa)}]$ since $\Theta^{(\rho)} \subset M_{\kappa(\rho)}$ for each $\rho \in \mathbb{Q}^t$. Hence (37) is enjoyed in $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}(\kappa)) \vdash_{c_{b_1}, e, \gamma_0, b_2}^{\omega(b_1, a)} \Pi, \widehat{\Gamma}_{\kappa}$.

Let $\rho \in \mathbb{Q}^t$. We have $b^{(\rho)} \in \mathcal{H}_{\gamma}[\Theta^{(\rho)}]$, $SC_{\mathbb{K}}(m(\rho)) \subset \mathcal{H}_{\gamma_0}[\Theta^{(\rho)}]$ and $\Theta^{(\rho)} \subset M_{\kappa(\rho)}$. $SC_{\mathbb{K}}(h^{b^{(\rho)}}(m(\rho);\omega(b_1,a))) \subset \mathcal{H}_{\gamma_0}[\Theta^{(\rho)}]$ follows. Moreover we have $SC_{\mathbb{K}}(m(\kappa(\rho))) \subset \mathcal{H}_{\gamma_0}[\Theta^{(\rho)}] \subset M_{\kappa(\rho)}$.

Consider the case when the last inference is a $(\text{rfl}(\rho,d,f,b_2))$ for a $\rho \in \mathbb{Q}$. The case $\rho \in \mathbb{Q}^f$ is seen from SIH. Assume $\rho \in \mathbb{Q}^t$. Let $b = b^{(\rho)}, g = m(\rho), b_1 \geq s(\rho) \geq d \in \text{supp}(g), \kappa = \kappa(\rho), \Gamma = \Gamma_\rho, \widehat{\Lambda} = \bigcup_{\rho \neq \tau \in \mathbb{Q}^t} \{\Gamma_\tau^{(\tau)}\}, \text{ and } \widehat{\Lambda}_\kappa = \bigcup_{\rho \neq \tau \in \mathbb{Q}^t} \{\Gamma_\tau^{\kappa(\tau)}\}.$ We have a sequent $\Delta \subset \bigvee(d)$ such that $\text{rk}(\Delta) < d \leq s(\rho) \leq b_1$ and $\mathsf{k}^{\mathbb{S}}(\Delta) \subset \mathcal{H}_\gamma[\Theta_{\mathbb{Q}}] \subset M_{\mathbb{Q}}$ by (37) and $\mathsf{k}^{\mathbb{S}}(\Delta) \subset M_{\mathbb{Q}(\kappa)}$ by $\Theta_{\mathbb{Q}} = \Theta_{\mathbb{Q}(\kappa)}$. There is an ordinal $a_0 \in \mathcal{H}_\gamma[\Theta_{\mathbb{Q}}] \cap a$ such that $(\mathcal{H}_\gamma, \Theta, \mathbb{Q}) \vdash_{c_1, e}^{a_0} \Pi, \widehat{\Lambda}, \Gamma^{(\rho)}, \neg \delta^{(\rho)}$ for each $\delta \in \Delta$. For each $\delta \in \Delta \subset \bigvee(d)$ with $\text{rk}(\delta) \geq \mathbb{S}$, we have $\delta \simeq \bigvee(\delta_\iota)_{\iota \in J}$. Let $b_0 = \max(\{\mathbb{S}\} \cup \{\text{rk}(\delta) : \delta \in \Delta\})$. Then $s(\rho) > b_0 \in \mathcal{H}_\gamma[\Theta_{\mathbb{Q}}]$. Inversion 6.42 yields for $\text{rk}(\delta) \geq \mathbb{S}$

$$(\mathcal{H}_{\gamma}, \Theta \cup \mathsf{k}(\iota), \mathbb{Q}) \vdash^{a_0}_{c_1, e} \Pi, \widehat{\Lambda}, \Gamma^{(\rho)}, \neg(\delta_{\iota})^{(\rho)}$$

$$\tag{39}$$

for each $\iota \in [\mathbb{Q}]_{\delta(\rho)} J$, where $J \subset Tm(b_0)$ and $\neg \delta_{\iota} \in \bigvee (b_0)$ by $\mathrm{rk}(\delta_{\iota}) < \mathrm{rk}(\delta)$.

On the other side for each $\sigma \in H_{\rho}(f, b_2, \gamma_0, \Theta^{(\rho)})$

$$(\mathcal{H}_{\gamma}, \Theta \cup \{\sigma\}, \mathbb{Q} \cup \{\sigma\}) \vdash_{c_1, e}^{a_0} \Pi, \widehat{\Lambda}, \Gamma^{(\rho)}, \Delta^{(\sigma)}$$

$$\tag{40}$$

f is a special finite function such that $s(f) \leq b_2$, $f_d = g_d$, $f^d <^d g'(d)$ and $SC_{\mathbb{K}}(f) \subset \mathcal{H}_{\gamma_0}[\Theta^{(\rho)}]$. Let $(\mathbb{Q} \cup \{\sigma\})^f = \mathbb{Q}^f \cup \{\sigma\}$.

Case 1. $b_0 < b$: Then $\operatorname{rk}(\Delta) < b$. Let $\operatorname{rk}(\delta) \geq \mathbb{S}$. From (39) we obtain by SIH with $b > b_0 \geq \mathbb{S}$, $(\mathcal{H}_{\gamma}, \Theta \cup \mathsf{k}(\iota), \mathsf{Q}(\kappa)) \vdash_{c_{b_1}, e^{\kappa}}^{\omega(b_1, a_0)} \Pi, \widehat{\Lambda}_{\kappa}, \Gamma^{(\kappa)}, \neg(\delta_{\iota})^{(\kappa)}$ for each $\iota \in [\mathsf{Q}(\kappa)]_{\delta^{(\kappa)}} J \subset [\mathsf{Q}]_{\delta^{(\rho)}} J$. An inference (\bigwedge) yields

$$(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}(\kappa)) \vdash^{\omega(b_1, a_0) + 1}_{c_{b_1}, e^{\kappa}} \Pi, \widehat{\Lambda}_{\kappa}, \Gamma^{(\kappa)}, \neg \delta^{(\kappa)}$$

$$\tag{41}$$

Moreover SIH yields (41) for $\operatorname{rk}(\delta) < \mathbb{S}$. Let $d_1 = \min\{b, d\}$. Then $\Delta \subset \bigvee (d_1)$ by $b > b_0$.

We claim for the special finite function $h = h^b(g; \omega(b_1, a))$ that

$$f_{d_1} = h_{d_1} \& f^{d_1} <^{d_1} h'(d_1)$$
(42)

If $d_1 = d \le b$, then $h_d = g_d$ and $g'(d) = g(d) \le h'(d)$. Proposition 6.5 yields the claim. If $d_1 = b < d$, then Proposition 6.46.2 yields the claim.

On the other hand, for each $\sigma \in H_{\kappa}(f, b_2, \gamma_0, \Theta^{(\rho)}) \subset H_{\rho}(f, b_2, \gamma_0, \Theta^{(\rho)})$ we have by (40) and SIH,

$$(\mathcal{H}_{\gamma}, \Theta \cup \{\sigma\}, \mathbb{Q}(\kappa) \cup \{\sigma\}) \vdash^{\omega(b_1, a_0)}_{c_{b_1}, e^{\kappa}} \Pi, \widehat{\Lambda}_{\kappa}, \Gamma^{(\kappa)}, \Delta^{(\sigma)}$$

$$(43)$$

We have $\kappa = \kappa(\rho) < \kappa(\rho) + 1 \le e^{\kappa}$ for (r0). An inference (rfl (κ, d_1, f, b_2)) with (42), (41) and (43) yields $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}(\kappa)) \vdash_{c_{b_1}, e^{\kappa}}^{\omega(b_1, a)} \Pi, \widehat{\Lambda}_{\kappa}, \Gamma^{(\kappa)}$, where $d_1 \in \text{supp}(m(\kappa))$ and $\mathsf{k}^{\mathbb{S}}(\Delta) \subset \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}(\kappa)}]$.

Case 2. $b \leq b_0$: When $b = b_0$, let $\tau = \kappa$. When $b < b_0$, let $\tau \in H_\rho(h, b_2, \gamma_0, \Theta^{(\rho)})$ be such that $\kappa < \tau$ and $m(\tau) = h = h^{b_0}(g; a_1)$ with $a_1 = \omega(b_1, a_0) + 1$.

Let $\sigma \in H_{\tau}(f, b_2, \gamma_0, \Theta^{(\rho)})$. SIH with (40) and $b_0 < s(\rho)$ yields

$$(\mathcal{H}_{\gamma}, \Theta \cup \{\sigma\}, Q_{\tau} \cup \{\sigma\}) \vdash^{\omega(b_{1}, a_{0})}_{c_{b_{1}}, c^{\tau}} \Delta^{(\sigma)}, \Pi, \widehat{\Lambda}_{\kappa}, \Gamma^{(\tau)}$$

$$(44)$$

where $\mathbb{Q}_{\tau} = \mathbb{Q}^f \cup \{\kappa(\lambda) : \rho \neq \lambda \in \mathbb{Q}^t\} \cup \{\tau\}$, and $e^{\tau} = \max(\{\lambda \in \mathbb{Q}^f : s(\lambda) > \mathbb{S}\} \cup \{\kappa(\lambda) : \rho \neq \lambda \in \mathbb{Q}^t\} \cup \{\tau\}) + 1$. Let $\sigma \in R := \{\sigma \in H_{\tau}(f, b_2, \gamma_0, \Theta^{(\rho)}) : (m(\sigma))' \geq (h^{b_0}(g; \omega(b_1, a_0)))'\}$. We see $\sigma \in H_{\rho}(h^{b_0}(g; \omega(b_1, a_0)), b_2, \gamma_0, \Theta^{(\rho)})$. Moreover $\operatorname{rk}(\neg \delta_t) < b_0$ if $\operatorname{rk}(\delta) \geq \mathbb{S}$, and $\operatorname{rk}(\neg \delta) < b_0$ if $\operatorname{rk}(\delta) < \mathbb{S} \leq b_0$.

For each $\iota \in [\mathbb{Q}]_{\delta^{(\rho)}} J$ and $\operatorname{rk}(\delta) \geq \mathbb{S}$, we obtain $(\mathcal{H}_{\gamma}, \Theta \cup \mathsf{k}(\iota), \mathbb{Q}_{\sigma}) \vdash_{c_{b_{1}}, e^{\sigma}}^{\omega(b_{1}, a_{0})} \Pi, \widehat{\Lambda}_{\kappa}, \Gamma^{(\sigma)}, \neg(\delta_{\iota})^{(\sigma)}$ by $\operatorname{rk}(\neg \delta_{\iota}) < b_{0}$, SIH and (39), where $\mathbb{Q}_{\sigma} \cup \{\tau\} = \mathbb{Q}_{\tau} \cup \{\sigma\}$. A (\bigwedge) yields $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}_{\sigma}) \vdash_{c_{b_{1}}, e^{\sigma}}^{\omega(b_{1}, a_{0}) + 1} \Pi, \widehat{\Lambda}_{\kappa}, \Gamma^{(\sigma)}, \neg\delta^{(\sigma)}$. When $\operatorname{rk}(\delta) < \mathbb{S}$, this follows from SIH. Also $M_{\mathbb{Q}_{\sigma}} = M_{\mathbb{Q}_{\sigma} \cup \{\tau\}}$ and $e^{\sigma} \leq e^{\tau}$ by $\tau > \sigma$. Therefore

$$(\mathcal{H}_{\gamma}, \Theta, \mathbf{Q}_{\tau} \cup \{\sigma\}) \vdash^{\omega(b_1, a_0) + 1}_{c_{b_1}, e^{\tau}} \Pi, \widehat{\Lambda}_{\kappa}, \Gamma^{(\sigma)}, \neg \delta^{(\sigma)}$$

$$\tag{45}$$

From (44) and (45) by several (*cut*)'s of δ with $\text{rk}(\delta) < d \leq b_1 \leq c_{b_1}$ we obtain for a $p < \omega$,

$$\forall \sigma \in R \left[(\mathcal{H}_{\gamma}, \Theta \cup \{\sigma\}, Q_{\tau} \cup \{\sigma\}) \vdash_{c_{b_{1}}, e^{\tau}}^{\omega(b_{1}, a_{0}) + p} \Pi, \widehat{\Lambda}_{\kappa}, \Gamma^{(\sigma)}, \Gamma^{(\tau)} \right]$$
(46)

On the other hand we have $r = \max\{\mathbb{S}, \operatorname{rk}(\Gamma)\} \leq b < b_1$ and $\mathsf{k}^{\mathbb{S}}(\Gamma) \subset \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}}] = \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}_{\tau}}] \subset M_{\mathbb{Q}_{\tau}}$ by (37), where $\Theta_{\mathbb{Q}} = \Theta_{\mathbb{Q}_{\tau}}$ by $\Theta^{(\rho)} \subset M_{\tau}$. Tautology 6.41 yields for each $\theta \in \Gamma$

$$(\mathcal{H}_{\gamma}, \Theta, \mathbf{Q}_{\tau}) \vdash_{0,0}^{2r} \Gamma^{(\tau)}, \neg \theta^{(\tau)} \tag{47}$$

Let us define a finite function h by $\operatorname{supp}(h) = \operatorname{supp}(g_{b_0}) \cup \operatorname{supp}(f^{b_0+1}) \cup \{b_0\},$ $h_{b_0} = g_{b_0}$ and $h^{b_0+1} = f^{b_0+1}$. Let $(h^{b_0}(g; \omega(b_1, a_0)))(b_0) = \alpha + \mathbb{K}$. Then $h(b_0) = \alpha$ if $f^{b_0+1} \neq \emptyset$. Otherwise $h(b_0) = \alpha + \mathbb{K}$. We see that $R = H_{\tau}(h, \gamma_0, \Theta^{(\rho)})$, and $h^{b_0} <^{b_0} (m(\tau))'(b_0)$.

By an inference (rfl(τ , b_0 , h, b_2)) with its resolvent class $R = H_{\tau}(h, b_2, \gamma_0, \Theta^{(\rho)})$ and $\Gamma \subset \bigvee (b_0)$ we conclude from (47) and (46) for rk(Γ) $< b \le b_0 \le s(\tau)$

$$(\mathcal{H}_{\gamma}, \Theta, \mathbf{Q}_{\tau}) \vdash_{c_{b_{1}}, e^{\tau}}^{a_{2}} \Pi, \widehat{\Lambda}_{\kappa}, \Gamma^{(\tau)}$$

$$\tag{48}$$

where $a_2 = \max\{2r, \omega(b_1, a_0) + p\} + 1 < \omega(b_1, a) = \omega^{\omega^{b_1}}a$. If $b_0 = b$, we are done. In what follows assume $b < b_0$. We have $a_1 < \omega(b_1, a)$ and $\omega(b_0, a_2) = \omega^{\omega^{b_0}}a_2 < \omega(b_1, a)$ by $b_0 < b_1$. Moreover Proposition 6.46.1 for $m(\tau) = h^{b_0}(g; a_1)$ yields $(h^b(m(\tau); \omega(b_0, a_2)))' = (h^b(h^{b_0}(g; a_1); \omega(b_0, a_2)))' \le (h^b(g; \omega(b_1, a)))'$.

yields $(h^b(m(\tau); \omega(b_0, a_2)))' = (h^b(h^{b_0}(g; a_1); \omega(b_0, a_2)))' \leq (h^b(g; \omega(b_1, a)))'$. Let $(\mathbb{Q}_{\tau})^t = \{\tau\}$ and $\kappa(\tau) = \kappa(\rho) = \kappa$. Then $(e^{\tau})^{\kappa} = \max(\{\lambda \in (\mathbb{Q}_{\tau})^f : s(\lambda) > \mathbb{S}\} \cup \{\kappa\}) + 1 = e^{\kappa}$. We have $\mathsf{k}^{\mathbb{S}}(\Gamma) \cup \{b_0\} \subset \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}_{\tau}}], \ \mathsf{rk}(\Gamma_{\rho}) < b^{(\rho)} = b < b_0 = s(\tau) < b_1 \ \text{for } \Gamma = \Gamma_{\rho} \ \text{and } b \in \mathcal{H}_{\gamma}[\Theta^{(\tau)}], \ \omega(b_0, a_2) < \omega(b_1, a) \ \text{and } \max\{c_{b_1}, b_0\} = c_{b_1}$. Also $\kappa \in \mathcal{H}_{\rho}(h^b(g; \omega(b_1, a)), b_2, \gamma_0, \Theta^{(\rho)}) \cap \tau \subset \mathcal{H}_{\tau}(h^b(m(\tau); \omega(b_1, a_2)), b_2, \gamma_0, \Theta^{(\rho)})$. MIH with (48) yields $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}(\kappa)) \vdash_{c_{b_1}, e^{\kappa}}^{\omega(b_1, a)} \Pi, \Gamma^{(\kappa)}$.

Second consider the case when the last inference (\bigvee) introduces a \bigvee -formula B: If $B \in \Pi$, SIH yields the lemma. Assume that $B \equiv A^{(\rho)} \in \Gamma_{\rho}^{(\rho)}$ with $A \simeq \bigvee (A_{\iota})_{\iota \in J}$ and $\rho \in \mathbb{Q}$. We may assume $\rho \in \mathbb{Q}^t$. We have $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c_1, e}^{a_0} \Pi, \widehat{\Gamma}, (A_{\iota})^{(\rho)}$, where $a_0 < a, \ \iota \in [\rho]J$. We claim that $\iota \in [\kappa(\rho)]J$. We may assume $\mathsf{k}(\iota) \subset \mathsf{k}(A_{\iota})$. We have $\mathsf{k}(A_{\iota}) \subset \mathcal{H}_{\gamma}[\Theta^{(\rho)}]$ by (36). $\Theta^{(\rho)} \subset M_{\kappa(\rho)}$ yields $\mathsf{k}(A_{\iota}) \subset M_{\kappa(\rho)}$.

Let $A_{\iota} \simeq \bigwedge (B_{\nu})_{\nu \in I}$ for \bigvee -formulas B_{ν} , and assume $\operatorname{rk}(A_{\iota}) \geq \mathbb{S}$. Inversion 7.25 yields for each $\nu \in [\mathbb{Q}]_{A^{(\rho)}}I$, $(\mathcal{H}_{\gamma}, \Theta \cup \mathsf{k}(\nu), \mathbb{Q}) \vdash_{c_{1}, e}^{a_{0}} \Pi, \widehat{\Gamma}, (B_{\nu})^{(\rho)}$.

SIH yields for each $\nu \in [\mathbb{Q}(\kappa)]_{A_{\iota}^{(\rho)}} I \subset [\mathbb{Q}]_{A_{\iota}^{(\rho)}} I$ that $(\mathcal{H}_{\gamma}, \Theta \cup \mathsf{k}(\nu), \mathbb{Q}(\kappa)) \vdash_{c_{b_{1}}, e^{\kappa}}^{\omega(b_{1}, a_{0})} \Pi, \widehat{\Gamma}_{\kappa}, (B_{\nu})^{(\kappa)}$. $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}(\kappa)) \vdash_{c_{b_{1}}, e^{\kappa}}^{\omega(b_{1}, a_{0}) + 1} \Pi, \widehat{\Gamma}_{\kappa}, (A_{\iota})^{(\kappa)}$ follows from a (\bigwedge) . An inference (\bigvee) yields $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}(\kappa)) \vdash_{c_{b_{1}}, e^{\kappa}}^{\omega(b_{1}, a)} \Pi, \widehat{\Gamma}_{\kappa}$.

Other cases are seen from SIH.

For $c \leq \mathbb{S}$, $(\mathcal{H}_{\gamma}, \Theta) \vdash_{c}^{*a} \Gamma$ denotes $(\mathcal{H}_{\gamma}, \Theta; \emptyset) \vdash_{c}^{*a} \Gamma; \emptyset$. Since $\Theta_{\emptyset} = \Theta$, (34) and (35) amount to (3) $\{\gamma, a, c\} \cup \mathsf{k}(\Gamma) \subset \mathcal{H}_{\gamma}[\Theta]$, and there occurs no inferences

 $(\bigvee)^{[\cdot]}$, $(\bigwedge)^{[\cdot]}$ nor (stbl). The inference $(\Sigma$ -rfl) is only on Ω . This means that $(\mathcal{H}_{\gamma},\Theta) \vdash_{c}^{*a} \Gamma$ is equivalent to $\mathcal{H}_{\gamma}[\Theta] \vdash_{c}^{a} \Gamma$ in Definition 1.16.

Lemma 6.48 (Elimination of inferences (rfl))

Let \mathbb{Q} be a finite family for γ_0 and $b_1 \geq \mathbb{S}$. Let $\max(\operatorname{rk}(\Gamma)) < \mathbb{S}$, $\widehat{\Gamma} = \bigcup \{\Gamma_{\rho}^{(\rho)} : \rho \in \mathbb{Q}\}$ and $\Gamma = \bigcup \{\Gamma_{\rho} : \rho \in \mathbb{Q}\}$, where $\mathsf{k}(\Gamma_{\rho}) \subset M_{\rho}$. Suppose $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{\mathbb{S},e,\gamma_0,b_1}^a \widehat{\Gamma}$. Then $(\mathcal{H}_{\gamma_1}, \Theta) \vdash_{\mathbb{S}}^* \widehat{\Gamma}$ holds for $\gamma_1 = \gamma_0 + \mathbb{S}$, $\widetilde{a} = \varphi_e(b_1 + a)$.

Proof. By main induction on e with subsidiary induction on a. We have $\{e\} \cup \mathbb{Q} \subset \mathcal{H}_{\gamma_1}$ by Definitions 6.40 and 6.38, $b_1 \in \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}}]$ by (37), and $\emptyset = \mathsf{k}^{\mathbb{S}}(\Gamma) \subset \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}}]$.

Case 1. First let $\{\neg A^{(\sigma)}, A^{(\sigma)}\} \subset \widehat{\Gamma}$ with $\operatorname{rk}(A) < \mathbb{S}$ by (Taut). Then $(\mathcal{H}_0, \mathsf{k}(A)) \vdash_0^{*\mathbb{S}} \neg A, A$ by Tautology 6.29.1 and $(\mathcal{H}_{\gamma_1}, \Theta) \vdash_{\mathbb{S}}^{*\tilde{a}} \Gamma$ by $\tilde{a} > \mathbb{S}$.

Case 2. Second consider the case when the last inference is a $(\operatorname{rfl}(\rho,d,f,b_1))$ for a $\rho \in \mathbb{Q}$. Let $\mathbb{Q}^t = \{\tau \in \mathbb{Q} : s(\tau) > \mathbb{S}\}$, $\mathbb{Q}^f = \mathbb{Q} \setminus \mathbb{Q}^t$, and $\kappa(\tau) \in H_{\tau}(h^{\mathbb{S}}(m(\tau);\omega(b,a)),b_1,\gamma_0,\Theta^{(\tau)})$ for each $\tau \in \mathbb{Q}^t$. Let $g = m(\rho)$, $s(\rho) \geq d \in \operatorname{supp}(g)$, $\kappa = \kappa(\rho)$ when $\rho \in \mathbb{Q}^t$, $\widehat{\Pi} = \bigcup_{\rho \neq \tau \in \mathbb{Q}^t} \Gamma_{\tau}^{(\tau)}$, $\widehat{\Lambda} = \bigcup_{\rho \neq \tau \in \mathbb{Q}^t} \Gamma_{\tau}^{(\tau)}$, and $\widehat{\Lambda}_{\kappa} = \bigcup_{\rho \neq \tau \in \mathbb{Q}^t} \Gamma_{\tau}^{\kappa(\tau)}$. We have a sequent $\Delta \subset \bigvee(d)$ and an ordinal $a_0 < a$ such that $\operatorname{rk}(\Delta) < d \leq s(\rho)$ and $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{\mathbb{S}, e, \gamma_0, b_1}^{a_0} \widehat{\Pi}, \widehat{\Lambda}, \Gamma_{\rho}^{(\rho)}, \neg \delta^{(\rho)}$ for each $\delta \in \Delta$. On the other hand we have $(\mathcal{H}_{\gamma}, \Theta \cup \{\sigma\}, \mathbb{Q} \cup \{\sigma\}) \vdash_{\mathbb{S}, e, \gamma_0, b_1}^{a_0} \widehat{\Pi}, \widehat{\Lambda}, \Gamma_{\rho}^{(\rho)}, \Delta^{(\sigma)},$ where $\sigma \in H_{\rho}(f, b_1, \gamma_0, \Theta^{(\rho)})$, f is a special finite function such that $s(f) \leq b_1$, $f_d = g_d$, $f^d < d g'(d)$ and $SC_{\mathbb{K}}(f) \subset \mathcal{H}_{\gamma_0}[\Theta^{(\rho)}]$.

Case 2.1 $s(\rho) \leq \mathbb{S}$: We have $\operatorname{rk}(\Delta) < d \leq s(\rho) \leq \mathbb{S}$. Let $\tilde{a}_0 = \varphi_e(b_1 + a_0)$. By SIH we obtain $(\mathcal{H}_{\gamma_1}, \Theta) \vdash_{\mathbb{S}}^{*\tilde{a}_0} \Pi, \Lambda, \Gamma_{\rho}, \neg \delta$ for each $\delta \in \Delta$, and $(\mathcal{H}_{\gamma_1}, \Theta \cup \{\sigma\}) \vdash_{\mathbb{S}}^{*\tilde{a}_0} \Pi, \Lambda, \Gamma_{\rho}, \Delta$, where $\sigma \in \mathcal{H}_{\gamma_0 + \mathbb{S}} \subset \mathcal{H}_{\gamma_1}[\Theta]$. Several (cut)'s of $\operatorname{rk}(\delta) < \mathbb{S}$ yields $(\mathcal{H}_{\gamma_1}, \Theta) \vdash_{\mathbb{S}}^{*\tilde{a}} \Pi, \Lambda, \Gamma_{\rho}$ for $\Gamma = \Pi \cup \Lambda \cup \Gamma_{\rho}$.

Case 2.2. $s(\rho) > \mathbb{S}$: Then $\rho \in \mathbb{Q}^t \neq \emptyset$. $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}(\kappa)) \vdash_{b_1, e^{\kappa}, \gamma_0, b_1}^{\omega(b_1, a)} \widehat{\Pi}, \widehat{\Lambda}_{\kappa}, \Gamma_{\rho}^{(\kappa)}$ follows by Recapping 6.47, where $b_1 \geq \mathbb{S}$ and $e^{\kappa} < e$. Cut-elimination 6.43 yields for $a_1 = \varphi_{b_1}(\omega(b_1, a))$, $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}(\kappa)) \vdash_{\mathbb{S}, e^{\kappa}, \gamma_0, b_1}^{a_1} \widehat{\Pi}, \widehat{\Lambda}_{\kappa}, \Gamma_{\rho}^{(\kappa)}$. MIH then yields $(\mathcal{H}_{\gamma_1}, \Theta) \vdash_{\mathbb{S}}^{*\tilde{a}_1} \Gamma$, where $\Gamma = \Pi \cup \Lambda \cup \Gamma_{\rho}$ and $\tilde{a}_1 = \varphi_{e^{\kappa}}(b_1 + a_1) < \varphi_e(b_1 + a) = \tilde{a}$ by $e^{\kappa} < e$ and $a, b_1 < \tilde{a}$.

Case 3. The last inference is a (\bigwedge): We have $a(\iota) < a$, $A^{(\rho)} \in \widehat{\Gamma}$ with $A \simeq \bigwedge(A_{\iota})_{\iota \in J}$, and $(\mathcal{H}_{\gamma}, \Theta \cup \mathsf{k}(\iota), \mathbb{Q}) \vdash_{\mathbb{S}, e, \gamma_0, b_1}^{a(\iota)} \widehat{\Gamma}, (A_{\iota})^{(\rho)}$ for each $\iota \in [\mathbb{Q}]_{A^{(\rho)}} J$. Since $A \in \Delta_0(\mathbb{S})$, we obtain $[\mathbb{Q}]_{A^{(\rho)}} J = [\rho] J = J$. SIH yields $(\mathcal{H}_{\gamma_1}, \Theta) \vdash_{\mathbb{S}}^{*\tilde{a}(\iota)} \Gamma, A_{\iota}$ for each $\iota \in J$, where $\tilde{a}(\iota) = \varphi_e(b_1 + a(\iota)) < \tilde{a}$. A (\bigwedge) yields $(\mathcal{H}_{\gamma_1}, \Theta) \vdash_{\mathbb{S}}^{*\tilde{a}} \Gamma$. Other cases are seen from SIH.

Proposition 6.49 (Collapsing) Suppose $\Theta \subset \mathcal{H}_{\gamma}(\psi_{\Omega}(\gamma))$, $(\mathcal{H}_{\gamma}, \Theta) \vdash_{\Omega}^{*a} \Gamma$ and $\Gamma \subset \Sigma(\Omega)$. Then for $\hat{a} = \gamma + \omega^a$ and $\beta = \psi_{\Omega}(\hat{a})$, $(\mathcal{H}_{\hat{a}+1}, \Theta) \vdash_{\beta}^{*\beta} \Gamma^{(\beta,\Omega)}$ holds.

Proposition 6.50 (Cut-elimination) Suppose $(\mathcal{H}_{\gamma}, \Theta) \vdash_{c+d}^{*a} \Gamma$ with $c + d \leq \mathbb{S}$ and $\neg (c < \Omega \leq c + d)$. Then $(\mathcal{H}_{\gamma}, \Theta) \vdash_{c}^{*\theta_{d}(a)} \Gamma$.

Theorem 6.51 Assume $S_1 \vdash \theta^{L_{\Omega}}$ for $\theta \in \Sigma$. Then there exists an $n < \omega$ such that $L_{\alpha} \models \theta$ for $\alpha = \psi_{\Omega}(\omega_n(\mathbb{K} + 1))$ in $OT(\Pi_1^1)$.

Proof. Let $S_1 \vdash \theta^{L_{\Omega}}$ for a Σ -sentence θ . By Embedding 6.30 pick an m so that $(\mathcal{H}_{\mathbb{S}}, \emptyset; \emptyset) \vdash_{\mathbb{K}+m}^{*\mathbb{K} \cdot 2+m} \theta^{L_{\Omega}}; \emptyset$. Cut-elimination 6.34 yields $(\mathcal{H}_{\mathbb{S}}, \emptyset; \emptyset) \vdash_{\mathbb{K}}^{*a} \theta^{L_{\Omega}}$ for $a = \omega_m(\mathbb{K} \cdot 2+m) < \omega_{m+1}(\mathbb{K}+1)$. Now let $\gamma_0 = \omega_{m+2}(\mathbb{K}+1)$. Let $\beta = \psi_{\mathbb{K}}(\omega^a) > \mathbb{S}$, where $\omega^a < \gamma_0 = \omega_{m+2}(\mathbb{K}+1)$. Collapsing 7.18 yields $(\mathcal{H}_{\omega^a+1}, \emptyset; \emptyset) \vdash_{\beta}^{*\beta} \theta^{L_{\Omega}}; \emptyset$.

Let $\rho = \psi_{\mathbb{S}}^{g}(\gamma_{0})$ with $g = \{(\beta, \beta + \mathbb{K})\}$, where $\mathbb{K}(\beta + 1) = \beta + \mathbb{K}$. We obtain $(\mathcal{H}_{\omega^{a}+1}, \emptyset, \{\rho\}) \vdash_{\beta, \rho+1, \gamma_{0}, \beta}^{\beta} (\theta^{L_{\Omega}})^{(\rho)}$ by Capping 6.44. Cut-elimination 6.43 yields $(\mathcal{H}_{\omega^{a}+1}, \emptyset, \{\rho\}) \vdash_{\mathbb{S}, \rho+1, \gamma_{0}, \beta}^{a_{1}} (\theta^{L_{\Omega}})^{(\rho)}$ for $a_{1} = \varphi_{\beta}(\beta)$.

6.43 yields $(\mathcal{H}_{\omega^a+1},\emptyset,\{\rho\}) \vdash_{\mathbb{S},\rho+1,\gamma_0,\beta}^{a_1}(\mathcal{G}^{L_{\Omega}})^{(\rho)}$ for $a_1 = \varphi_{\beta}(\beta)$. We obtain $(\mathcal{H}_{\gamma_1},\emptyset) \vdash_{\mathbb{S}}^{a_2} \theta^{L_{\Omega}}$ by Lemma 6.48, where $a_2 = \varphi_{\rho+1}(\beta+a_1)$ and $\gamma_1 = \gamma_0 + \mathbb{S}$. Cut-elimination 6.50 yields $(\mathcal{H}_{\gamma_1},\emptyset) \vdash_{\Omega}^{*a_3} \theta^{L_{\Omega}}$ for $a_3 = \theta_{\mathbb{S}}(a_2)$. Collapsing 6.49 yields $(\mathcal{H}_{\gamma_1+a_3+1},\emptyset) \vdash_{\eta}^{*\eta} \theta^{L_{\eta}}$ for $\eta = \psi_{\Omega}(\gamma_1+a_3) < \psi_{\Omega}(\omega_{m+3}(\mathbb{K}+1))$. Cut-elimination 6.50 yields $(\mathcal{H}_{\gamma_1+a_3+1},\emptyset) \vdash_{0}^{*\theta_{\eta}(\eta)} \theta^{L_{\eta}}$. We then see $L_{\eta} \models \theta$ by induction up to $\theta_{\eta}(\eta)$.

Actually the bound is shown to be tight.

Theorem 6.52 $[A \infty d]$

 $\mathsf{KP}\omega + (M \prec_{\Sigma_1} V)$ proves the well-foundedness up to $\psi_{\Omega}(\omega_n(\mathbb{S}^+ + 1))$ for each n.

 $\mathsf{KP}\omega + (M \prec_{\Sigma_1} V)$ proves an axiom of Σ_1 -Separation with parameters from M. $\exists b \, [b = \{x \in a : \varphi(x,c)\} = \{x \in a : M \models \varphi(x,c)\}]$, where $c \in M$, $a \in M \cup \{M\}$ and $\varphi \in \Sigma_1$. However it is open for us whether the parameter-free Σ_2^1 -Comprehension Axiom holds in $\mathsf{KP}\omega + (M \prec_{\Sigma_1} V)$.

7 Π_1 -Collection

The axioms of the set theory $\mathsf{KP}\omega + \Pi_1\text{-Collection} + (V = L)$ consist of those of $\mathsf{KP}\omega + (V = L)$ plus the axiom schema $\Pi_1\text{-Collection}$: for each $\Pi_1\text{-formula}$ A(x,y) in the language of set theory, $\forall x \in a \exists y A(x,y) \to \exists b \forall x \in a \exists y \in b A(x,y)$. It is easy to see that the second order arithmetic $\Sigma_3^1\text{-DC} + \mathsf{BI}$ is interpreted to $\mathsf{KP}\omega + \Pi_1\text{-Collection} + (V = L)$ canonically.

Next we show that $\mathsf{KP}\omega + \Pi_1\text{-Collection} + (V = L)$ is contained in a set theory $S_{\mathbb{I}}$. The language of the theory $S_{\mathbb{I}}$ is $\{\in, St, \Omega\}$ with a unary predicate constant St and an individual constant Ω . $\Delta_0(St)$ denotes the set of bounded formulas in the language $\{\in, St, \Omega\}$, in which atomic formulas St(t) may occur. Similarly $\Sigma_1(St)$ the set of Σ_1 -formulas in the expanded language. $St(\alpha)$ is intended to denote the fact that α is a stable ordinal, $L_{\alpha} \prec_{\Sigma_1} L$, and $\Omega = \omega_1^{CK}$. The axioms of $S_{\mathbb{I}}$ are obtained from those 4 of $\mathsf{KP}\omega$ by adding the following axioms. Let ON denote the class of all ordinals. For ordinals α , α^{\dagger} denotes the least stable ordinal above α . A successor stable ordinal is an ordinal α^{\dagger} for an α . Note that the least stable ordinal 0^{\dagger} is a successor stable ordinal.

⁴In the axiom schemata Δ_0 -Separation and Δ_0 -Collection, Δ_0 -formulas remain to mean a Δ_0 -formula in which St does not occur, while the axiom of foundation may be applied to a formula in which St may occur.

- 1. V = L, and the axioms for recursively regularity of Ω .
- 2. $\Delta_0(St)$ -collection:

$$\forall x \in a \exists y \, \theta(x, y) \to \exists b \forall x \in a \exists y \in b \, \theta(x, y)$$

for each $\Delta_0(St)$ -formula θ in which the predicate St may occurs.

3. $L = \bigcup \{L_{\sigma} : St(\sigma)\}, \text{ i.e.,}$

$$\forall \alpha \in ON \exists \sigma \, (\alpha < \sigma \land St(\sigma)) \tag{49}$$

.

4. For a successor stable ordinal $\sigma < \mathbb{I}$, $L_{\sigma} \prec_{\Sigma_1} L = L_{\mathbb{I}}$:

$$SSt(\sigma) \wedge \varphi(u) \wedge u \in L_{\sigma} \to \varphi^{L_{\sigma}}(u) \tag{50}$$

for each Σ_1 -formula φ in the language of set theory, i.e., the constant St does not occur in φ .

Lemma 7.1 $S_{\mathbb{I}}$ is an extension of $\mathsf{KP}\omega + \Pi_1\text{-Collection} + (V = L)$. Namely $S_{\mathbb{I}}$ proves $\Pi_1\text{-Collection}$.

Proof. Argue in $S_{\mathbb{I}}$. Let A(x,y) be a Π_1 -formula in the language of set theory. We obtain by the axioms (49) and (50)

$$A(x,y) \leftrightarrow \exists \beta (St(\beta^{\dagger}) \land x, y \in L_{\beta^{\dagger}} \land A^{L_{\beta^{\dagger}}}(x,y))$$
 (51)

Assume $\forall x \in a \exists y A(x,y)$. Then we obtain $\forall x \in a \exists y \exists \beta (St(\beta^{\dagger}) \land x,y \in L_{\beta^{\dagger}} \land A^{L_{\beta^{\dagger}}}(x,y))$ by (51). Since $St(\beta^{\dagger}) \land x,y \in L_{\beta^{\dagger}} \land A^{L_{\beta^{\dagger}}}(x,y)$ is a $\Sigma_1(St)$ -formula, pick a set c such that $\forall x \in a \exists y \in c \exists \beta \in c(St(\beta^{\dagger}) \land x,y \in L_{\beta^{\dagger}} \land A^{L_{\beta^{\dagger}}}(x,y))$ by $\Delta_0(St)$ -Collection. Again by (51) we obtain $\forall x \in a \exists y \in c A(x,y)$.

Conversely in $\mathsf{KP}\omega + \Pi_1$ -Collection +(V=L), the predicate $St(\alpha)$ is defined by a Π_1 -formula $st(\alpha)$ so that (50) is provable, and $\Delta_0(St)$ -collection follows from Π_1 -Collection.

Lemma 7.2 KP ω + Π_1 -Collection proves each of Σ_1 -Separation, Δ_2 -Separation and Σ_2 -Replacement.

Proof. We show that $\{x \in a : \varphi(x)\}$ exists as a set for a Σ_1 -formula $\varphi \equiv \exists y \theta(x,y)$ with a Δ_0 matrix θ . We have by logic $\forall x \in a \exists y (\exists z \theta(x,z) \to \theta(x,y))$. By Π_1 -Collection pick a set b so that $\forall x \in a \exists y \in b(\varphi(x) \to \theta(x,y))$. In other words, $\{x \in a : \varphi(x)\} = \{x \in a : \exists y \in b \theta(x,y)\}$.

Let $\operatorname{Hull}_{\Sigma_1}(\alpha)$ denote the Σ_1 -Skolem hull $\operatorname{Hull}_{\Sigma_1}(\alpha)$ of an ordinal α . $\operatorname{Hull}_{\Sigma_1}(\alpha)$ is the collection of Σ_1 -definable elements from parameters< α in the universe.

Specifically let $\{\varphi_i : i \in \omega\}$ denote an enumeration of Σ_1 -formulas. Each is of the form $\varphi_i \equiv \exists y \theta_i(x, y; u) \ (\theta \in \Delta_0)$ with fixed variables x, y, u. Set for $b \in \alpha$

```
r(i,b) \simeq \text{the } <_L \text{-least } c \in L \text{ such that } L \models \theta_i((c)_0,(c)_1;b)

h(i,b) \simeq (r(i,b))_0

\text{Hull}_{\Sigma_1}(\alpha) = \{h(i,b) \in L : i \in \omega, b \in \alpha\}
```

The domain of the partial Δ_1 -map r is a Σ_1 -subset of $\omega \times \alpha$, and from Lemma 7.2 (Σ_1 -Separation) we see that the domain exists as a set, and so does $\operatorname{Hull}_{\Sigma_1}(\alpha)$. Therefore its Mostowski collapse⁵ ordinal $\beta \geq \alpha$. This shows (49).

Note that a limit of admissible ordinals need not to be admissible since there exists a Π_3^- -formula ad such that for any transitive set x, x is admissible iff ad^x holds. On the other side every limit κ of stable ordinals is stable: for $c \in L_{\kappa}$, pick a stable ordinal $\sigma < \kappa$ such that $c \in L_{\sigma}$. Then for Σ_1 -formula A, $L \models A(c) \Rightarrow L_{\sigma} \models A(c) \Rightarrow L_{\kappa} \models A(c)$.

7.1 Ordinals for Π_1 -Collection

In this subsection up to subsection 7.2 we work in a set theory $\mathsf{ZFC}(St)$, where St is a unary predicate symbol. We assume that St is an unbounded class of ordinals below $\mathbb I$ such that the least element $\mathbb S_0$ of St is larger than Ω . α^\dagger denotes the least ordinal> α in the class St when $\alpha < \mathbb I$. $\alpha^\dagger := \mathbb I$ if $\alpha \ge \mathbb I$. Then $\mathbb S_0 = \Omega^\dagger$. Let $SSt := \{\alpha^\dagger : \alpha \in ON\}$ and $LS = St \setminus SSt$. For natural numbers k, $\alpha^{\dagger k}$ is defined recursively by $\alpha^{\dagger 0} = \alpha$ and $\alpha^{\dagger (k+1)} = (\alpha^{\dagger k})^\dagger$.

 $\varphi_b(\xi)$ denotes the binary Veblen function on $\mathbb{I}^+ = \omega_{\mathbb{I}+1}$ with $\varphi_0(\xi) = \omega^{\xi}$ Let $\Lambda \leq \mathbb{I}$ be a strongly critical number. As in Definition 6.2, $\tilde{\varphi}_b(\xi) := \varphi_b(\mathbb{I} \cdot \xi)$. Let $b, \xi < \mathbb{I}^+$. $\theta_b(\xi)$ $[\tilde{\theta}_b(\xi)]$ denotes a b-th iterate of $\varphi_0(\xi) = \omega^{\xi}$ [of $\tilde{\varphi}_0(\xi) = \mathbb{I}^{\xi}$], resp.

Definition 7.3 A finite function $f: \mathbb{I} \to \varphi_{\mathbb{I}}(0)$ is said to be a *finite function* if $\forall i > 0 (a_i = 1)$ and $a_0 = 1$ when $b_0 > 1$ in $f(c) =_{NF} \tilde{\theta}_{b_m}(\xi_m) \cdot a_m + \cdots + \tilde{\theta}_{b_0}(\xi_0) \cdot a_0$ for any $c \in \text{supp}(f)$. Let $SC_{\mathbb{I}}(f) := \bigcup \{\{c\} \cup SC_{\mathbb{I}}(f(c)) : c \in \text{supp}(f)\}.$

For a finite function f, $c < \mathbb{I}$ and $\xi < \varphi_{\mathbb{I}}(0)$. A relation $f <_{\mathbb{I}}^c \xi$ is defined by induction on the cardinality of the finite set $\{d \in \text{supp}(f) : d > c\}$ as in Definition 6.4.2.

Definition 7.4 Let $A \subset \mathbb{I}$ be a set, and $\alpha \leq \mathbb{I}$ a limit ordinal.

 $\alpha \in M(A) : \Leftrightarrow A \cap \alpha$ is stationary in $\alpha \Leftrightarrow$ every club subset of α meets A.

Classes $\mathcal{H}_a(X) \subset \Gamma_{\mathbb{I}+1}$, $Mh_c^a(\xi) \subset (\mathbb{I}+1)$, and ordinals $\psi_{\kappa}^f(a) \leq \kappa$ are defined simultaneously as follows.

 $\mathcal{H}_a(X)$ denotes the closure of $\{0,\Omega,\mathbb{I}\}\cup X$ under $+,\varphi,\ a\mapsto \psi_{\Omega}(a),\ a\mapsto \psi_{\mathbb{I}}(a)\in LS,\ \alpha\mapsto\alpha^{\dagger}\in SSt,\ \mathrm{and}\ (\pi,b,f)\mapsto\psi_{\pi}^f(b).$

⁵The collapse coincides with L_{β} for the least ordinal β not in $\operatorname{Hull}_{\Sigma_1}(\alpha)$.

 $\pi \in Mh_c^a(\xi)$ iff $\{a,c,\xi\} \subset \mathcal{H}_a(\pi)$ and the following condition is met for any finite functions $f,g:\mathbb{I} \to \varphi_{\mathbb{I}}(0)$ such that $f<_{\mathbb{I}}^c \xi$

$$SC_{\mathbb{I}}(f,g) \subset \mathcal{H}_a(\pi) \& \pi \in Mh_0^a(g_c) \Rightarrow \pi \in M(Mh_0^a(g_c * f^c))$$

where

$$\begin{split} Mh^a_c(f) &:= &\bigcap\{Mh^a_d(f(d)): d \in \operatorname{supp}(f^c)\}\\ &= &\bigcap\{Mh^a_d(f(d)): c \leq d \in \operatorname{supp}(f)\} \end{split}$$

Let a,π ordinals and $f:\mathbb{I}\to \varphi_{\mathbb{I}}(0)$ a finite function. Then $\psi_{\pi}^f(a)$ denotes the least ordinal $\kappa<\pi$ such that

$$\kappa \in Mh_0^a(f) \& \mathcal{H}_a(\kappa) \cap \pi \subset \kappa \& \{\pi, a\} \cup SC_{\mathbb{I}}(f) \subset \mathcal{H}_a(\kappa)$$
 (52)

if such a κ exists. Otherwise set $\psi_{\pi}^{f}(a) = \pi$.

$$\psi_{\mathbb{I}}(a) := \min(\{\mathbb{I}\} \cup \{\kappa \in LS : \mathcal{H}_a(\kappa) \cap \mathbb{I} \subset \kappa\})$$
(53)

For classes $A \subset \mathbb{I}$, let $\alpha \in M_c^a(A)$ iff $\alpha \in A$ and for any finite functions $g: \mathbb{I} \to \varphi_{\mathbb{I}}(0)$

$$\alpha \in Mh_0^a(g_c) \& SC_{\mathbb{I}}(g_c) \subset \mathcal{H}_a(\alpha) \Rightarrow \alpha \in M\left(Mh_0^a(g_c) \cap A\right)$$
 (54)

Proposition 7.5 Each of $x \in \mathcal{H}_a(y)$, $x \in Mh_c^a(f)$ and $x = \psi_{\kappa}^f(a)$ is a $\Delta_1(St)$ -predicate in $\mathsf{ZFC}(St)$.

7.2 A small large cardinal hypothesis

It is convenient for us to assume the existence of a small large cardinal in justification of the above definition.

Subtle cardinals are introduced by R. Jensen and K. Kunen. It is shown in Lemma 2.7 of [Rathjen05b] that the set of shrewd cardinals in V_{π} is stationary in a subtle cardinal π . From this fact we see that the set of shrewd limits of shrewd cardinals in V_{π} is also stationary in a subtle cardinal π , where for a shrewd cardinal κ in V_{π} , κ is a shrewd limit iff κ is a limit of shrewd cardinals in V_{π} .

Let C be a closed subset of π , and $C_0 \subset C$ be a subset defined by $\kappa \in C_0$ iff $\kappa \in C$ and κ is a limit of shrewd cardinals. Since the set of shrewd cardinals is stationary in V_{π} , C_0 is a club subset of π . Hence the exists a shrewd cardinal in C_0 .

In this subsection we work in an extension T of ZFC by adding the axiom stating that there exists a regular cardinal $\mathbb I$ such that the set St of shrewd cardinals in $V_{\mathbb I}$ is stationary in $\mathbb I$. In this subsection Ω denotes the least uncountable ordinal ω_1 , and LS denotes the set of shrewd limits in $V_{\mathbb I}$. The class LS is stationary in $\mathbb I$. A successor shrewd cardinal is a shrewd cardinal in $V_{\mathbb I}$, not in LS.

Lemma 7.6 $\forall a [\psi_{\mathbb{I}}(a) < \mathbb{I}].$

Proof. The set $C = \{ \kappa < \mathbb{I} : \mathcal{H}_a(\kappa) \cap \mathbb{I} \subset \kappa \}$ is a club subset of the regular cardinal \mathbb{I} . This shows the existence of a $\kappa \in LS \cap C$, and hence $\psi_{\mathbb{I}}(a) < \mathbb{I}$ by the definition (53).

Lemma 7.7 Let \mathbb{S} be a shrewd cardinal, $a < \varepsilon(\mathbb{I})$, $h : \mathbb{I} \to \varphi_{\mathbb{I}}(0)$ a finite function with $\{a\} \cup SC_{\mathbb{I}}(h) \subset \mathcal{H}_a(\mathbb{S})$. Then $\mathbb{S} \in Mh_0^a(h) \cap M(Mh_0^a(h))$.

Proof. By induction on $\xi < \varphi_{\mathbb{I}}(0)$ we show $\mathbb{S} \in Mh_c^a(\xi)$ for $\{a, c, \xi\} \subset \mathcal{H}_a(\mathbb{S})$ as in Lemma 6.13.

Lemma 7.8 Let \mathbb{S} be a shrewd cardinal, a an ordinal, and $f: \mathbb{I} \to \varphi_{\mathbb{I}}(0)$ a finite function such that $\{a\} \cup SC_{\mathbb{I}}(f) \subset \mathcal{H}_a(\mathbb{S})$. Then $\psi_{\mathbb{S}}^f(a) < \mathbb{S}$ holds.

Corollary 7.9 Let $f, g : \mathbb{I} \to \varphi_{\mathbb{I}}(0)$ be finite functions and $c \in \text{supp}(f)$. Assume that there exists an ordinal d < c such that $(d, c) \cap \text{supp}(f) = (d, c) \cap \text{supp}(g) = \emptyset$, $g_d = f_d$, $g(d) < f(d) + \tilde{\theta}_{c-d}(f(c); \mathbb{I}) \cdot \omega$, and $g <_{\mathbb{I}}^{\mathbb{I}} f(c)$.

Then $Mh_0^a(g) \prec Mh_0^a(f)$ holds. In particular if $\pi \in Mh_0^a(f)$ and $SC_{\mathbb{I}}(g) \subset \mathcal{H}_a(\pi)$, then $\psi_{\pi}^g(a) < \pi$.

П

Proof. This is seen as in Corollary 6.17.

An *irreducibility* of finite functions $f: \mathbb{I} \to \varphi_{\mathbb{I}}(0)$ is defined as in Definition 6.9, and a lexicographic order $f <_{lx}^b g$ on finite functions f, g as in Definition 6.10. Then $f <_{lx}^0 g \Rightarrow Mh_0^a(f) \prec Mh_0^a(g)$ is seen as in Proposition 6.18.

A computable notation system $OT(\mathbb{I})$ for Π_1 -collection is defined so as to be closed under Mostowski collapsings. A new constructor $\mathbb{I}[\cdot]$ is used to generate terms in $OT(\mathbb{I})$. Note that there is no clause for constructing $\kappa = \psi_{\mathbb{S}}(a)$ from a for $\mathbb{S} \in LS$.

Definition 7.10 1. $\{(\rho, \sigma) : \rho \prec \sigma\}$ denotes the transitive closure of the relation $\{(\rho, \sigma) : \exists f, a(\rho = \psi^f_{\sigma}(a))\}$. Let $\rho \preceq \sigma :\Leftrightarrow \rho \prec \sigma \lor \rho = \sigma$.

2. Let $\alpha \prec \mathbb{S}$ for an $\mathbb{S} \in SSt$ and $b = p_0(\alpha)$. Then let

$$M_{\alpha} := \mathcal{H}_b(\alpha).$$

- 3. For $\alpha \in \Psi$ an ordinal $p_0(\alpha)$ is defined.
 - (a) Let $\alpha \leq \psi_{\mathbb{S}}^g(b)$ for an $\mathbb{S} \in SSt$. Then $p_0(\alpha) = b$.
 - (b) There exists an $\mathbb{S} = \mathbb{T}^{\dagger} \in SSt$ and a $\mathbb{T} < \tau < \mathbb{S}$ such that $\alpha \prec \tau^{\dagger k}$ for a k > 0. Let $\rho \prec \mathbb{S}$ be such that $\alpha = \beta[\rho/\mathbb{S}]$ for a $\beta \in M_{\rho}$. Let $p_0(\alpha) = p_0(\beta)$.
 - (c) $p_0(\alpha) = 0$ otherwise.

 $\alpha = \psi^f_{\mathbb{S}}(a) \in OT(\mathbb{I})$ only if

$$SC_{\mathbb{I}}(f) \subset \mathcal{H}_a(SC_{\mathbb{I}}(a))$$
 (55)

where $a = p_0(\alpha)$.

Let $\{\pi, a, d\} \subset OT(\mathbb{I})$ with $\pi \prec \mathbb{S} \in SSt$, $m(\pi) = f$, $d < c \in \text{supp}(f)$, and $(d, c) \cap \text{supp}(f) = \emptyset$.

When $g \neq \emptyset$, let g be an irreducible finite function such that $SC_{\mathbb{I}}(g) \subset OT(\mathbb{I})$, $g_d = f_d$, $(d, c) \cap \operatorname{supp}(g) = \emptyset$, $g(d) < f(d) + \tilde{\theta}_{c-d}(f(c); \mathbb{I}) \cdot \omega$, and $g <_{\mathbb{I}}^c f(c)$. Then $\alpha = \psi_{\pi}^g(a) \in OT(\mathbb{I})$ only if

$$SC_{\mathbb{I}}(g) \subset M_{\alpha}$$
 (56)

The Mostowski collapsing $\alpha \mapsto \alpha[\rho/\mathbb{S}]$ ($\alpha \in M_{\rho}$) is defined as follows. (\mathbb{S})[ρ/\mathbb{S}] := ρ , (\mathbb{S}^{\dagger})[ρ/\mathbb{S}] := ρ^{\dagger} , and (\mathbb{I})[ρ/\mathbb{S}] := $\mathbb{I}[\rho]$. (τ^{\dagger})[ρ/\mathbb{S}] = ($\tau[\rho/\mathbb{S}]$), where $\mathbb{S} < \tau^{\dagger}$. ($\mathbb{I}[\tau]$)[ρ/\mathbb{S}] = $\mathbb{I}[\tau[\rho/\mathbb{S}]]$, where $\mathbb{I}[\tau] \neq \mathbb{I}$.

A relation $\alpha < \beta$ for $\alpha, \beta \in OT(\mathbb{I})$ is defined so that $\psi_{\kappa}^f(a) < \kappa$ and $\rho < \psi_{\rho^{\dagger}}^g(b) < \rho^{\dagger} < \tau = \psi_{\mathbb{I}[\rho]}(c) < \psi_{\tau^{\dagger}}^h(d) < \tau^{\dagger} < \mathbb{I}[\rho]$ for every κ, ρ, a, b, c, d and f, g, h.

Proposition 7.11 There is no $\psi_{\sigma}^{f}(a) \in OT(\mathbb{I})$ such that $\rho < \psi_{\sigma}^{f}(a) \leq \rho^{\dagger} < \sigma$.

Lemma 7.12 For $\rho \prec \mathbb{S}$ and $\mathbb{S} \in SSt$, $\{\alpha[\rho/\mathbb{S}] : \alpha \in M_{\rho}\}$ is a transitive collapse of M_{ρ} as in Lemma 6.23.

7.3 Operator controlled derivations for Π_1 -Collection

We consider RS-formulas in a language with a unary predicate St(a), where $a = L_{\kappa}$ for a stable ordinal κ . Specifically $St(a) := \bigvee ((\forall x \in \iota(x \in a)) \land (\forall x \in a(x \in \iota)))_{\iota \in J}$ with $J = \{L_{\kappa} : \kappa \in St \cap (|a|+1)\}$ for $St \subset OT(\mathbb{I})$.

Definition 7.13 A finite family is a finite function $\mathbb{Q} \subset \coprod_{\mathbb{S}} \Psi_{\mathbb{S}}$ such that its domain $dom(\mathbb{Q})$ is a finite set of successor stable ordinals, and $\mathbb{Q}(\mathbb{S})$ is a finite set of ordinals in $\Psi_{\mathbb{S}}$ for each $\mathbb{S} \in dom(\mathbb{Q})$. Let $\mathbb{Q}(\mathbb{T}) = \emptyset$ for $\mathbb{T} \not\in dom(\mathbb{Q})$ and $\bigcup \mathbb{Q} = \bigcup_{\mathbb{S} \in dom(\mathbb{Q})} \mathbb{Q}(\mathbb{S})$. Define $M_{\mathbb{Q}(\mathbb{S})} = \bigcap_{\sigma \in \mathbb{Q}(\mathbb{S})} M_{\sigma}$.

For $A \simeq \bigvee (A_{\iota})_{\iota \in J}$ and $\iota \in J$

$$\iota \in [\mathbb{Q}]_A J = [\mathbb{Q}]_{\neg A} J : \Leftrightarrow \forall \mathbb{U} \in dom(\mathbb{Q}) \left(\operatorname{rk}(A_\iota) \geq \mathbb{U} \Rightarrow \mathsf{k}(\iota) \subset M_{\mathbb{Q}(\mathbb{U})} \right)$$

We define a derivability relation $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a} \Gamma; \Pi^{\cdot]}$ where c is a bound of ranks of the inference rules (stbl) and of ranks of cut formulas. The relation depends on an ordinal γ_{0} , and should be written as $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c,\gamma_{0}}^{*a} \Gamma; \Pi^{\cdot]}$. However the ordinal γ_{0} will be fixed. So let us omit it.

Definition 7.14 Let Θ a finite set of ordinals, a,c ordinals, and \mathbb{Q}_{Π} a finite family such that $\gamma_0 \leq \mathsf{p}_0(\sigma)$ for each $(\mathbb{S},\sigma) \in \mathbb{Q}_{\Pi}$. Let $\Pi = \bigcup_{\sigma \in \bigcup \mathbb{Q}_{\Pi}} \Pi_{\sigma} \subset \Delta_0(\mathbb{I})$ be a set of formulas such that $\mathsf{k}(\Pi_{\sigma}) \subset M_{\sigma}$ for each $(\mathbb{S},\sigma) \in \mathbb{Q}_{\Pi}$. Let $\Pi^{[\cdot]} = \bigcup_{\sigma \in \bigcup \mathbb{Q}_{\Pi}} \Pi_{\sigma}^{[\sigma/\mathbb{S}]}$ and $\Theta_{\mathbb{Q}_{\Pi}(\mathbb{S})} = \Theta \cap M_{\mathbb{Q}_{\Pi}(\mathbb{S})}$.

 $(\mathcal{H}_{\gamma},\Theta;\mathbb{Q}_{\Pi})\vdash_{c}^{*a}\Gamma;\Pi^{[\cdot]}$ holds for a set Γ of formulas if $\gamma\leq\gamma_{0}$

$$\mathsf{k}(\Gamma) \subset \mathcal{H}_{\gamma}[\Theta] \& \forall \sigma \in \bigcup \mathsf{Q}_{\Pi} \left(\mathsf{k}(\Pi_{\sigma}) \subset \mathcal{H}_{\gamma}[\Theta^{(\sigma)}] \right) \tag{57}$$

$$\forall \mathbb{S} \in dom(\mathbb{Q}_{\Pi}) \left(\{ \gamma, a, c, \gamma_0 \} \cup \mathsf{k}^{\mathbb{S}}(\Gamma, \Pi) \subset \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}_{\Pi}(\mathbb{S})}] \right)^{6} \tag{58}$$

$$\forall \{ \mathbb{U} \le \mathbb{S} \} \subset dom(\mathbb{Q}_{\Pi}) \left(\mathbb{S} \in \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}_{\Pi}(\mathbb{U})}] \right)$$
 (59)

and one of the following cases holds:

- (V) ⁷ There exist $A \simeq \bigvee (A_{\iota})_{\iota \in J}$, an ordinal $a(\iota) < a$ and an $\iota \in J$ such that $A \in \Gamma$ and $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a(\iota)} \Gamma, A_{\iota}; \Pi^{[\cdot]}$.
- $(\bigvee)^{[\cdot]} \ \text{There exist } \sigma \in \bigcup \mathbb{Q}_{\Pi}, \ A \simeq \bigvee (A_{\iota})_{\iota \in J}, \ \text{an ordinal } a(\iota) < a \ \text{and an } \iota \in [\sigma]J$ such that $A^{[\sigma/\mathbb{S}]} \in \Pi^{[\cdot]}, \ (\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a(\iota)} \Gamma; (A_{\iota})^{[\sigma/\mathbb{S}]}, \Pi^{[\cdot]}.$
- (\bigwedge) There exist $A \simeq \bigwedge (A_{\iota})_{\iota \in J}$, ordinals $a(\iota) < a$ such that $A \in \Gamma$ and for each $\iota \in [\mathbb{Q}_{\Pi}]_A J$, $(\mathcal{H}_{\gamma}, \Theta \cup \mathsf{k}(\iota); \mathbb{Q}_{\Pi}) \vdash_c^{*a(\iota)} \Gamma, A_{\iota}; \Pi^{[\cdot]}$.
- $\begin{array}{l} (\bigwedge)^{[\cdot]} \ \ \text{There exist} \ \sigma \in \bigcup \mathbb{Q}_{\Pi}, \ A \simeq \bigwedge(A_{\iota})_{\iota \in J}, \ \text{ordinals} \ a(\iota) < a \ \text{such that} \ A^{[\sigma/\mathbb{S}]} \in \Pi^{[\cdot]}, \ \text{and} \ (\mathcal{H}_{\gamma}, \Theta \cup \mathbf{k}(\iota); \mathbb{Q}_{\Pi}) \vdash_{c}^{*a(\iota)} \Gamma; \Pi^{[\cdot]}, (A_{\iota})^{[\sigma/\mathbb{S}]} \ \text{for each} \ \iota \in [\mathbb{Q}_{\Pi}]_{A} J \cap [\sigma] J. \end{array}$
- (cut) There exist an ordinal $a_0 < a$ and a formula C such that $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a_0} \Gamma, \neg C; \Pi^{[\cdot]}$ and $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a_0} C, \Gamma; \Pi^{[\cdot]}$ with $\mathrm{rk}(C) < c$.
- $\begin{array}{l} (\Sigma(St)\text{-rfl}) \ \ \text{There exist ordinals} \ a_{\ell}, a_r < a \ \ \text{and a formula} \ \ C \in \Sigma(St) \ \ \text{such that} \\ c \geq \mathbb{I}, \ (\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a_{\ell}} \Gamma, C; \Pi^{[\cdot]} \ \ \text{and} \ \ (\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a_{r}} \neg \exists x \, C^{(x, \mathbb{I})}, \Gamma; \Pi^{[\cdot]}. \end{array}$
- $\begin{array}{l} (\Sigma(\Omega)\text{-rfl}) \ \ \text{There exist ordinals} \ a_{\ell}, a_{r} < a \ \text{and a formula} \ C \in \Sigma(\Omega) \ \text{such that} \ c \geq \\ \Omega, \, (\mathcal{H}_{\gamma}, \Theta; \mathbf{Q}_{\Pi}) \vdash_{c}^{*a_{\ell}} \Gamma, C; \Pi^{[\cdot]} \ \text{and} \ (\mathcal{H}_{\gamma}, \Theta; \mathbf{Q}_{\Pi}) \vdash_{c}^{*a_{r}} \neg \exists x < \Omega \ C^{(x,\Omega)}, \Gamma; \Pi^{[\cdot]}. \end{array}$
- (stbl(S)) There exist an ordinal $a_0 < a$, a successor stable ordinal S, a Λ -formula $B(0) \in \Delta_0(S)$ and a $u \in Tm(I)$ for which the following hold:

$$\mathbb{S} \in \mathcal{H}_{\gamma}[\Theta_{\mathbf{Q}_{\Pi}(\mathbb{S})}] \& \forall \mathbb{U} \in dom(\mathbf{Q}_{\Pi}) \cap \mathbb{S} \left(\mathbb{S} \in \mathcal{H}_{\gamma}[\Theta_{\mathbf{Q}_{\Pi}(\mathbb{U})}] \right)$$
(60)

 $\mathbb{S} \leq \operatorname{rk}(B(u)) < c$, $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a_{0}} \Gamma, B(u); \Pi^{[\cdot]}$, and $(\mathcal{H}_{\gamma}, \Theta \cup \{\sigma\}; \mathbb{Q}_{\Pi} \cup \{(\mathbb{S}, \sigma)\}) \vdash_{c}^{*a_{0}} \Gamma; \neg B(u)^{[\sigma/\mathbb{S}]}, \Pi^{[\cdot]}$ holds for every ordinal $\sigma \in \Psi_{\mathbb{S}}$ such that $p_{0}(\sigma) \geq \gamma_{0}$ and

$$\Theta \cup \{\mathbb{S}\} \subset M_{\sigma} \tag{61}$$

where $dom(\mathbb{Q}_{\Pi} \cup \{(\mathbb{S}, \sigma)\}) = dom(\mathbb{Q}_{\Pi}) \cup \{\mathbb{S}\}, \text{ and } (\mathbb{Q}_{\Pi} \cup \{(\mathbb{S}, \sigma)\}) (\mathbb{S}) = \mathbb{Q}_{\Pi}(\mathbb{S}) \cup \{\sigma\}.$

$$\frac{(\mathcal{H}_{\gamma},\Theta;\mathbb{Q}_{\Pi})\vdash_{c}^{*a_{0}}\Gamma,B(u);\Pi^{[\cdot]}\quad\{(\mathcal{H}_{\gamma},\Theta\cup\{\sigma\};\mathbb{Q}_{\Pi}\cup\{(\mathbb{S},\sigma)\})\vdash_{c}^{*a_{0}}\Gamma;\neg B(u)^{[\sigma/\mathbb{S}]},\Pi^{[\cdot]}\}_{\sigma}}{(\mathcal{H}_{\gamma},\Theta;\mathbb{Q}_{\Pi})\vdash_{c}^{*a_{1}}\Gamma;\Pi^{[\cdot]}}$$

Assume (60) and (61). Then $(\Theta \cup \{\sigma\})_{(\mathfrak{q}_{\Pi} \cup \{(\mathbb{S},\sigma)\})(\mathbb{S})} = \Theta_{\mathfrak{q}_{\Pi}(\mathbb{S})}$, and $(\Theta \cup \{\sigma\})_{(\mathfrak{q}_{\Pi} \cup \{(\mathbb{S},\sigma)\})(\mathbb{U})} = (\Theta \cup \{\sigma\})_{\mathfrak{q}_{\Pi}(\mathbb{U})} \supset \Theta_{\mathfrak{q}_{\Pi}(\mathbb{U})}$ for $\mathbb{U} \in dom(\mathfrak{q}_{\Pi}) \cap \mathbb{S}$.

⁶(58) means $\{\gamma, a, c, \gamma_0\} \subset \mathcal{H}_{\gamma}[\Theta]$ when $dom(Q_{\Pi}) = \emptyset$.

⁷The condition $|\iota| < a$ is absent in the inference (\bigvee).

Lemma 7.15 (Tautology) Let $\gamma \in \mathcal{H}_{\gamma}[k(A)]$ and $d = \operatorname{rk}(A)$.

- 1. $(\mathcal{H}_{\gamma}, \mathsf{k}(A); \emptyset) \vdash_{0}^{*2d} \neg A, A; \emptyset$.
- $2. \ (\mathcal{H}_{\gamma},\mathsf{k}(A) \cup \{\mathbb{S},\sigma\}; \{(\mathbb{S},\sigma)\}) \vdash_{0}^{*2d} \neg A^{[\sigma/\mathbb{S}]}; A^{[\sigma/\mathbb{S}]} \ if \ \mathsf{k}(A) \cup \{\mathbb{S}\} \subset M_{\sigma} \ and \ \gamma \geq \mathbb{S}.$

Proof. Each is seen by induction on $d = \operatorname{rk}(A)$. For example consider the lemma 7.15.2. We have $\operatorname{rk}(A^{[\sigma/\mathbb{S}]}) < \mathbb{S}$ and $(\mathsf{k}(A) \cup \{\mathbb{S}, \sigma\}) \cap M_{\sigma} = \mathsf{k}(A) \cup \{\mathbb{S}\}$ for (58) and (59), and $\mathsf{k}(A^{[\sigma/\mathbb{S}]}) \subset \mathcal{H}_{\mathbb{S}}((\mathsf{k}(A) \cap \mathbb{S}) \cup \{\sigma\})$ for (57).

Lemma 7.16 (Embedding of Axioms) For each axiom A in $S_{\mathbb{I}}$ there is an $m < \omega$ such that $(\mathcal{H}_{\mathbb{I}}, \emptyset; \emptyset) \vdash_{\mathbb{I}+m}^{*\mathbb{I}+2} A; \emptyset$ holds.

Proof. Let us suppress the operator $\mathcal{H}_{\mathbb{I}}$. We show first that the axiom (50), $SSt(\sigma) \wedge \varphi(u) \wedge u \in L_{\sigma} \to \varphi^{L_{\sigma}}(u)$ by an inference (stbl(\mathbb{S})) for successor stable ordinals $\mathbb{S} < \mathbb{I}$. Let $B(0) \in \Delta_0(\mathbb{S})$ be a Λ -formula, and $u \in Tm(\mathbb{I})$.

We may assume that $\mathbb{I} > d = \mathrm{rk}(B(u)) \geq \mathbb{S}$. Let $\mathsf{k}_0 = \mathsf{k}(B(0))$ and $\mathsf{k}_u = \mathsf{k}(u)$. Then $\mathsf{k}(B(0)) \subset \mathcal{H}_0(\mathsf{k}_0)$. Let $\sigma \in \Psi_{\mathbb{S}}$ be an ordinal such that $\mathsf{k}_0 \cup \mathsf{k}_u \cup \{\mathbb{S}\} \subset M_{\sigma}$ and $\gamma_0 \leq \mathsf{p}_0(\sigma)$.

$$\frac{\mathsf{k}_{0} \cup \mathsf{k}_{u} \cup \{\mathbb{S}, \sigma\}; \{(\mathbb{S}, \sigma)\} \vdash_{0}^{*2d} B(u^{[\sigma/\mathbb{S}]}); \neg B(u)^{[\sigma/\mathbb{S}]}}{\mathsf{k}_{0} \cup \mathsf{k}_{u} \cup \{\mathbb{S}, \sigma\}; \{(\mathbb{S}, \sigma)\} \vdash_{0}^{*2d+1} \exists x \in L_{\mathbb{S}}B(x); \neg B(u)^{[\sigma/\mathbb{S}]}\}_{\sigma}}{\mathsf{k}_{0} \cup \mathsf{k}_{u} \cup \{\mathbb{S}\}; \vdash_{\mathbb{I}}^{*\mathbb{I}} \neg B(u), \exists x \in L_{\mathbb{S}}B(x);}} (\mathsf{A})$$

$$\frac{\mathsf{k}_{0} \cup \mathsf{k}_{u} \cup \{\mathbb{S}\}; \vdash_{\mathbb{I}}^{*\mathbb{I}} \neg B(u), \exists x \in L_{\mathbb{S}}B(x);}{\mathsf{k}_{0} \cup \{\mathbb{S}\}; \vdash_{\mathbb{I}}^{*\mathbb{I}+1} \neg \exists x B(x), \exists x \in L_{\mathbb{S}}B(x);}} (\mathsf{A})$$

Therefore $(\mathcal{H}_{\mathbb{I}}, \emptyset; \emptyset) \vdash_{\mathbb{I}}^{*\mathbb{I}+\omega} \forall \mathbb{S}, v \left[SSt(\mathbb{S}) \land A(v) \land v \in L_{\mathbb{S}} \to A^{(\mathbb{S},\mathbb{I})}(v) \right]; \emptyset$, where $SSt(\alpha) :\Leftrightarrow (St(\alpha) \land \exists \beta < \alpha \forall \gamma < \alpha (St(\gamma) \to \gamma \leq \beta)]$.

Next we show the axiom (49). Let α be an ordinal such that $\alpha < \mathbb{I}$. We obtain for $\alpha < \alpha^{\dagger} < \mathbb{I}$ with $d_0 = \text{rk}(\alpha < \alpha^{\dagger})$ and $\alpha^{\dagger} \leq d_1 = \text{rk}(St(\alpha^{\dagger})) < d_2 = \omega(\alpha^{\dagger} + 1)$ with $\alpha^{\dagger} \in \mathcal{H}_0[\{\alpha\}]$

$$\frac{\{\alpha\};\emptyset\vdash_{0}^{*d_{0}}\alpha<\alpha^{\dagger};\emptyset\quad\{\alpha\};\emptyset\vdash_{0}^{*2d_{1}}St(\alpha^{\dagger});\emptyset}{\{\alpha\};\emptyset\vdash_{0}^{*d_{2}}\alpha<\alpha^{\dagger}\wedge St(\alpha^{\dagger});\emptyset}}\underset{\{\alpha\};\emptyset\vdash_{0}^{*d_{2}+1}\exists\sigma\left(\alpha<\sigma\wedge St(\sigma)\right);\emptyset}{(\bigvee)}\underset{\{\emptyset;\emptyset\vdash_{0}^{*\mathbb{I}}\forall\alpha\in ON\exists\sigma\left(\alpha<\sigma\wedge St(\sigma)\right);\emptyset}{(\bigwedge)}$$

Lemma 7.17 (Cut-elimination) Assume $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c+1}^{*a} \Gamma; \Pi^{[\cdot]}$ with $c \geq \mathbb{I}$. Then $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*\omega^{a}} \Gamma; \Pi^{[\cdot]}$.

Proof. Use the fact: if $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a} \Gamma; \Pi^{[\cdot]}$ and $\Theta \cup \{\mathbb{S}\} \subset M_{\sigma}$, then $(\mathcal{H}_{\gamma}, \Theta \cup \{\sigma\}; \mathbb{Q}_{\Pi} \cup \{(\mathbb{S}, \sigma)\}) \vdash_{c}^{*a} \Gamma; \Pi^{[\cdot]}$.

Lemma 7.18 (Collapsing) Let $\Gamma \subset \Sigma(St)$ be a set of formulas. Suppose $\Theta \subset \mathcal{H}_{\gamma}(\psi_{\mathbb{I}}(\gamma))$ and $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{\mathbb{I}}^{*a} \Gamma; \Pi^{[\cdot]}$. Let $\beta = \psi_{\mathbb{I}}(\hat{a})$ with $\hat{a} = \gamma + \omega^{a}$. Then $(\mathcal{H}_{\hat{a}+1}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{\beta}^{*\beta} \Gamma^{(\beta, \mathbb{I})}; \Pi^{[\cdot]}$ holds.

71

Proof. By induction on a. We have $\{\gamma, a\} \subset \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}_{\Pi}(\mathbb{S})}]$ by (58), and $\beta \in \mathcal{H}_{\hat{a}+1}[\Theta_{\mathbb{Q}_{\Pi}(\mathbb{S})}]$ for $\mathbb{S} \in dom(\mathbb{Q}_{\Pi})$

When the last inference is a $(\operatorname{stbl}(\mathbb{S}))$, let $B(0) \in \Delta_0(\mathbb{S})$ be a Λ -formula and a term $u \in Tm(\mathbb{I})$ such that $\mathbb{S} \leq \operatorname{rk}(B(u)) < \mathbb{I}$, $\operatorname{k}(B(u)) \subset \mathcal{H}_{\gamma}[\Theta]$, and $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{\mathbb{I}}^{*a_0} \Gamma, B(u); \Pi^{[\cdot]}$ for an ordinal $a_0 \in \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}_{\Pi}}] \cap a$. Then we obtain $\mathbb{S} \leq \operatorname{rk}(B(u)) < \beta$.

7.4 Operator controlled derivations with caps

Let $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{\mathbb{K}}^{*a} \Gamma; \Pi^{[\cdot]}$ in the calculus for Π^1_1 -reflection in subsection 6.5. In Capping 6.44, each formula $A \in \Gamma$ puts on a cap ρ such that $\mathbb{Q}_{\Pi} \subset \rho$ and (38), $\Theta \subset M_{\rho}$. (38) is needed in **Case 3.1** of the proof. Namely when $\Gamma \ni A \simeq \bigvee (A_{\iota})_{\iota \in J}$ is introduced by a (\bigvee) such that $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{\mathbb{K}}^{*a(\iota)} \Gamma, A_{\iota}; \Pi^{[\cdot]},$ we need $\iota \in [\rho]J$, i.e., $\mathsf{k}(\iota) \subset M_{\rho}$, which follows from $\mathsf{k}(A_{\iota}) \subset \mathcal{H}_{\gamma}[\Theta] \subset M_{\rho}$ by (34) and $\Theta \subset M_{\rho}$.

We are concerned here with several stable ordinals $\mathbb{S}, \mathbb{T}, \ldots$. It is convenient for us to regard *uncapped formulas* A as capped formulas $A^{(u)}$ with its cap u. Let $M_u = OT(\mathbb{I})$.

In Capping 7.29 Γ is classified into $\Gamma = \Gamma_{\mathbf{u}} \cup \bigcup_{\mathbb{S} \in dom(\mathbb{Q}_{\Pi})} \Gamma_{\mathbb{S}}$. $\Gamma_{\mathbb{S}}$ is the set of formulas B(u) in inferences for the stability of a successor stable ordinal \mathbb{S} .

$$\frac{(\mathcal{H}_{\gamma},\Theta;\mathbb{Q}_{\Pi}\cup\{\mathbb{S}\})\vdash_{c}^{*a_{0}}\Gamma,B(u);\Pi^{[\cdot]}\quad\{(\mathcal{H}_{\gamma},\Theta\cup\{\sigma\};\mathbb{Q}_{\Pi}\cup\{(\mathbb{S},\sigma)\})\vdash_{c}^{*a_{0}}\Gamma;\neg B(u)^{[\sigma/\mathbb{S}]},\Pi^{[\cdot]}\}_{\sigma}}{(\mathcal{H}_{\gamma},\Theta;\mathbb{Q}_{\Pi})\vdash_{c}^{*a}\Gamma;\Pi^{[\cdot]}}$$

Each formula $A \in \Gamma_{\mathbb{S}}$ puts on a cap $\rho_{\mathbb{S}}$ for the stable ordinal \mathbb{S} . Then (38) runs $\Theta \subset M_{\rho_{\mathbb{S}}}$ for every $\mathbb{S} \in dom(\mathbb{Q}_{\Pi})$. This means $\Theta \subset M_{\partial \mathbb{Q}} := \bigcap_{\kappa \in \partial \mathbb{Q}} M_{\kappa}$, where

$$\partial Q = {\max(Q(S)) : S \in dom(Q), Q(S) \neq \emptyset}.$$

Ordinals occurring in derivations are restricted to the set $M_{\partial Q}$.

In section 6 for Π_1^1 -reflection, an ordinal γ_0 is a threshold, which means that every ordinal occurring in derivations is in $\mathcal{H}_{\gamma_0}(0)$ and the subscript $\gamma \leq \gamma_0$ in \mathcal{H}_{γ} , while each $\rho \in \mathbb{Q}$ exceeds γ_0 in such a way that $p_0(\rho) \geq \gamma_0$. This ensures us that $\mathcal{H}_{\gamma}(M_{\rho}) \subset M_{\rho}$. In the end, inferences $(\text{rfl}(\rho, d, f))$ are removed in Lemma 6.48 by moving outside $\mathcal{H}_{\gamma_0}(0)$. Specifically $\mathbb{Q} \subset \mathcal{H}_{\gamma_0+\mathbb{S}}(0)$.

Now we have several (successor) stable ordinals $\mathbb{S}, \mathbb{T}, \ldots \in dom(\mathbb{Q})$. Inferences (stbl(\mathbb{S})) and their children (rfl $_{\mathbb{S}}(\rho, d, f)$) are eliminated first for bigger $\mathbb{S} > \mathbb{T}$, and then smaller ones (stbl(\mathbb{T})). Therefore we need assignment $dom(\mathbb{Q}) \ni \mathbb{S} \mapsto \gamma_{\mathbb{S}}^{\mathbb{Q}}$ for thresholds so that $\gamma_{\mathbb{S}}^{\mathbb{Q}} < \gamma_{\mathbb{T}}^{\mathbb{Q}}$ if $\mathbb{S} > \mathbb{T}$. This is done by gapping, i.e., a gap $\mathbb{I} \cdot 2^a$ between $\gamma_{\mathbb{S}}^{\mathbb{Q}}$ and $\gamma_{\mathbb{T}}^{\mathbb{Q}}$ in advance, when $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a} \Gamma; \Pi^{[\cdot]}$ is embedded to $(\mathcal{H}_{\gamma}, \Theta_{\Pi}, \mathbb{Q}) \vdash_{c,c,\gamma_{0}}^{a} \widehat{\Gamma}, \widehat{\Pi}$, cf. Capping 7.29.

Definition 7.19 A triple $(\mathbb{Q}, \gamma^{\mathbb{Q}}, e^{\mathbb{Q}})$ is said to be a *finite family for ordinals* γ_0 and b_1 if \mathbb{Q} is a finite family in the sense of Definition 7.13 and the following conditions are met:

- $\begin{array}{l} 1. \ \, \gamma^{\mathsf{Q}} \ \, \text{is a map} \ \, dom(\mathsf{Q}) \ni \mathbb{S} \mapsto \gamma^{\mathsf{Q}}_{\mathbb{S}} \ \, \text{such that} \ \, \gamma_0 + \mathbb{I}^2 > \gamma^{\mathsf{Q}}_{\mathbb{S}} \geq \gamma_0, \, \gamma^{\mathsf{Q}}_{\mathbb{S}} \geq \gamma^{\mathsf{Q}}_{\mathbb{T}} + \mathbb{I} \ \, \text{for} \\ \big\{ \mathbb{S} < \mathbb{T} \big\} \subset dom(\mathsf{Q}) \ \, \text{and} \ \, \mathbb{S} \in \mathcal{H}_{\gamma^{\mathsf{Q}}_{\mathbb{S}} + \mathbb{I}} \ \, \text{for} \ \, \mathbb{S} \in dom(\mathsf{Q}). \end{array}$
 - $\begin{array}{l} \mathtt{Q} \text{ is said to have } gaps \ \eta \text{ if } \gamma_{\mathbb{S}}^{\mathtt{Q}} \geq \gamma_{\mathbb{T}}^{\mathtt{Q}} + \mathbb{I} \cdot \eta \text{ holds for } \{\mathbb{S} < \mathbb{T}\} \subset dom(\mathtt{Q}), \text{ and } \\ \gamma_{\mathbb{S}}^{\mathtt{Q}} \geq \gamma_0 + \mathbb{I} \cdot \eta \text{ for } \mathbb{S} \in dom(\mathtt{Q}). \end{array}$
- 2. For each $\rho \in \mathbb{Q}(\mathbb{S})$, $m(\rho) : \mathbb{I} \to \varphi_{\mathbb{I}}(0)$ is special, $s(\rho) \leq b_1$, $\rho \in \mathcal{H}_{\gamma_{\mathbb{S}}^{q} + \mathbb{I}}(0)$, and $\gamma_{\mathbb{S}}^{q} \leq p_0(\rho)$.
- 3. $e^{\mathbb{Q}}$ assigns an ordinal $e_{\mathbb{S}}^{\mathbb{Q}} \in \mathcal{H}_{\gamma_{\mathbb{C}}^{\mathbb{Q}} + \mathbb{I}} \cap (\mathbb{S} + 1)$ to each $\mathbb{S} \in dom(\mathbb{Q})$ such that

$$\max(\{0\} \cup \{\rho \in \mathbb{Q}(\mathbb{S}) : s(\rho) > \mathbb{S}\}) < e_{\mathbb{S}}^{\mathbb{Q}}$$
(62)

Let $e_{\mathbb{S}}^{\mathbb{Q}} = \mathbb{S}$ when $\mathbb{S} \not\in dom(\mathbb{Q})$.

Definition 7.20 For a finite family \mathbb{Q} , and for $A \simeq \bigvee (A_{\iota})_{\iota \in J}$

$$[\mathtt{Q}]_{A^{(\rho)}}J=[\mathtt{Q}]_{\neg A^{(\rho)}}J=[\mathtt{Q}]_AJ\cap[\partial\mathtt{Q}]J\cap[\rho]J$$

where $[\mathbf{u}]J = J$ and

$$[\partial \mathtt{Q}]J = \bigcap_{\kappa \in \partial \mathtt{Q}} [\kappa]J.$$

Definition 7.21 1. For a finite family \mathbb{Q} , let $\partial \mathbb{Q} = \{ \max(\mathbb{Q}(\mathbb{S})) : \mathbb{S} \in dom(\mathbb{Q}), \mathbb{Q}(\mathbb{S}) \neq \emptyset \}$ and $M_{\partial \mathbb{Q}} = \bigcap_{\kappa \in \partial \mathbb{Q}} M_{\kappa}$.

2.

$$[\mathbb{Q}]_{A^{(\rho)}}J = [\mathbb{Q}]_{\neg A^{(\rho)}}J = [\mathbb{Q}]_AJ \cap [\partial \mathbb{Q}]J \cap [\rho]J$$

where $[\mathbf{u}]J = J$ and $[\partial \mathbb{Q}]J = \bigcap_{\kappa \in \partial \mathbb{Q}} [\kappa]J$.

Definition 7.22 $H^{\mathbb{Q}}_{\rho}(f,b_1,\gamma,\Theta)$ denotes the resolvent class for \mathbb{Q} , ρ , special functions f, ordinals b_1,γ , and finite sets Θ of ordinals defined as follows: $\sigma \in H^{\mathbb{Q}}_{\rho}(f,\gamma,\Theta)$ iff $\sigma \in \mathcal{H}_{\gamma+\mathbb{I}}(0) \cap \rho \cap M_{\partial\mathbb{Q}}$, $SC_{\mathbb{I}}(m(\sigma)) \subset \mathcal{H}_{\gamma}[\Theta]$, $\Theta \subset M_{\sigma}$, $\gamma \leq p_0(\sigma) \leq p_0(\rho)$ and $m(\sigma)$ is special such that $s(f) \leq s(m(\sigma)) \leq b_1$, $f' \leq (m(\sigma))'$, where $\sigma, \rho \prec \mathbb{S}$ and $f \leq g \Leftrightarrow \forall i (f(i) \leq g(i))$.

We define another derivability relation $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c,\xi,\gamma_0,b_1}^a \Gamma$, where c is a bound of ranks of cut formulas, and ξ a bound of ordinals \mathbb{S} in the inference rules $(\text{rfl}_{\mathbb{S}}(\rho, d, f, b_1))$.

Definition 7.23 Let $\Theta^{(\rho)} = \Theta \cap M_{\rho}$ and $\Theta_{\partial \mathbb{Q}} = \Theta \cap M_{\partial \mathbb{Q}}$. Let $a, b, c, \xi < \mathbb{I}$, a finite set $\Theta \subset \mathbb{I}$, and \mathbb{Q} be a finite family for γ_0, b_1 such that $dom(\mathbb{Q}) \subset (\xi + 1)$. $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c, \xi, \gamma_0, b_1}^a \Gamma$ holds for a sequent $\Gamma = \bigcup \{\Gamma_{\rho}^{(\rho)} : \rho \in \{\mathbb{u}\} \cup \bigcup \mathbb{Q}\}$ if $\gamma \leq \gamma_0$

$$\forall \rho \in \{\mathbf{u}\} \cup \bigcup \mathbb{Q} \left(\mathsf{k}(\Gamma_{\rho}) \subset \mathcal{H}_{\gamma}[\Theta^{(\rho)}] \cap \mathcal{H}_{\gamma}[\Theta_{\partial \mathbb{Q}}] \right) \tag{63}$$

$$\forall \mathbb{S} \in dom(\mathbb{Q}) \left(\{ \gamma, a, c, \xi, \gamma_0, b_1 \} \subset \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}(\mathbb{S})}] \cap \mathcal{H}_{\gamma}[\Theta_{\partial\mathbb{Q}}] \right)^{8}$$
 (64)

$$\forall \{ \mathbb{U} \le \mathbb{S} \} \subset dom(\mathbb{Q}) \left(\{ \mathbb{S}, \gamma_{\mathbb{S}}^{\mathbb{Q}} \} \subset \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}(\mathbb{U})}] \cap \mathcal{H}_{\gamma}[\Theta_{\partial \mathbb{Q}}] \right)$$
 (65)

$$\forall \rho \in \{\mathbf{u}\} \cup \bigcup \mathbf{Q} \forall \mathbb{S} \in dom(\mathbf{Q}) \left(\mathbf{k}^{\mathbb{S}}(\Gamma_{\rho}) \subset \mathcal{H}_{\gamma} \left[\Theta_{\mathbf{Q}(\mathbb{S})} \right] \cap \mathcal{H}_{\gamma}[\Theta_{\partial \mathbf{Q}}] \right) \tag{66}$$

$$\forall (\mathbb{S}, \rho) \in \mathbb{Q}\left(SC_{\mathbb{I}}(m(\rho)) \subset \mathcal{H}_{\gamma_{\mathbb{S}}^{\mathfrak{q}}}\left[\Theta^{(\rho)} \cup \{\mathbb{S}\} \cup \Theta_{\partial \mathbb{Q}}\right]\right)$$
(67)

and one of the following cases holds:

- (Taut) $\{\neg A^{(\rho)}, A^{(\rho)}\} \subset \Gamma$ for a $\rho \in \{u\} \cup \bigcup \mathbb{Q}$ and a formula A such that $\operatorname{rk}(A) < \mathbb{S} \leq \xi$ for some successor stable ordinal \mathbb{S} . If $\operatorname{rk}(A) < \mathbb{S}$, then $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{0, \mathbb{S}, \gamma_0, b_1}^{0} \neg A^{(\sigma)}, A^{(\sigma)}$ by (Taut) provided that (64) and (66) are met.
- (V) There exist $A \simeq \bigvee (A_{\iota})_{\iota \in J}$, a cap $\rho \in \{\mathfrak{u}\} \cup \bigcup \mathbb{Q}$, an ordinal $a(\iota) < a$ and an $\iota \in [\rho]J \cap [\partial \mathbb{Q}]J$ such that $A^{(\rho)} \in \Gamma$ and $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c,\xi,\gamma_{0},b_{1}}^{a(\iota)} \Gamma, (A_{\iota})^{(\rho)}$.
- $\begin{array}{l} (\bigwedge) \ \ \text{There exist} \ A \simeq \bigwedge (A_\iota)_{\iota \in J}, \ \text{a cap} \ \rho \in \{\mathtt{u}\} \cup \bigcup \mathtt{Q}, \ \text{ordinals} \ a(\iota) < a \ \text{for each} \\ \iota \in [\mathtt{Q}]_{A^{(\rho)}} J \ \text{such that} \ A^{(\rho)} \in \Gamma \ \text{and} \ (\mathcal{H}_\gamma, \Theta \cup \mathsf{k}(\iota), \mathtt{Q}) \vdash^{a(\iota)}_{c, \xi, \gamma_0, b_1} \Gamma, (A_\iota)^{(\rho)}. \end{array}$
- (cut) There exist a cap $\rho \in \{u\} \cup \bigcup \mathbb{Q}$, ordinals $a_0 < a$ and a formula C such that $\operatorname{rk}(C) < c$, $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c,\xi,\gamma_0,b_1}^{a_0} \Gamma, \neg C^{(\rho)}$ and $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c,\xi,\gamma_0,b_1}^{a_0} C^{(\rho)}, \Gamma$.
- ($\Sigma(\Omega)$ -rfl) There exist ordinals $a_{\ell}, a_r < a$ and an uncapped formula $C \in \Sigma(\Omega)$ such that $c \geq \Omega$, $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c,\xi,\gamma_0,b_1}^{a_{\ell}} \Gamma, C$ and $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c,\xi,\gamma_0,b_1}^{a_r} \neg \exists x < \pi \, C^{(x,\Omega)}, \Gamma$.
- $(\text{rfl}_{\mathbb{S}}(\rho, d, f, b_1))$ There exist a successor stable ordinal $\mathbb{S} \leq \xi$ and an ordinal $\rho \prec \mathbb{S}$ such that

$$\Theta_{\mathfrak{Q}(\mathbb{S})} \cup \{\mathbb{S}\} \cup \Theta_{\partial \mathfrak{Q}} \subset M_{\rho} \tag{68}$$

and $\rho \in \mathbb{Q}(\mathbb{S})$ if $\mathbb{S} \in dom(\mathbb{Q})$. Let $\mathbb{R} = \mathbb{Q}$ if $\mathbb{S} \in dom(\mathbb{Q})$. Otherwise $\mathbb{R} = \mathbb{Q} \cup \{(\mathbb{S}, \rho)\}$, where $\mathbb{Q} \cup \{(\mathbb{S}, \rho)\}$ is a finite family for γ_0 extending \mathbb{Q} such that $dom(\mathbb{R}) = dom(\mathbb{Q}) \cup \{\mathbb{S}\}$, $\mathbb{R}(\mathbb{S}) = \mathbb{Q}(\mathbb{S}) \cup \{\rho\}$, $e_{\mathbb{T}}^{\mathbb{R}} = e_{\mathbb{T}}^{\mathbb{Q}}$ for $\mathbb{S} \neq \mathbb{T} \in dom(\mathbb{Q})$, $\gamma_{\mathbb{T}}^{\mathbb{Q}} \geq \gamma_{\mathbb{S}}^{\mathbb{R}} + \mathbb{I}$ for every $\mathbb{S} > \mathbb{T} \in dom(\mathbb{Q})$ and $\gamma_{\mathbb{S}}^{\mathbb{R}} \geq \gamma_0 + \mathbb{I}$.

Also there exist an ordinal $d \in \operatorname{supp}(m(\rho))$, a special function f, an ordinal $a_0 < a$, and a finite set Δ of uncapped formulas enjoying the following conditions.

- (r0) $\rho < e_{\mathbb{S}}^{\mathtt{R}}$ if $s(\rho) = \max(\operatorname{supp}(m(\rho))) > \mathbb{S}$.
- (r1) $\Delta \subset \bigvee_{\mathbb{S}} (d) := \{ \delta : \operatorname{rk}(\delta) < d, \delta \text{ is a } \bigvee \text{-formula} \} \cup \{ \delta : \operatorname{rk}(\delta) < \mathbb{S} \}.$

⁸(64) means $\{\gamma, a, c, \xi, \gamma_0\} \subset \mathcal{H}_{\gamma}[\Theta]$ when $dom(\mathbb{Q}) = \emptyset$.

- (r2) For $g = m(\rho)$, $s(f) \leq b_1$, $SC_{\mathbb{I}}(f) \cup SC_{\mathbb{I}}(g) \subset \mathcal{H}_{\gamma_{\mathbb{S}}^{\mathbb{R}}}[\Theta^{(\rho)}]$ and $f_d = g_d \& f^d <_{\mathbb{I}}^d g'(d)$.
- (r3) For each $\delta \in \Delta$, $(\mathcal{H}_{\gamma}, \Theta, \mathbb{R}) \vdash_{c, \xi, \gamma_0}^{a_0} \Gamma, \neg \delta^{(\rho)}$.
- (r4) Let $\gamma^{\mathbb{R} \cup \{(\mathbb{S}, \sigma)\}} = \gamma^{\mathbb{R}}$, $e^{\mathbb{R} \cup \{(\mathbb{S}, \sigma)\}} = e^{\mathbb{R}}$ and $\sigma \in H^{\mathbb{R}}_{\rho}(f, b_1, \gamma^{\mathbb{R}}_{\mathbb{S}}, \Theta^{(\rho)} \cup \Theta_{\partial \mathbb{Q}})$. Then $(\mathcal{H}_{\gamma}, \Theta \cup \{\sigma\}, \mathbb{R} \cup \{(\mathbb{S}, \sigma)\}) \vdash_{c, \xi, \gamma_0}^{a_0} \Gamma, \Delta^{(\sigma)}$ holds. In particular $\sigma < e^{\mathbb{R}}_{\mathbb{S}}$ if $s(\sigma) > \mathbb{S}$ by (62).

Note that $\bigcup \mathbb{Q} \subset \mathcal{H}_{\gamma}[\Theta]$ need not to hold. Moreover $(\Theta \cup \{\sigma\})_{(\mathbb{R}(\mathbb{S}) \cup \{\sigma\})} = \Theta_{\mathbb{R}(\mathbb{S})} = \Theta_{\mathbb{Q}(\mathbb{S})}$ and $\Theta_{\partial \mathbb{R}} = \Theta_{\partial \mathbb{Q}}$ by $\Theta^{(\rho)} \subset M_{\sigma}$ and (68).

In this subsection the ordinals γ_0 and b_1 will be fixed, and we write $\vdash_{c,\xi}^a$ for $\vdash_{c,\xi,\gamma_0,b_1}^a$.

Lemma 7.24 (Tautology) Let $\{\gamma, \gamma_0, \mathbb{S}\} \cup \mathsf{k}^{\mathbb{T}}(A) \subset \mathcal{H}_{\gamma}[\Theta_{\mathfrak{Q}(\mathbb{T})}] \cap \mathcal{H}_{\gamma}[\Theta_{\partial \mathfrak{Q}}] \text{ for every } \mathbb{T} \in dom(\mathbb{Q}) \subset (\mathbb{S}+1), \ \sigma \in \{\mathsf{u}\} \cup \bigcup \mathbb{Q} \text{ and } \mathsf{k}(A) \subset M_{\sigma}. \text{ Then } (\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{0, \mathbb{S}}^{2d} \neg A^{(\sigma)}, A^{(\sigma)} \text{ holds for } d = \max\{\mathbb{S}, \mathrm{rk}(A)\}.$

Lemma 7.25 (Inversion) Let $A \simeq \bigwedge (A_{\iota})_{\iota \in J}$ and $(\mathcal{H}, \Theta, \mathbb{Q}) \vdash_{c, \xi}^{a} \Gamma$ with $A^{(\rho)} \in \Gamma$ and there is no $\mathbb{S} \in SSt$ such that $\operatorname{rk}(A) < \mathbb{S} \leq \xi$. Then for any $\iota \in [\mathbb{Q}]_{A^{(\rho)}}J$, $(\mathcal{H}, \Theta \cup \mathsf{k}(\iota), \mathbb{Q}) \vdash_{c, \xi}^{a} \Gamma, (A_{\iota})^{(\rho)}$.

Proof. We need to assume that there is no $\mathbb{S} \in SSt$ such that $\text{rk}(A) < \mathbb{S} \leq \xi$ due to (Taut).

Lemma 7.26 (Reduction) Let $C \simeq \bigvee (C_{\iota})_{\iota \in J}$ and $\Omega \leq \operatorname{rk}(C) \leq c$. Assume $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q} \vdash_{c,\xi}^{a} \Gamma, \neg C^{(\tau)})$ and $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c,\xi}^{b} C^{(\tau)}, \Gamma$ with $SSt \cap (c, \xi] = \emptyset$. Then $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c,\xi}^{a+b} \Gamma$.

Lemma 7.27 (Cut-elimination) If $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c+c_1, \xi}^{a} \Gamma$ with $\Omega \leq c < \mathbb{I}$, $\forall \mathbb{S} \in dom(\mathbb{Q})(c \in \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}(\mathbb{S})}] \cap \mathcal{H}_{\gamma}[\Theta_{\partial\mathbb{Q}}])$ and $SSt \cap (c, \xi] = \emptyset$, then $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c, \xi}^{\varphi_{c_1}(a)} \Gamma$.

Lemma 7.28 (Collapsing) Let $\Gamma \subset \Sigma(\Omega)$ be a sets of uncapped formulas. Suppose $\Theta \subset \mathcal{H}_{\gamma}(\psi_{\Omega}(\gamma))$ and $(\mathcal{H}_{\gamma}, \Theta, \emptyset) \vdash_{\Omega,0}^{a} \Gamma$. Let $\beta = \psi_{\Omega}(\hat{a})$ with $\hat{a} = \gamma + \omega^{a} < \gamma_{0}$. Then $(\mathcal{H}_{\hat{a}+1}, \Theta, \emptyset) \vdash_{\beta,0}^{\beta} \Gamma^{(\beta,\Omega)}$ holds.

7.5 Eliminations of stable ordinals

Lemma 7.29 (Capping) Let $\Gamma \cup \Pi \subset \Delta_0(\mathbb{I})$ be a set of uncapped formulas. Suppose $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c,\gamma_0}^{*a} \Gamma; \Pi^{[\cdot]}$, where $a, c < \mathbb{I}$, $dom(\mathbb{Q}_{\Pi}) \subset c$, $\Gamma = \Gamma_{\mathbf{u}} \cup \bigcup_{\mathbb{S} \in dom(\mathbb{Q}_{\Pi})} \Gamma_{\mathbb{S}}$, $\Pi^{[\cdot]} = \bigcup_{(\mathbb{S}, \sigma) \in \mathbb{Q}_{\Pi}} \Pi_{\sigma}^{[\sigma/\mathbb{S}]}$.

For each $\mathbb{S} \in dom(\mathbb{Q}_{\Pi})$, let $\rho_{\mathbb{S}} = \psi_{\mathbb{S}}^{g_{\mathbb{S}}}(\delta_{\mathbb{S}})$ be an ordinal with an ordinal $\delta_{\mathbb{S}} \in \mathcal{H}_{\gamma}[\Theta]$ and a special finite function $g_{\mathbb{S}} = m(\rho_{\mathbb{S}}) : \mathbb{I} \to \varphi_{\mathbb{I}}(0)$ such that $\operatorname{supp}(g_{\mathbb{S}}) = \{c\}$ with $g_{\mathbb{S}}(c) = \alpha_{\mathbb{S}} + \mathbb{I}$, $\mathbb{I}(2a+1) \leq \alpha_{\mathbb{S}} + \mathbb{I}$, $SC_{\mathbb{I}}(g_{\mathbb{S}}) = SC_{\mathbb{I}}(c, \alpha_{\mathbb{S}}) \subset \mathcal{H}_{0}(SC_{\mathbb{I}}(\delta_{\mathbb{S}})) \cap \mathcal{H}_{\gamma}[\Theta]$, cf. (55) and (67). Also let $\widehat{\Pi} = \bigcup_{(\mathbb{S},\sigma)\in\mathbb{Q}_{\Pi}} \Pi_{\sigma}^{(\sigma)}$, $\widehat{\Gamma} = \Gamma_{\mathbf{u}}^{(\mathbf{u})} \cup \bigcup_{\mathbb{S}\in dom(\mathbb{Q}_{\Pi})} \Gamma_{\mathbb{S}}^{(\rho_{\mathbb{S}})}$.

Let \mathbb{Q} be a finite family for $\gamma_0 \geq \gamma$ such that $\mathbb{Q}(\mathbb{S}) = \mathbb{Q}_{\Pi}(\mathbb{S}) \cup \{\rho_{\mathbb{S}}\}$ for $\mathbb{S} \in dom(\mathbb{Q}_{\Pi}) = dom(\mathbb{Q})$, $\rho_{\mathbb{S}} \in \mathcal{H}_{\gamma_{\mathbb{S}}^{\mathbb{Q}} + \mathbb{I}}(0)$ for $\mathbb{S} \in dom(\mathbb{Q})$, and $\alpha_{\mathbb{S}} + \mathbb{I} \leq \gamma_{\mathbb{S}}^{\mathbb{Q}} \leq \delta_{\mathbb{S}} < \gamma_{\mathbb{S}}^{\mathbb{Q}} + \mathbb{I}$. Also $e_{\mathbb{S}}^{\mathbb{Q}} = \rho_{\mathbb{S}} + 1$.

Assume $\forall \mathbb{S} \in dom(\mathbb{Q}_{\Pi})(\gamma_{\mathbb{S}}^{\mathbb{Q}} \in \mathcal{H}_{\gamma}[\Theta]), \ \mathbb{Q}_{\Pi}(\mathbb{S}) \subset \rho_{\mathbb{S}}, \ \Theta \cup \{\mathbb{S}\} \subset M_{\rho_{\mathbb{S}}}, \ p_{0}(\sigma) \leq p_{0}(\rho_{\mathbb{S}}) = \delta_{\mathbb{S}} \ and \ SC_{\mathbb{I}}(m(\sigma)) \subset \mathcal{H}_{\gamma_{\mathbb{S}}^{\mathbb{Q}}}[\Theta \cup \{\mathbb{S}\}] \ for \ each \ (\mathbb{S}, \sigma) \in \mathbb{Q}_{\Pi}, \ \forall \{\mathbb{U} < \mathbb{S}\} \subset dom(\mathbb{Q}_{\Pi})(\rho_{\mathbb{S}} \in M_{\rho_{\mathbb{U}}}), \ and \ \mathbb{Q} \ has \ gaps \ 2^{a}.$

Then $(\mathcal{H}_{\gamma}, \Theta_{\Pi}, \mathbb{Q}) \vdash_{c,c,\gamma_0,c}^a \widehat{\Gamma}, \widehat{\Pi} \text{ holds for } \Theta_{\Pi} = \Theta \cup \bigcup \mathbb{Q}_{\Pi}.$

Remark 7.30 When $\alpha_{\mathbb{S}} = \mathbb{I}(2a)$ and $\Theta = \emptyset$, $\delta_{\mathbb{S}} < \gamma_{\mathbb{S}}^{\mathsf{q}} + \mathbb{I}$ denotes the natural sum $\gamma_{\mathbb{S}}^{\mathsf{q}} + a \# c$. Then $\Theta \cup \{\mathbb{S}\} \subset M_{\rho_{\mathbb{S}}}$ and $\{a, c\} \subset \mathcal{H}_0(SC_{\mathbb{I}}(\delta_{\mathbb{S}}))$. Hence (55) is enjoyed for $\rho_{\mathbb{S}}$. Namely $SC_{\mathbb{I}}(g_{\mathbb{S}}) = \{c, \alpha_{\mathbb{S}} + \mathbb{I}\} \subset \mathcal{H}_0(SC_{\mathbb{I}}(\delta_{\mathbb{S}})) \subset \mathcal{H}_{\delta_{\mathbb{S}}}(SC_{\mathbb{I}}(\delta_{\mathbb{S}}))$ holds.

Let $\mathbb{U} \in dom(\mathbb{Q}_{\Pi}) \cap \mathbb{S}$. We have $\{\gamma_0, \mathbb{S}, a, c\} \subset \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}_{\Pi}(\mathbb{U})}]$ by (58). We intend to be $\gamma_{\mathbb{S}}^{\mathbb{Q}} = \gamma_0 + \mathbb{I} \cdot 2^a \cdot n$ for $n = \#\{\mathbb{T} \in dom(\mathbb{Q}) : \mathbb{T} \geq \mathbb{S}\}$. Then $\{\mathbb{S}, a, c, \gamma_{\mathbb{S}}^{\mathbb{Q}}\} \subset \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}_{\Pi}(\mathbb{U})}] \cap \mathcal{H}_{\gamma}[\Theta_{\partial\mathbb{Q}}]$ for (64) and (65).

On the other hand we have $\mathbb{Q}_{\Pi}(\mathbb{S}) \subset \rho_{\mathbb{S}}$, and $\rho_{\mathbb{S}} = \max(\mathbb{Q}(\mathbb{S}))$, i.e., $\partial \mathbb{Q} = \{\rho_{\mathbb{S}} : \mathbb{S} \in dom(\mathbb{Q}_{\Pi})\}$. Also $\{\mathbb{S}, \delta_{\mathbb{S}}\} \cup SC_{\mathbb{I}}(g_{\mathbb{S}}) \subset \mathcal{H}_{0}(\{\mathbb{S}, a, c, \gamma_{\mathbb{S}}^{\mathbb{Q}}\} \cup \Theta) \subset M_{\rho_{\mathbb{U}}} = \mathcal{H}_{\delta_{\mathbb{U}}}(\rho_{\mathbb{U}})$ for $\mathbb{U} \leq \mathbb{S}$. Therefore $\rho_{\mathbb{S}} \in M_{\rho_{\mathbb{U}}}$ for $\mathbb{U} < \mathbb{S}$ by $\delta_{\mathbb{S}}, \gamma_{\mathbb{S}}^{\mathbb{Q}} + \mathbb{I} \leq \gamma_{\mathbb{U}}^{\mathbb{Q}}$. Moreover $\rho_{\mathbb{S}} \in M_{\rho_{\mathbb{U}}}$ for $\mathbb{U} > \mathbb{S}$ since $\rho_{\mathbb{S}} < \mathbb{S} < \rho_{\mathbb{U}}$.

Proof of Lemma 7.29. This is seen by induction on a as in Capping 6.44. Let us write \vdash_c^a for $\vdash_{c,c,\gamma_0,c}^a$ in the proof. By assumptions we have $\mathbb{Q}_{\Pi}(\mathbb{S}) \subset \rho_{\mathbb{S}}$ and $\Theta \subset M_{\rho_{\mathbb{S}}}$. Hence $\Theta = \Theta^{(\rho_{\mathbb{S}})} = \Theta_{\partial \mathbb{Q}}$ and $\Theta_{\mathbb{Q}_{\Pi}(\mathbb{S})} = \Theta_{\mathbb{Q}(\mathbb{S})}$. On the other hand we have $\mathsf{k}(\Gamma) \subset \mathcal{H}_{\gamma}[\Theta]$ and for $\sigma \in \bigcup \mathbb{Q}_{\Pi}$, $\mathsf{k}(\Pi_{\sigma}) \subset \mathcal{H}_{\gamma}[\Theta^{(\sigma)}]$ by (57). Therefore (63) and (66) are enjoyed. We have $\{\gamma, a, c, \gamma_0, \gamma_{\mathbb{S}}^{\mathbb{Q}}, \mathbb{S}\} \subset \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}_{\Pi}(\mathbb{U})}] \cap \mathcal{H}_{\gamma}[\Theta_{\partial \mathbb{Q}}]$ for every $\{\mathbb{U} \leq \mathbb{S}\} \subset dom(\mathbb{Q}) = dom(\mathbb{Q}_{\Pi})$ by the assumption, (58) and (59). Hence (64) and (65) are enjoyed. Moreover for (67) we have $SC_{\mathbb{I}}(m(\rho_{\mathbb{S}})) \subset \mathcal{H}_{\gamma}[\Theta]$ and $\gamma \leq \gamma_{\mathbb{S}}^{\mathbb{Q}}$.

Case 1. First consider the case when the last inference is a (stbl(S)): We have a successor stable ordinal S, an ordinal $a_0 < a$, a Λ -formula $B(0) \in \Delta_0(S)$, and a term $u \in Tm(\mathbb{I})$ with $S \leq \operatorname{rk}(B(u)) < c$.

For every ordinal σ such that $\Theta \cup \{S\} \subset M_{\sigma}$ and $p_0(\sigma) \geq \gamma_0$

$$\frac{(\mathcal{H}_{\gamma},\Theta,\mathbf{Q}_{\Pi})\vdash_{c}^{*a_{0}}\Gamma,B(u);\Pi^{[\cdot]}\quad (\mathcal{H}_{\gamma},\Theta\cup\{\mathbb{S},\sigma\};\mathbf{Q}_{\Pi}\cup\{(\mathbb{S},\sigma)\})\vdash_{c}^{*a_{0}}\Gamma;\neg B(u)^{[\sigma/\mathbb{S}]},\Pi^{[\cdot]}}{(\mathcal{H}_{\gamma},\Theta;\mathbf{Q}_{\Pi})\vdash_{c}^{*a}\Gamma;\Pi^{[\cdot]}}$$

Let h be a special finite function such that $\operatorname{supp}(h) = \{c\}$ and $h(c) = \mathbb{I}(2a_0+1)$. Then $h_c = (g_{\mathbb{S}})_c = \emptyset$ and $h^c <_{\mathbb{I}}^c (g_{\mathbb{S}})'(c)$ by $h(c) = \mathbb{I}(2a_0+1) < \mathbb{I}(2a) \le \alpha_0 = (g_{\mathbb{S}})'(c)$. Let $\mathbb{R} = \mathbb{Q} \cup \{(\mathbb{S}, \rho_{\mathbb{S}})\}$ and $\sigma \in H^{\mathbb{R}}_{\rho_{\mathbb{S}}}(h, c, \gamma^{\mathbb{R}}_{\mathbb{S}}, \Theta^{(\rho_{\mathbb{S}})} \cup \{\mathbb{S}\} \cup \Theta_{\partial \mathbb{Q}})$, where $\Theta^{(\rho_{\mathbb{S}})} \cup \Theta_{\partial \mathbb{Q}} = \Theta$.

For example let $\sigma = \psi_{\rho_{\mathbb{S}}}^h(\delta_{\mathbb{S}} + \eta)$ with $\eta = \max(\{1\} \cup E_{\mathbb{S}}(\Theta))$. We obtain $\Theta \cup \{\mathbb{S}\} \subset \mathcal{H}_{\delta_{\mathbb{S}}}(\sigma) = M_{\sigma}$ by $\Theta \cup \{\mathbb{S}\} \subset M_{\rho}$, and $\{\delta_{\mathbb{S}}, a_0, c\} \subset \mathcal{H}_{\gamma}[\Theta]$. Let $\rho_{\mathbb{U}} \in \partial \mathbb{R}$. We claim that $\sigma \in M_{\rho_{\mathbb{U}}}$. If $\mathbb{U} \geq \mathbb{S}$, then $\sigma < \rho_{\mathbb{U}}$. Let $\mathbb{U} < \mathbb{S}$. Then we have $\rho_{\mathbb{S}} \in M_{\rho_{\mathbb{U}}}$ by the assumption, and $\sigma \in M_{\rho_{\mathbb{U}}}$ follows from $\{c, a_0, \delta_{\mathbb{S}}\} \cup \Theta \subset \mathcal{H}_{\gamma}[\Theta] \subset \mathcal{H}_{\delta_{\mathbb{U}}}(\rho_{\mathbb{U}})$ and $\delta_{\mathbb{S}} + \eta < \gamma_{\mathbb{S}}^{\mathbb{Q}} + \mathbb{I} \leq \gamma_{\mathbb{U}}^{\mathbb{Q}} \leq \delta_{\mathbb{U}}$. Therefore $\sigma \in H_{\rho_{\mathbb{S}}}^{\mathbb{R}}(h, c, \gamma_{\mathbb{S}}^{\mathbb{R}}, \Theta^{(\rho_{\mathbb{S}})} \cup \{\mathbb{S}\} \cup \Theta_{\partial \mathbb{Q}})$.

Since Q is assumed to have gaps 2^a , we may assume that $\mathbb{R} \cup \{(\mathbb{S}, \sigma)\}$ as well as R has gaps 2^{a_0} .

IH yields $(\mathcal{H}_{\gamma}, \Theta_{\Pi}, \mathbb{R}) \vdash_{c}^{a_{0}} \widehat{\Gamma}, B(u)^{(\rho_{\mathbb{S}})}, \widehat{\Pi}$, and for $u^{[\sigma/\mathbb{S}]} \in Tm(\mathbb{S})$ and $B(u^{[\sigma,\mathbb{S}]}) \equiv B(u)^{[\sigma,\mathbb{S}]}, (\mathcal{H}_{\gamma}, \Theta_{\Pi} \cup \{\mathbb{S}, \sigma\}, \mathbb{R} \cup \{(\mathbb{S}, \sigma)\}) \vdash_{c}^{a_{0}} \widehat{\Gamma}, \neg B(u)^{(\sigma)}, \widehat{\Pi}$ follows, where $\rho_{\mathbb{S}} > \sigma \in M_{\rho_{\mathbb{S}}}$ and we have by (59), $\mathsf{k}(B(u)) \subset \mathcal{H}_{\gamma}[\Theta_{\mathsf{Q}_{\Pi}(\mathbb{T})}] \cap \mathcal{H}_{\gamma}[\Theta_{\partial \mathsf{Q}}]$ if $\mathsf{rk}(B(u)) \geq \mathbb{T}$. Hence $\mathsf{k}(B(u)) \subset \mathcal{H}_{\gamma}[\Theta_{\mathsf{R}(\mathbb{T})}] \cap \mathcal{H}_{\gamma}[\Theta_{\partial \mathsf{Q}}]$ by $\Theta_{\mathsf{R}(\mathbb{T})} = \Theta_{\mathsf{Q}_{\Pi}(\mathbb{T})}$ for (59). Moreover we have $\mathbb{S} \in \mathcal{H}_{\gamma}[\Theta_{\mathsf{Q}(\mathbb{T})}]$ for every $\mathbb{T} < c$, $\Theta_{\mathsf{Q}_{\Pi}(\mathbb{S})} \cup \Theta_{\partial \mathsf{Q}} \subset M_{\rho_{\mathbb{S}}}$ for (68), $\rho_{\mathbb{S}} < e^{\mathsf{Q}}_{\mathbb{S}}$ for (r0), $\mathsf{rk}(B(u)) < c$ and $s(\rho_{\mathbb{S}}) \leq c$ for (r1).

We obtain by an inference $(\text{rfl}_{\mathbb{S}}(\rho_{\mathbb{S}}, c, h, c))$

$$\frac{(\mathcal{H}_{\gamma},\Theta_{\Pi},\mathtt{R})\vdash_{c}^{a_{0}}\widehat{\Gamma},B(u)^{(\rho_{\mathbb{S}})},\widehat{\Pi}\quad (\mathcal{H}_{\gamma},\Theta_{\Pi}\cup\{\mathbb{S},\sigma\},\mathtt{R}\cup\{(\mathbb{S},\sigma)\})\vdash_{c}^{a_{0}}\widehat{\Gamma},\neg B(u)^{(\sigma)},\widehat{\Pi}}{(\mathcal{H}_{\gamma},\Theta_{\Pi},\mathbb{Q})\vdash_{c}^{a}\widehat{\Gamma},\widehat{\Pi}}$$

in the right upper sequents σ ranges over the resolvent class $\sigma \in H^{\mathbb{R}}_{\rho_{\mathbb{S}}}(h, c, \gamma_{\mathbb{S}}^{\mathbb{R}}, \Theta^{(\rho_{\mathbb{S}})} \cup \{\mathbb{S}\} \cup \Theta_{\partial \mathbb{Q}}).$

Case 2. When the last inference is a (cut): There exist $a_0 < a$ and C such that $\mathrm{rk}(C) < c$, $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a_0} \Gamma, \neg C; \Pi^{[\cdot]}$ and $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a_0} \Gamma, C; \Pi^{[\cdot]}$. IH followed by a (cut) with an uncapped cut formula $C^{(\mathfrak{u})}$ yields the lemma.

Case 3. Third the last inference introduces a V-formula A in Γ . Let $A \simeq V(A_{\iota})_{\iota \in J}$. Then $A^{(\rho_{\mathbb{S}})} \in \Gamma_{\mathbb{S}}^{(\rho_{\mathbb{S}})}$. There are an $\iota \in J$, an ordinal $a(\iota) < a$ such that $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a(\iota)} \Gamma, A_{\iota}; \Pi^{[\cdot]}$. We can assume $\mathsf{k}(\iota) \subset \mathsf{k}(A_{\iota})$, and claim that $\iota \in [\partial \mathbb{Q}]J$ with $\rho_{\mathbb{S}} \in \partial \mathbb{Q}$. We obtain $\mathsf{k}(\iota) \subset \mathcal{H}_{\gamma}[\Theta_{\partial \mathbb{Q}}] \subset M_{\partial \mathbb{Q}}$ by (57) for $\Theta_{\partial \mathbb{Q}} = \Theta$ and $\gamma \leq \gamma_{\mathbb{Q}} \leq \delta_{\mathbb{S}} \leq \mathsf{p}_{\mathbb{Q}}(\rho_{\mathbb{S}})$.

and $\gamma \leq \gamma_0 \leq \gamma_{\mathbb{S}}^{\mathbb{Q}} \leq \delta_{\mathbb{S}} \leq p_0(\rho_{\mathbb{S}})$.

IH yields $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_c^{a(\iota)} \widehat{\Gamma}, (A_{\iota})^{(\rho_{\mathbb{S}})}, \widehat{\Pi}$. $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_c^a \widehat{\Gamma}, \widehat{\Pi}$ follows from a (\bigvee) .

Other cases are seen from IH as in Capping 6.44.

Lemma 7.31 (Recapping)

Let \mathbb{S} be a successor stable ordinal, $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c_1, \mathbb{S}, \gamma_0, b_2}^a \Pi, \widehat{\Gamma}$ with a finite family \mathbb{Q} for γ_0, b_2 , $\Gamma \cup \Pi \subset \Delta_0(\mathbb{I})$, and $\widehat{\Gamma} = \bigcup \{\Gamma_{\rho}^{(\rho)} : \rho \in \mathbb{Q}^t(\mathbb{S})\}$, where each $\theta \in \widehat{\Gamma}$ is either a \bigvee -formula or $\mathrm{rk}(\theta) < \mathbb{S}$, $\mathbb{Q}^t \subset \mathbb{Q}$ such that $\mathbb{Q}^t(\mathbb{S}) \subset \mathbb{Q}(\mathbb{S})$ with $\mathrm{dom}(\mathbb{Q}^t) \subset \mathbb{S}$ and $\forall \rho \in \mathbb{Q}^t(\mathbb{S})(s(\rho) > \mathbb{S})$, and \mathbb{Q}^f is a family such that $\mathbb{Q}^f(\mathbb{S}) = \mathbb{Q}(\mathbb{S}) \setminus \mathbb{Q}^t(\mathbb{S})$ and $\mathbb{Q}^f(\mathbb{T}) = \mathbb{Q}(\mathbb{T})$ for $\mathbb{T} \neq \mathbb{S}$. Π is a set of formulas such that $\tau \in \{\mathbb{u}\} \cup \bigcup \mathbb{Q}^f$ for every $A^{(\tau)} \in \Pi$.

Let $\max\{s(\rho): \rho \in \mathbb{Q}^t(\mathbb{S})\} \leq b_1$ and $\omega(b, a) = \omega^{\omega^b} a$. For each $\rho \in \mathbb{Q}^t(\mathbb{S})$, let $\mathbb{S} \leq b^{(\rho)} \in \mathcal{H}_{\gamma}[\Theta^{(\rho)}] \cap \mathcal{H}_{\gamma}[\Theta_{\partial \mathbb{Q}}]$ with $\operatorname{rk}(\Gamma_{\rho}) < b^{(\rho)} < s(\rho)$, and $\kappa(\rho)$ be ordinals such that $\kappa(\rho) \in \mathcal{H}_{\rho}^{\mathbb{Q}}(h^{b^{(\rho)}}(m(\rho); \omega(b_1, a)), b_2, \gamma_{\mathbb{S}}^{\mathbb{Q}}, \Theta^{(\rho)} \cup \{\mathbb{S}\} \cup \Theta_{\partial \mathbb{Q}})$. Assume $\forall \mathbb{T} < \mathbb{S}(b_1 \in \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}(\mathbb{T})}] \cap \mathcal{H}_{\gamma}[\Theta_{\partial \mathbb{Q}}])$.

 $\begin{array}{l} \text{such that } \kappa(\rho) \in \Pi_{\rho}(h^{\epsilon}(m(\rho),\omega(o_{1},a)),b_{2},\gamma_{\mathbb{S}},O^{\epsilon,\epsilon}) \in \{\mathbb{S}\} \cup O_{\partial\mathbb{Q}}\}. \text{ Assume} \\ \forall \mathbb{T} \leq \mathbb{S}(b_{1} \in \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}(\mathbb{T})}] \cap \mathcal{H}_{\gamma}[\Theta_{\partial\mathbb{Q}}]). \\ \text{Then } (\mathcal{H}_{\gamma},\Theta,\mathbb{Q}^{\kappa}) \vdash_{cb_{1},\mathbb{S},\gamma_{0},b_{2}}^{\omega(b_{1},a)} \Pi,\widehat{\Gamma}_{\kappa} \text{ holds, where } \widehat{\Gamma}_{\kappa} = \bigcup \{\Gamma_{\rho}^{(\kappa(\rho))} : \rho \in \mathbb{Q}^{t}(\mathbb{S})\}, \\ c_{b_{1}} = \max\{c_{1},b_{1}\}, \ \mathbb{Q}^{\kappa} = \mathbb{Q}^{f} \cup \{(\mathbb{S},\kappa(\rho)) : \rho \in \mathbb{Q}^{t}(\mathbb{S})\}, \ \gamma_{\mathbb{T}}^{\mathbb{Q}^{\kappa}} = \gamma_{\mathbb{T}}^{\mathbb{Q}}, \ e_{\mathbb{T}}^{\mathbb{Q}^{\kappa}} = e_{\mathbb{T}}^{\mathbb{Q}} \text{ for} \\ \mathbb{T} \neq \mathbb{S} \text{ and } e_{\mathbb{S}}^{\mathbb{Q}^{\kappa}} = \max(\{\tau \in \mathbb{Q}^{f}(\mathbb{S}) : s(\tau) > \mathbb{S}\} \cup \{\kappa(\rho) : \rho \in \mathbb{Q}^{t}(\mathbb{S})\}) + 1. \\ e_{\mathbb{S}}^{\mathbb{Q}^{\kappa}} < e_{\mathbb{S}}^{\mathbb{Q}} \text{ holds when } \mathbb{Q}^{t} = \{(\mathbb{S},\rho) \in \mathbb{Q} : s(\rho) > \mathbb{S}\} \neq \emptyset. \end{array}$

Proof. This is shown by main induction on b_1 with subsidiary induction on a as in Recapping 6.47.

Lemma 7.32 (Elimination of one stable ordinal)

Let $\mathbb{S} = \mathbb{T}^{\dagger}$ be a successor stable ordinal and $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{\mathbb{S}, \mathbb{S}, \gamma_{0}, b_{1}}^{a} \Pi, \widehat{\Gamma}$ with a finite family \mathbb{Q} for γ_{0} and $b_{1} \geq \mathbb{S}$, $\Pi \subset \Delta_{0}(\mathbb{I})$, $\Gamma \subset \Delta_{0}(\mathbb{S})$, $\widehat{\Gamma} = \bigcup \{\Gamma_{\rho}^{(\rho)} : \rho \in \mathbb{Q}(\mathbb{S})\}$, and $\mathbb{Q}^{t} = \{(\mathbb{S}, \tau) \in \mathbb{Q} : s(\tau) > \mathbb{S}\}$, $\mathbb{Q}^{f} = \mathbb{Q} \setminus \mathbb{Q}^{t}$. Π is a set of formulas such that for each $A^{(\tau)} \in \Pi$, $\tau \in \{u\} \cup \bigcup_{\mathbb{U} \subset \mathbb{S}} \mathbb{Q}(\mathbb{U})$.

Let $\tilde{a} = \varphi_{b_1 + e^{\mathfrak{q}}_{\mathbb{S}}}(a)$, $\mathbb{Q}_1 = \mathbb{Q} \upharpoonright \mathbb{S} = \{(\mathbb{T}, \rho) \in \mathbb{Q} : \mathbb{T} < \mathbb{S}\}$ and $\gamma_1 = \gamma^{\mathfrak{q}}_{\mathbb{S}} + \mathbb{I} < \gamma_0 + \mathbb{I}^2$. Then \mathbb{Q}_1 is a finite family for γ_1, b_1 and $(\mathcal{H}_{\gamma_1}, \Theta, \mathbb{Q}_1) \vdash^{\tilde{a}}_{\mathbb{T}, \mathbb{T}, \gamma_1, b_1} \Pi, \Gamma^{(\mathfrak{u})}$ holds for $\Gamma^{(\mathfrak{u})} = \bigcup \{\Gamma^{(\mathfrak{u})}_{\rho} : \rho \in \mathbb{Q}(\mathbb{S})\}$.

Proof. This is seen by main induction on $e_{\mathbb{S}}^{\mathbb{Q}}$ with subsidiary induction on a as in Lemma 6.48. When $\mathbb{S} \in dom(\mathbb{Q})$, we have $\mathbb{Q}(\mathbb{S}) \subset \mathcal{H}_{\gamma_1}$ and $e_{\mathbb{S}}^{\mathbb{Q}} \in \mathcal{H}_{\gamma_1}$ for $\gamma_1 = \gamma_{\mathbb{S}}^{\mathbb{Q}} + \mathbb{I}$ by Definition 7.19. \mathbb{Q}_1 is a finite family for γ_1, b_1 . Then $\gamma_1 \in \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}_1(\mathbb{T})}] \cap \mathcal{H}_{\gamma}[\Theta_{\partial\mathbb{Q}}]$ for every $\mathbb{T} \in dom(\mathbb{Q}_1)$ by (64).

First assume $\mathbb{Q}^t(\mathbb{S}) \neq \emptyset$. For each $\rho \in \mathbb{Q}^t(\mathbb{S})$, let $\kappa(\rho)$ be an ordinal such that $\kappa(\rho) \in H^{\mathbb{Q}}_{\rho}(h^{\mathbb{S}}(m(\rho); \omega(b_1, a)), b_1, \gamma_{\mathbb{S}}^{\mathbb{Q}}, \Theta^{(\rho)} \cup \{\mathbb{S}\} \cup \Theta_{\partial \mathbb{Q}})$ with $\omega(b, a) = \omega^{\omega^b} a$. We obtain $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}^{\kappa}) \vdash_{b_1, \mathbb{S}, \gamma_0, b_1}^{\omega(b_1, a)} \Pi, \widehat{\Gamma}_{\kappa}$ by Recapping 7.31. Cut-elimination 7.27 with $SSt \cap (\mathbb{S}, \mathbb{S}] = \emptyset$ yields for $a_1 = \varphi_{b_1}(\omega(b_1, a)), (\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}^{\kappa}) \vdash_{\mathbb{S}, \mathbb{S}, \gamma_0, b_1}^{a_1} \Pi, \widehat{\Gamma}_{\kappa},$ where $e_{\mathbb{S}}^{\mathbb{Q}^{\kappa}} = \max\{\kappa(\rho) : \rho \in \mathbb{Q}^t(\mathbb{S})\} + 1 < e_{\mathbb{S}}^{\mathbb{Q}}$. MIH yields $(\mathcal{H}_{\gamma_1}, \Theta, \mathbb{Q}_1) \vdash_{\mathbb{T}, \mathbb{T}, \gamma_1, b_1}^{\tilde{a}_1} \Pi, \widehat{\Gamma}^{(u)}$, where $\tilde{a}_1 = \varphi_{b_1 + e_{\mathbb{S}}^{\mathbb{Q}^{\kappa}}}(a_1) < \varphi_{b_1 + e_{\mathbb{S}}^{\mathbb{Q}}}(a)$ and $\gamma_1 = \gamma_{\mathbb{S}}^{\mathbb{Q}} + \mathbb{I}$.

In what follows assume $Q^t(S) = \emptyset$.

Case 1. First let $\{\neg A^{(\sigma)}, A^{(\sigma)}\}\subset \Pi \cup \widehat{\Gamma} \text{ with } \sigma \in \{u\} \cup \bigcup \mathbb{Q} \text{ and } d = \operatorname{rk}(A) < \mathbb{S} \text{ by (Taut). If } d < \mathbb{T}, \text{ then } (\mathcal{H}_{\gamma_1}, \Theta, \mathbb{Q}_1) \vdash_{\mathbb{T}, \mathbb{T}, \gamma_1, b_1}^{\widetilde{a}} \Pi, \Gamma^{(u)} \text{ by (Taut).}$

Let $\mathbb{T} \leq d < \mathbb{S}$. Then $(\mathcal{H}_{\gamma_1}, \Theta, \mathbb{Q}_1) \vdash_{0, \mathbb{T}, \gamma_1, b_1}^{2d} \Pi, \Gamma^{(\mathbf{u})}$ by Tautology 7.24 and $(\mathcal{H}_{\gamma_1}, \Theta, \mathbb{Q}_1) \vdash_{0, \mathbb{T}, \gamma_1, b_1}^{\tilde{u}} \Pi, \Gamma^{(\mathbf{u})}$ by $\tilde{u} > \mathbb{S} > d$.

Case 2. Second consider the case when the last inference is a $(\operatorname{rfl}_{\mathbb{U}}(\rho,d,f,b_1))$. If $\mathbb{U} \leq \mathbb{T}$, then SIH followed by a $(\operatorname{rfl}_{\mathbb{U}}(\rho,d,f,b_1))$ yields the lemma. Let $\mathbb{U} = \mathbb{S}$. Let $g = m(\rho)$ and $s(\rho) \geq d \in \operatorname{supp}(g)$. Let $\mathbb{R} = \mathbb{Q} \cup \{(\mathbb{S},\rho)\}$ and $\gamma_1 = \gamma_{\mathbb{S}}^{\mathbb{R}} + \mathbb{I}$. We have a sequent $\Delta \subset \bigvee_{\mathbb{S}}(d)$ and an ordinal $a_0 < a$ such that $\operatorname{rk}(\Delta) < d \leq s(\rho)$ and $(\mathcal{H}_{\gamma}, \Theta, \mathbb{R}) \vdash_{\mathbb{S}, \mathbb{S}, \gamma_0, b_1}^{a_0} \Pi, \widehat{\Gamma}, \neg \delta^{(\rho)}$ for each $\delta \in \Delta$. On the other hand we have $(\mathcal{H}_{\gamma}, \Theta \cup \{\sigma\}, \mathbb{R} \cup \{(\mathbb{S}, \sigma)\}) \vdash_{\mathbb{S}, \mathbb{S}, \gamma_0, b_1}^{a_0} \Pi, \widehat{\Gamma}, \Delta^{(\sigma)}$, where $\sigma \in H^{\mathbb{Q}}_{\rho}(f, b_1, \gamma_{\mathbb{S}}^{\mathbb{R}}, \Theta^{(\rho)} \cup \{\mathbb{S}\} \cup \Theta_{\partial \mathbb{Q}})$, f is a special finite function such that $s(f) \leq b_1$, $f_d = g_d$, $f^d <^d g'(d)$ and $SC_{\mathbb{I}}(f) \subset \mathcal{H}_{\gamma_{\mathbb{S}}^{\mathbb{R}}}[\Theta^{(\rho)}]$.

Case 2.1. $s(\rho) \leq \mathbb{S}$: Then $\Delta \subset \Delta_0(\mathbb{S})$. Let $\tilde{a}_0 = \varphi_{b_1 + e_{\mathbb{S}}^R}(a_0)$. SIH yields $(\mathcal{H}_{\gamma_1}, \Theta, \mathbb{Q}_1) \vdash_{\mathbb{T}, \mathbb{T}, \gamma_1, b_1}^{\tilde{a}_0} \Pi, \Gamma^{(u)}, \neg \delta^{(u)}$ for each $\delta \in \Delta$, and $(\mathcal{H}_{\gamma_1}, \Theta \cup \{\sigma\}, \mathbb{Q}_1) \vdash_{\mathbb{T}, \mathbb{T}, \gamma_1, b_1}^{\tilde{a}_0} \Pi, \Gamma^{(u)}, \Delta^{(u)}$ for $\sigma \in \mathcal{H}_{\gamma_{\mathbb{S}}^R + \mathbb{I}} = \mathcal{H}_{\gamma_1}$. We obtain $(\mathcal{H}_{\gamma_1}, \Theta, \mathbb{Q}_1) \vdash_{\mathbb{S}, \mathbb{T}, \gamma_1, b_1}^{\tilde{a}_0 + p} \Pi, \Gamma^{(u)}$ by several (cut)'s for a $p < \omega$. Cut-elimination 7.27 with $SSt \cap (\mathbb{T}, \mathbb{T}] = \emptyset$ yields $(\mathcal{H}_{\gamma_1}, \Theta, \mathbb{Q}_1) \vdash_{\mathbb{T}, \mathbb{T}, \gamma_1, b_1}^{\varphi_{\mathbb{S}}(\tilde{a}_0 + p)} \Pi, \Gamma^{(u)}$, where $\varphi_{\mathbb{S}}(\tilde{a}_0 + p) < \tilde{a} = \varphi_{b_1 + e_{\mathbb{S}}^2}(a)$ by $b_1 + e_{\mathbb{S}}^{\mathbb{Q}} > \mathbb{S}$. Case 2.2. $s(\rho) > \mathbb{S}$: Then $\mathbb{S} \not\in dom(\mathbb{Q})$ and $\Gamma = \emptyset$. We have $(\mathcal{H}_{\gamma}, \Theta, \mathbb{R}) \vdash_{\mathbb{S}, \mathbb{S}, \gamma_0, b_1}^{a}$ Π . Let $\mathbb{R}^t = \{(\mathbb{S}, \rho)\}$. Recapping 7.31 yields $(\mathcal{H}_{\gamma}, \Theta, \mathbb{R}^{\kappa}) \vdash_{\mathbb{S}, \mathbb{S}, \gamma_0, b_1}^{\omega(b_1, a)} \Pi$ and $e_{\mathbb{S}}^{R^{\kappa}} = \kappa + 1 < \rho < e_{\mathbb{S}}^{R}$. MIH yields $(\mathcal{H}_{\gamma_1}, \Theta, \mathbb{Q}_1) \vdash_{\mathbb{T}, \mathbb{T}, \gamma_1, b_1}^{\omega(b_1, a)} \Pi$ with $a_1 = \varphi_{b_1 + e_{\mathbb{S}}^{\kappa}}(\omega(b_1, a)) < \varphi_{b_1 + e_{\mathbb{S}}^{\mathbb{Q}}}(a) = \tilde{a}$ by $e_{\mathbb{S}}^{R^{\kappa}} < \mathbb{S} = e_{\mathbb{S}}^{\mathbb{Q}}$.

Case 3. The last inference is a (Λ) : We have $a(\iota) < a, A^{(\rho)} \in \widehat{\Gamma}$ and for each $\iota \in [\mathbb{Q}]_{A^{(\rho)}}J \text{ with } A \simeq \bigwedge(A_{\iota})_{\iota \in J}, \text{ we have } (\mathcal{H}_{\gamma}, \Theta \cup \mathsf{k}(\iota), \mathbb{Q}) \vdash_{\mathbb{S}, \mathbb{S}, \gamma_{0}, b_{1}}^{a(\iota)} \Pi, \widehat{\Gamma}, (A_{\iota})^{(\rho)}.$ Since $A \in \Delta_0(\mathbb{S})$, we obtain $k(A) \subset \mathcal{H}_{\gamma}[\Theta^{(\rho)}] \cap \mathbb{S} \subset M_{\rho} \cap \mathbb{S} = \rho$ for $\rho \in \mathbb{Q}(\mathbb{S})$. This means $A \in \Delta_0(\rho)$, and $[\rho]J = J$. Hence $[\mathbb{Q}]_{A^{(\rho)}}J = [\mathbb{Q}_1]_{A^{(\mathbf{u})}}J$. SIH yields $(\mathcal{H}_{\gamma_1}, \Theta \cup \mathsf{k}(\iota), \mathbb{Q}_1) \vdash_{\mathbb{T}, \mathbb{T}, \gamma_1, b_1}^{\tilde{a}(\iota)} \Pi, \Gamma^{(\mathsf{u})}, (A_{\iota})^{(\mathsf{u})}$ for each $\iota \in [\mathbb{Q}]_A J$, where $\tilde{a}(\iota) = \varphi_{b_1 + e^{\mathfrak{q}}_s}(b + a(\iota)) < \tilde{a}. \text{ A } (\bigwedge) \text{ yields } (\mathcal{H}_{\gamma_1}, \Theta, \mathbb{Q}_1) \vdash^{\tilde{a}}_{\mathbb{T}, \mathbb{T}, \gamma_1, b_1} \Pi, \Gamma^{(\mathfrak{u})}.$ Other cases are seen from SIH.

Definition 7.33 We define the S-rank $\operatorname{srk}(A^{(\rho)})$ of a capped formula $A^{(\rho)}$ as follows. Let $\operatorname{srk}(A^{(u)}) = 0$, and $\operatorname{srk}(A^{(\rho)}) = \mathbb{S}$ for $\rho \prec \mathbb{S} \in SSt$. $\operatorname{srk}(\Gamma) = \max\{\operatorname{srk}(A^{(\rho)}) : A^{(\rho)} \in \Gamma\}.$

Lemma 7.34 (Elimination of stable ordinals)

Suppose $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{\xi, \xi, \gamma_0, b_1}^a \Gamma$ and $\operatorname{srk}(\Gamma) \leq \mathbb{S} < \xi \leq b_1 < \mathbb{I}$, where \mathbb{S} is either a stable ordinal or $\mathbb{S} = \Omega$ such that $\forall \mathbb{U} \in \operatorname{dom}(\mathbb{Q}_{\mathbb{S}})(\mathbb{S} \in \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}(\mathbb{U})}] \cap \mathcal{H}_{\gamma}[\Theta_{\partial\mathbb{Q}}])$ for

Then there exists an ordinal $\gamma_0 \leq \gamma_{\mathbb{S}} < \gamma_0 + \mathbb{I}^2$ such that $\mathbb{Q}_{\mathbb{S}}$ is a finite family for $\gamma_{\mathbb{S}}, b_1$ and $(\mathcal{H}_{\gamma_{\mathbb{S}}}, \Theta, \mathbb{Q}_{\mathbb{S}}) \vdash_{\mathbb{S}, \mathbb{S}, \gamma_{\mathbb{S}}, b_1}^{f(\xi, a)} \Gamma$ holds for $f(\xi, a) = \varphi_{b_1 + \xi + 1}(a)$.

Proof. By main induction on ξ with subsidiary induction on a. (64) in $(\mathcal{H}_{\gamma_{\mathbb{S}}}, \Theta, \mathbb{Q}_{\mathbb{S}}) \vdash_{\mathbb{S}, \mathbb{S}, \gamma_{\mathbb{S}}, b_{1}}^{f(\xi, a)} \Gamma \text{ follows from (64) and (65) in } (\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{\xi, \xi, \gamma_{0}, b_{1}}^{a} \Gamma.$ Case 1. Consider the case when the last inference is a $(\text{rfl}_{\mathbb{T}}(\rho, d, f, b_1))$ for a $\mathbb{T} = \mathbb{U}^{\dagger} \leq \xi$. If $\mathbb{T} \leq \mathbb{S}$, then SIH yields the lemma. Let $\mathbb{S} < \mathbb{T} \in dom(\mathbb{R})$ for $\mathbb{R} = \mathbb{S}$ $\mathbb{Q} \cup \{(\mathbb{T}, \rho)\}$. We have $\forall \mathbb{U} \in dom(\mathbb{Q}_{\mathbb{T}})(\mathbb{T} \in \mathcal{H}_{\gamma}[\Theta_{\mathbb{Q}(\mathbb{U})}] \cap \mathcal{H}_{\gamma}[\Theta_{\partial \mathbb{Q}}])$ by (64). Let Δ be a finite set of sentences such that $(\mathcal{H}_{\gamma}, \Theta, \mathbb{R}) \vdash_{\xi, \xi, \gamma_0, b_1}^{a_0} \Gamma, \neg \delta^{(\rho)}$ for each $\delta \in \Delta$, and $(\mathcal{H}_{\gamma}, \Theta, \mathbb{R} \cup \{(\mathbb{T}, \sigma)\}) \vdash_{\xi, \xi, \gamma_0, b_1}^{a_0} \Gamma, \Delta^{(\sigma)}$ for each $\sigma \in H^{\mathbb{Q}}_{\rho}(f, b_1 \gamma^{\mathbb{R}}_{\mathbb{T}}, \Theta^{(\rho)} \cup \{\mathbb{T}\} \cup \Theta_{\partial \mathbb{Q}})$, and $a_0 < a$. We have $\operatorname{srk}(\delta^{(\rho)}) = \operatorname{srk}(\Delta^{(\sigma)}) = \mathbb{T}$. By SIH there exists a $\gamma_{\mathbb{T}} < \beta$ $\gamma_0 + \mathbb{I}^2 \text{ such that for } a_1 = f(\xi, a_0) = \varphi_{b_1 + \xi + 1}(a_0), \, (\mathcal{H}_{\gamma_{\mathbb{T}}}, \Theta, \mathbb{Q}_{\mathbb{T}}) \vdash_{\mathbb{T}, \mathbb{T}, \gamma_{\mathbb{T}}, b_1}^{a_1} \Gamma, \neg \delta^{(\rho)}$ for each $\delta \in \Delta$, and $(\mathcal{H}_{\gamma_{\mathbb{T}}}, \Theta, \mathbb{Q}_{\mathbb{T}} \cup \{(\mathbb{T}, \sigma)\}) \vdash_{\mathbb{T}, \mathbb{T}, \gamma_{\mathbb{T}}, b_{1}}^{a_{1}} \Gamma, \Delta^{(\sigma)}$. $(\text{rfl}_{\mathbb{T}}(\rho, d, f, b_{1}))$ yields $(\mathcal{H}_{\gamma_{\mathbb{T}}}, \Theta, \mathbb{Q}_{\mathbb{T}}) \vdash_{\mathbb{T}, \mathbb{T}, \gamma_{\mathbb{T}}, b_{1}}^{a_{2}} \Gamma$ for $a_{2} = a_{1} + 1$.

On the other hand we have $\operatorname{srk}(\Gamma) \leq \mathbb{S} < \mathbb{T} = \mathbb{U}^{\dagger} \leq \xi$. By Lemma 7.32 pick a $\gamma_{\mathbb{U}} < \gamma_{\mathbb{T}} + \mathbb{I}^2 = \gamma_0 + \mathbb{I}^2$ such that $(\mathcal{H}_{\gamma_{\mathbb{U}}}, \Theta, \mathbb{Q}_{\mathbb{U}}) \vdash_{\mathbb{U}, \mathbb{U}, \gamma_{\mathbb{U}}, b_1}^{a_3} \Gamma$, where $a_3 = \mathbb{I}$ $\varphi_{b_1+e_{\mathbb{T}}^{\mathfrak{q}_1}}(a_2) = \varphi_{b_1+e_{\mathbb{T}}^{\mathfrak{q}_1}}(f(\xi,a_0)+1) < \varphi_{b_1+\xi+1}(a) = f(\xi,a) \text{ by } e_{\mathbb{T}}^{\mathfrak{q}_1} \leq \mathbb{T} \leq \xi. \text{ If } e_{\mathbb{T}}^{\mathfrak{q}_1}$ $\mathbb{S} = \mathbb{U}$, then we are done. Let $\mathbb{S} < \mathbb{U}$ with $\mathbb{U} < \xi$. Then by MIH pick a $\gamma_{\mathbb{S}}$ such that $(\mathcal{H}_{\gamma_{\mathbb{S}}}, \Theta, \mathbb{Q}_{\mathbb{S}}) \vdash_{\mathbb{S}, \mathbb{S}, \gamma_{\mathbb{S}}, b_{1}}^{a_{4}} \Gamma$ for $a_{4} = f(\mathbb{U}, a_{3}) = \varphi_{b_{1} + \mathbb{U} + 1}(a_{3}) < \varphi_{b_{1} + \xi + 1}(a) = \varphi_{b_{1} + \mathbb{U} + 1}(a_{3}) = \varphi_{b_{1} + \xi + 1}(a_{3}) = \varphi_{b_{1} + \xi$ $f(\xi, a)$ by $\mathbb{U} < \xi$.

Case 2. Next consider the case when the last inference is a (cut) of a cut formula $C^{(\sigma)}$ wth $\operatorname{rk}(C) < \xi$ and $\mathbb{T} = \operatorname{srk}(C^{(\sigma)}) \leq \xi$. We have an ordinal $a_0 < a$

formula $C^{(\sigma)}$ wth $\operatorname{rk}(C) < \xi$ and $\mathbb{T} = \operatorname{srk}(C^{(\sigma)}) \le \xi$. We have an ordinal $a_0 < a$ such that $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{\xi, \xi, \gamma_0, b_1}^{a_0} \Gamma, \neg C^{(\sigma)}$ and $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{\xi, \xi, \gamma_0, b_1}^{a_0} C^{(\sigma)}, \Gamma$.

Let $\mathbb{U} = \max\{\mathbb{S}, \mathbb{T}\}$. First assume $\mathbb{U} < \xi$. By SIH pick a $\gamma_{\mathbb{U}}$ such that $(\mathcal{H}_{\gamma_{\mathbb{U}}}, \Theta, \mathbb{Q}_{\mathbb{U}}) \vdash_{\mathbb{U}, \mathbb{U}, \gamma_{\mathbb{U}}, b_1}^{a_1} \Gamma, \neg C^{(\sigma)}$ and $(\mathcal{H}_{\gamma_{\mathbb{U}}}, \Theta, \mathbb{Q}_{\mathbb{U}}) \vdash_{\mathbb{U}, \mathbb{U}, \gamma_{\mathbb{U}}, b_1}^{a_1} C^{(\sigma)}, \Gamma$, where $a_1 = f(\xi, a_0) = \varphi_{b_1 + \xi + 1}(a_0)$. A (cut) yields $(\mathcal{H}_{\gamma_{\mathbb{U}}}, \Theta, \mathbb{Q}_{\mathbb{U}}) \vdash_{\xi, \mathbb{U}, \gamma_{\mathbb{U}}, b_1}^{a_1 + 1} \Gamma$. Cut-elimination 7.27 with $SSt \cap (\mathbb{U}, \mathbb{U}] = \emptyset$ yields $(\mathcal{H}_{\gamma_{\mathbb{U}}}, \Theta, \mathbb{Q}_{\mathbb{U}}) \vdash_{\mathbb{U}, \mathbb{U}, \gamma_{\mathbb{U}}, b_1}^{a_2} \Gamma$, where $a_2 = \varphi_{\xi}(a_1 + 1) < \varphi_{b_1 + \xi + 1}(a) = f(\xi, a)$ by $\xi < b_1 + \xi + 1$. If $\mathbb{U} = \mathbb{S}$, then we are done. Let

 $\mathbb{U} = \mathbb{T} > \mathbb{S}. \text{ By MIH with } \mathbb{U} < \xi \text{ we obtain } (\mathcal{H}_{\gamma_{\mathbb{S}}}, \Theta, \mathbb{Q}_{\mathbb{S}}) \vdash_{\mathbb{S}, \mathbb{S}, \gamma_{\mathbb{S}}, b_{1}}^{a_{3}} \Gamma \text{ for a } \gamma_{\mathbb{S}},$ where $a_{3} = f(\mathbb{U}, a_{2}) = \varphi_{b_{1} + \mathbb{U} + 1}(a_{2}) < \varphi_{b_{1} + \xi + 1}(a) = f(\xi, a) \text{ by } \mathbb{U} < \xi.$ Second let $\mathbb{T} = \mathbb{U} = \xi = \mathbb{W}^{\dagger} > \mathbb{S}.$ Then $C \in \Delta_{0}(\mathbb{T}).$ By Lemma 7.32 pick a $\gamma_{\mathbb{W}}$ such that $(\mathcal{H}_{\gamma_{\mathbb{W}}}, \Theta, \mathbb{Q}_{\mathbb{W}}) \vdash_{\mathbb{W}, \mathbb{W}, \gamma_{\mathbb{W}}, b_{1}}^{\tilde{a}_{0}} \Gamma, \neg C^{(u)} \text{ and } (\mathcal{H}_{\gamma_{\mathbb{W}}}, \Theta, \mathbb{Q}_{\mathbb{W}}) \vdash_{\mathbb{W}, \mathbb{W}, \gamma_{\mathbb{W}}, b_{1}}^{\tilde{a}_{0}}$ $C^{(\mathbf{u})}, \Gamma$, where $\tilde{a}_0 = \varphi_{b_1 + e_{\mathbb{T}}^{\mathbf{Q}}}(a_0)$. A (cut) yields $(\mathcal{H}_{\gamma_{\mathbb{W}}}, \Theta, \mathbb{Q}_{\mathbb{W}}) \vdash_{\mathbb{T}, \mathbb{W}, \gamma_{\mathbb{W}}, b_1}^{\tilde{a}_0 + 1} \Gamma$, and we obtain $(\mathcal{H}_{\gamma_{\mathbb{W}}}, \Theta, \mathbb{Q}_{\mathbb{W}}) \vdash_{\mathbb{W}, \mathbb{W}, \gamma_{\mathbb{W}}, b_{1}}^{a_{4}} \Gamma$ by Cut-elimination 7.27, where $a_{4} = \varphi_{\mathbb{T}}(\tilde{a}_{0}+1)$ and $SSt \cap (\mathbb{W}, \mathbb{W}] = \emptyset$. By MIH pick a $\gamma_{\mathbb{S}}$ such that $(\mathcal{H}_{\gamma_{\mathbb{S}}}, \Theta, \mathbb{Q}_{\mathbb{S}}) \vdash_{\mathbb{S}, \mathbb{S}, \gamma_{\mathbb{S}}, b_{1}}^{a_{5}} \Gamma$ for $\mathbb{W} < \xi$ and $a_{5} = f(\mathbb{W}, a_{4}) = \varphi_{b_{1} + \mathbb{W} + 1}(a_{4}) < \varphi_{b_{1} + \xi + 1}(a)$ by $\mathbb{W} < \xi$, $\mathbb{T} = \xi < \mathbb{W}$ $b_1 + \xi + 1$, $e_{\mathbb{T}}^{\mathbb{Q}} \leq \mathbb{T} = \xi < \xi + 1$ and $a_0 < a$.

Case 3. There exists an A such that $\{\neg A^{(\rho)}, A^{(\rho)}\} \subset \Gamma$ with $\operatorname{srk}(A^{(\rho)}) \leq \mathbb{S}$ and $d = \operatorname{rk}(A) < \mathbb{T} \leq \xi$ for a $\mathbb{T} \in SSt$ by (Taut). We may assume $d \geq \mathbb{S}$. Then $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}_{\mathbb{S}}) \vdash_{0, \mathbb{S}, \gamma_0, b_1}^{2d} \Gamma$ by Tautology 7.24 and the lemma follows from $d < \xi < f(\xi, a)$.

Other cases are seen from SIH.

Theorem 7.35 Suppose $KP\omega + \Pi_1$ -Collection + $(V = L) \vdash \theta^{L_{\Omega}}$ for a Σ_1 sentence θ . Then $L_{\psi_{\Omega}(\varepsilon_{\mathbb{I}+1})} \models \theta$ holds.

Proof. Let $S_{\mathbb{I}} \vdash \theta^{L_{\Omega}}$ for a Σ -sentence θ . By Embedding 7.16 pick an m > 0 so that $(\mathcal{H}_{\mathbb{I}}, \emptyset; \emptyset) \vdash_{\mathbb{I}+m}^{*\mathbb{I} \cdot 2+m} \theta^{L_{\Omega}}$. Cut-elimination 7.17 yields $(\mathcal{H}_{\mathbb{I}}, \emptyset; \emptyset) \vdash_{\mathbb{I}}^{*a} \theta^{L_{\Omega}}$ for $a = \omega_m(\mathbb{I} \cdot 2 + m) < \omega_{m+1}(\mathbb{I} + 1)$. Then Collapsing 7.18 yields $(\mathcal{H}_{\hat{a}+1}, \emptyset; \emptyset) \vdash_{\beta}^{*\beta} \theta^{L_{\Omega}}$ for $\beta = \psi_{\mathbb{I}}(\hat{a}) \in LS$ with $\hat{a} = \omega^{\mathbb{I}+a} = \omega_{m+1}(\mathbb{I} \cdot 2 + m) > \beta$. Capping 7.29 then yields $(\mathcal{H}_{\hat{a}+1}, \emptyset, \emptyset) \vdash_{\beta, \beta, \gamma_0, \beta}^{\beta} \theta^{L_{\Omega}}$ where $\gamma_0 = \hat{a} + 1$ and $\theta^{L_{\Omega}} \equiv (\theta^{L_{\Omega}})^{(\mathbf{u})}$.

Let $\alpha = \varphi_{\beta \cdot 2+1}(\beta)$. By Lemma 7.34 we obtain $(\mathcal{H}_{\gamma_{\Omega}}, \emptyset, \emptyset) \vdash_{\Omega, \Omega, \gamma_{\Omega}, \beta}^{\alpha} \theta^{L_{\Omega}}$ for a $\gamma_{\Omega} < \gamma_0 + \mathbb{I}^2$. This means $(\mathcal{H}_{\gamma_{\Omega}}, \emptyset, \emptyset) \vdash_{\Omega,0,\gamma_{\Omega},\beta}^{\alpha} \theta^{L_{\Omega}}$. $(\mathcal{H}_{\gamma_{\Omega}+\alpha+1},\emptyset,\emptyset) \vdash_{\delta,0,\gamma_{\Omega},\beta}^{\delta} \theta^{L_{\delta}}$ follows from Collapsing 7.28 for $\delta = \psi_{\Omega}(\gamma_{\Omega} + \alpha)$ with $\omega^{\alpha} = \alpha$. Cut-elimination 7.27 yields $(\mathcal{H}_{\gamma_{\Omega}+\alpha+1},\emptyset,\emptyset) \vdash_{0,0,\gamma_{\Omega},\beta}^{\varphi_{\delta}(\delta)} \theta^{L_{\delta}}$. We see that $\theta^{L_{\delta}}$ is true by induction up to $\varphi_{\delta}(\delta)$, where $\delta < \psi_{\Omega}(\omega_{m+2}(\mathbb{I}+1)) < \psi_{\Omega}(\varepsilon_{\mathbb{I}+1})$.

Well-foundedness proof in Σ_3^1 -DC+BI

Theorem 7.36 $[A \infty c]$ Σ_3^1 -DC+BI $\vdash Wo[\alpha]$ for each $\alpha < \psi_{\Omega}(\varepsilon_{\mathbb{I}+1})$.

To prove Theorem 7.36, let us introduce 1-distinguished sets $D_1[X]$, which is obtained from Definition 3.5.1 of distinguished sets D[X], first by replacing the next regular α^+ by the next stable α^{\dagger} , and second by changing the well-founded part $W(\mathcal{C}^{\alpha}(X))$ to the maximal distinguished set $\mathcal{W}_{1}^{\alpha}(X) = \bigcup \{P : D_{0}^{\alpha}[P;X]\}$ relative to α and X, where $P \cap \alpha = X \cap \alpha$ if $D_0^{\alpha}[P;X]$ and α is stable. We see that $W = \bigcup \{X : D_1[X]\}$ is the maximal 1-distinguished and Σ_3^1 -class.

In this subsection let us sketch a part of a well-foundeness proof in Σ_3^1 -DC+BI by pinpointing the lemma for which we need Σ_3^1 -DC.

An ordinal term σ in $OT(\mathbb{I})$ is said to be regular if $\psi^f_{\sigma}(a)$ is in $OT(\mathbb{I})$ for some f and a. Reg denotes the set of regular terms. In this section we need the next regular ordinal above an ordinal α in defining distinguished sets. Although it is customarily denoted by α^+ , it is hard to discriminate α^+ from the next stable ordinal α^{\dagger} . Therefore let us write for $\alpha < \mathbb{I}$, $\alpha^{+^1} = \min\{\sigma \in SSt : \sigma > \alpha\}$ for the next stable ordinal α^{\dagger} , and $\alpha^{+^0} = \min\{\sigma \in Reg : \sigma > \alpha\}$ for the next regular ordinal α^+ . Let $\alpha^{+^1} := \alpha^{+^0} := \infty$ if $\alpha \geq \mathbb{I}$. Let $\alpha^{-^1} := \max\{\sigma \in St_{\mathbb{I}} \cup \{0\} : \sigma \leq \alpha\}$ when $\alpha < \mathbb{I}$, and $\alpha^{-^1} := \mathbb{I}$ if $\alpha \geq \mathbb{I}$. Since $SSt \subset Reg$, we obtain $\alpha^{+^0} \leq \alpha^{+^1}$ and $\beta^{+^0} < \sigma$ if $\beta < \sigma \in St$ since each $\sigma \in St$ is a limit of regular ordinals.

Definition 7.37 $C^{\alpha}(X)$ is the closure of $\{0, \Omega, \mathbb{I}\} \cup (X \cap \alpha)$ under $+, \varphi, \{\sigma, \beta\} \cup SC_{\mathbb{I}}(f) \mapsto \psi^{f}_{\sigma}(\beta)$ for $\sigma > \alpha$, and $\rho \mapsto \mathbb{I}[\rho], \rho^{\dagger}$ for $\mathbb{I}[\rho], \rho^{\dagger} \geq \alpha$ in $OT(\mathbb{I})$.

Definition 7.38 For $P, X \subset OT(\mathbb{I})$ and $\gamma \in OT(\mathbb{I}) \cap \mathbb{I}$, let

$$W_0^{\alpha}(P) := W(\mathcal{C}^{\alpha}(P))$$

$$D_0^{\gamma}[P;X] :\Leftrightarrow P \cap \gamma^{-1} = X \cap \gamma^{-1} \& Wo[X \cap \gamma^{-1}] \& \qquad (69)$$

$$\forall \alpha \left(\gamma^{-1} \leq \alpha \leq P \to W_0^{\alpha}(P) \cap \alpha^{+0} = P \cap \alpha^{+0}\right)$$

$$W_1^{\gamma}(X) := \bigcup \{P \subset OT(\mathbb{I}) : D_0^{\gamma}[P;X]\}$$

$$D_1[X] :\Leftrightarrow Wo[X] \& \forall \gamma \left(\gamma \leq X \to W_1^{\gamma}(X) \cap \gamma^{+1} = X \cap \gamma^{+1}\right) \qquad (70)$$

$$W_2 := \bigcup \{X \subset OT(\mathbb{I}) : D_1[X]\}$$

A set P is said to be a 0-distinguished set for γ and X if $D_0^{\gamma}[P;X]$, and a set X is a 1-distinguished set if $D_1[X]$.

Observe that in Σ^1_2 -AC, $W^{\alpha}_0(P)$ is Π^1_1 , $D^{\gamma}_0[P;X]$ is Δ^1_2 , $\mathcal{W}^{\gamma}_1(X)$ is Σ^1_2 , and $D_1[X]$ is Δ^1_3 . Hence \mathcal{W}_2 is a Σ^1_3 -class.

Let $\alpha \in P$ for a 0-distinguished set P for $\gamma < \mathbb{I}$ and X. If $\alpha < \gamma^{-1}$, then $\alpha \in X$ with Wo[X]. Otherwise $W(\mathcal{C}^{\alpha}(P)) \cap \alpha^{+^0} = W_0^{\alpha}(P) \cap \alpha^{+^0} = P \cap \alpha^{+^0}$ with $\alpha < \alpha^{+^0}$. Hence P is a well order.

Lemma 7.39 (Σ_2^1 -CA)

Suppose $Wo[X \cap \gamma^{-1}]$. Then $W_1^{\gamma}(X)$ is the maximal 0-distinguished set for γ and X, i.e., $D_0^{\gamma}[W_1^{\gamma}(X); X]$ and $\exists Y(Y = W_1^{\gamma}(X))$.

Proof. This is seen as in Proposition 3.9.

Lemma 7.40 1. Let X and Y be 1-distinguished sets.

Then
$$\gamma \leq X \& \gamma \leq Y \Rightarrow X \cap \gamma^{+^1} = Y \cap \gamma^{+^1}$$
.

- 2. W_2 is the 1-maximal distinguished class, i.e., $D_1[W_2]$.
- 3. For a family $\{Y_j\}_{j\in J}$ of 1-distinguished sets, the union $Y=\bigcup_{j\in J}Y_j$ is also a 1-distinguished set.

 $\textbf{Lemma 7.41} \qquad \textit{1.} \ \ \mathcal{C}^{\mathbb{I}}(\mathcal{W}_2) \cap \mathbb{I} = \mathcal{W}_2 \cap \mathbb{I} = W(\mathcal{C}^{\mathbb{I}}(\mathcal{W}_2)) \cap \mathbb{I}.$

- 2. (BI) For each $n < \omega$, $TI[\mathcal{C}^{\mathbb{I}}(\mathcal{W}_2) \cap \omega_n(\mathbb{I}+1)]$, i.e., for each class \mathcal{X} , $Prg[\mathcal{C}^{\mathbb{I}}(\mathcal{W}_2), \mathcal{X}] \to \mathcal{C}^{\mathbb{I}}(\mathcal{W}_2) \cap \omega_n(\mathbb{I}+1) \subset \mathcal{X}$.
- 3. For each $n < \omega$, $C^{\mathbb{I}}(W_2) \cap \omega_n(\mathbb{I}+1) \subset W(C^{\mathbb{I}}(W_2))$. In particular $\{\mathbb{I}, \omega_n(\mathbb{I}+1)\} \subset W(C^{\mathbb{I}}(W_2))$.

As in Definition 3.10, $\mathcal{G}^X := \{ \alpha \in OT(\mathbb{I}) : \alpha \in \mathcal{C}^{\alpha}(X) \& \mathcal{C}^{\alpha}(X) \cap \alpha \subset X \}.$

Lemma 7.42 $(\Sigma_2^1\text{-CA})$

Suppose $D_1[Y]$ and $\alpha \in \mathcal{G}^Y$. Let $X = \mathcal{W}_1^{\alpha}(Y) \cap \alpha^{+1}$. Assume that one of the following conditions (71) and (72) is fulfilled. Then $\alpha \in X$ and $D_1[X]$. In particular $\alpha \in \mathcal{W}_2$ holds. Moreover if $\alpha^{-1} \leq Y$, then $\alpha \in Y$ holds.

$$\forall \beta \left(Y \cap \alpha^{+^{1}} < \beta \& \beta^{+^{0}} < \alpha^{+^{0}} \to W_{0}^{\beta}(Y) \cap \beta^{+^{0}} \subset Y \right)$$

$$\forall \beta \geq \alpha^{-^{1}} \left(Y \cap \alpha^{+^{1}} < \beta \& \beta^{+^{0}} < \alpha^{+^{0}} \to W_{0}^{\beta}(Y) \cap \beta^{+^{0}} \subset Y \right)$$

$$\& \forall \beta < \alpha^{-^{1}} \exists \gamma (\beta < \gamma^{+^{1}} \& \gamma^{-^{1}} \leq Y)$$

$$(72)$$

Proof. This is seen as in Lemma 3.15 by showing that $D_0^{\alpha}[P;Y]$, $\alpha \in X$ and $D_1[X]$ for $P = W_0^{\alpha}(Y) \cap \alpha^{+^0} = W(\mathcal{C}^{\alpha}(Y)) \cap \alpha^{+^0}$.

Lemma 7.43 Assume $D_1[Y]$, $\mathbb{I} > \mathbb{S} \in Y \cap (St \cup \{0\})$ and $\{0, \Omega\} \subset Y$. Then $\mathbb{S}^{+^1} = \mathbb{S}^{\dagger} \in \mathcal{W}_2$.

Proof. Since the condition (72) in Lemma 3.15 is fulfilled with $(\mathbb{S}^{+^1})^{-^0} = (\mathbb{S}^{+^1})^{-^1} = \mathbb{S}^{+^1}$ and $\mathbb{S}^{-^1} = \mathbb{S}$, it suffices to show that $\mathbb{S}^{+^1} \in \mathcal{G}^Y$. Let $\alpha = \mathbb{S}^{+^1}$. $\alpha \in \mathcal{C}^{\alpha}(Y)$ follows from $\mathbb{S} \in Y \cap \alpha$. Moreover $\gamma \in \mathcal{C}^{\alpha}(Y) \cap \alpha \Rightarrow \gamma \in Y$ is seen by induction on $\ell \gamma$ using the assumption $\{0, \Omega\} \subset Y$. Therefore $\alpha \in \mathcal{G}^Y$. \square

Lemma 7.44 $(\Sigma_3^1\text{-DC})$

If $\alpha \in \mathcal{G}^{\mathcal{W}_2}$, then there exists a 1-distinguished set Z such that $\{0,\Omega\} \subset Z$, $\alpha \in \mathcal{G}^Z$ and $\forall \mathbb{S} \in Z \cap (St \cup \{\Omega\})[\mathbb{S}^{\dagger} \in Z]$.

Proof. Let $\alpha \in \mathcal{G}^{\mathcal{W}_2}$. We have $\alpha \in \mathcal{C}^{\alpha}(\mathcal{W}_2)$. Pick a 1-distinguished set X_0 such that $\alpha \in \mathcal{C}^{\alpha}(X_0)$. We can assume $\{0,\Omega\} \subset X_0$. On the other hand we have $\mathcal{C}^{\alpha}(\mathcal{W}_2) \cap \alpha \subset \mathcal{W}_2$ and $\forall \mathbb{S} \in \mathcal{W}_2 \cap (St_{\mathbb{I}} \cup \{\Omega\})[\mathbb{S}^{\dagger} \in \mathcal{W}_2]$ by Lemma 7.43. We obtain

$$\forall n \forall X \exists Y \{D_1[X] \to D_1[Y]$$

$$\land \quad \forall \beta \in OT(\mathbb{I}) \ (\ell\beta \le n \land \beta \in \mathcal{C}^{\alpha}(X) \cap \alpha \to \beta \in Y)$$

$$\land \quad \forall \mathbb{S} \in (St \cup \{\Omega\}) \ (\ell\mathbb{S} \le n \land \mathbb{S} \in X \to \mathbb{S}^{\dagger} \in Y) \}$$

Since $D_1[X]$ is Δ_3^1 , Σ_3^1 -DC yields a set Z such that $Z_0 = X_0$ and

$$\forall n \{ D_1[Z_n] \to D_1[Z_{n+1}]$$

$$\land \quad \forall \beta \in OT(\mathbb{I}) \ (\ell\beta \le n \land \beta \in \mathcal{C}^{\alpha}(Z_n) \cap \alpha \to \beta \in Z_{n+1})$$

$$\land \quad \forall \mathbb{S} \in (St \cup \{\Omega\}) \ (\ell\mathbb{S} \le n \land \mathbb{S} \in Z_n \to \mathbb{S}^{\dagger} \in Z_{n+1}) \}$$

Let $Z = \bigcup_n Z_n$. We see by induction on n that $D_1[Z_n]$ for every n. Lemma 7.40.3 yields $D_1[Z]$. Let $\beta \in \mathcal{C}^{\alpha}(Z) \cap \alpha$. Pick an n such that $\beta \in \mathcal{C}^{\alpha}(Z_n)$ and $\ell\beta \leq n$. We obtain $\beta \in Z_{n+1} \subset Z$. Therefore $\alpha \in \mathcal{G}^Z$. Furthermore let $\mathbb{S} \in Z \cap (St \cup \{\Omega\})$. Pick an n such that $\mathbb{S} \in Z_n$ and $\ell\mathbb{S} \leq n$. We obtain $\mathbb{S}^{\dagger} \in Z_{n+1} \subset Z$.

Remark 7.45 Lemma 7.44 is a Σ_4^1 -statement, which is proved in Σ_3^1 -DC. Alternatively we could prove the lemma in Σ_3^1 -AC if we assign fundamental sequences to limit ordinals as in [Jäger83].

References

- [A04] T. Arai, Wellfoundedness proofs by means of non-monotonic inductive definitions I: Π_2^0 -operators, *Jour. Symb. Logic* **69** (2004) 830–850.
- [A09] T. Arai, Iterating the recursively Mahlo operations, in *Proceedings of the thirteenth International Congress of Logic Methodology, Philosophy of Science*, eds. C. Glymour, W. Wei and D. Westerstahl (College Publications, King's College, London, 2009), pp. 21–35.
- [A10] T. Arai, Wellfoundedness proofs by means of non-monotonic inductive definitions II: first order operators, Ann. Pure Appl. Logic 162 (2010) 107-143.
- [A12] T. Arai, A sneak preview of proof theory of ordinals, Ann. Japan Asso. Phil. Sci. 20(2012), 29-47.
- [A13] T. Arai, Proof theory of weak compactness, Jour. Math. Logic 13 (2013), 1350003.
- [A14a] T. Arai, Conservations of first-order reflections, *Jour. Symb. Logic* **79** (2014), pp. 814-825.
- [A14b] T. Arai, Lifting up proof theory to the countable ordinals: Zermelo-Fraenkel's set theory, *Jour. Symb. Logic* **79** (2014), pp. 325-354.
- [A19] T. Arai, Wellfoundedness proof for first-order reflection, draft. posted to the arxiv.
- [A20] T. Arai, A simplified ordinal analysis of first-order reflection, Jour. Symb. Logic, 85 (2020), 1163-1185.

- [A ∞ a] T. Arai, Wellfoundedness proof with the maximal distinguished set, to appear in *Arch. Math. Logic*.
- $[A \infty b]$ T. Arai, An ordinal analysis of a single stable ordinal, submitted.
- $[A\infty c]$ T. Arai, An ordinal analysis of Π_1 -collection, draft.
- $[A \infty d]$ T. Arai, Well-foundedness proof for Π_1^1 -reflection, draft.
- [Buchholz75] W. Buchholz, Normalfunktionen und konstruktive Systeme von Ordinalzahlen. In: Diller, J., Müller, G. H. (eds.) Proof Theory Symposion Keil 1974, Lect. Notes Math. vol. 500, pp. 4-25, Springer (1975)
- [Buchholz86] W. Buchholz, A new system of proof-theoretic ordinal functions. Ann. Pure Appl. Logic 32, 195-208 (1986)
- [Buchholz92] W. Buchholz, A simplified version of local predicativity, in *Proof Theory*, eds. P. H. G. Aczel, H. Simmons and S. S. Wainer (Cambridge UP,1992), pp. 115–147.
- [Buchholz00] W. Buchholz, Review of the paper: A. Setzer, Well-ordering proofs for Martin-Löf type theory, Bulletin of Symbolic Logic 6 (2000) 478-479.
- [Jäger82] G. Jäger, Zur Beweistheorie der Kripke-Platek Mengenlehre über den natürlichen Zahlen, Archiv f. math. Logik u. Grundl., 22(1982), 121-139.
- [Jäger83] G. Jäger, A well-ordering proof for Feferman's theory T_0 , Archiv f. math. Logik u. Grundl., 23(1983), 65-77.
- [Rathjen94] M. Rathjen, Proof theory of reflection, Ann. Pure Appl. Logic 68 (1994) 181–224.
- [Rathjen05a] M. Rathjen, An ordinal analysis of stability, *Arch. Math. Logic* 44 (2005) 1-62.
- [Rathjen05b] M. Rathjen, An ordinal analysis of parameter free Π_2^1 -comprehension, Arch. Math. Logic 44 (2005) 263-362.
- [Richter-Aczel74] W.H. Richter and P. Aczel, Inductive definitions and reflecting properties of admissible ordinals, Generalized Recursion Theory, Studies in Logic, vol.79, North-Holland, 1974, pp.301-381.