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An ordinal « is said to be recursive iff there exists a recursive (computable)
well ordering on w of type a. w{'K (Church-Kleene w;) denotes the least non-
recursive ordinal.

Definition 0.1 1. Prg[<,U] & Va[Vy <z(y € U) - z € U]

2.

3.

(U is progressive with respect to <).

TI[<, A] :& Prg[<, A] — Vz A(z) for formulas A(z), and
TI[<,U] < Prg|<,U] — Va2 U(x) (transfinite induction on < ).

Let < be a computable strict partial order on w. If < is well-founded,

then let |n|< :=sup{|m|<+1:m <n}, and | < | :=sup{|n|<+1:n € w}

(the order type of <). Otherwise let | < | := w{'K

Definition 0.2 For a theory T comprising elementary recursive arithmetic EA
the proof-theoretic ordinal |T| of T is defined by

|T| := sup{|<|: T I TI[<, U] for some recursive well order <} (1)

where U is a fresh predicate constant.

Now, most brutally speaking, the aim of the ordinal analysis is to compute
and/or describe the proof-theoretic ordinals of natural theories, thereby mea-
suring the proof-theoretic strengths of theories with respect to II}-consequences.



1 Ordinal analysis of KPw

1.1 Kripke-Platek set theory

A fragment KP of Zermelo-Fraenkel set theory ZF, Kripke-Platek set theory, is
introduced Let L4 = {€,=} be the set-theoretic language. In this section we
deal only with set-theoretic models (X; €] (X x X)), and the model is identified
with the sets X.

Definition 1.1 (Ag, 31,115, X)

1. A set-theoretic formula is said to be a Ag-formula if every quantifier oc-
curring in it is bounded by a set. Bounded quantifiers is of the form
Vr € u,3x € u.

2. A formula of the form dxA with a Ag-matrix A is a X -formula.

Its dual Vz A is a 11y -formula.

3. The set of Y-formulas [[I-formulas] is the smallest class including Ap-

formulas, closed under positive operations A,V , bounded quantifications

Vo € u,3z € u, and existential (unbounded) quantification 3z [universal
(unbounded) quantification Vz], resp.

For example Vz € udyA (A € Ag) is a E-formula but not a 3;-formula.

4. A formula of the form VA with a ¥1-matrix A is a Is-formula.

We see easily that Ag-formulas are absolute in the sense that for any tran-
sitive sets X C Y (X is transitive iff Vy € XVz e y(z € X)), X F Alz] &Y E
Alz] for any Agp-formula A and z = z1,...,x, with z; € X.

Definition 1.2 Axioms of KP are Extensionality Va,b[Vz € a(z € b) AVzx €
b(z € a) = a = b], Null set(the empty set §) exists), Pair Vz, yJa(z € aAy € a),
Union Va3bVz € aVy € x(y € b), and the following three schemata.

Ap-Separation For any set a and any Ag-formula A, theset b= {x € a : A(x)}
exists. Namely 3Vz[z € b < = € a A A(x)].

Ap-Collection Vz € aTy A(x,y) — IbVa € aTy € b A(z, y) for Ag-formulas A.

Foundation or €-Induction Vz[Vy € F(y) — F(z)] — YaF(x)
for arbitrary formula F.

KPw denotes KP plus Axiom of Infinity 3z # 0Vy € z[y U {y} € x].



1.2 Constructible hierarchy and admissible sets
The constructible hierarchy {L, : o« € ON}.

1. Ly := 0.

2. L4y is the collection of all definable sets in (L, €).

3. Ly := Uyen Lo for limits A.

4. L:=Uqcon La-

Note that L, = KP — (Ag-Collection) for a > 0, and w € L, if a > 1.
Definition 1.3 1. A transitive set A is admissible if (A; €) E KP.

2. An ordinal « is admissible if L, is admissible.

3. A relation R on an admissible set A is A-recursive [A-recursively enumer-
able, A-r.e.] (A-finite) if R is Ay [E1] (R € A), resp.

4. A function on an admissible set A is A-recursive if its graph is A-r.e.

5. An ordinal « is recursively regular iff L, = KPw.

Observe that an ordinal « is recursively regular iff «v is a multiplicative principal
number> w, and for any L,-recursive function f : f — «a with a 8 < «,

sup{f(y) : v < B} < a holds.

Theorem 1.4 (II,-Reflection on L)
For any X-predicate A

KPwhkVz e L3y € L A(z,y) — Iz € LVz € 23y € z Az, y).
In particular for recursively reqular ordinals €2,
Va < Q38 < Q Ao, f) = Fy < QVa <438 < v A(a, B).
Lemma 1.5 |[KPw| < |KPwl|y := min{a : VA € E(KPw k- A= L, = A)}.

Proof. Suppose KPw proves TI[<, U] for a computable order < on w, where a
unary predicate U may occur in Foundation schema, but not in Ag-Separation
nor Ag-Collection. Then Vn € wia(a = |n|< = sup{|m|< +1:m < n}) is
provable in KPw. Therefore |KPw| < |KPwls. O

The Mostowski collapsing clpse(b) of a set b is defined by Cy(x) = {Ch(y) :
y € N b} and clpse(b) := Cp(b) = {Cp(z) : z € b}.

Definition 1.6 We say that a class C is II,,-classes for n > 2 if there exists a
set-theoretic II,-formula F'(a) with parameters a such that for any transitive
set P witha C P, P € C & P |= F(a) holds. For a whole universe L, L € C
denotes the formula F(a). By a II}-class we mean a II,-class for some n > 2.



1.3 Buchholz’ y¥-functions

In this section we work in KPw.
We are in a position to introduce a collapsing function ¥, (a) < o (even if
a > o). The following definition is due to [Buchholz86].

Definition 1.7 Let Q = w; or Q = w{X. Define simultaneously by recursion
on ordinals o < 'y the classes Hq (X) (X C Q) and the ordinals ¢ («) as
follows.
Ho(X) is the Skolem hull of {0,Q} U X under the functions +, ¢, and § —
va(B) (B < a).
Let
ba(0) = min({Q2) U {8 < Q: Ha(F) N Q C ) )

Let us interpret = w;. Then we see readily that H,(X) is countable for
any countable X.

To see that the ordinal 1q(a) could be defined, it suffices to show the exis-
tence of an ordinal § < Q such that H,(8) NQ C B : let § =sup{B, : n € w}
with Spy1 = min{8 < Q : Ho(Br) NQ C B} and By = 0 < Q. Then
Hao(B) NQ C B since Ho(B) = U, Ha(Brn), and f < Q since @ > w is reg-
ular.

The ordinal g, (eq,+1) is called the Bachmann-Howard ordinal.

Proposition 1.8 1. ap < a1 A Xy C X1 = Hap (Xo) C He,y (X1).
2. Ha(Ya(a)) NQ = 1q(a) and Ya(a) € Ha(ta(a)).
3. ap < a=alan) < Ya(a) A Hay(Yalao) C Ha(a(a)).

4. ap € Ho(Ya(a)) Na = Pa(an) < a(a). Therefore
ap € Hao(Walag)) Ao € Ho(a(a)) = (ap < a < o) < Yala)).

5. Ya(a) is a strongly critical number such that o (a) < Q.

6. v € Ha(B) < SC(v) C Ha(B), where SC(0) = SC() = 0, SC(y) = {v} if
v # Q is strongly critical, and SC(¢vyd) = SC(y + &) = SC(7) USC(J).

7. Ha(ta(0) = Ha(0) and o) = min{€ : € & Ha(0) NQ}.

Proposition 1.8.7 means that ¥q(«) is the Mostowski’s collapse of the point
Q in the iterated Skolem hull H,(0) of ordinals {0,} under addition + and
the binary Veblen function ¢. This suggests us that the ordinal 1 («) could be
a substitute for {2 in a restricted situation.

0 1/’91 (O[) Ql Ql + d)Ql (a)
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1.4 Computable notation system OT(2) of ordinals

By Proposition 1.8.7 we have H.,,,(0) = Heq,,(0) = Heq,, (Yaleas1)), and
hence each ordinal below ¥q(eq+1) can be denoted by terms built up from
0,9Q,4+, ¢, 1. Although the representation is not uniquely determined from or-
dinals, e.g., Yo (¥a(Q)) = ¥a(R2), a can be determined from the ordinal ¥ () if
a € Hq(0), cf. Propositions 1.8.4 and 1.8.7. We can devise a recursive notation
system OT(§2) of ordinals with this restriction in such a way that the following
holds

Proposition 1.9 EA proves that (OT(2),<) is a linear order.

1.5 Ramified set theory

Definition 1.10 RS-terms t and their levels |t| are defined recursively as fol-
lows.

1. For each ordinal « € OT(2) N (2 +1), L, is an RS-term of level |L,| = a.

2. Let 6(x,y1,...,yn) be aformula in the set-theoretic language, and sq, ..., s,
be RS-terms such that max{|s;| : 1 < ¢ < n} < a. Then the formal ex-
pression [x € L, : O (x,s1,...,5,)] is an RS-term of level |[z € L, :
Ot (2, 51,...,8,)] = a.

RS denotes the set of all RS-terms.

Let 0(x1,...,2,) be a formula such that each quantifier is bounded by a
variable y, Qx € y, all free variables occurring in 6 are among the list x1, ..., z,,
and each z; occurs freely in 0. An RS-formula is obtained from such a formula
0(x1,...,x,) by substituting RS-terms ¢; for each x;.

Let k(Ly) := {a}, k([z € Ly : 0% (2, 51,...,8,)]) = {a} UU,<, k(s;) and

k(0(t1,...,tn)) == U k(t;), [0(t1, ..., tn)| := max{|t1],. .., |tn],0}.

i<n

The bound Ly in 3z € Lo and Vx € Lg is the replacements of the unbounded
quantifiers 3 and V, resp.

Definition 1.11 Let s,¢ be RS-terms with |s| < [¢].

-n _ | B(s) t=[zre€ly: B(z))
(s<t) := { T t =L,

where T denotes a true literal, e.g., § & 0.

We assign disjunctions or conjunctions to sentences as follows. When a
disjunction \/(A;)cs [a conjunction A(A;);cs] is assigned to A, we denote A ~
V(Ai)ies [A~ N(Ai)ie], resp.



Definition 1.12 1. (AgV A1) := V(A4;)ies and (AgA A1) i A(4;)ies with
J :=2.

2. (a € b) = VVtEOLAL = a)tes and (a & b) :~ A\(t€b — ¢ # a)ies with
J:=Tm(Jb]) :=={t € RS : |t| < |b|}.

3. Let a, b be set terms.
(a £ b) := V(—A)ics and (a = b) 1= A(Ai)ics with J := 2 and Ay :=
(Vo € a(z € D)), Ay := (Vz € b(x € a)).

4. 3z € bA(x) = V(€D A A(t))tes and Vo € bA(z) i~ N(tEL — A(t))tes
with J := T'm(|b]).

Lemma 1.13 Vi € J(k(i) C k(4;) C k(A)Uk(?)) for A ~ \/(A;)ics, where
k(0) = k(1) = 0.

The rank rk(A),rk(a) < Q+w of RS-formulas A and RS-terms a are defined
so that the followings hold for any formula A.

Proposition 1.14 1. tk(A) € {w|A|+n : n € w} for RS-terms and RS-
formulas A.

2. tk(B(t)) € {wlt| + n:n € w} U {rk(B(Lo))}.
3. Let A ~\/(A;)ics. Then Vi € J(rk(4;) < rk(4)).

Definition 1.15 1. Let B(x1,...,x,) be a Ag-formula, and ay,...,a, € RS
be |a;| < Q. Then B(ay,...,a,) is a A(Q2)-formula.

2. Let A(z1,...,2,) be a X-formula, and ay,...,a, € RS be |a;| < Q. Then
AL (ay, ... ay) is a 2(Q)-formula, where for RS-terms ¢, A(®) denotes
the result of replacing unbounded existential quantifiers Jz(---) by Jz €

).

3. Let B = A2) be a %(Q)-formula, and a € OT () N Q. Then B> =
Ale) For T ¢ (Q), T(@? .= (B2 . B T},

Let us define a derivability relation H.[O] ki I" for finite sets © of ordinals,
v,a < €q41, b < Q 4+ w and RS-sequents, i.e., finite sets of RS-formulas T'.

Definition 1.16 #.,[0] ¢ I" holds if
{7,a,b} UK(T') C 7,6 (3)
and one of the following cases holds:
(V) There are A € T" such that A ~ \/(A;);cs, an i € J with
il <a (4)
and an a(7) < a for which H,[6] I—Z(i) ', A; holds.

H,[0] HO T, A,
0] ¢ T

V)

(il < a)



(A\) There is an A € T such that A ~ A(4;):cs, and for each ¢ € J, there is an
a(i) such that a(i) < a for which H,[0 U k()] ™ T, A; holds.

(1, [0 UK@)] F T, Aidies
H, [0 ¢ T

(A)
(cut) There are C' and ag < a such that 1k(C') < b, H4[O] F;° I',~C and
M, [O] Fp° C,T.

(0] F° T, ~C  H,[0] Fio C,T (1k(C) < b)
H O] FeT

(cut)

(Ap(2)-Coll) b > Q, and there are a formula C € () and an a¢ < a such
that H,[0] F° I, C and H, [0 U {a}] F{* T, =C(@® for every a < Q.

H, O] Fe T,0 {H,[0U{a}] Fe ~C*D T},cq
H,[O]F¢ T

(Ag(€)-Coll)

Lemma 1.17 (Tautology) Holk(A)] F2¢ —A, A with d = rk(A).

Lemma 1.18 (Inversion)
HyO]Fp T A= Vie JH[OUK®E)] T, A;) for A~ N(Ai)ics.

Lemma 1.19 (Boundedness) Let a < 8 € H,[0]NQ and A C 3(Q). Then
H[O] F¢ T, A = H,[0] F¢ T, AP

Lemma 1.20 (Embedding)
Let T'[% := @] (@ C RS) denote a closed instance of a sequent T’ with restriction
of unbounded quantifiers to Lo. Assume KPw = T'. Then

Im, 1 < wVd C RS[Holk(@)] Fatl, Tz = a]
where k(@) = k(ar) U ---k(ay) for d=(a1,...,an).

Let 0.(a) be the c-th iterate of 01(a) = w®. Oy(a) = a, 0, 4(a) = 0.(04(a)),
and 0, (a) = p.(a).

Lemma 1.21 (Predicative Cut-elimination)

H (O] Fe T = H,[O] F T if =(b < Q <b+ec).

Theorem 1.22 (Collapsing)
Suppose

O CHy(Ya(v)) (5)
for a finite set © of ordinals, and T C (). Then for a = y+w® and 8 = q(a)

Mo [O] FG T = Hapa[O] HG T



Proof. This is seen by induction on a. Observe that k(T) U {8} C Ha11[0] by
v < &+1and (3).

Case 1. The last inference is a (\/).
Let A € T' be such that A ~\/(4;)ic, and for an ¢ € J and an a(i) < a

#H,[0] FAI T, A,
0] ke T

(V)

By IH it suffices to show li] < q(a) for (4). We can assume k(i) C k(A4;). Then
li| € k(A;) C Hy[O] C Hy(¥a(y)) by (3) and the assumption (5). On the other
hand we have |i \ < Q. Hence li] € Ha(a(a)) NQ = pal(a).

Case 2. The last inference is a (/).
Let A € T be such that A ~ A(A;):cs, and for each i € J, there are a(i) < a
such that )
{0 Uk(D)] F5" T Aiies
werar Y

By IH it suffices to show that Vi € J(k(i) C H~(¥a(7v))). For example consider
the case when A = (Vo € u B(x)) for a set term u. Then J = {t € RS : |t| <
|u|}. Since A is a X(2)-sentence, we have |a| < 2. On the other hand we have
|u| € H,[0O)] for |u| = maxk(u), and hence k(i) C |u| € H(a(y)) NQ = va(y)
for any i € J.

Case 3. The last inference is a (Ag(92)-Coll).

There are a sentence C' € $(2) and an ag < a such that

H O FR T,C {H,0U{a}] FY ~C@D T}, q
Hy[O] 4T

(Ag(€2)-Coll)

Let ap = v+ w® and By = ¥q(ap). TH yields Hz41[0)] }—gg I', C. Boundedness
1.19 yields Hgs41[0O] Fgg T, CP0  where By € Has11[0]. On the other hand
we have H,[O U {Bo}] F =CPoD T and Hgs41[0] FE —CPoD) T TH yields
Has+wao+1[6)] l—gl ~CBoD) T where 1 = Yqldy + w™) with ay + w® =
V4w +w < a. A (cut) with tk(CP) < 3 yields Hap1[0] Hj T

Case 4. The last inference is a (cut).
Hy[Ol G T, -C Hy[O] Y C,T
HyO]FG T

We obtain rk(C') < , and rk(C) € H,[O] N Q C ¢q(y) < 5. IH followed by a
(cut) yields the lemma. O

(cut)

Lemma 1.23 (Truth)
If H,[O] FG T with ' C A(Q), then Lo =T



Theorem 1.24 KPw T and I' C (Q;) = Im < w [Lg | MWalwn(@+1).0)],

Proof. Let KPw I- T for aset I" of ¥-sentences. By Embedding 1.20 pick an m <
w such that Hq[0)] I—giz I. Predicative Cut-elimination 1.21 yields Ho[0] F& T
for a = wn, (2 +m). Let 5 = 9o(a) with & = w* = wp4+1(2 + m). We then
obtain Hg1[0] l—g I" by Collapsing 1.22, and Hs41[0)] l—g ') by Boundedness
1.19. We see Lo = I'®% from Truth 1.23. From 8 < 9q(wm2(2 + 1)) and
the persistency of Y-formulas, we conclude L = T(¥o@m+2(2+1)).9) ]

1.6 Well-foundedness proof in KPw

In this subsection «, 8,7, d, . . . range over ordinal terms in OT(2), and < denotes
the relation between ordinal terms defined in Definition ?7. An ordinal term «
is identified with the set {8 € OT(2) : 8 < a}. For ordinal terms «, 8, ordinal
terms a4 # and w® are defined trivially.

In this subsection we show that the theory ID for non-iterated positive ele-
mentary inductive definitions on N proves the fact that the relation < on OT'(2)
is well-founded up to each o < ¥q(eq+1)-

Theorem 1.25 Foreach n < w
ID F TI[<] ¢q(w, (2 + 1)), B]
for any formula B in the language L(ID).

Acc denotes the accessible part of < in OT'(€2), which is defined in ID as the
least fixed point P4 of the operator A(X,a) e aC X < (V8 < a(f € X)). Tt
suffices to show the following, which is equivalent to Theorem 1.25.

Theorem 1.26 For each a < ¥q(eq+1), IDF a € Ace.

The least fixed point Acc enjoys Va(a C Acc — o € Ace), and Va(a C F —
a € F) = Acc C F. From these we see easily that Acc is closed under +, ¢
besides 0 € Acc. Hence we obtain I'y = ¥ (0) € Acc. Likewise I'y = (1) €
Ace follows. To prove 1q(2) € Acc, we need to show ¢qo(w) € Acc for any
a < Q such that ¥q(a) is an ordinal term, i.e., G(o) < a. This means that
when 1q(8) occurs in «, then 8 < « holds. Thus we have a chance to prove
inductively that ¥q(a) € Ace. The ordinal term « is built from 0, © and some
ordinal terms ¥ (8) with 8 < a by +, ¢. Let us assume that each of ordinals
Ya(f) < Q occurring in « is in Wy = Acc N Q, and denote the set of such
ordinals o by Mj. Though we don’t have 2 € Acc in hand (since this means
that OT(2) N Q is well-founded, which is the fact we are going to prove), Q is
in the accessible part Wj of the set M;. It turns out that Wj is progressive on
M, and Q € W;. Moreover w**t! € W) is seen as for the jump set for epsilon
numbers. In this way we see that a € W, i.e., ¥o(a) € Wy for each a < eq41.

Let SC(a) denote the set of strongly critical parts of o defined in Proposition
1.8.6, and let SCq () = SC(a) N 2.

10



Definition 1.27 M; = {a € OT(2) : SCqo(a) C Wy}.
Proposition 1.28 G(8) < a = SCq(B) < Ya(a) for Ya(a) € OT ().

Proof. By induction on the length of ordinal terms 8. Assume G(8) < a. By
IH we can assume 3 = ¥ (). Then v € G() and SCq(8) = {f}. Hence v < «

and § < ¢q(a). O
In what follows we work in ID except otherwise stated.

Lemma 1.29 M, NQ = W,.

.A(X) = {OéEMl ZMlﬁOéCX}.
Proposition 1.30 For each formula F, A(F) CF - Q€ F.

Proof. Assuming A(F) C F, we see o« € Wy = « € F by induction on o € Wy
O

Lemma 1.31 For each formula F', A(F) C F — A(J[F]) C j[F], where j[F] :=
{B€OT(Q):Va(MiNaCF — M N(a+w’)CF)}.

Lemma 1.32 For each formula F and each n < w, A(F) CF = w,(Q+1) €
F.

a €W & (Ya(a) € OT(Q) — va(a) € Wy).
Lemma 1.33 A(W)C W.

Proof. Assume o € A(W) and ¢q(a) € OT(Q2). Then o € My and M; Na C
W. We show
’Y<1/)Q(Q)*>’7€W0

by induction on the length of ordinal terms . We can assume that v = ¥q ().
Then 8 < a. We see € M; from IH. Therefore g € My Na C W, which yields
v =vqa(B) € Wy. Therefore ¥q(a) C Wy. O

Let us show Theorem 1.26. We show that ID proves 1o (w, (2 + 1)) € Wy
for each n < w. By Lemmas 1.32 and 1.33 we obtain w, (2 + 1) € W. Thus
Ya(wn(Q+ 1)) € Wy by the definition of W.

2 Rathjen’s analysis of II3-reflection

Given an analysis of KPw for a single recursively regular ordinal, it is not hard
to extend it to an analysis of theories of recursively regular ordinals of a given
order type, e.g., to KP/, or equivalently to II3-CA+BIL. Or to an iteration of
recursively regularities in another manner. Specifically an ordinal analysis of
KPM for recursively Mahlo ordinals is not an obstacle.

11



Let us introduce a II;-recursively Mahlo operation RM; and its iterations.
A TI;-recursively Mahlo operation RM; for 2 < i < w, is defined through a
universal IT;-formula II;(a) such that for each II;-formula ¢(x) there exists a
natural number n such that KP - Vz[p(z) < II;((n,z))]. Let X be a collection
of sets.

PeRMi(X) & WheP[PEILG) »3QeXNPbeqQkILb)
(read: P is II;-reflecting on X.)

Let RM; = RM;(V), and V is II;-reflecting if V. € RM;. Under the axiom
V = L of constructibility, V € RM; iff V |= KPw, and V' € RMy(RM>) iff V' is
recursively Mahlo universe. When V = L,, the ordinal ¢ is recursively Mahlo
ordinal.

Let KPM denote a set theory for recursively Mahlo universes. For an ordinal
analysis of KP M, it suffices for us to have two step collapsings a — o = ¥ (a) €
RM> and (o, 8) — 1, (8).

Assume that P € X is given by a Ag-formula. Then there exists a II;;1-
formula rm; such that for any non-empty transitive sets P € VU {V}, P €
RM;(X) <> rm?, where rm!” denotes the result of restricting unbounded quan-
tifiers in rm; to P.

An iteration of RM; along a definable relation < is defined as follows.

P e RM;(a;<):&=a€Pc ﬂ{RMi(RMi(b; <):bePEb<a}.

Assume that b < a is given by a X;-formula. Then there exists a II;1-formula
rm;(a, <) such that for any non-empty transitive sets P € VU{V} and a € P,
P € RM;(a; <) < rmF(a,<).

For 2 < N < w, KPIIy denotes a set theory for ITy-reflecting universes
V', which is obtained from KPw by adding an axiom V € RMy (the axiom
for IIy-reflection) stating that its universe is IIy-reflecting. This means that
for each I y-formula ¢, p(a) — Jcjadfy A a € ¢ A ¢°(a)] is an axiom, where
ad§ := (Vx € vy € z(y € ¢)), i.e., cis transitive, and for N > 2, ad = ady
denotes a II3-sentence such that P |= ad < P |= KPw for any transitive and
well-founded sets P. KPII; is a subtheory of KPw+(V = L), which is interpreted
in KPw: KPw + (V = L) F ¢ = KPw I- ¢%, cf. Theorem 1.4.

KPIIn 41 is much stronger than KPIIy since I y-recursively Mahlo operation
RMp can be iterated in KPII 1. For example, KPII 4 proves Va € ON[V €
RMy (a; <)] by induction on ordinals . Suppose V5 < a[V € RMy(8; <)]. Let
© be a Il y-formula such that V' = ¢, and § < a. We can reflect a IT1-formula
V € RMn(B; <) A ¢, and obtain a set P such that P € RMy(8;<) AP [ .
Hence V. € RMy(a;<). This means that V is in the diagonal intersection
AgRMpy(o; <), ie., Ve {RMpy(a;<) : € ON NV}, Since this is a In41-
formula, the Iy, 1-reflecting universe V reflects it: there exists a set P € V such
that P is in the diagonal intersection, i.e., P € (J{RMn(a; <) : « € ON N P},
and so forth.

Let ON C V denote the class of ordinals, ON® C V and <¢ be A-predicates
such that for any transitive and well-founded model V' of KPw, <¢ is a well order
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of type ex41 on ON* for the order type K of the class ON in V. [w,(K+1)] €
ONF* denotes the code of the ‘ordinal’ w,(K + 1), which is assumed to be a
closed ‘term’ built from the code [K] and n, e.g., [a] = (0,a) for « € ON,
K] = (1,0 and [wn (K +1)] = (2, (2, - (2, (3, [K], (0, 1))} - - ).

<€ is assumed to be a standard epsilon order with base K (not on N, but
on V) such that KPw proves the fact that < is a linear ordering, and for any
formula ¢ and each n < w,

KPw FVz(Vy <® zp(y) — p(z)) = Vo < [w, (K 4+ 1)]p(x) (6)

Theorem 2.1 ( [Al4a])
For each N > 2, KPIl 1 is IIy1-conservative over the theory

KPw +{V € RMy([wn,(K+1)];<®) : n € w}.

From (6) we see that KPII 41 proves V € RMy([w,(K 4+ 1)]; <) for each
necw.

Let us consider the simplest case NV = 3, i.e., an ordinal analysis of set theory
KPII; for II3-reflecting universe. It turns out that KPII3 is proof-theoretically re-
ducible to iterations of recursively Mahlo operations V € RMs([w, (K+1)]; <¢
) (n € w), but how to analyze it proof-theoretically? Here we need a break-
through done by [Rathjen94].

2.1 Ordinals for KPII;

In this subsection we define collapsing functions v (a) for KPII3. It is much
easier for us to justify the definitions with an existence of a small large cardinal.
Let K be the least weakly compact cardinal, i.e., IT{-indescribable cardinal, and
Q = w;i. In general forn >0, A C ON is H}l—indescribable in an ordinal 7 iff for
every 11} (P)-formula o(P) with a predicate P and C C m, if (L., C) | ¢(P),
then (Ly,CNa) E ¢(P) for an @ € AN First let us introduce the Mahlo
operation. Let A C K be a set, and o < K a limit ordinal. « € My(A) iff AN«
is TI}-indescribable in a.

As in Definition 1.7 we define the Skolem hull H,(X) and simultaneously
classes Mh$(€) as follows.

Definition 2.2 Define simultaneously by recursion on ordinals a < egy1 the
classes Hq(X) (X C Ty1), Mh(€) (€ < exy1) and the ordinals 95 (a) as fol-

lows.

1. Hq(X) denotes the Skolem hull of {0,Q, K} U X under the functions +, ¢,
and (o,v,b) — PL(b) (b < a).

2. Let for £ > 0,

T € Mh3(8) = {a,&} C Ha(m) &V € Ha(m) NE (m € Ma(Mh3(v))) (7)

m € Mh4(0) iff w is a limit ordinal.
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3. For 0 < ¢ < exq1,

Y& (a) = min ({7} U {k € Mh§(&) : {&,m,a} C Halk) & Ho(k) N7 C K})

(8)
and Yo (a) = min{8 < Q: Ha(B) NQ C 5}.

We see that each of x = H,(y), * = ¥Sa and z € Mh3(£), is a ¥1-predicate
as fixed points in ZFL

Since the cardinality of the set Hc,, (7) is 7 for any infinite cardinal 7 <K,
pick an injection f : H..,, (K) — K so that f"H.,,  (7) C « for any weakly
inaccessibles ™ < K.

Lemma 2.3 (Cf. Theorem 4.12 in [Rathjen94].)

1. There exists a 11} -formula mh4(x) such that m € MhS(€) iff Ly = mhg(£)
for any weakly inaccessible cardinals # < K with f”({a,&}) C L.

2. K € Mh§(eg+1) N Mo(Mh§(ek41)) for every a < egyi.

Proof. 2.3.1. Let m be a weakly inaccessible cardinal and f an injection such
that f"H., () C Lr. Assume that f’({a,{}) C L. Then for f(§) €
" Hao(m), 7 € Mh§(E) iff for any f(v) € Ly, if f(v) € fPHa(r) and v < &,
then m € My (Mhg(v)), where f?Hq(m) C Ly is a class in L.

2.3.2. We show the following B(§) is progressive in £ < eg1:
B(§) = K € Mh3(§) N Ma(Mh3())

Note that £ € H,(K) holds for any £ < eg1.

Suppose Vv < £ B(v). We have to show that Mh$(€) is IT-indescribable in
K. Tt is easy to see that if 7 € My(Mh§(§)), then m € Mh§(£) by induction on 7.
Let 6(P) be a first-order formula with a predicate P such that (Lg,C) = 0(P)
for C C K.

By IH we have Vv < ¢[K € My(Mh§(v))]. In other words, K € Mh§(¢),
ie., (Lg,C) = mh$(&) A O(P). Since the universe L is I1}-indescribable, pick
a m < K such that (L,,C N 7) enjoys the ITi-sentence mhg(¢) A O(P), and
{f(a), f(¢&)} C L. Therefore 7 € Mhg(€). Thus K € My(Mh3(E)). O

Lemma 2.4 For every {a,{} C exs1, d)ﬂi(a) < K for the I}-indescribable
cardinal K.

Proof. Let {a,{} C egx41. By Lemma 2.3.2 we obtain K € My (Mhg(£)). On
the other, {x < K: {&,a} C Hqo(k), Ho(k)NK C &} is a club subset of K. Hence
¢ (a) < K by the definition (8). O

From the definition (8) we see
€ Mh3(p) N Ha(m) & € € Ho(m) N = 1 € Mo(MRE(E)) &S (a) < 7

In what follows M; denote the Ily-recursively Mahlo operation RMs.
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2.2 Operator controlled derivations for KPII3

OT(I13) denotes a computable notation system of ordinals with collapsing func-
tions ¥¥(b). k = ¢4 (b) € OT(1l3) if {o,v,b} C OT(Il3) N Hp(k), v = ma(k) <
ma(o) and

SCk(v) Ck&r <D (9)

where ms(2) = 1 and my(K) = ex11. We need the condition (9) in our well-
foundedness proof of OT'(II3), cf. Proposition 3.30 and Lemma 3.38.

Operator controlled derivations for KPII3 are defined as in Definition 1.16
for KPw together with the following inference rules. For ordinals m = 95 (a), let

ma(m) = &.

(rflm, (K)) b > K. There exist an ordinal ag € H~[©]Na, and a X3(K)-sentence
A enjoying the following conditions:

H (O] T, =A {H,[0U{p}] i T,APK) : p < K}
H, [0 F¢ T

(vl (K))

The inference says that K € RM3.

(rflm, (e, ,v)) There exist ordinals « < 7 < b < K, v < ma(w) such that
SCk(v) € mand v < 7, cf.(9), ap < a, and a finite set A of Xy(7)-
sentences enjoying the following conditions:

1. {a,m,v} C Hy[O].
2. For each § € A, H,[O] F° T', 4.

3. For each a < p € Mho(v) N, H[O U {p}] F° I, A(»™ holds.
By p € Mha(v) we mean v < ma(p).

{H,[O] F° T, =6}sea {H,[OU{p}F° T,AP™ :a < pe Mha(v) N}

Hy[O] Fy T (rfn, (o, m,v))

The inference says that m € My(MhJ(v)) provided that {ma(m),~,v} C
Hy ().
The axiom for ITz-reflection follows from the inference (rfly, (K)) as follows.
Let A € ¥3(K) with d = rk(4) < K+ w, and d, = rk(A®»K)) for p < K.
Holk(4) U {p}] " AL, -4l
Holk(A)] F3* A, =A Holk(A) U {p}] F§ 3z ACH), - A5
Holk(A)] FE ™ =A, 3z AEK)

(rfl, (K))

An appropriate name for this collapsing technique would be station-
ary collapsing since in order for this procedure to work, a single
derivation has to be collapsed into a “stationary” family of deriva-
tions. [Rathjen94]
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We see from the following proof that o = ¥k (v + K) holds in every inference
(rfl, (e, K, ag)) occurring in a witnessed derivation of Hz11[0 U {k}] I—g NGO
Let us call the unique ordinal o a base.

Lemma 2.5 Assumel C X9(K), © C H(¢vr(7)), and H,[O] Hi T witha < .

Then Ha41[© U {K}] l—g L% holds for any k € Mhg(a) N (y + K - w) such
that Yx (v + K) < K, where a = v + Wkt and B = g (a).

Proof. By induction on a. Note that there exists a k € OT(Il3) such that
Yr(y+K) <k € Mhy(a) NYg(y+ K- w). Fe. k =9¢g(y+K+1).
Case 1. Consider the case when the last inference is a (rfly, (K)). For ¥3 >

A~ \/(Ai)iEJa
H O FR T, -A {H, [OU{p} F T,APK) : p < K}
H,[O] FL T

(rflr, (K))
Let
'@ZJK(’Y + K) <ge th(ao) NkK.

Let i € T'm(0), i.e., k(i) C 0. For each i € T'm(c) Inversion yields H.|;[© U
k(i)] H° T, ~A; with k(i) < ¢ (y+]i]). By IH we obtain Hs 41 [OU{o UK(i)] H5°

@K, A( ) for every i € Tm(o), where By = vk (ap) with ag = v + w0 =
v+ i \ b wkteo, A (A\) yields

Har1[OU {o}] HPH! D0 -4

On the other hand we have H.,[OU{c}] F& T, AK) with o € H o (Yre(y +
0)), but o & H~(¢Yr(v+K)). We obtain k € Mha(ap) by ap < a, and y+o+K =
v+ K. IH yields

Ha+1[O U {k,0}] ";Bao DK A@K)
A (cut) of the cut formula A(C%) with rk(A@5) < k < g (y+K-w) < B yields
Harr[O U {r,0}] }_,go-‘rQ F(H,K)7F(0,K)
On the other side
H, [0 U {x}] F34 —g(=E) T (xK)

holds for each 6§ € ' C ¥5(K), where d = max{rk(ﬁ(”’K)) el}<k+ B
Moreover we have ay < a, SCk(ap) C Hy[O] NK C H, (¢ ('y)) C
k. A (rflm, (6, k,a0)) with 6 = Yx(y + K), {§,k,a0} C Har1[O U {x}] ylelds
Har1[OU {}] Fj T,
Har1[OU{o}] FRT TOH A0 34, 1[0 U {k, o} Hje T5) Al
{H/[OU{xK}] H ﬁa(H’K% F(N’K)}GGF {Hat1[® U {k, o}] "g0+2 F(N’K)v F(U’K)}§<aej\4h2(a0)r‘m
H&Jrl[@ @] {K,}] l—g (=K

(I‘ﬂr[2 (57 R, ao))

16



Case 2. The last inference is a (cut) of a cut formula C with rk(C') < K. Then
rk(C) € H,[B] NK C ¥k(y) < B by (3), Proposition 3.1 and the assumption
6 ¢ M, (x ().

Case 3. The last inference is a (/\) with a main formula IT; (K) 3 A ~ A(A,).eJ.
We may assume J = Tm(K). Then A"™K) ~ A(A,),crm(s), and we obtain the
lemma by pruning the branches for ¢ ¢ Tm(x).

Case 4. The last inference is a (\/) with a main formula ¥5(K) 3 A ~ \/(4,),c.
We may assume J = T'm(K). Then A®™E) ~ \/(A,),crmn)-

(O] FO T, A, (
H,[0] e T
A

We may assume that k(t) C k(A,). Then by (3) and © C H(¥x (7)) we obtain
k(t) C H,[O)NK C Hy(¢Yr(7)) NK C K, and ¢ € Tm(k). O

An ordinal term « in OT(II3) is said to be regular if either o € {2, K} or
a =YY (a) for some o,a and v > 0.

Lemma 2.6 Let A be reqular, I' C ¥1(\) and Hy[O] Fi T, where a < K,
Hy[O] 2 X <b <K, and Vi € [X\,0)(0 C Hy(Yu(y ))) Let & = v+ 6y(a) and
B =(a) such that 0 < ne H,[O], n < mg( ), SCk(n) C B and n <~. Then
Har1[O] ) T holds.

Proof. By main induction on b with subsidiary induction on a as in Theorem
1.22.

Case 1. Consider first the case when the last inference is a (rflf, (o, 0, v)) with
b>o>a.

{H:[0] F° T, ~8}sea {H5[O U {p}] Fi® T,A®) o < p € Mha(v) N o}
H, [O] F¢ T

(rflm, (o, 0, 1))

where A C X5(0), {o,0,v} C H[O], v < ma(0), v <~ and SCk(v) C 0.
Case 1.1. ¢ < X: Then {-6} U AP C Ay()\) for each § € A. For any
A < k < b, we obtain p < o € H,[O] Nk C (7). SIH yields the lemma.
Case 1.2. ¢ > X: For each § € A, let § ~ \/(0;)ics. We may assume J =
Tm(c). Inversion yields H.y;[© Uk(i)] F,° T',—d;. Let ap = v + 6y(ao) and
p = ¥Y(ap + @), where © C H,(p) by the assumption, {a,o,v,ap} C H[O]
with v < mg(0). Hence {a,0,v,dp} C H(p) and o < p by a < 0. Therefore,
cf. (9), SCx(v) C p € Mho(v) No N Has+a+1[0)-

For each k(i) C p and —§; € ¥1(0), we obtain v + [i| + Op(ap) = ap by
lil <p <o <b and Hag 1[0 Uk(i)] F00 T',=6; by SIH for pg = 1j4i4(a0) < p.
Hence Hgs1a11[0 Uk(i)] Ff T',=d; By Boundedness we obtain Ha;q41[0© U

k()] Fo T, =877 A () yields

Hazrap1[0] H4TH T, =50
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On the other hand we have H,[0 U {p}] F* I', A9 and Hgs0y1[0] F°
I, A(»2) By STH we obtain

Hara[O] Fy: T, AP

for 81 = ¥,(ay) > p, with @3 = ap + o+ 0p(ag) < v+ Op(ag) - 3 < a. Therefore
we obtain Hgr41[0)] I—gf“’ I' by several (cut)’s of rk(6(7?)) < p4+w < B1.

If o = A, then we are done. Let A <o <b. Then A € H,[©]No C 1. MIH
vields Hgz41[0] Fj2 T, where @3 = ai + 0, (/1 +w) < a by p1 < o < b, and
Ba = a(az) < a(a) < B.

Case 2. Next the last inference is a (cut) of a cut formula C with d = rk(C) < b.
HyO] o T, =~C Hy[O]F° T, C
H, O] H T

(cut)

If d < A, then SIH yields the lemma. Let A < d and ap = v + 0y(aop).
Case 2.1. There exists aregular o € H,[0] such that d < o < b: For {-~C,C} C

Ao (o), we obtain Hgz41[0] F T',C and Hg41[0] Hi2 T, =C' for By = b (dp)
by SIH. A (cut) yields Hgz41[0] ™ T. MIH yields Hg741[6] Fj! T, where

a1 = ap +0p,(Bo +1) < a and B1 = ¥a(a1) < ¥a(a) < B.
Case 2.2. Otherwise: Then there is no regular o € #H.,[0] such that d < o <b.

Let d + ¢ = b. Then by Cut-elimination we obtain H.,[0] I—ZC(“) I'. MIH yields

Ha41[O] F))(3) T where 7+ 84(6c(a) = 7 + By(a) = . :

Theorem 2.7 Assume KPII3 - L2 for § € ¥.. Then there exists an n < w
such that Ly = 6 for a = ¢q(w,(K+ 1)) in OT(I3).

Proof. By Embedding there exists an m > 0 such that H[0)] }—ﬁiz gLe. By
Cut-elimination, Ho[0] F& 6% and H,[0] & 0L for a = w,(K + m). By
Lemma 2.5 we obtain Hyae41[{x}] l—’g oL, where 8 = ¢ (w?), a + Wt = W,
(0L2)wK) = gL and Yx(a + K) < k € Mhy(a) NYg(a + K- w). Fe. k=
PE(a+K+1) € Horrt2[0]. Hence Hyaqxi2[0] l—g 6L, Lemma 2.6 then yields
M1 [0] FGE 052 for v = w® + K+ 05(8) and B = va(7) < do(w +K-2) <
o (wmi2(K 4+ 1)) = a. Therefore L, 6. O

3 Well-foundedness proof in KPII3

OT(II3) denotes the computable notation system in section 2. x = ¥%(b) €
OT(II3) only if v = ma(k) < ma(c), SCk(v) C k and v < b, cf. (9). In this
section we show the

Theorem 3.1 KPII3 proves the well-foundedness of OT (Il3) up to each a <
Yalex+)-

We assume a standard encoding OT(Il3) 3 a — [«a] € w, and identify ordinal
terms « with its code [a].
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3.1 Distinguished sets

In this subsection we work in KP/.

Definition 3.2 [Buchholz00].
For oo € OT(II3), X C OT(Il3), let

C*(X) := closure of {0,Q,K} U (X Na) under +, ¢
and (o, a,v) — ¢Y2(a) for 0 > « in OT(I13) (10)

at = Q.41 denotes the least regular term above « if such a term exists.
Otherwise a™ := co.

Proposition 3.3 Assume Vy € X[y € C?(X)] for a set X C OT(1l3).
1. a < B =CPX) CC¥X).
2. a<pB<at=CPlX)=CYX).
Proof. 3.3.1. We see by induction on ¢y (y € OT(Il3)) that
VB> aly e CP(X) = yeC*(X)U (X NP (11)

For example, if ¢%(8) € C#(X) with 7 > 8 > aand {7, d,v} C C*(X)U(XN}),
then 7 € C*(X), and for any v € {d,v}, either v € C*(X) or vy € X Np. If
v<a, theny e XNa CCYX). Ifa<yeXnNg, then v € C'(X) by the
assumption, and by IH we have v € C*(X)U (X N7), i.e.,, v € C*(X). Therefore
{m,d0,v} C C*(X), and ¢%(9) € C*(X).

Using (11) we see from the assumption that V5 > a[y € C#(X) = v €

C*(X)].
3.3.2. Assume a < 3 < at. Then by Proposition 3.3.1 we have C#(X) C C*(X).
C*(X) C CP(X) is easily seen from 8 < a™. O

Definition 3.4 1. Prg[X, Y] &Vae X(XNaCY s a€Y).

2. For a definable class X', TT[X] denotes the schema:
TI[X] & Prg[X,Y] — X C Y holds for any definable classes V.

3. For X C OT(Il5), W(X) denotes the well-founded part of X.
4. WolX] & X Cc W(X).
Note that for o € OT(Il3), W(X) Na=W(X Na).

Definition 3.5 For X C OT(Il3) and a € OT(I3),

1.
D[X] & Vala< X - W(EC* (X)) Nat =X nNah) (12)

A set X is said to be a distinguished set if D[X].
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2. W:=|J{X:D[X]}.

Let a € X for a distinguished set X. Then W(C*(X)) Nat = X Nat.
Hence X is a well order.

Proposition 3.6 Let X be a distinguished set. Then a € X = VB]a € CP(X)].

Proof. Let D[X] and a € X. Then a € X Nat = W(CYX)) Na™ C C*(X).
Hence Vy € X(y € C7(X)), and a € C#(X) for any B < a by Proposition 3.3.1.
Moreover for 3 > a we have o € X N 3 C CP(X). i

Proposition 3.7 XNa=Y Na=VY3<a® [CF(X)=CP(Y)] ifVye X(y e
CY(X)) and ¥y € Y(y € C7(Y)).

Proof. Assume that X Na =Y Na and a < 8 < at. We obtain C%(X) =
C%(Y). On the other hand we have C#(X) = C*(X) and similarly for C#(Y") by
Proposition 3.3.2. Hence C#(X) = CA(Y). ad

Proposition 3.8 a < X &a <Y = Xnat =Y nNna' if DX] and D[Y].

Proof. For distinguished set X, a < X = X Nat = W(C*(X))Nat. Hence
the proposition follows from Propositions 3.6 and 3.7. o

Proposition 3.9 W is the mazimal distinguished class.

Proof. First we show Yy € W(y € CY(W)). Let v € W, and pick a distin-
guished set X such that v € X. Then v € C7(X) C CY(W) by X C W.

Let « < W. Pick a distinguished set X such that @« < X. We claim that
Wnat = XNa'. Let Y be a distinguished set and 8 € Y Na*. Then
B eYNpt=Xnpt by Proposition 3.8. The claim yields W(C*(W)) Na™ =
W(EC*X))Nnat =XnNat =Wna'. Hence DW). |

Definition 3.10 G(X) :={a € OT(Il3) : a € C*(X) &C¥X)Na C X}.
Lemma 3.11 For D[X], X C G(X).

Proof. Let v € X. We have v € W(C7(X))N~t = X N~*. Hence v € C7(X).
Assume a € C7(X)N~y. Then a € W(C7(X))N~yt C X. Therefore C?(X)N~vy C
X. O

Definition 3.12 For ordinal terms «, § € OT (II3), finite sets G5(a) C OT'(II3)
are defined recursively as follows.

L. Gs(a) =D fora € {0,9Q,K}. Gs(am+-+ao) = Ui, Gs(ai). Gs(pBy) =
Gs(B)UGs(7y).

2. G5<w;(a>>={ fj%’f’”}) by

Proposition 3.13 For {«a,d,a,b, p} C OT(113),
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1. G5(a) < a.
2. a € Ho(b) = Gs(a) T Ha(d).

Proof. These are shown simultaneously by induction on the lengths ¢a of or-
dinal terms «. It is easy to see that

Gs(a) 3 =B <i&lf < la (13)

3.13.1. Consider the case a = ¥%(a) with 6 < 7. Then Gs(a) = Gs({m, a,v}).
On the other hand we have {m, a,v} C Hq(«). Proposition 3.13.2 with (13)
yields Gs({m,a,v}) C Hq(a) N C a. Hence Gs(a) < a.
3.13.2. Since Gs(a) < a by Proposition 3.13.1, we can assume « > b.

Consider the case a@ = ¥%(a) with 6 < 7. Then {ma,v} C H,(b) and
Gs(a) = Gs({m,a,v}). TH yields the proposition. O

Proposition 3.14 Let v < 8. Assume a € CY(X) and Vi < B[Gx(a) < 7v].
Moreover assume Y3[0§ < ba&§ € CY(X)Nvy = § € CP(X)]. Then a € CP(X).

Proof. By induction on fav. If o < 7, then o € CY(X)Nry. The third assumption
yields a € C#(X). Assume a > 7. Except the case a = ¢%(a) for some 7, a,v,
IH yields a € C?(X). Suppose a = 9%(a) for some {m,a,v} C CY(X) and
7>~ If 7 <, then {a} = Gr(a) < 7 by the second assumption. Hence this
is not the case, and we obtain = > . Then G, ({m,a,v}) = G.(a) < v for any
k < B < 7. IH yields {r,a,v} C C#(X). We conclude a € C#(X) from 7 > f3.

O

Lemma 3.15 Suppose D[Y] and o € G(Y). Let X = W(C*(Y))Na™. Assume
that the following condition (71) is fulfilled. Then a € X and D[X].

VB (Y Nat <B&BT <at - W(EC(Y)NBT CY) (14)

Proof. Let « € G(Y). By C*(Y)Na C Y and Wo[Y] we obtain by Proposition
3.6
XNna=YnNna=CYY)Na (15)

Hence a € X.
Claim 3.16 ot =7" &y e X = v e 0V (X).

Proof of Claim 3.16. Let at = 4" and vy € X = W({C*Y)) Nnat. We
obtain v € C*(Y) = CY(Y) by Propositions 3.6 and 3.3. Hence Y Ny C
C'Y)ny=C*Y)Ny. vy W({C*Y)) yields Y Ny C X. Therefore we obtain
vy eC(Y) C CV(X). O of Claim 3.16.

Claim 3.17 D[X].
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Proof of Claim 3.17. We have X Na =Y Na by (15). Let § < X. We show
W(ECA(X))Nnpt=XnNngt.

Case 1. T = at: We obtain C?(X) = C%(X) = C%(Y) by Proposition 3.3,
Claim 3.16 and (15).

Case 2. 8 < a': Then 87 < a.

First let Y Nat < B. Then the assumption (71) yields W(C?(Y))NBT C Y.
We obtain W(C#(X)) N B+ c Y NBt = XnNgB*+ by (15). It remains to show
Y NnBt c W(CP(Y)). Let v € Y NAT. We obtain v € W(CY(Y)) by D[Y].
On the other hand we have C#(Y) c CY(Y) by Proposition 3.3. Moreover
Proposition 3.6 yields v € C#(Y'). Hence v € W(C?(Y)).

Next let 3 <Y Nat. We obtain Y N 3T =W(CA(Y))N BT, and X N3+ =
W(CP (X)) N B+ by (15). O of Claim 3.17.

This completes a proof of Lemma 3.15. a

Proposition 3.18 Let D[X].
1. Let{a,B} C X witha+ B8 =a#p anda > 0. Theny=a+ S € X.
2. If{a, B} C X, then p,(8) € X.

Proof. Proposition 3.18.2 is seen by main induction on aw € X with subsidiary
induction on 8 € X using Proposition 3.18.1. We show Proposition 3.18.1. We
obtain @« € X Nyt = W(C'(X)) Nyt with vT = at. We see that a + 3 €
W(C7(X)) by induction on 8 € X N« C C?(X). O

Proposition 3.19 Let Xy = W(C°(0))N0* with 0% = Q, and X, = W (C%(Xo))N
QF. Then 0 € Xy, Q € Xy and D[X;] fori=0,1.

Proof. For each o € {0,9Q} and any set Y C OT(Il3) we have o € C*(Y). First
we obtain 0 € G(0) and D[@]. Also there is no 3 such that 7 < 0". Hence the
condition (71) is fulfilled, and we obtain 0 € X, and D[X,] by Lemma 3.15.
Next let v € C*(Xo) N Q. We show v € Xy by induction on the lengths
¢y of ordinal terms 7 as follows. We see that each strongly critical number
v € CH(Xo) N Qs in X, since if %(B) < Q, then ¢ = Q. Otherwise v € X,
is seen from IH using Proposition 3.18 and 0 € Xy. Therefore we obtain a €
G(Xo). Let BT < at. Then ft = Q and B < Q. Then W(C?(Xy)) NQ =
W (C(Xy)) N = X, by Proposition 3.3. Hence the condition (71) is fulfilled,
and we obtain 2 € X; and D[X;] by Lemma 3.15. O

Definition 3.20 3 < « iff there exists a sequence {0;};<n(n > 0) such that
a = o9, B = o, and for each i < n, there are some v;,a; such that o,11 =

oi(aq).
Note that § < a = ma(8) < ma(a).
Lemma 3.21 Suppose D[Y| with {0,Q} C Y, and for n € OT(Il3)

negy) (16)
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and
Vy<nveGY)=>v€Y) (17)

Let X =W(EC"(Y))Nn*. Thenn e X and D[X].
Proof. By Lemma 3.15 and the hypothesis (16) it suffices to show (71), i.e.,
VB(Y Nt < B&BT <nt > W(CP(Y)NBT CY).

Assume Y Nyt < B and B+ < nt. We have to show W(C(Y))N BT C Y. We
prove this by induction on v € W(C?(Y)) N B*. Suppose v € C#(Y) N B+ and

MIH : CP(Y)ny C Y.
We show v € Y. We can assume that
Ynnt <~y (18)

since if ¥ < § for some 6 € Y NnT, then by Y Nt < B and v € CA(Y)
we obtain § < B, v € C(Y) and 6 € W(C’(Y))Nndét = Y Nndt. Hence
yeEW(EC(Y)Ndt CY.
We show first
veG(Y) (19)

First v € C?(Y) by v € C#(Y) N 3+ and Proposition 3.3. Second we show the
following claim by induction on fa:

acelC"Y)Ny=acY (20)

Proof of (20). Assume a € C7(Y). We can assume v© < 3 for otherwise we
have o € CY(Y) Ny =CP(Y)N~ CY by MIH.

By induction hypothesis on lengths, o < v < 87 < 5", Proposition 3.18,
and {0,022} C Y, we can assume that o = % (a) for some m > v such that
{m,a,v} C CV(Y).

Case 1. § < m: Then Gg({m,a,v}) = Gg(a) < a < v by Proposition 3.13.1.
Proposition 3.14 with induction hypothesis on lengths yields {r,a,v} C C#(Y).
Hence o € C#(Y) N~y by 7 > 3. MIH yields o € Y.

Case 2. B3> m We have a < v < 7 < 3. It suffices to show that a <Y Nn™.
Then by (18) we have a < § € Y Nyt for some § < 7. CO(Y) > a <6 €
Y N6t =W(C(Y)) Nt yields a € W(C(Y))Ndst CY.

Assume first that + is not a strongly critical number. By o = ¢%(a) < 7, we
can assume that v # 0. Let ¢ denote the largest immediate subterm of v. We
obtain 6 € C#(Y) N+~ by (18), Y Nyt < vy € CA(Y). Hence § € Y by MIH. Also
by a < v, we obtain a < 4, i.e., « <Y, and we are done.

Next let v = 95 (b) for some b, ¢ and x > 3 by (18) and v € C#(Y). We have
a<vy<7m< P <k Weobtain m € Hp(y) since otherwise by m < k we would
have 7 < . Therefore a = ¥ (a) < ¥5(b) = v < 7 < k with 7 € H,(a) and
T & Hp(7y). This yields a > b and {k,b,£} & Ho(a).
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On the other hand we have {x,b,&} C H,(7y). This means that there exists

a subterm ¢ < v of one of k,b,{ such that 6 &€ H,(«). Also we have {x,b,&} C
CA(Y). Then § € C#(Y)N~. By MIH we obtain a <6 € C°(Y) N~y CY.

O of (20) and (19).

Hence we obtain v € G(Y)). We have v < T <nand v € C7(Y). If v < 7, then
the hypothesis (17) yields v € Y. In what follows assume v 4 7.
If G,)(y) < v, then Proposition 3.14 yields v € C"(Y)Nn CY by n € G(Y).
Suppose G, (y) = {v}. This means, by v A n, that v < 7 for a 7 <. Let
7 denote the maximal such one. We have v < 7 < n. From v € C7(Y) we see
7 € C'(Y). Next we show that

Gn(7) <v (21)

Let 7 = 9#(b). Then n < k by the maximality of 7, and G, (1) = G,,({k, b, u}) <
7 by Proposition 3.13.1. On the other hand we have 7 € H,(v). Proposition
3.13.2 yields G, (1) C Ha(y). We see G,)(1) < ~y inductively.

Proposition 3.14 with (21) yields 7 € C"(Y), and 7 € C"(Y)Nn C Y by
n € G(Y). Therefore Y Nt < v < 7 €Y. This is not the case by (18). We are
done. a

Proposition 3.22 a« <WnN B+t &acClW)=aecW.

Proof. This is seen from Propositions 3.3, 3.6 an 7.39. O

3.2 Mahlo universes

In Proposition 3.9, we saw that W is the maximal distinguished class, which is
E%_—deﬁnable and a proper class in KPII3. WY in Definition 3.25 denotes the
maximal distinguished class inside a set P. WY exists as a set.

Let ad denote a II3-sentence such that a transitive set z is admissible iff
(z;€) = ad. Let Imtad < Vz3y(xz € y A ad?). Observe that Imtad is a II; -
sentence.

Definition 3.23 L denotes a whole universe, which is a model of KPII3.

1. By a universe we mean either the whole universe L or a transitive set
Q@ € L with w € Q. Universes are denoted by P, @, ...

2. For a universe P and a set-theoretic sentence ¢, P |= ¢ & (P;€) = ¢.

3. A universe P is said to be a limit universe if Imtad® holds, i.e., P is a
limit of admissible sets. The class of limit universes is denoted by Lmtad.

Lemma 3.24 W(C*(X)) as well as D[X] are absolute for limit universes P.
Proof. Let P be a limit universe and X € P(w) N P. Then W (X) is A; in P,

and so is W(C*(X)). Hence W(C*(X)) ={8 € OT(Il3) : P = 8 € W(C*(X))},
and D[X] & P = D[X]. O
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Definition 3.25 For a universe P, let W := |J{X € P: D[X]}.

Lemma 3.26 Let P be a universe closed under finite unions, and o € OT (II3).

1. There is a finite set K(a) C OT(Il3) such that VY € PYy[K(a)NY =
K(a)nWF = (acC'(WP) e acC(Y))].

2. There exists a distinguished set X € P such thatVY € P¥y[X C Y & D[Y] =
(aeC"WP) & acC(Y))).

Proof. 3.26.1. F.e. the set of subterms of « enjoys the condition for K («).
3.26.2. By X, Y € P= X UY € P, pick a distinguished set X € P such that
K(a)nWF c X. O
Proposition 3.27 For each limit universe P, D)WY holds, and 3X (X = WT)
if P is a set.

Proof. D[W?] is seen as in Proposition 3.9. O

For a universal IT,,-formula II,,(a) (n > 0) uniformly on admissibles, let
P e My(C):& P € Lmtad& Vb € P[P ETIy(b) — 3Q € CN P(Q E I2(b))].

Lemma 3.28 Let C be a II}-class such that C C Lmtad. Suppose P € My(C)
and o € GIWT). Then there exists a universe Q € C such that a € GIW®?).

Proof. Suppose P € M(C) and a € G(WT). First by a € C*(WF) and Lemma
3.26 pick a distinguished set X, € P such that a € C*(Xy) and K (o) NWF C
Xo. Next writing C*(WF) N a € WP analytically we have

VB <alfeC*WF)=3Y € P(D[Y]&B €Y))

By Lemma 3.26 we obtain 8 € C*(WF) & 3X € P{D[X|&K(3) n WF C
X & B € C¥(X)}. Hence for any 8 < a and any distinguished set X € P, there
arey € K(f), Z € P and a distinguished set Y € P such that if y € Z & D[Z] —
v € X and 8 € C*(X), then 8 € Y. By Lemma 3.24 D[X] is absolute for limit
universes. Hence the following IIs-predicate holds in the universe P € My (C):

VB < aVX3y e K(B)IZIY{D[X|&(y€ Z&D[Z] - v X)&p € C¥X)}

= (D[Y]& B €Y)] (22)
Now pick a universe @ € C N P with Xy € Q and Q = (22). Tracing the
above argument backwards in the limit universe Q we obtain C*(W®)Na c W@

and Xog € W9 = {X € Q : Q = D[X]} € P. Thus Lemma 3.26 yields
a € C*(WY). We obtain a € G(IWY). O

Definition 3.29 We define the class Ms(«) of a-recursively Mahlo universes
for o € OT (II3) as follows:

P € My(a) & P € Lmtad & VB3 < a[SCx(ma(8)) € WP = P € My(My(B))]
(23)
My () is a IIz-class.
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Proposition 3.30 Ifn € G(Y), then SCx(mz(n)) CY.

Proof. Let v = ma(n). Then SCk(v) C n by (9). From n € C"(Y) we see
SCx(v) C C"(Y). Hence SCk(v) CC"(Y)NnCY byneG(Y). O

Lemma 3.31 Ifn € GOWY) and P € My(Mz(n)), then n € WY,

Proof. We show this by induction on €. Suppose, as IH, the lemma holds for
any @@ € P. By Lemma 3.28 pick a @ € P such that @ € Ms(n), and for
Y =W?eP {0,Q} CY and

negy) (16)

On the other the definition (23) yields ¥y < n[SCk(ma(y)) € W® = Q €
Moy (My(7y))]. Hence by Proposition 3.30 ¥y < n[y € GOW?) = Q € My(Ma(¥))].
IH yields with Y = W<

Vy<nyeg(ly)=n~e€Y) (17)

Therefore by Lemma 3.21 we conclude n € X and D[X] for X = W(C"(Y))nn™*.
X € P follows from Y € P € Lmtad. Consequently n € WT. m|

Lemma 3.32 1. C*W)nK=WnK.
2. KelC¥Ww).
3. For each n € w, TIC¥(W) N w,(K+ 1)].

Proof. We show Lemma 3.32.3. Tt suffices to show TI[W]. Assume Prg[WV, A]
for a formula A, and o € W. Pick a distinguished set X such that « € X. Then
X Nnat =Wnat, and hence Prg[X N (a+ 1), A]. Wo[X] yields A(«). 0

Lemma 3.33 Vi[mz(n) € C¥OW) Nw,(K+ 1) = L € My(Mx(n))] holds for
each n € w.

Proof. We show the lemma by induction on v = ma(n) € CX(W) up to each
wn (K +1). Suppose v € C¥(W) and L = II5(b) for a b € L. We have to find a
universe @ € L such that b € Q, Q € Mx(n) and Q | Ha(b).

By the definition (23) L € My(n) is equivalent to Vy < n[ma(y) € C¥(W) =
L € M3(Ms(7))]. We obtain v < 1 = ma(vy) < ma(n) = v. Thus IH yields
L € Ms(n). Let g be a primitive recursive function in the sense of set theory
such that L € My(n) < P |=13(g9(n)). Then L = TI2(b) A IlI3(g(n)). Since this
is a II3-formula which holds in a II3-reflecting universe L, we conclude for some
Q€ L, Q =TIy(b) ATI3(g(n)) and hence @ € Ma(n). We are done. O

Remark 3.34 Only here we need Ilz-reflection. Therefore it sufffices for a
whole universe L to admit iterations of IIs-recursively Mahlo operations along
a well founded relation < which is ¥ on L: L € My (pn) = N{M2(M3(v)) :
L = v < p}. Hence our wellfoundednes proof is formalizable in a set theory
axiomatizing such universes L.
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Lemma 3.35 For each n € w, ma(n) < w,(K+1)&ne GW)=ne€ W.

Proof. Assume v = ma(n) < w,(K+ 1) and n € G(W). By Proposition 3.30
we obtain v € C¥(W). Lemma 3.33 yields L € My(Ma(n)). From this we see
L € My(C) with C = My(Mz(n)) as in the proof of Lemma 3.33 using II3-
reflection of the whole universe L once again. Then by Lemma 3.28 pick a set
P € L such that n € GOWVF) and P € C = My(M(n)). Lemma 3.31 yields
newlf cw. ]

3.3 Well-foundedness proof (concluded)

Definition 3.36 For terms «, s, € OT(Il3), finite sets £(a), K5(a), ks(a) C
OT(I13) are defined recursively as follows.

L E(a) =0 for a € {0,2,K}. E(am + -+ a0) = U<, E(i). E(0BY) =
EB)VEM). £(vr(a)) = {7 (a)}.

2. Ala) =U{AB) : B e E(a)} for A e {Ks,ks}.

(a) = { éa} UKs({m,a} USCk(v)) ¢Z(a) >0

3. K(;(i/JfT Yr(a) <0

4 Es(v(a)) = { éwma)}um({ma}uscﬂ«(u)) zg;ig .

Note that Ks(a) < a < a € Hy(9).
Definition 3.37 For a,v € OT(Il3), define:

Ala,v) & Vo el*OW)[Wi(a) € OT(IT3) = Y¥(a) € W].  (24)
MIH(a) :& VbeC¥W)nave € C¥W) A(b,v). (25)
SIH(a,v) & VEeCl¥W)[E <v= Aa,f)]. (26)

Lemma 3.38 Foreach n the following holds: Assume {a,v} C C*(W)Nw, (K+
1), MIH(a), and SIH(a,v) in Definition 3.37. Then

Vi € CEW)[W)(a) € OT(Il3) = ¥y(a) € W.

Proof. Let oy = v%(a) € OT(Il3) with {a,k,v} C CK¥W) and v < a <

K

wn(K+ 1), cf. (9). By Lemma 3.35 it suffices to show oy € G(W).
By Proposition 3.6 we have {k,a,v} C C** (W), and hence oy € C**(W). Tt
suffices to show the following claim.
Vﬁl eC™ (W) N 041[,81 c W] (27)
Proof of (27) by induction on £5;. Assume 81 € C** (W) Nay and let

LIH :& Vy € C"OW) Nay by < €1 = v e W)].
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We show 3, € W. By Propositions 3.18, 3.19 and LIH, we may assume that
B1 = & (b) for some 7, b, & such that {m,b,&} C CoH(W).

B1 = ¥5(b) < ¥¥(a) = ay holds iff one of the following holds: (1) 7 < ay.
(2) b<a, b1 <k and {m,b,&} C Holan). B) b=a, m =K, § € Ho(a1) and
E<v. (4) a<band {k,a,v} ¢ Hp(51)-

Case 1. m < ajy: Then 5, € W by 1 € C(W).

Case 2. b<a, f1 < k and {m,b,&} C Hy(a1): Let B denote a set of subterms
of B; defined recursively as follows. First {m,b}USCk(§) C B. Let a1 < 8 € B.
I8 =nFYm+- - +70, then {v; : i <m} C B. If 8 =nF ©70, then {~,d} C B.
If B = ¢#(c), then {o,c} USCk(n) C B.

Then from {r,b,£} C C**(W) we see inductively that B C C**(W). Hence
by LIH we obtain BN a; C W. Moreover if oy < ¥ (c) € B, then we see ¢ < a
from {m,b,&} C Ha(o). We claim that

VB € B(B € C¥(W)) (28)

Proof of (28) by induction on ¢8. Let 8 € B. We can assume that ay < § =
¥H(c) by induction hypothesis on the lengths. Then by induction hypothesis we
have {o,c} U SCk(p) C C¥(W). On the other hand we have u < ¢ < a by (9).
MIH(a) yields 8 € W. Thus (28) is shown. O

In particular we obtain {m,b} U SCk(¢) C C¥(W). Moreover we have & <

b < a by (9). Therefore once again MIH(a) yields 5, € W.
Case 3. b=a, ™=k, € Ho(ar) and £ < v < a: As in (28) we see that
SCx (&) C W from MIH(a). SIH(a,v) yields 8; € W.
Case 4. a < b and {k,a,v} ¢ Hp(B1): It suffices to find a v such that f; <
v €WNay. Then B € W follows from S; € C**(W) and Proposition 3.22.
ks(c) denotes the set in Definition 3.36. In general we see that a € Ks(«)
iff ¢ (a) € ks(a) for some o, h, and for each ! (a) € ks(¥20(ag)) there exists
a sequence {a;}i<m of subterms of ag = 12 (ag) such that oy, = ¥(a), a; =
wff“ (a;) for some o;,a;, h;, and for each i < m, § < a;41 € E(C;) for C; =
{0’1‘, ai} U SC]K(hl)

Let 6 € SCk(f) U {k,a} such that b <« for a v € Kg, (). Pick an as =
Y2 (ag) € £(8) such that v € Kp, (a2), and an oy, = ¢ (an) € kg, (a2) for
some o, hy, and a,,, > b > a. We have as € W by 6 € W. If as < aj, then
B1 < as € WNaq, and we are done. Assume ay > «y. Then as € K,, (ag) <
a<b,and m > 2.

Let {a;}2<i<m be the sequence of subterms of oy such that a; = 92 (a;)
for some o, a;, h;, and for each i < m, f1 < a;41 € E(C;) for C; = {o4,a;} U
SCx(h;).

Let {n;}o<j<k (0 < k < m —2) be the increasing sequence ng < ny < --- <
ng < m defined recursively by ng = 2, and assuming n; has been defined so that
nj < m and an; > ai, njy1 is defined by nj 1 = min({i : n; < i < m,a; <
an, } U{m}). If either nj = m or a,; < ay, then k = j and n;,, is undefined.
Then we claim that

Vi < k(am, € W) &ay, <ai (29)
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Proof of (29). By induction on j < k we show first that Vj < k(o € W).
We have ap, = az € W. Assume a,; € W and j < k. Then n; < m, ie,
Oy, < Op;, and by a,, € C*" (W), we have C,,;, C C*"i (W), and hence
;41 € E(Cp,) C C*i (W). We see inductively that o; € C*" (W) for any i
with n; <4 < njy1. Therefore ay,,,, € C*" (W) N a,, C W by Proposition
3.22.

Next we show that o, < a;. We can assume that ny = m. This means that
Vi(ng—1 <i<m= a; > an,_,). Wehave ag = apy > Qp, > -+ > Qn,_, > a1,
and Vi < m(a; > oq). Therefore o, € ko, (a2) C ko, ({k,a} U SCk(h)), ie.,
am € Ko, ({k,a} U SCk(h)) for o, = ¥ (ay,). On the other hand we have
Ko, ({k,a} USCk(h)) < a for a; = ¢"(a). Thus a < a,, < a, a contradiction.

(29) is shown, and we obtain 81 < ay,,, € WNay.

This completes a proof of (27) and of the lemma. O

Lemma 3.39 For each a € OT(II3), a € C¥X(W).

Proof. This is seen by meta-induction on ¢a. By Propositions 3.18, 3.19, and
Lemma 3.32, we may assume « = ¥%(a). By IH pick an n < w such that
{k,v,a} CC¥W)Nwpi1(K+1). Lemma 3.38 yields o € W. O

Theorem 3.1 follows from Lemma 3.39 and the fact WNQ = W(C°(0))NQ =
W(OT(II3)) N Q.

4 II4-reflection

In this paper we focus on the ordinal analysis of II3 reflection. This
means no genuine loss of generality, as the removal of II3 reflection
rules in derivations already exhibits the pattern of cut elimination
that applies for arbitrary II,, reflection rules as well. ( [Rathjen94])

In this section K denotes either a IT3-indescribable cardinal or a IT4-reflecting
ordinal. Skolem hull H,(X) and a Mahlo class Mh%(&) are defined as in Defi-
nition 2.2: Let for £ > 0,

me Mh3(€) e [{a,&} C Ha(m) &V € Ho(m) NE(m € M3(Mhg(v)))]

where o € M3(A) iff A is II}-indescribable in « or « is Iz-reflecting on A.
Then as in (8)

Y& (a) = min ({7} U{k € Mh(¢) : {&,m,a} C Ho(k) & Ha(k) N7 C K})
where § = ms (¢ (a)).

As in Lemmas 2.3 and 2.4 we see the following for I13-indescribable cardinal
K.
Lemma 4.1 Let a € Ho(K) Negy1. Then K € M3(Mh$(exs1)). For every
€ € Ho(K) Negyr, 95 (a) < K.
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Operator controlled derivations for KPII, are closed under the following
inference rules. For convenience let us attach an assignment m : m — m(mr) =
(mo(m), m3(m)) to the derivations, where m;(7) < m;(m) for i = 2,3. Although
our derivability relation should be written as (H,[0],m) ¢ I, let us write

(0] Fo T.

(rfi, (K)) b > K. There exist an ordinal ag € H~[O] Na, and a X4(K)-sentence
A enjoying the following conditions:

H, (0] F T, ~A  {H,[0U {p}] F¥ T, APB . p < K}
H O] F¢ T

(rflr, (K))

(rfl, (o, m,v)) There exist ordinals a < 7 < b < K, v < mg(m) < ms(w) with
SCk(v) C mand v < v, ag < a, and a finite set A of X3(7)-sentences
enjoying the following conditions:

1. {a,m, v} Um(r) C Hy[O].
2. For each § € A, H,[O] F° T', 4.

3. Let
p € Mhs(v) v <mg(p).

Then for each o < p € Mhy(v) N, H,[© U {p}] Fi° T, AP,

{H,[0] Fi° T, =0}sen  {HA[OU{p}] F0 T, AP} Cpentng ()
Hy[O] 3 T

(rflms (o, m, )

Finite proofs in KPII, are embedded to controlled derivations with inferences
(rflg, (K)), and then (rflyy, (K)) is replaced by inferences (rfli, (o, m,v)) as in
Lemma 2.5.

Lemma 4.2 AssumeI C ¥3(K), © C H,(vx (7)), and H,[O] F T with a < ~.
Then Hay1[© U{K}] l—g LK) holds for every k € Mhz(a) NYx(y+K-w) such
that Yx (v + K) < K, where & = v + Wkt and g = yx(a).

Let us try to eliminate inferences (rfl, (o, 7,v)) from the resulting deriva-
tions following the proof of Lemma 2.5. Let Mhy(€;a) be a Mahlo class for
which the following holds.

Lemma 4.3 Let I' C Xy(m) with £ = mg(n), and H,[O] F& T'. Then for any
K € Mho(€;a) N, Ho[O U {k}] FEt@e T holdst.

IHere we don’t need to collapse derivations and cut ranks< 7.
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Consider the crucial case. Let A C ¥3(mw), m € Mhs(§) and v < &.

{#,[0] a0 I, ~0}sen {HA[OU{p} Fpo T,AT - o < p € Mhg(v) N7}
Hy[O] 7 T

(rﬂns (Ck, T, V))

Let o € Mhy(&;a0) N k. By IH with Inversion we obtain H,[© U {o}] Frtwaot!
@™ —§@m) for each § € A.

On the other hand we have H[OU{c}] F2 T, Al®™ for a < ¢ € Mhy(v)Nr.
Assume Mhy(&;a) C Mha(&;ag). TH yields H, [OU{k, o} FEitwao T(m) Alom),

Let o < 0 € Mho(&;a9) N Mhz(v) Nk, A (cut) of the cut formulas 6(7™)
then yields [0 U {x, o }] Frtwaotr T(m) DO for a p < w.

On the other hand we have H, [0 U {x}] F2? —0(*™) T for each § € T C
Yo(m), where d = max{rk(§**™): 0 €T} < v +w < 7.

Now x € Mhay(&;a) N7 needs to reflect Ty ()-formulas —6(™) down to some
a <o € Mhy(§;a0) N Mhs(v) N k.

ap < akv < &= Mhy(§;a) C Ma(Mha(&;a0) N Mhs(v))

Thus we arrive at the following definition of the Mahlo classes MhJ(;a),
which is a II3-class in the sense that there is a IIz3-formula 0(v, &, a) such that
a € Mh3(&a) iff Ly = 0(v, &, a), while MhJ(v) is a II4-class.

7 € MhJ(€;a) iff {7,€,a} C Hy(r) and

V{v,b} C Hy(m) v < &b < a= 7€ My (Mh3(&b) N Mh3(v))].

It turns out that we need Mahlo classes M h;’(g, a) for finite sequences &
and a in our proof-theoretic study, cf. Lemma 4.13. Let us explain the classes
intuitively in the next subsection.

4.1 Mahlo classes

Let M; = RM; and P,Q,... denote transitive classes in L U {L} for a Il4-
reflecting universe L. For classes X',) and i = 2,3 let

X <, Y:eVPeY(P e M(X))
Definition 4.4 Let
My(&;a) = [ [{Ma (Ma(&;0) N Ma(v)) s v < &b < a}.
In general for classes Y let
MY (&5a) = Y0 [{Mo (M (&0) N Ms(v)) : v < &b < a},

Proposition 4.5 For a lz-class Y and p < &, My (€;a) N Mz(p) <2 YN M;3(€)
and M3 (&a) D Y N Ms(€).
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Proof. By induction on a, we show P € Y N M3(¢) = P € My (¢;a).

Let P € YN M;s(€), v < € and b < a. By IH we obtain P € MY (&;b). Since
M3 (&;b) is a M3-class, we obtain P € M, (MQy(f;b) N Ms(v)) by P € Ms(&).
Therefore P € My’ (¢;a).

Since My (¢;a) is a Tl3-class and P € M3(&) C M3(Msz(u)), we obtain P €
My (M3 (€5 a) N Ms(p)). 0

Let v < p < £. From Proposition 4.5 we see Ma(&;a) N M3z(p) <o M3(€),
and My (u;0) N M3z(v) <2 Y N Mz (p) for Y = My(&;a).

Let us write Ma((&, 11); (a,b)) for My (u;b), where € > p. Let v < p < €.
We obtain M3 ((§, p); (a, b)) N Ms(v) <2 M2(&a) N Ms () <2 M3(§).

Proposition 4.6 Let &,( < &, ¢ < b and d < a. Then M2((&,n);(a,c)) N
M;3(v) <2 Ma((§, p); (a,b)) and Ma((€,&1); (d, €)) N Ms(C) <2 Ma((€, 1); (a,b)).

Proof. Let J = My(&;a). Then My((€,pm); (a,c)) N Ms(v) = My (u;c) N
M3(v) <o My’ (113 b) = Ma((¢, 1); (a,b)) by ¢ < band v < pu.

Next we show Mgt (£1;5¢) N M3(¢) <o ¥V O My (u;b), where X = My(&;d)
and MQ((g,gl), (d, 6)) = MQX(&,e) We have X' N Mg(gl) N Mg(C) = MQ(f,d) N
M3(&) N Ms(€) <2 Ma(§;a) =Y by d < aand &,¢ < €. On the other hand we
have M3¥ (&15€) D X N M3(&;) by Proposition 4.5. Hence Ms¥ (£15€) N M3(C) <2
. O

The same argument applies not only to pairs (£ > u), (a,b), but also to
triples, and so forth.

Let £ = (& > & > -~ > &,) and @ = (ag,ai,...,a,) be sequences in the
same lengths. By iterating the process Y +— { My (£;a)}a with Ms(€), we now
define classes My(¢;a@) by induction on the length n of the sequences &,a as
follows.

M5((); () denotes the class of transitive sets in L U {L}.

For £+ (&) = (&9 > -+~ > &, > €) and a* (a) = (ag, .. ., an,a) define for the
3-class Y = My (&;a)

My(€ % (€);a % (a)) = MY (&; a)
Namely
My(Ex(€); ax(a)) = Ma(&a)n[ [{ Mz (Ma(€x (€);ax (b)) N Ms(v)) : v < &b < a}

Proposition 4.6 is extended to finite sequences. To state an extension, let us
redefine classes Ms(&; @) through ordinals a = Af°ag + --- + Aéna, as follows,
where A is a big enough ordinal such that A > ag.

Let a = A%qag + - - + ASna,, where & > --- > &, and aq, ..., a, # 0.

Ms(a) == m{Mz(Mz(ﬁ) NMs(v)): (B,v) < a}
where for segments o; = Afag + --- + ASq; of a = Afag + - + Aéra,

Byv)<a:eTi<n[f<a&r<g].
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F.e. in Proposition 4.6 we have (ASa+A*c,v) < ASa+A#b and (ASd+A%e, () <
ASa + APb, but (Afa + Ale,p) £ Afa+ APb, where v < < &, &1,( <&, c<b
and d < a.

Proposition 4.7 (8,v) < a<vy= (B,v) <.
a4 designates that o + 3 = a#p.

Lemma 4.8 (Cf.Lemma 3.2 in [A09].)
If € >0 and B < ASTL, then Ma(a+pB) <2 Ma(a, &) := Ma(a) N M3(€).

Proof. Suppose P € My(a, &) = My(a) N M3(€) and B < ASHL.

We show P € My(a+f3) by induction on ordinals 3. Let (v,v) < a+3. We
need to show that P € May(Ma(v,v)).

Let 6 be a segment of a3 such that v < § and v < p where § = - - - + AHD.
If 0 is a segment of o, then P € My(Msy(v,v)) by P € Ma(a).

Let § = a+Bo, where By is a segment of 3. Then v < u < €. We claim that
P € Ms(v). If v < a, then Proposition 4.7 yields P € Ma(a) C Ma(y). Let
v = aty < a+By. IH yields P € My(7y). Thus the claim is shown. On the
other hand we have P € M3(§) and v < &. Since M3(7) is a IIs-class, we obtain
P € M3(Ms(v,v)) C My(Ma(v,v)). P € My(a+p) is shown.

By P € My(a+pB) and P € M3(¢) C Mz with & > 0, we obtain P €
My(Ma(a-H6)) C My(My(a+5)). :

4.2 Skolem hulls and collapsing functions

We can assume € < eg41 and a < A = K. For a < A+ let us define MhJ ()
as follows. (f,v) denotes pairs of ordinals § < A®*+! and v < eg41 such that
B+ A = B#A. Let a = Aoag+ --- 4+ APra,, where egyq > Bo > -+ > fBn
and 0 < ag,...,an < A. Then 7 € MhJ(a) iff {,a} C H,(7) and

V{v, B} CHy (1) [(B,v) < a =7 € My (Mhy(8) N Mhj(v))]
where for segments o; = APoag + - -- + APia; of a = APoay + - -+ + APra,
Byv)<aeTi<nf<a&r<f].

For example, if v < £ and ag < a, then (ASag,v) < Ata. The exponents f3; of a
designate ‘II3-Mahlo degrees’.

Proposition 4.9 (8,v) < a<~v= (8,v) <17.

Definition 4.10 Define simultaneously by recursion on ordinals a < eg41 the

classes Ho(X) (X C T'kt1), Mh§(a) (§ < ek41), the ordinals 1/)5,“’5)@) as fol-
lows.

1. Hq(X) denotes the Skolem hull of {0,, K} U X under the functions +, ¢,
and the following.
Let {o,b,,&} C Ho(X), a € {0} U A, A%+1), € € [0,ex11) and b < a.
Then 159 (b) € Ha(X).

33



2. m € Mhi(€) & {a,&} C Ho(m) &V € Hyo(m) NE(m € Ms(Mhg(v))),
where aw € Mh§(0) iff « is a limit ordinal.

3. For o < A%+ and a < eg41, m € Mh§(a) iff {a,a} C Hq(m) and
V{8, v} C Ha(m) [(B,v) <a —m e My (Mh3(5,v))]

where
Mhs5(8,v) = Mh3(8) 0 Mhs(v)
and o € Mh§(0) iff « is a limit ordinal. Note that Mh§(«) is a IIs-class.
4. Let mo(K) = 0, mg(K) = eg41, ma2(2) =1 and m3(2) = 0.
(a) For {¢,a} C Ho(K)Negyr with 0 < € < a, let
08 (g) = min ({K} U {x € MhS(€) : {€,a} C Ha(k) & Ha(k) NK C K}).
ma (" (a) = 0 and ms (V") (@) = ¢.

(b) Let 0 < < A%¢+! and 0 < € < eg41 be ordinals, 0 < c<a < A=K
with ¢ € H, (o) and 0 € Mh§(a,&). Then for 8 = atAfe

PP (a) = min ({o} U{x € Mh3(B) : {0,a,&,¢c,a} C Ho(k) & Halk) N0 C K}).

my (% (a)) = B and ms (5 (a)) = 0.

(c) Let 0 < B, < A®*+1 and 0 < v < g1 be such that {8,v} C H, )
SCk(B,v) C (a+1) < Kand (3,v) < a. Then for ¢ € Mh%(a) with
mg(O') =0

PP (a) = min ({o} U {x € MRL(B,v) : {0, B8,v,a} C Ha(r) & Ha(k) No C K}).

ma () (@) = B and ms (VS (a)) = v.
(d)

Yo(a) =min{k < o : {0,a} C Hao(k) & Ho(k) No C K}

We write 1, (a) for ?/J(O 0)( )-

Let K be a II3-indescribable cardinal. As in Lemmas 2.3 and 2.4 we see that
¢H(<O’5)(a) < K for every {a,{} C Ho(K) Negya.

It is easy to see that ¢E,’B’V)(a) <oif (B,v) <a, o€ Mh§(a) and {5,v} C
Heo(o).

Lemma 4.11 (Cf.Lemma 3.2 in [A09].) Assume K > o € Mh(«, &) with
0<€&<egir, B<AT and B € Ho(o). Then o € Mz(Mhg(a+p)) holds, a
fortiori o € May(Mh$(a+8)).
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Proof. Suppose 0 € Mh§(«a,&) = Mh§(a) N Mhg(€) and 8 € H,y(o) with <
At We show o € Mh%(a-+p3) by induction on ordinals 3. Let {v,v} C Ha(0)
and (v,v) < a+B. We need to show that o € May(MhS(v,v)).

Let 6 be a segment of a3 such that v < 6 and v < p where § = - - - + AHb.
If 4 is a segment of «, then o € May(Mh§(y,v)) by 0 € Mh§(a).

Let § = a+f3y, where 3y is a segment of 3. Then v < u < £&. We claim
that ¢ € Mh§(y). If v < «, then Proposition 4.9 with v € H,(o) yields
o € Mhg(a) C Mhg(y). Let v = atvo < a+By with 49 € Ha(o). TH yields
o € Mh4(y). Thus the claim is shown. On the other hand we have o € Mh§(§)
and v € Hq(o)NE. Since Mh§(7) is a IIz-class, we obtain o € Ms(Mh§(vy,v)) C
My (Mh§(y,v)) with Mhg(y,v) = Mh§(y)NMh§(v). o € Mhg(a+03) is shown.

By 0 € Mh%(a+8) and 0 € Mh4(§) C Ms with £ > 0, we obtain o €
My(M(a-+5)). 0

Corollary 4.12 Ifo € Mh§(«, &) andc € Hq(o)NA with € > 0, then w},ﬁ*o)(a) <
o for B = a+Ac.

Proof. We obtain o € My (Mhg(3)) by Lemma 4.11. Since {x < 0 : {8,a,0} C
Hao(k),Ho(k) No C k} is a club subset of o, we obtain 3P0 (a) < o. O

OT(I14) denotes a computable notation system of ordinals with collapsing
functions 1/)5,“’5)(@. Although in our well-foundedness proof in KPII,, ordinal

terms w((,ﬂ’”)(a) has to obey some restrictions such as (9) for OT(Il3), it is
cumbersome to verify the conditions, and let us skip it.

Operator controlled derivations for KPII, are closed under the inference rules
(rfl, (K)), (rfip, (a, 7,v)) and the following.

(rflg, (o, 7, B,v)) There exist ordinals o < 7 < b < K, (8,v) < ma(m) <
ma(m), ag < a, and a finite set A of o (7)-sentences enjoying the following
conditions:

1. {a,m, B, v} Um(m) C H,[O].
2. For each § € A, H,[O] F° T, 4.
3. For each a < p € Mhy(B,v) N, H,[O U {p}] Fio T, Al

{H,[O] F° T, =0} sen {HAOU{p} 2 T, AP} | penthy()nn
HelrT

(rflm, (o, 7, B, v))

This inference says that m € Ma(Mh3(8) N Mh3(v)).

Lemma 4.13 LetT' C 3a(m). Assume H[O] FE T for a m <K, and {£,a} C
H[O] for a = mo(nm), & = mg(m). Let n be the base for (rflm,(n, 7, v)) in
H,[O] FE T. Then for anyn < k € Mha(a+AS(1+a)) N7, H,[O U {k}] Fetwe
7 holds, where a+AS(1+4a) < ma(k) € H[O]. Moreover when © C H.(k),
H,[© U {k}] Fritwe T holds.
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Proof. By induction on a. Let 7’ = k if © C H. (k). Otherwise 7’ = . Note
that there exists a x such that k € Mho(a+AS(1+a)) N if OU{r} C H, (7).
Fe k= w%a+A§(1+a)’0) (v + max ©).

Let n be the base for (rfly, (n, 7, v)) in H,[O] F2 T
Case 1. (rfly, (n,7,v)): Then n < 7, {n,7,v} Um(r) C H,[0], SCk(v) C 7,
and v < mz(m) < mg(m). Let A C 33(m).

{H'Y [@] |—i0 F: _'6}6EA {H’Y[@ U {p}] l_frlro F: A(pﬂr)}77<p€Mh3(u)ﬁ‘rr
HyO]F2 T

(rﬁns (777 ™, V))

Let ap = a+AS(1 + ag). Then (ag,v) < a; = a+AS(1 + a). We obtain
{k,a1,v,a0} C Hy[© U {k}]. In the following derivation o; < mao(r) with
m(k) C Hy[O].
{H,[®U{c}] '_:;Fwao-ﬁ-l F(cr,'rr)7 ﬁ5(0,71')}66A MO U {k,0}] F:;*wao F(K,W)7A(O’,7r)
{Hy[0 U {r}] 3 ~0=™) T Yger {Ho[OU {k,0}] 0T T0m DOy, vy 0,00
Hq[O U (k)] e Tl

(rfir, (0, K, @0, V)

Case 2. (rflp, (g, m, B,v)): (B,v) < a = ma(w) < mo(n), p <, {u, 7,0, B, v} C
H~[©] and A C 3a(m).

{H’Y[@] }_;1‘_0 Fv _‘5}5€A {H’Y [@ U {PH '_gro Pa A(p’w)}u<p6Mh2(ﬂ,V)ﬁ7r
H O] FeT

(rfl, (r, B, )

Then (8,v) < ay = a+AS(1+ a) < mo(k) with the segment o of a+AS(1 + a).
We have AP™) = (A(’“”))(p’ﬁ) and {k,aq, 8, v} C Hy[O U {k}].

{0 U {x}] Fif““0+1 INGHON ﬁg(m,w)}éeA {H,[0 U {k, p}] F:f“ao INGHON A(P,w)}u<pth2(ﬂ7y)mN

Ho[O U {k}] FEFwe Dsm) (vfln, (w5, B, )

Case 3. The last inference is a (cut) of a cut formula C: Then rk(C') € H,[O]N7
and C € Ag(m). If © C H(k), then rk(C) < k.

Case 4. The last inference is either a (rflg,(o,v)) or a (rfly, (o, d,v)) with
o € H,[O0] N7: IH yields the lemma. If © C H,(k), then o < k. O

We see from the above proof, if there is a base i for inferences (rflyy, (i3, 0, v))
and simultaneously for (rfli,(¢2,0,d,v)) in H,[O] F& T' (in the sense that
n = pg = H2), then the same 7 is a base for inferences (rfly,(us,o,v)) and
simultaneously for (rfl, (12,0, 0,v)) in H, [0 U {k}] FEFe D™,

Lemma 4.14 LetT' C 31(\) and H,[O] F§ T witha < A =K, H,[0] 5 A <
b < K and A regular, and assume Vi € [A,b)(© C H(Ye(7)))-

Let & = v+ 0y(a) and § = ¢§\ﬁ’u)(&) when A € Mhj(a), mg(A) = 0 and
(B,v) < a with {B,v} C H[O]. Then Hsy1[0] FS T holds.

Proof. By main induction on b with subsidiary induction on a as in Lemma
2.6. Let n be a base for reflection inferences in H.[©] kg I'.
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Case 1. Consider the case when the last inference is a (rfly, (n, o,v)) with
b>o.

{H,[0] Fi° T, =6}sen  {HA[OU{p}] 0 T, AP} pentng (v)no
H O] Fi T

(I"ﬂr[3 (777 g, V))

where A C ¥3(0), SCx(v) C o, v < & =mms(0) < mg(0), a = ma(c) < ma(o),
n <o and {n,0,&,a,v} C H,[O]. We may assume that o > .

Case 1.1. There exists a regular m € H,[0] such that o < 7 < b: Then A C
Ao(m) and o < by = 1hx(ap) for do =7 + Oy (ao). SIH yields Hgz41[0] H T, 6
for each 6 € A, and Hz541[0© U {p}] Fig I, A9 for each n < p € Mhz(v) No.
A (rflp, (n, o, v)) yields Hgs41[0O)] I—g‘;“ T, where by < b. Let §p = 1 (a1) with
@y = ap + Opy(bo + 1) = v+ Op(ao) + Op,(bo + 1) < v + Op(a) = G. We obtain
Har+1(0] Fgg I' by MIH, and the lemma follows.

Case 1.2. Otherwise: By Cut-elimination we obtain H.[O] Foe(a0) 5 for
each § € A, and H,[O U {p}] or(@0) 1 AP) for each i < p € Mhs(v)no. A
(rfli, (1, 0, v)) yields H,[O] F2 T for a; = Oy(ag) + 1. Let 8= a+ AS(1 +ay)
for @ = ma(0) < my(o) and £ = mg(m) < mg(o), and k = ¢5f”°)(y). We
obtain © C H, (k) by the assumption. Hence {v,0,8} C H,(k), and n < Kk €
Mho(B) No, cf. Corollary 4.12. Moreover we have k € H,41[0)].

Lemma 4.13 yields H,[© U {k}] Fitwer T(®) and H.,4[0] Fitwar Tlm0)
where 3 < ma (k) with m(xk) C H,[O], and T*?) =T if A < ¢, and T("?) =
(A otherwise. In each case we obtain H.,,1[0©] F£+e T'. MIH then yields
Har+1[0] l—gi I, where 61 = 9 (a1) with @1 = + 0. (k + way) < v+ Op(a) = a
by k <o <band a; < 0p(a).

Case 2. Consider the case when the last inference is a (rfly, (1, o, 5,v)) with
b>o.

{H,[O] Fp° T, =6}sen  {HA[OU{p}] Fp° T, AP}, oenrna(ano
MO T

where A C 3a(0), (B,v) < a = ma(0) < ma(0), & = mg(o) < ms(o),n <o
and {7% 0,0, ga 57 V} C H’Y [6]

We may assume that ¢ > A. For each § € A, let 6§ ~ \/(d;)ics. We
may assume J = T'm(c). Inversion yields H.1;[© Uk(i)] F;° T',—d;, where
F'u{-d6;} C Z1(0). Let ap = v+ Op(ap) and p = ((Tﬁ’u)(cfo)7 where © C
H~(p) by the assumption, {n, o, 8,v,a0} C H,[O] with (5,r) < ma(c). Hence
{n,0,8,v,a0} C H(p) and H,(p) No C p. Therefore < n < p € Mho(B,v) N
on Hﬁa+l [@]

We see the lemma as in Lemma 2.6 by Inversion, picking the p-th branch
from the right upper seqeunts, and then introducing several (cut)’s instead of
(rflir, (n, 0, 8,v)). Use MIH when X < o.

Case 3. As in Lemma 2.6 we see the case when the last inference is a (cut) of
a cut formula C' with d = rk(C) < b. O

(rflm, (1, 0, 8, v))

Theorem 4.15 Assume KPII, - 012 for @ € ©. Then there exists an n < w
such that Ly = 6 for a = Yq(w,(K+ 1)) in OT(I1y).
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Proof. By Embedding there exists an m > 0 such that H[0)] }—Eiz gLe. By
Cut-elimination, Ho[0] & 0L¢ for a = w,,(K 4+ m). By Lemma 4.2 we obtain
Heat1[{K}] l—g 0Le where 8 = Yg(w?), K+ a = a, (0*2)"K) = gle and
k € Mha(a) Nx(K). Fe. k=4 (0) € Hi[0]. Hence Hyoir[0] H) 070
Lemma 4.14 then yields H~41[0] I—gi 0Le for v = w + 05(8) and B = Yo (y) <
Ya(w® + K) < o(wmi2(K + 1)) = a. Therefore L, = 6. ]

5 First order reflection

Having established an ordinal analysis for Il4-reflection in section 4, it is not
hard to extend it to first-order reflection. As expected, an exponential ordinal
structure emerges in resolving higher Mahlo classes.

Let K = A be either a [T}, _,-indescribable cardinal or a IT y-reflecting ordinal
for an integer N > 3. Let for k > 0, a € My42(A) iff A is II}-indescribable in «
or « is Iy o-reflecting on A. Let (vg, Vgy1,...,Vn—1) be a sequence of ordinals
vi < epast1, and epxpq > a = Aoag 4 - + APra, with By > --- > (3, and
0 < ag,...,a, < A. Then (vg,Vgt1,-..,VN—1) < « iff there exists a segment
a; = Noag + -+ + ABia; of o such that vy < o and (Vgy1,...,UN-1) < Bi.

Proposition 5.1 /< a<y=7<7.

5.1 Mahlo classes for IIy-reflection

As in subsection 4.1 P € M;(X) designates that P is II;-reflecting on X. Let

My(a) = [ {Mp(My(9)) : 7 = (g, Vkg1, - - vN—1) < o}

where

Mi((Vk, Veg1, .- UN-1)) = ﬂ M;(vs).
i>k

By Proposition 5.1 we obtain g > o = My (ag) C My(«). Hence for (max{v, i}); =
max{v;, u; }, cf. Case 1 in Lemma 5.8,

My(v) N Ma(pn) = Mz(max{v, i}).
Let v = (vo,...,vny—1) and i = (p2,...,pun—1). Then let
U<y e Ma(0) < Ma(f).

Proposition 5.2 Let i = (p2,...,ph-1), 7 = WVrt1,---,UN_1), and & =
(£k+17"'a§N*1)‘

1 If (n) % 7 < &, then [ix (vg) * D <y, i % (&) * .
2. (Cf Lemma 4.8) If &pr1,a > 0, then i x (Ex+AS+1a) 0 <, i+ (&) * &.
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Proof. 5.2.1. Let P € My(fi * (&) &) C Ma(fi % 0) N My, (&) By (vp) 7 < &
we obtain P € My(My((vx) *v)). Since P € My(j1 % 0) is Il on P, we conclude
P e My(Ma(fi+0) N My ((vy) * 7)) = My (Mp(fi* (vi) * 7)).

5.2.2. It suffices to show that My, (&x+A%+1a) < My (€x)N Mgy (€xy1), and this
follows from My (&) N Myy1(Epv1) C My(ép+AS++1a). The latter is shown by
induction on a as in Lemma 4.8 using the fact that P € My (v) N Mi41(Ek41) =
P e My, (My(y) N Myy1(v)) for v < gy ]

5.2 Ordinals for first order reflection

Definition 5.3 Define simultaneously by recursion on ordinals a < egy; the
classes Hqo(X) (X C T'gt1), MhL(P) (Ih(F) = N — k), the ordinals ¢/ (a) as
follows.

1. Hq(X) denotes the Skolem hull of {0, 2, K} U X under the functions +, ¢,
and the following.

Let 7 = (va,...,un_1), {0,b} UT C Ho(X) and b < a. Then 9Z7(b) €
Hao(X).
2. For 2<k < N, m € Mhi(a) iff {a,a} C Hq(7) and
Vi = (Vgy...,un—1) C Ho(m) [V < o — m € My, (Mhi(7))]
where
M) = () MR ().
i>k
Note that Mh{(«) is a IIj4q-class.
3. Yo(a) =min ({o} U{k <0 :{a,0} CHu(r) &Hs(k) No C K}).
m;(1s(a)) =0 for i < N.

4. Let o € Mhg(€) for € = (&,...,En—1) with &1 > 0, and 0 < c < A =K
with ¢ € Ha(o). Let 7 = (&, ..., Ep_1,EpFASk+1¢,0,...,0). Then

Y7 (a) =min ({o} U{k € Mh3(F)No: {a} UT C Ha(k) & Ho(k) No C K}).

o

m;(¥Z(a)) = v; for i < N, cf. Proposition 5.2.2.

5. Let o € MRS (ji * €) with i = (s, ..., pr—1) and € = (&, ..., En—1), and
V= k,...,un-1) <&, cf. Proposition 5.2.1.

7 (a) = min ({0} U{r € Mh(i*7)No: {a}UiU7 C Ho(r) & Ha(r) Mo C K}).

m; (V7 (a)) = py for i < k, and m;(v¥#*7(a)) = v; for i > k.

As in section 4 for II4-reflection we see the following lemmas for H}\PQ—
indescribable cardinal K.
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Lemma 5.4 Let a € Ho(K) Negy1. Then K € My_1(Mh%_(ex+1)), where
ek+1 denotes the sequence UV = 0 * (vN—1) with vy_1 = exs1. For every £ €
Ho(K) Negsr, Yo (a) < K.

Lemma 5.5 Let 7 = (&, ..., &1, &g FAS+1¢,0,...,0), where £ = (&2, ..., En—1)
with &gy1 > 0, and 0 < ¢ < A with ¢ € Hy(0).

Assume o € Mh3(€). Theno € My(Mh$(7)) and ¢%(a) < o, cf. Proposition
5.2.2.

Lemma 5.6 Let i = (u2,...,pk—1) and 7 = (Vg,...,vn—1) < &. Assume
7 C Halo) and o € MhS(ji * (€)). Then 27 (a) < o, cf. Proposition 5.2.1.

5.3 Operator controlled derivations for first order reflec-
tion
Operator controlled derivations for KPIIy are closed under the following infer-

ence rules. m : 7w — m(w) = (ma(m),...,my—_1(7)) is an additional data for
the derivations, where m;(7) < m;(n) for 2<i < N —1.

(rflmy (K)) b > K. There exist an ordinal ag € H[0]Na, and a X x(K)-sentence
A enjoying the following conditions:

H, O] F T, =A {H,[0U{p}] Fio I, ALK p < K}
H,[O] F¢ T

(rflrry (K))

(rflm,, (n, m, 7)) for each 2 <k < N — 1, cf. Proposition 5.2.1.

There exist ordinals n < 7# < b < K, ¥ = (v,...,un-1) < myp(m) <
m(m), ag < a, and a finite set A of Xy (7)-sentences enjoying the following
conditions:

1. {n, 7} UrvuUum(r) C H,[O].
2. For each § € A, H,[O©] F° T, 4.

3. For any n < p € Mha(m<y(m) * 7) N, Hy[O U {p}] Fg° T, A7),
where mog(m) = (ma(n),...,mp_1(7)) and p € Mhy(V) iff v; <
m;(p) for every k <i < N — 1.

{H,[0] Fpo T, =0} sea  {HA[0© U {p}] Fio T, AT} e h(mop (r)e7)
0] 4 T

(rﬂnk (777 T, 77))

Lemma 5.7 AssumeI' C Eny_1(K), © C H(¢Yr(7)), and H,[O] Hg T'. Then
Hat1[OU{K}] l—g LK) holds for any n = vr(v+K) < k € Mhy_1(a) g (y+
K- w), where @ = v+ Wt and B = Yx(a).
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Lemma 5.8 Assume m(m) C H[O], and there exists a2 < k < N—1 such that
Mi+1(m) > 0, and let k = max{k : my41(7) > 0} and o = My (), & = Mp41(m).
Moreover assume Hy[O] FET for a,m <K and I' C Ty(m).

Then for any n < k € Mha(m<k(m)) N Mhy(a+AS(1 + a)) N7, H,[O U
{k}] Fetwa T holds, where 1 is a base, a+AS(1 + a) < my(k) € H,[O]
and m<y(k) = m<y(m). Moreover when © C H.(k), H[O U {k}] Fritwa (w7
holds.

Proof. This is seen as in Lemma 4.13 by induction on a. Let 7’ = x if © C
H, (k). Otherwise n’ = m. Consider the cases when the last inference is a
(rfim, (n, 7, 7). Wehave n < k+ 1, n < m, {n, 7} UdUm(r) C H,[O], ¥V =
(Uny -+, UN—1) < (7)) <myp(m) and A C 3, (7).

{H,[0] F20 T, ~}sen  {HA[OU{p}] F20 T, AP} e rhy (e () sy
H O] FeT

(I‘ﬂnn (777 T, ﬁ))

Case 1. n = k+ 1: Let ap = a+AS(1 + ag). Then ji = (ag) * 7 < a; =
a+AS(1+4a) by 7 < € = myy1(m). We obtain n < &, {n,k, a0} Um (k) UT C
H,[©U{x}]. In the following derivation a; < my (k) with m(x) C H,[O]. Note
that mp (k) xji = Mep(m)* (o) = max{(Mm<p(7)*(a)*0), (M (m)*(a) <)}
{H,[®U{c}] F:/erao+l rom), ﬁg(a,w)}éeA [0 U {k,0}] F:fwao r(m) Alem)
{’HV[@ U {N}] I_(2)d ﬁe(ﬁ’w)vl-—‘(mﬁ)}@'ér {H’Y[@ U {Hv U}] F:;kwag-}—p F(Km)vF(gyﬂ-)}n<a€N1h2(m<k(n)*ﬂ)ﬁH
Hq[O U {R}] FEFee 1)

(vfrm,, (n, &, 7))
Case 2. n < k: If n <k, then ¥ < my,(7) = mu(k) < my (k). If n =k, then
7 < a+AS(1 +a) < my(k) with the segment a of a+A$(1 + a).
{H4[0 U {r}] 500 DO, =50 m Y se A {HA[O U {r, p}] H5 %0 T, AT} vy (e ()7
Hy[O U {k}] HEFee Tirm)

(rflm,, (1, %, 7))
O

Lemma 5.9 Let I' C ¥1(A\) and Hy[O] F§ T with a <K, H,[0] 2 A <b< K
and X regular. Assume Vi € [A,0)(© C Hy(¥i(7)))-

Let & = v+ 0p(a) and § = ¢¥(a) when X € Mh](a) and ¥ < « with
7 C H,[0]. Then Hay1[O] F§ T holds.

Proof. This is seen as in Lemma 4.14 by main induction on b with subsidiary
induction on a. Let n be a base.

Case 1. Consider the case when the last inference is a (rfl, ,, (1, o,7)) with
2<k<N-1landb>o.

{HA[O] Fp° T, ~6}sen  {HA[O U {p}] F;° FaA(p’g)}n<pth2(m§k(a)*ﬁ>ma
Hy[O) 3 T

(rﬁnk+1 (777 g, 17))

where A C Xg41(0), ¥V < & =mpy1(0) < mpya(o), n < o and {n,c} Um(o) U
v C H,[0]. We may assume that o > X and there is no regular 7 € H,[0] such
that o < <b.
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We obtain the lemma by Cut-elimination, Lemma 5.8 for k = w;ﬁd(o)*(ﬁ)*a(y)
with 8 = my,(0)+A™+1(9)(1 + a1) and a; = 0,(ag) + 1, and MIH.

Case 2. Next consider the case when the last inference is a (rfly, (1, o, 7)) with
b>o.

{H’Y[G} }_ZO Fv _‘5}5EA {H’Y[@ ) {pH }_ZO Fv A(p’U)}’r]<p€Mh2(17)ﬁ0
H,[0] Fe T

(rﬂnz (777 g, 17))

where A C X9(0), ¥ < £ = ma(o) < ma(o), n < g and {n,c} Um(oc) UF C
H,[0]. We may assume that o > . Let p = ¥7(ay). We see n < p €
Mho(V) Mo N Hgs41[0] from the assumption © C H(p).

We see the lemma as in Lemma 2.6 by Inversion, picking the p-th branch
from the right upper seqeunts, and then introducing several (cut)’s instead of
(rflyr, (0, 7)). Use MIH when A < o. O

OT(Ily) denotes a computable notation system of ordinals with collapsing
functions 7 (a).

Theorem 5.10 Assume KPIIy - 642 for € X. Then there exists an n < w
such that Ly |= 6 for o = ¢Yq(w,(K+ 1)) in OT(Ily).

Proof. This is seen from Lemmas 5.7 and 5.9. O

6 Ill-reflection
Definition 6.1 ¢ is said to be a-stable for a > o if L, <5, Lq.

It is known that o is (o0 + 1)-stable iff o is II}-reflecting, and o is ot-stable
iff o is II}-reflecting, where o denotes the next admissible ordinal above o,
cf. [Richter-Aczel74].

Let S; denote the theory obtained from KPw + (V = L) by adding the
following axioms for an individual constant S: S is a limit ordinal and

Ls <3 L.
The latter denotes a schema,
Jz B(z,v) Av € Ly — Jx € Lg B(x,v)

for each Ag-formula B. Let L = Lg+ = S;.

An exponential structure emerges in iterating (recursively) Mahlo operations
to resolve first-order reflections My in terms of Mahlo classes Mh{(a) and
MhE (7). Viewing the vector ¥ = (vo,v3,...,vN_1) as a function {2,3,..., N —
1} © k — vy, each k in its domain designates the class of IIi-formulas or the
Mahlo operation M, while its value v corresponds to the height of derivations,
cf. Case 1 in the proof of Lemma 5.8.

On the other side, the axiom Lg <y, Lg+ says that S ‘reflects’ Ilg+-formulas
in transfinite levels. In place of vectors in finite lengths, we need functions
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f:ST — ON. Each c in the domain of the function f corresponds to formulas
of ranks< ¢ in inference rules for higher reflections. Its support supp(f) = {c <
St : f(e) # 0} may be assumed to be finite, while its value f(c) < eg+41-
A Veblen function éb(f) is used to denote ordinals instead of the exponential
function 0 (£) = (S*)¢. The relation 7 < « in section 5 is replaced by a relation
f <¢ & for ordinals ¢, ¢ and finite function f. f <© & holds if f(c¢) < p for a
segment p = --- + 0, (v) of &, and f(c +d) < 0_q(8,(v)) for d = min{d > 0 :
c+d € supp(f)}, and so forth, where 0_4(¢) denotes an inverse of the function
£ 04(€).

Mabhlo classes Mh%(§) introduced in (32) reflects every fact m# € Mhi(g.) =
(W{Mh4(g(d)) : ¢ > d € supp(g)} on the ordinals 7 € MhZ(£) in lower level,
down to ‘smaller’” Mahlo classes Mh(f) = ({Mh5(f(d)) : ¢ < d € supp(f)},
where f <€ €.

This apparatus would suffice to analyze reflections in transfinite levels. We
need another for the axiom Lg <yx;, Lg+ of IT}-reflection, i.e., a (formal) Mostowski
collapsing: Assume that B(u,v) with v € Lg for a Ap-formula B. We need to
find a substitute u’ € Lg for u € Lg+, i.e., B(v/,v). For simplicity let us assume
that v = 8 < S and u = a < ST are ordinals. We may assume that o > S.
Let p < S be an ordinal, which is bigger than every ordinal< S occurring in the
‘context’ of B(«, 8). This means that if an ordinal § < S occurs in a ‘relevant’
branch of a derivation of B(«, 8), § < p holds. Then we can define a Mostwosiki
collapsing o — «[p/S] for ordinal terms « such that S[p/S] = 8 for each relevant
B <S, S[p/S] = p and «a[p/S] < (ST)[p/S] = p™ < S, cf. Definition 6.22. Then
we see that B(a[p/S], 3) holds.

Although the above scheme would seem to work, how to implement the plan?
Let Ef,’ denote the set of ordinal terms « such that every subterm 5 < S of « is
smaller than p. It turns out that #. (E5) C ES if H,(p)NS C p. Let H,[0] ¢ T,
and assume that (3), {7, a,b}Uk(I") C H,[6] holds in Definition 1.16. Moreover
let us assume that © C ES holds. Then we obtain {v,a,b} Uk(') C H,[0] C
H,(E}) C E,. This means that k(I') C E; holds as long as © C Ej holds, i.e.,
as long as we are concerned with branches for k(1) C EY in, e.g., inferences (/\):

A~ /\(AL)LEJ

{HV [@} l_go F7 A7 AL}LEJ /\ {H’Y[@] |_tbl0 F7 A’ AL}LELk(L)CE?;
Hy©]Fp I, A ~ HyO] T, A

and dually k(¢) C ES for a minor formula A, of a (\/) with the main formula
A~ \/(A,).es, provided that H,(p) NS C p. The proviso means that vy, > 7
when p = wg (71)- Such a p € H,[O] only when p € ©. Let us try to replace the
inferences for the stability of S

(Hy,©) F T, B(u) {(H1,0U{0}) FT,=B(w)"}ocps
(H,,0)FT

(stbl)

by inferences for reflection of p with © C ES: If B(u) [o/S] holds, then B(u)/S]
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holds for some o < p.

(Hy,© U {p}) F TP/, B@)®/S {(1,,0 U {p,0}) F T/9, =B )" Mo ps .,
(Hr,© U{p}) - 0/

(rfl)

However we need to eliminate the inferences for reflections in transfinite
levels. In view of analysis in section 5 for first-order reflection, I'l?/S], B(u)l#/®]

is replaced by I'?/S!, B(u)[/5] and T/S = B(u)l/5] by I%/5] = B(u)l/5] with
o< K<p.
(1,0 U{p,o}) F T/ Bw)o/fl (1,0 U{k, p,o}) F T/ ~B(u)l/"
{(Hy,0 U {r}) b T/ —gls/oyy {(Hy,0 U {k,p,o}) b T/ Tlo/fY
(H+,0 U {r, p}) I T1</°]

(cut)

(rfl)

We are replacing formulas T'?/S] by Te/S] or by TI#/5], This means that a[o/S]
is substituted for each «[p/S]. Namely a composition of uncollapsing and col-
lapsing a[p/S] + a + a[o/S] arises. Hence we need a € ES C E§ for o < p.
However we have © U {p} ¢ ES, and the schema seems to be broken. More-
over the finite sets © U {p} becomes bigger to © U {k, p}. Is it remain finite in
eliminating inferences of reflections in transfinite level?

Looking back at the proof of Lemma 4.13, for I' C 35 and A C I,

{H,[0] F T, 26 sea {HA[OU {p}] F I, AP,
H[O] - T

(rﬂns)

is rewritten to

{Ho[0@U{o}] F @) @B A H [OU {k,a}] F TER A

{HA[0 U {r}] F =0, TS} {H,[0 U {r,0}] F IO, T},
H,[O U {k}] F D=5

(rfln, )

This is done by replacing the restriction (™K) by (@K or (%K) and ordinals
m,0, Kk enter derivations, but do we need to control these ordinals? Instead
of the restriction (™) formulas could put on caps ,0, s in such a way that
k(A(@)) = k(A). This means that the cap ¢ does not ‘occur’ in a capped formula
A If we choose an ordinal 7 big enough (depending on a given finite proof
figure), every ordinal ‘occurring’ in derivations (including the subscript v < 7
in the operators H,) is in H.,, = H.,(0) for the ordinal vy, while each cap
p exceeds the threshold oy in the sense that p & H.,(p) NS C p. Then every
ordinal ‘occurring’ in derivations is in the domain E§ of the Mostowski collapsing
a — afp/S]. Now details follow.

6.1 Ordinals for one stable ordinal

For a while, S denotes a weakly inaccessible cardinal.
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Definition 6.2 Let A = wsy1 or A = ST. ¢,(€) denotes the binary Veblen
function on AT with g (¢) = wé, and B,(€) := u(A - €) for the epsilon number
A.

Let b,& < AT, 0,(€) [0,(€)] denotes a b-th iterate of po(€) = wt [of Go(£) =
Af], resp.

Definition 6.3 Let £ < ¢4 (0) be a non-zero ordinal with its normal form:

§=05,(&) ai =nF O, (&m) - am + - + Oy, (€0) - a0 (30)

i<m

where 0y, (€;) > &, Oy, (Em) > -+ > Oy, (&0), by = W < A, and 0 < ag, . .., am <
A SCA(§) = Uicm ({ai} U SCA(&))-

Oy, (€0) is said to be the tail of &, denoted By, (&o) = t1(€), and 6y, (&) the
head of &, denoted 0, (&) = hd(€).

1. ¢ is a segment of £ iff there exists an n (0 < n < m + 1) such that
¢=nNF ZiZn O, (gz) ca; = b, (gm) “Qp + o+ O, (fn) - ap for £ in (30)'

2. Let ( =nF 0 (&) with 0,(€) > € and b = w®, and ¢ be ordinals. An ordinal
0_c(¢) is defined recursively as follows. If b > ¢, then 6_.(¢) = Op—c(&).

Let ¢ > b. If € > 0, then 6_.(¢) = é,(c,b)(ébm (&m)) for the head term
hd(€) = By, (€m) of € in (30). If € = 0, then let §_.(¢) = 0.

Definition 6.4 1. A function f : A — ¢, (0) with a finite support supp(f) =
{c < A: f(e) # 0} C A is said to be a finite function if Vi > 0(a; = 1)
and ag = 1 when by > 1 in f(c) =y Op,, (Em) - am + - -+ Op, (£0) - ag for
any ¢ € supp(f).

It is identified with the finite function f [ supp(f). When ¢ & supp(f),
let f(c) :==0. SCA(f) = U{{c} USCA(f(c))} : c € supp(f)}- f,9,h,...

range over finite functions.

For an ordinal ¢, f. and f€ are restrictions of f to the domains supp(f.) =

{d € supp(f) : d < ¢} and supp(f°) = {d € supp(f) : d > c}. ge* f°
denotes the concatenated function such that supp(g. * f¢) = supp(g.) U

supp(f9), (g * f)(a) = g(a) for a < ¢, and (g. * f°)(a) = f(a) for a > c.

2. Let f be a finite function and c, £ ordinals. A relation f <€ ¢ is defined
by induction on the cardinality of the finite set {d € supp(f) : d > ¢}
as follows. If f¢ = (), then f <¢ £ holds. For f¢ # ), f <¢ £ iff there
exists a segment g of & such that f(c¢) < p and f <t §_,4(tl(p)) for
d = min{c+ d € supp(f) : d > 0}.

Proposition 6.5 f<°¢{< (= f <°(.
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6.2 Mahlo classes for IIj-reflection

In Lemma 4.8 and Proposition 5.2.2, it is crucial the fact that P € My(y) =
P e My (Mg (v)NMgy1(v)) if P € Myy1(Eg+1) and v < €,1q. This means that if
P is in a higher Mahlo class, then P reflects a fact on P in lower Mahlo classes.

P e M.(§) is defined by main induction on ¢ with subsidiary induction on
P.

Pe M.(§) e Vf < &P e My(g.) = P € Ma(Mo(ge * [€))] (31)

where f, g range over finite functions and

M(f) = [ UMa(f(d)) : d € supp(f)} = [ [{Ma(f(d)) : ¢ < d € supp(f)}.

From Proposition 6.5 we see £ < ( = M (&) D M.(¢).
For classes X let

P € M(X) = Vg [P € Mo(g.) = P € Ma(Mo(ge) N X))

Then by My (ge+f€) = Mo(ge)NM.(f°), P € Mo(€) & Vf <° € [P € M.(M.(f°))],
i.e., Mc(f) = mf<c€ M(‘(MC(fC))

Proposition 6.6 Suppose P € M.(£).
1. Let f <¢&. Then P € M.(M.(f°)).
2. Let P € My(X) ford>c. Then P € M.(M.(§) N X).

Proof. 6.6.1. Let g be a function such that P € My(g.). By the definition (31)
of P € M.(§) we obtain P € My (My(g.) N M.(f€)).

6.6.2. Let P € My(X) for d > c. Let g be a function such that P € My(g.). We
obtain by d > ¢ with the function g. x h, P € My (My(g.) N M.(§) N X), where
supp(h) = {c} and h(c) = €&. |

Lemma 6.7 Assume P € My(§) N M.(&0), & # 0, and d < c. Moreover let
€1 < 0c_a(&). Then P € My(§4+€1) N Ma(Ma(E+61)).

Proof. This is seen as in Lemma 4.11.

We obtain P € M.(&) C M.(M.(0)) by Proposition 6.6.1. Let P €
My (€4+€1) N Mo(gq) for a function g. We show P € M, (Mo(gd) N Md(f—i—fl)).
Let h = gq U {(d,£+&)}. Then P € My(he) by d < c¢. P € Mu(M(0)) yields
P € My (My(he) N M(0)), and hence P € Ma (Mo(gq) N Ma(§+£1)). Therefore
P € My(Ma(§+61))-

Let f be a finite function such that f < ¢ +¢&;. We show P € My(My(f9))
by main induction on the cardinality of the finite set {e € supp(f) : e > d} with
subsidiary induction on &;.

First let f <? p for a segment u of £&. We obtain P € My(u) and P €
Ma(Ma(f%)).
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In what follows let f(d) = ¢+¢ with ¢ < &. By SIH we obtain P €
My(f(d)) N Myg(Ma(f(d))). If {e € supp(f) : e > d} = 0, then My(f?) =
Mq4(f(d)), and we are done. Otherwise let e = min{e € supp(f) : e > d}.

By SIH we can assume f < f_ (e—d)(t1(&1)). By &1 < 0.—4(&o), we obtain
f<co_ (e—d) (Be—a(&0)) = 0_c(0:(&)). We claim that P € M., (M, (f)) for
cp = min{e, e} If ¢ = e, then the claim follows from the assumption P € M. (o)
and f <€ &. Let e = ¢4 eg > ¢. Then 0_,(0,(€0)) = 0_c, (hd(&)), and f <€ &
with f(c) = 0 yields the claim. Let ¢ = e+ ¢; > e. Then é_e(éc(fo)) = 0., (&).
MIH yields the claim.

On the other hand we have My(f9) = My(f(d))N M, (f). P € My(f(d))N
Mo (M, (f)) with d < ¢ yields by Proposition 6.6.2, P € My (My(f(d)) N M., (f)),
ie.,, Pe Md(Md(fd)). O

For finite functions f and g,
Mo(g) = Mo(f) = VP € Mo(f) (P € M2(Mo(g)))-

Corollary 6.8 Let f,g be finite functions and ¢ € supp(f). Assume that there
exists an ordinal d < c such that (d, c)Nsupp(f) = (d,c)Nsupp(g) = 0, ga = fa,
g(d) < f(d)+0.—q(f(c)) - w, and g <¢ f(c). Then My(g) < Mo(f) holds.

Proof. By Lemma 6.7. a

Definition 6.9 An irreducibility of finite functions f is defined by induction
on the cardinality n of the finite set supp(f). If n < 1, f is defined to be
irreducible. Let n > 2 and ¢ < ¢ + d be the largest two elements in supp(f),
and let g be a finite function such that supp(g) = supp(f.) U {c}, gc = fc and
g9(c) = f(c) + 0a(f(c + d)). N

Then f is irreducible iff tI(f(c)) > 04(f(c+ d)) and g is irreducible.

Definition 6.10 Let f, g be irreducible finite functions, and b an ordinal. Let
us define a relation f <% g¢ by induction on the cardinality #{e € supp(f) U
supp(g) : e > b} as follows. f <? ¢ holds iff f® # g and for the ordinal
c=min{c >b: f(c) # g(c)}, one of the following conditions is met:

L. f(c) < g(c) and let p be the shortest part of g(c) such that f(c) < u.
Then for any ¢ < ¢+ d € supp(f), if t1(u) < Ga(f(c+d)), then f < g
holds.

2. f(c) > g(c) and let v be the shortest part of f(c) such that v > g(c).
Then there exist a ¢ < ¢+ d € supp(g) such that f <% g and ti(v) <

falg(c+d)).
Proposition 6.11 If f <% g, then My(f) < Mo(g).

Proof. This is seen from Corollary 6.8. a
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6.3 Skolem hulls and collapsing functions

Definition 6.12 Let K = ws41, a < egy1 and X C I'g41.

1. Hq(X) denotes the Skolem hull of {0,Q,S,K} U X under the functions
+,0, B va(B) (B <a),S>ar at and (m,b, f) = ¥l (b), where b < a
and f is a finite function such that f € H,(X) = SCk(f) C Hq(X).

2. Let ¢ <K, a < egqq and € < pg(0). m € Mh%(&) iff {a,c, &} C Ho(m) and

Vi < &Vg (SCx(f) U SCk(g) C Ha(m) & € Mhy(ge) = m € Ma(Mhi(ge * f°)))
(32)
where

Mh2(f) = ({Mhg(f(d)) : d € supp(£©)} = [ {MA§(f(d)) : ¢ < d € supp(f)}.

w,{(a) :=min({7r}U{x € Mhg(f)Nm: Ho(k)N7T C K, {m, a}USCk(f) C Ha('g;g;

Shrewd cardinals are introduced by [Rathjen05b]. A cardinal k is shrewd iff
for any n > 0, P C Vj, and formula ¢(z,y), if V.1, = ¢[P, k], then there are
0 < ko,M0 < k such that Vi = @[P N Vi, ko]. T denotes the extension of
ZFC by the axiom stating that S is a shrewd cardinal.

Lemma 6.13 T proves that S € Mh®(£) N My(Mh%(£)) for every a < exi1,
¢ <K, & < pr(0) such that {a,c,&} C H(S).

Proof. We show the lemma by induction on & < ¢g(0).

Let {a,c, &} USCk(f) C Ha(S) and f < & We show S € Mh2(f¢), and
S € My (Mh§(g.) N MhZ(f°)) assuming S € Mh§(g.) and SCx(gc) C Ha(S).

For each d € supp(f¢) we obtain f(d) < & by 0_.(¢) < {. IH yields S €
MR (f).

We have to show S € Ma(ANB) for A = Mhi(g.)NS and B = Mh2(f°)NS.
Let C be a club subset of S.

We have S € Mh&(g.) N Mhe(f€), and {a,c} U SCk(ge, f¢) C Ha(S). Pick
a b < S so that {a,c} USCk(ge, f¢) C Ha(b), and a bijection F : S — H(S).
Each o € Ho(S) NTky1 is identified with its code, denoted by F~!(«). Let P
be the class P = {(m,d,a) € S : 7 € Mh 4 (F(a))}, where F(d) < K and
F(a) < ¢r(0) with {F(d), F(a)} C He(m). For fixed a, the set {(d,n) € K x
vk (0) : S € Mh§(n)} is defined from the class P by recursion on ordinals d < K.
Let ¢ be a formula such that Vsix = ¢[P,C,S,b] iff S € Mh(g.) N Mh2(f€)
and C is a club subset of S. Since S is shrewd, pick b < Sy < K¢ < S such
that Vs,4x, E ¢[P N So,C N Sp, Sp,b]. We obtain Sg € AN BN C. Therefore
S e Mh2(&) is shown. S € Ma(Mh2(€)) is seen from the shrewdness of S. O
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Corollary 6.14 T proves that Ya < ex1Ve < K[{a, ¢, &} € Hq(S) — ¢§(a) <
S)] for every & < vk (0) and finite functions f such that supp(f) = {c}, c < K
and f(c) = €.

Lemma 6.15 Assume S > m € Mh%(§) N Mh%(&), &0 # 0, and d < c. More-
over let & € Hq(m) for & < 0ec_a(&o). Thenm € MA%(E+E)NMG(MhE(E+£1)).

Proof. As in Lemma 6.7. O
Definition 6.16 For finite functions f and g,
Mhg(g) < Mhi(f) = Vr e Mh§(f) (SCk(g) C Ho(m) = 7 € Ma(Mh§(g))) .

Corollary 6.17 Let f, g be finite functions and ¢ € supp(f). Assume that there
exists an ordinal d < c such that (d, c)Nsupp(f) = (d,c)Nsupp(g) = 0, ga = fa,
g(d) < f(d)+0.—a(f(c)) - w, and g <€ f(c). Then Mhg(g) < Mhg(f) holds. In
particular if 1 € MhG(f) and SCx(g) C Ho(m), then Yi(a) < w.

Proposition 6.18 Let f,g: K — pk(0). If f <V g, then Mhg(f) < Mhg(g).

Proof. This is seen from Corollary 6.17. O

6.4 A Mostowski collapsing

OT(I11) denotes a computable notation system of ordinals with a constant S
for a stable ordinal, collapsing functions ©Y(a) for finite functions g, where
supp(g) = {d} for a d < K =S* and g(d) < ex41 if 0 = S. Let m(a) = g for
a=19(a) and 0 < S. For g # ), « = ¥%(a) € OT(I1}) only when g is obtained
from f = m(o) as follows, cf. Corollary 6.17. There are ¢ and d such that
d < c € supp(f), and (d,c) Nsupp(f) = 0. Then g4 = fa, (d,c) Nsupp(g) = 0
9(d) < £(d) + Bo-alf(€)) -, and g <° f(c).

In what follows, by ordinals we mean ordinal terms in OT'(I11). ¥g denotes
the set of ordinal terms v/ (a) for some a, f and 0 € s U {S}. Note that in
oT(1}), ¥L(a) > S only if o = K =S+ and f = 0.

We define a Mostowski collapsing o — afp/S], which is needed to replace
inference rules for stability by ones of reflections. The domain of the collapsing
o — a[p/S] is a subset M, of ES. For a reason of the restriction, see the
beginning of subsection 6.5.

Definition 6.19 For ordinal terms v/ (a) € ¥s C OT(I1}), define m(yf(a)) :=
f and s(f(a)) = max(supp(f)). Also py(¥L(a)) = po(o) if ¢ < S, and
po(t (a)) = a.

Definition 6.20 M, := H(p) for b =rpo(p) and p € ¥s.
a=9(a) € OT(I1}) only when {o,a} C H,(a) and SCk(g) C M,.

OT(11}) is defined to be closed under o — afp/S] for a € M,,. Specifically
if {a, p} C OT(II}) with o € M, and p € Us, then a[p/S| € OT(II}).
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Proposition 6.21 Let p € Us.
1. H,(M,) C M, if v < po(p).-
2. M,NS=pandp¢g M,.
3. If o < p and po(c) < po(p), then My C M,.

Definition 6.22 Let a € M, with p € Us. We define an ordinal a[p/S] recur-
sively as follows. a[p/S] := a when a < S. In what follows assume o > S.

Slp/S] := p. Kip/S] = (§7)[p/S] := p*. (¢¥x(a)) [p/S] = (vs+(a)) [p/S] =
Y+ (alp/S]). The map commutes with 4 and .

Lemma 6.23 For p € Vs, {a[p/S] : o € M,} is a transitive collapse of
M, in the sense that B < o < Blp/S| < alp/S], B € Ha(y) < Blp/S] €
Halpss1(V[p/S))) for v >S, and OT(IL}) N afp/S] = {Bp/S] : B € M, N a} for
o, B,7 € M,.

Let p <SS, and ¢ an RS-term or an RS-formula such that k(v) C M,, where
Ms = K. Then :[*/5 denotes the result of replacing each unbounded quantifier
Qx by Qx € Lg,/s), and each ordinal term a € k(¢) by a[p/S] for the Mostowski
collapse in Definition 6.22.

Proposition 6.24 Let p € UgU {S}.

1. Let v be an RS-term with k(v) C M,, and o = |v|. Then v/ is an
RS-term of level afp/S], ’v[”/s]‘ = alp/S] and k(vlP/5) = (k(v))[p/s].

2. Let o < K be such that « € M,. Then (Tm(a))[p/g} = {wle/Sl sy €
Tm(a),k(v) € M,} = Tm(alp/S]).

3. Assume H,(p) NS C p. For an RS-formula A with k(A) C H(p), AlP/5]
is an RS-formula such that k(AP/S) c {a[p/S] : o € k(A)} U {K[p/S]}.

For each sentence A, either a disjunction is assigned as A ~ \/(4,),cs, or a
conjunction is assigned as A ~ A(A,),cs. In the former case A is said to be a
\/-formula, and in the latter A is a A\-formula.

Definition 6.25 Let [p|Tm(a) := {u € Tm(«) : k(u) C M,}.

Proposition 6.26 Let p € ¥s U {S}. For RS-formulas A, let A ~ \/(A,).cs
and assume k(A) C M,. Then AlP/SI ~\/ ((AL)[p/S])Le[p}J‘ The case A ~

N(A,) e is similar.
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6.5 Operator controlled derivations for IIj-reflection

We define a derivability relation (H,,©;Qn) Fi* T'; Il where Qp is a finite set
of ordinals in Pg, ¢ is a bound of ranks of the inference rules (stbl) and of ranks
of cut formulas. The relation depends on an ordinal 7g, and should be written
as (H,,0;Qn) 2%, T 111, However the ordinal o will be fixed. So let us omit
it.

The role of the calculus F:? is twofold: first finite proof figures are embedded
in the calculus, and second the cut rank ¢ in F** is lowered to K = S*. In the
next subsection 6.6 the relation -} is embedded in another derivability relation
e e.n AP) with caps p. In the latter calculus, cut ranks ¢ as well as the ranks
of formulas to be reflected are lowered to S, and the inferences for reflections
are removed. For this we need to distinguish formulas with smaller ranks< S
from higher ones.

As in Lemma 4.13, in eliminating of inferences for reflections,

{H,[©] F NG —\5<P)}5€A {H,[OU{o}] ), A(")}(,
H,[O] F* T

(rfly)

is rewritten to, cf. Recapping 6.47
Lp~o Lok
{H,[0] F T =5 sen HA[OU{o}] F T, AL
{(H,[0] F =607 TV er {H4[OU {0} F T 1Y,
H,[O] - T

(cut)

(rfls)

where ¢ < k < p. In the rewriting, the inference (rfl,) is replaced by (rfl,)
for a smaller £ < p. This means that (rfl,) is replaced by (rfl,) in the part
p~ o. k reflects T' to some o, and o has to reflect A, where rk(A) > rk(T') is
possible. Therefore the termination of the whole process of removing is seen to
be by induction on reflecting ordinals p, cf. Lemma 6.48.

The Mahlo degree g = m(x) in k = ¢ () is obtained by (an iteration of) a
stepping-down (f, d, c) = g, where f = m(p), d < ¢ € supp(f), (d, c)Nsupp(f) =
0, g4 = fa, (d &) Nsupp(g) = 0, g(d) < F(d) +Bo_alf(c)) -, and g <° f(c). g
depends on a, p and rk(I'®)) := rk(T"). In showing

SCk(g) C Halk)

p and tk(I'(®)) are harmless since these relates to the given ordinal p, while
the ordinal a causes trouble, since all of the reflecting ordinals p, ... share the
ordinal depth a of the derivation. We need a € Ha,(p) if p = ¥l (ap), and
a € Hg(r) if 7 = ¢(B), and so forth. This leads us to the set M, = Hy(p)
for b = py(p), where p = p’ (), and the condition (35) that a as well as
“apg(b

ordinals occurring in the deriz/pégci)on should be in M, for every reflecting ordinal
p occurring in derivations. Note that M, = Hy(p) C Ha,(p) by b < ag, but
E§ ¢ Hao(p). This is the reason why we restrict the domain of the Mostowski
collapsing o — afp/S] to a € M, C ES.
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Qr in (H,,0;Qm) Fi* I, TI0 is the set of ordinals o which is introduced
in a right upper sequent (H,,0 U {s};Qn U {o}) F:% ;T =B (u)/S of an
inference (stbl) for stability occurring below (#,,©;Qm) F;° ;I while the
set Il = U{H,[f/g] .0 € Qqp} is the collection of formulas —B(u)l/l.

(Hy,©50n) F20 T, B(u); T {(H,,0 U{o};Qn U {a}) F20 T, 2B (w) /),

stbl
(H~,©;Qn) F: T; 11 (stbl)

These motivates the following Definitions 6.27, 6.28 and 6.40.

Definition 6.27 Let Q C ¥s be a finite set of ordinals, and A ~ \/(A,).c.
Define My := (), cq Mo,

QaJ :=[Q]-aJ == {t € J: 1k(A,) > S = k() C My}
KA(T) := [ J{k(A) : A € T,1k(A) > S}

Definition 6.28 Let © be a finite set of ordinals, v < ¢ and a,c ordinals?,
and Q C Us a finite set of ordinals such that po(c) > 7o for each o € Qrr. Let
II = U{Il, : 0 € Qu} C Ag(K) be a set of formulas such that k(II,) C M, for

each o € Qp, Il = U{H([f/s] :0 €Qn}, 09 =0 N M, and Og, = O N My,.
(H~,0;Qm) Fio T 1l holds for a set T of formulas if

k(T') € #,[0] & Yo € Qny (k(HU) c 7—[7[@(")0 (34)

{7,a,c} UKS(D) UK(IT) C H,[Og,] (35)

and one of the following cases holds:

(V) 3 There exist A ~ \/(4,),e, an ordinal a(¢) < a and an ¢ € J such that
A€T, (Hy,0;am) Fe* T, A5 110

(\)I There exist A = Bl*/SI ¢TIl B ~ \/(B,),e, an ordinal a(1) < a and an
¢ € [o]J such that (#H.,©;Qm) Fral ol A, with A, = Bl/S

(A) There exist A ~ A(A,),es, ordinals a(¢) < a such that A € I and (H.,,OU
k(¢); Qrr) F2@ 1, A, I for each ¢ € [Qm]ad.

(MU There exist A= Blo/S e TTI1, B ~ A\(B,),e, ordinals a(t) < a such that
(H~,© Uk(e); Qm) Fe®) Ty 4, 11V for each ¢ € Qu]sJ N[o]J.

(cut) There exist an ordinal ap < @ and a formula C such that (#., ©;Qm) F}%
T, -C; T and (H,, ©;Qm) Fi% C,T;TIH with 1k(C) < c.

2In this subsection 6.5 we can set v = S.
3The condition (4), |¢| < a is absent in the inference (\/), cf. Case 3 in Lemma 6.44.
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(3-rfl) There exist ordinals as, a, < a and a formula C € ¥(n) foranw € {Q, K =
S*} such that ¢ > 7, (H,,0;Qn) F:% T,C;I0 and (H,,0;Qm) i
-3z < 7 C@™ T, 1l

(stbl) There exist an ordinal ay < a, a A-formula B(0) € Ay(S), and a u €
Tm(K) for which the following hold: S < rk(B(u)) < ¢, (H,©;Qm) F;%
T, B(u); 111 and (H.,0 U {o};QnU{c}) F:% [T, < B(u)le/ holds for
every ordinal ¢ € Ug such that © C M,.

(H+,0;Qn) F:% T, B(u); I {(H,,0 U {o};Qn U {o}) F:% T; 0, -Bw) "} ecum,

stbl
(H+,©;Qm) F:o Tt (stbl)

Note that (© U {o})q uie} = Oqy if Ogy C M.
Proposition 6.29 (Tautology) Let v € H,[k(A)] and d = rk(A).

1. (Hy,k(A); 0) 524 = A, A; 0.

2. (M, k(A) U{o}; {o}) Fg2d = Alo/Sl Alo/S]if k(A) € M, and v > S.
Proof. Both are seen by induction on d. Consider Proposition 6.29.2.

We have (k(A) U {c}) N M, = k(A) for (34) and (35), and k(Al/5]) c
Hs((k(A) NS) U {o}) for (34). Note that o & H~[k(A)] since o & k(A) C M,
and 7y < 70 < po(0), and rk(AI7/9)) ¢ 2, [(K(4) U {o}) 1 M,).

Let A ~ \/(A,),c;. Then Al°/5] ~ \/(AEU/S])LE[U]J by Proposition 6.26 and
k(78 € Hg[(k(r) N S) U {o}]. Let T = {ul°/S] . € [0]J}. Then Al°/S] ~
\V/(B,)ver with B, = A" for v = lo/9) and [{o}] grs1 T = I by tk(Al/9)) < S.
For d, = rk(A,) € H,[k(A, )] with ¢ € [o]J = [{0}] s J we obtain

(Hy k(A ) U{o}; {o}) Fg2h —Al/S; Al/
(Hos (A, 1) U{o}i{o}) g2 Al Ao/
(o K(A) U {o}; {}) 320 A/, Al

(W)
(A

and
(Hy, k(A) Uk(e) U {o}; {o}) F52% Al/5) —al/f) W)
(., k(A) UK() U {o}; {o}) Fi2dtt Alo/s], - plo/8) e

(Hy,k(A) U {o}; {o}) F52d Al7/S); - Alo/S]

O

Lemma 6.30 (Embedding of Axioms) For each aziom A in Sy, there is an
m < w such that (Hs,0;0) FE5$2, A; holds for K = ST.

Proof. We show that the axiom 3z B(z,v) Av € Ls — 3z € Ls B(z,v) (B €
Ay) follows by an inference (stbl). In the proof let us omit the operator Hs.
Let B(0) € Ag(S) be a A-formula and v € Tm(K). We may assume that
K > d =rk(B(u)) > S. Let kg = k(B(0)) and k,, = k(u). Let ko Uk, C M,.
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Then for 3z € LgB(z) ~ \/(B(v))ves, we obtain ul?/Sl € J = Tm(S) by
rk(3z € LgB(x)) = S. We have B(ul"/5l) = B(u)l/%, kio/s) = k(ulo/8l) ¢
Hs[k(u) U{o}], (ko Uky)p = ko Uk, and (kg Uk, U{c}) N M, = ko Uky,.
ko Uky U {o}; {o} F52? B(ul/®); = B(u)l/%)
ko Uku; F52* =B(u), B(u); {ko Uky U{o};{o} F5>*" 3z € LsB(x); ~B(w)""/ b Ui, e,
ko U ky; X =B(u),3z € LsB(z);
ko; Fit! =3z B(x), 3z € LsB(x); Y

V)
(stbl)

O

Proposition 6.31 (Inversion) Let A ~ A(A,),e; with A €T, v € [Qu|aJ and
(H,0;Qn) F22 Ty . Then (H.,© Uk(1);Qn) Fio T, A,; TI.

Proposition 6.32 Let (H.,©;Qm) F:* ;100 Assume © € M,. Then
(Hy,© U{o};Qn U {o}) Fz T;TI0.

Proof. By induction on a. We obtain (© U {0})q,ufs} = Oqy by the assump-
tion. In an inference (stbl), the right upper sequents are restricted to 7 such
that o € M,. Also we need to prune some branches at (A) and (A)!! since
(@ U {o})]a] C [Qn]al. o

Proposition 6.33 (Reduction) Let C ~ \/(C,),c; and K = ST < rk(C) < c.
Assume (H.,0;Qn) F:¢ T, =C; 11 and (H,,0;0n) F:b C, T; 110,
Then (H., ©; Q) F:o+t 1y TIE

Proof. By induction on b using Inversion 6.31 and Proposition 6.32.

Note that if (#,,0; Q) Fi*“) C,,T; 111 for an ¢ € J such that rk(C,) > K,
we obtain k(C,) C H,[Oq, )] C Myys) by (35) and Proposition 6.21 with
v <70 < po(o) for o € Q. Hence ¢ € [Qu]cJ if k(¢) C k(C,). O

Proposition 6.34 (Cut-elimination) Assume (H.,, ©;Qn) F:%, T; I with ¢ >
ST =K. Then (H~,©;Qm) e I,

Proof. This is seen by induction on a using Reduction 6.33. O

Lemma 6.35 (Collapsing) Let I' C ¥ be a set of formulas, and II C Ay(K).
Suppose © C H~(Yr(v)) and (H,,0;Qn) FH2 T;I0. Let B = x(a) with
=7 +w® Then (Hat1,0;Qn) Hy’ TR holds.

Proof. By induction on a as in Theorem 1.22. We have {v,a} C H,[Oq,] by
(35>7 and 5 € Hd+1[®ﬁn]'

When the last inference is a (stbl), let B(0) € Ag(S) be a A-formula and
a term v € Tm(K) such that S < rk(B(u)) < K, k(B(u)) C H[©], and
(H,0;Qm) F*° T, B(u); T for an ordinal ag € H,[Og,] Na. Then we obtain
rk(B(u)) < B.
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Consider the case when the last inference is a (X-rfl) on K. We have ordinals
ag,ar < a and a formula C' € ¥ such that (H,,©;Qmn) F* I,C; 1l and
(H,©0;Qm) Fi* =32 @R 1510k,

Let B = ¥k(Gr) € Hay+1[Oqn]NB with Gy = y+w®. IH yields (Hat1,0;Qn) H5
r@K) cBeX) 10 On the other, Inversion 6.31 yields (Hg11,0;Qm) Fpr
-CBK) T:10l. For B, = vk(ay) € Har1[Ogy) N B with @, = ap + wor, TH
yields (H&+17 O; QH) I—ZB"‘ ﬁC(ﬁva),F(ﬂ’K); 1. We obtain (/H@Jrl, Q; QH) l—Zﬁ
LK1l by a (cut).

Note that since IT C Ag(K), inferences (A\)[! are harmless for the condition
O C Hy (Yx(7))- O

6.6 Operator controlled derivations with caps

In this subsection we introduce another derivability relation (H,,0,Q) ¢, T,
which depends again on an ordinal vy, and should be written as (%, ©, Q) Fee. +o.b1
I'. However the ordinal 7y will be fixed, and specified in the proof of Theorem
6.51. So let us omit it.

The inference rules (stbl) are replaced by inferences (rfl(p, d, f, b1)) by putting
a cap p on formulas in Lemma 6.44. In (H,,0,Q) ¢, T', cis a bound for cut
ranks and e a bound for ordinals p in the inferences (rfl(p, d, f, b1)) occurring in
the derivation. b; is a bound such that s(p) = max(supp(m(p))) < b;. Although
the capped formula A(®) in Definition 6.36, is intended to denote the formula
AlP/S] we need to distinguish it from A[P/S]. Our main task is to eliminate
inferences (rfl(p,d, f)) from a resulting derivation D;. In Recapping 6.47 the
cap p in inferences (rfl(p,d, f,b1)) are replaced by another cap k < p. In this
process new inferences (rfl(o, d1, f1,b1)) arise with o < k. Iterating this process,
we arrive at a derivation Dy such that s(p) <S, i.e., supp(m(p)) C S+ 1. Then
caps play no role, i.e., A() is ‘equivalent’ to A for A € Ag(S). Finally inferences
(rfl(p,d, f,b1)) are removed from Dy by throwing up caps and replacing these
by a series of (cut)’s, cf. Lemma 6.48.

The ordinal, i.e., the threshold vy will be specified in the end of this section.

Definition 6.36 By a capped formula we mean a pair (A, p) of RS-sentence A
and an ordinal p < S such that k(A) C M,. Such a pair is denoted by A(). A
sequent is a finite set of capped formulas, denoted by F(()po), e ,Fgf"), where each
formula in the set FE’”) puts on the cap p; € S. When we write I'®)| we tacitly
assume that k(I') C M,. A capped formula A is said to be a ¥(r)-formula if
A€ X(n). Let k(AP)) := k(A).

Definition 6.37 Let f be a non-empty (and irreducible) finite function. Then
f is said to be special if there exists an ordinal « such that f(cmax) = a+K for
Cmax = max(supp(f)). For a special finite function f, f’ denotes a finite function
such that supp(f’) = supp(f), f'(c) = f(c) for ¢ # cmax, and f'(cmax) = & with
f(emax) = a+ K.
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The ordinal K in f(¢max) = @+Kis a ‘room’ to be replaced by a smaller ordinal,
cf. Definition 6.45.

Definition 6.38 A finite set Q C g is said to be a finite family for ordinals
v and by if p € Hyyqrs = Hyots(0), m(p) : K — ¢k (0) is special such that
s(p) = max(supp(m(p))) < by and po(p) > 7o for each p € Q.

The resolvent class H,(f,b1,70,©) in the following Definition 6.39 is the set
of ordinals ¢ < p, which are candidates of substitutes for p in the inference
(rfi(p, d, f,b1)) for reflection. Note that if po(o) < po(p) and o < p, then
My C M, = Hp(p)(p). Moreover if po(c) > v > v and © C M,, then
H~[©] C M, by Proposition 6.21.

Definition 6.39 H,(f,b1,7v0,O) denotes the resolvent class for finite functions
f, ordinals p, b1,vo and finite sets © of ordinals defined by o € H,(f,b1,70,0)
iff 0 € Hyyqs N p, SCx(m(o)) C H,[0], © C M,, po(c) = po(p) > 70, and
m(o) is special such that s(f) = max(supp(f)) < s(o) < by and f' < (m(0)),
where f < g & Vi(f(i) < g(i)).

We define a derivability relation (H.,0,Q) ¢, I', where S < v < 7 is an
ordinal, © a finite set of ordinals, Q a finite family for 7o, b1, and a,c < K = S+.
¢ a bound of cut ranks, e a bound of p in inference rules (rfl(p, d, f,b1)), and by
a bound on s(p). The relation I-¢ . depends on fixed ordinals o and b;.

For d = rk(A) < S, it may be k(A) U{d} ¢ My. Let us avoid deriving the
tautology A, A by a standard derivation to show F2¢ A, A.

Definition 6.40 Let ©(?) =0 N M,, Qs = [QaJ N[p]J, S < v < v and
ec H’Y(H-S(O)'
("+,0,Q) e e, L holds for aset I' = U{Fg,p) : p € Q} of formulas if

vpea(Kr,) c H,00)) (36)

{v,a,¢,b1} UKY(T) € H,[Og] (37)

and one of the following cases holds:
(Taut) {-A®) AP} CT forapcQand a formula A such that rk(4) < S.

(V) There exist A ~\/(4,),cs, a cap p € Q, an ordinal a, < a and an ¢ € [p]J
such that A®) € T and (H,,0,Q) F* T, (A)".

c,e,%0,b1 7
Note that if rk(A4,) > S, then k(A4,) C H,[Oq] C My by (37). Hence
teQaJ ={teJ:rk(A,)>S=k(t) C My}.

(A\) There exist A ~ A(A,).es, acap p € Q, ordinals a, < a for each ¢ € [Q] 400 J
such that A®) € T and (H,,0 Uk(1),Q) F* T, (A,)".

c,e,70,b1 7
Note that if rk(A,) > S, then k(1) C Mg by ¢ € [Q] 4 J. Hence k5(4,) C
H[(©Uk(1))q] for (37), where (© Uk(z))qg = Oq U k(¢).
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cut ere exist a cap p € Q, an ordinal ap < a and a formula such that
Th i dinal d a fi la C h th
(H,,0,Q) F© I,-C® and (H,,©,Q) -2 C®). T with rk(C) <

c,e,%0,b1 c,e,%0,b1
C.

(X-rfl(2)) There exist a cap p € Q, ordinals ag,a, < a, and an uncapped

formula C' € () such that ¢ > Q, (H,,0,Q) F_ r,C® and
(Hy,©,Q) F = (e < w0 T,

(rfl(p,d, f,b1)) There exist a cap p € Q such that © C M,, ordinals d €
supp(m(p)), and ag < a, a special finite function f, and a finite set A
of uncapped formulas enjoying the following conditions.

(r0) p <eif s(p) > S.
(r1) A c V(d):={d:1k(d) <d,dis a\/-formula} U{d : rk(d) < S}.
(r2) For the special finite function ¢ = m(p), s(f) < by, SCk(f,g9) C
H, 0] and f4 = ga& f* < ¢/ (d).
(r3) For each ¢ € A, (H,,0,Q) F2%, T, -6,
(r4) (H, ©U{o},Quic}) F5 o 0,
{(7,,0,0) F& T, =0} sea {(H1,0U{0},QU{a}) FEL T Ay 00 00
(H4,0,Q) e, T

Note that (© U {o})qu{s} = Oquis} = Oq by ©) C M, and p € Q.

{e} UQ C H,[O] need not to hold.

Suppose (H,,©,Q) ¢, T holds with AP €T and p € Q. By (36) we have
k(A) C H,[0)]. We obtain k(A) C M, by Proposition 6.21.

In this subsection the ordinals o and b, will be fixed, and we write ¢ . for

a
€,€,70,b1°

Proposition 6.41 (Tautology) Let {v} UkS(A) C H,[Oq] and o € Q, k(A4) C
H,[0)]. Then (H,0,Q) H34 ~A), A holds for d = max{S,rk(A)}.

Proof. By induction on d. Let A ~ \/(A,),cs with rk(A) > S. For ¢ €
QaeJ C [o]J, let d, = 0 if rk(A,) < S. Otherwise d, = max{S,rk(A,)}. In
each case we have d, < d. IH yields
(Hy,© Uk(1),0) F2% ~4(7) 4
(H,, © Uk(1),Q) F2% ! —AL7), A@)
(#,,0,0) Ff A, A

(V)
(AN

O

Proposition 6.42 (Inversion) Let A ~ A\(A,).cs with A®) € T andrk(A) > S,
Lt € [QlawJ with p € Q and (H-,0,Q) F¢ . T Then (H,,©Uk(:),Q) Fe. T, A,.

o7

', A(®) holds for every o € H,(f,b1,70, o).

(I‘ﬂ(p, da f7 bl))



Proposition 6.43 (Cut-elimination) Let (H,,0,Q) Fo,, . I' with H,[Oq] >
¢>S. Then (H,,0,Q) l—ffé(a) T.

Proof. By main induction on d with subsidiary induction on a using an ana-
logue to Reduction 6.33 with (37). Note that rk(C') € H,[Oq] when rk(C) > S
and (H,,0,Q) -2, T, C. O

Lemma 6.44 (Capping) Let T UII C A¢(K) with IT = (J{Il, : ¢ € Qu}.
Suppose (H~,O; Q) Fe e ;100 for a,e < K and 110 = U{H([f/s] : 0 € Qu}.

Let p = 9&(v1) be an ordinal such that Qr C p,
OcM, (38)

and g = m(p) a special finite function such that supp(g) = {c} and g(c) =
ap + K, where K(2a + 1) < ap + K < v < 41 with {m,¢c, a0} T Hy[O] N H,,
and po(c) < po(p) = 1 for each o0 € Qn. Let T = (J{AP) : A € T}, 11 =
U{IE” 2 o € Qu} and Q = Qu U {p}.

Then (H~,Omn,Q) - I', I holds holds for © = © U Q.

a
¢,p+1,70,¢

Proof. By induction on a. Let us write ¢ for ¢ .4 .

assumptions we have © C M, and Qi C p. Hence © = 0™ and Oqy = Oq. On
the other hand we have k(T') C H,[0] and for ¢ € Qm, k(I,) C H,[0)] by
(34). Therefore (36) is enjoyed. We have {v,a,c} C H,[Oqy] by (35). Hence
(37) is enjoyed. Moreover we have SCk(g) C H~[O] C M,.

Case 1. First consider the case when the last inference is a (stbl):

in the proof. By

(H+,0;Qm) F:% T, B(u); I {(H,,0U {o};Qn U {o}) F:% T; =B(u)/ T} e,

stbl
(H~,©;Qm) F:o T; 1t (stbl)

Note that it may be the formula B(u)l°/%l is in T', cf. Embedding 6.30. o
in © U {o} ensures us k(B(u)l"/%l) ¢ #,[© U {o}] in (34). This explains the
additional set Qrr in (H~, O, Q) F¢ f, ﬁ, and the addition would be an obstacle
to a € Og in (37).

We have an ordinal ag < a, a A-formula B(0) € Ay(S), and a term u €
Tm(K) such that S < rk(B(u)) < c¢. We have (H,,©0;Qm) F:% T, B(u); Il
(H,,0m,Q) Foo T, (B(w))® |11 follows from IH.

On the other hand we have (H.,,0 U {c};Qn U {o}) F:% T; =B (u)l/5) 11l
for every ordinal o such that © C M,.

Let h be a special finite function such that supp(h) = {c} and h(c) =
K(2ag + 1). Then h. = g. = 0 and h® <¢ ¢'(c) by h(c) = K(2a0 + 1) <
K(2a) < ap = ¢'(c). Let ¢ € Hy(h,c,70,0). For example ¢ = 77/1:}(71 +1n)
with 7 = max({1} U E5(©)), where E5(©) = |J,ce Es(a) with the set Es(a) of
subterms< S of a. We obtain © C H.,(¢) = M, by © C M, and {vy1,¢,a0} C
(0] © 7, (o).

We have k®(B(u)) = k(B(u)) C H,[0g C M, for (37), and (H.,On U
{0},QU {o}) F% T, =B(u)@,1I follows from TH with ¢ € M,. Since this holds
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for every such o, we obtain (H,,On,Q) F¢ 44 T, I by an inference (rfl(p, c, h, c))
with rk(B(u)) < ¢ € supp(m(p)). In the following figure let us omit the operator
Hy.
(O1,Q) 20 T, B(w)®, T {(6n U {0},QU{o}) Feo T, -B(u)"), I},
(6m,0) F T, 11

(rfl(p, ¢, hy )

Case 2. Second the last inference introduces a \/-formula A.

Case 2.1. First let A € I" be introduced by a (\/), and A ~\/(4,),c;. There
are an ¢ € J an ordinal a(¢) < a such that (H,,©;Qmn) Fxal®) I,A,; T Let
k(t) C k(A,). We obtain k(¢) C H,[O] C M by (34), © C M,and v <~y <.
Hence ¢ € [p]J. IH yields (H,,Om,Q) e T, T, (4)®. (#,,0n,Q) +2 I, T
follows from a (\/).

Case 2.2. Second A = Bl°/%l € TIl! is introduced by a (\/)!) with B() e II

and 0 € Q. Let B ~ \/(B.),c;- Then A ~/ (BL[U’S]) ol by Proposition
LE|o

6.26. There are an ¢ € [¢]J and an ordinal a(1) < a such that (H.,©;Qm) F&)

;B8 1l for A, = BI/® 1H yields (#,,0n,Q) F2“ 1I,T,(B,)7. We

obtain (#.,©m,Q) F¢ ILT by a (V).

Case 3. Third the last inference introduces a A-formula A.

Case 3.1. First let A € I be introduced by a (A\), and A ~ A (A,),. ;. For every

¢ € [Qu]aJ there exists an a(¢) < a such that (H~, ©Uk(¢); Qm) - Fae® T A, Tl
IH yields (H., O Uk(1),Q) FeO LT, (A,) for each ¢ € [Q) 40 J C [Qu]al,

where k(v) C M,. We obtain (#.,Om,Q) F¢ ILT by a (A).

Case 3.2. Second A = Bl°/Sl € TIl is introduced by a (A)!) with B(®) e II

and 0 € Qu. Let B ~ A\ (B,),o, with A ~ A (BL[G/S]) o For each ¢ €
Lelo
*a(

[Qu]sJ N [o]J there is an ordinal a(t) < a such that (#.,© U k(¢);Qm)
T; A, T for 4, = BI/®). H yields (K., O Uk(),q) H2¢ 1I,T, (B )"’ for
each ¢ € [Ql g J C [Qu]sJ N [o]J, where k(1) C M, C M,. (H,Om,Q) ¢ T
follows from a (A).

The other cases (cut) or (X-rfl) on Q are seen from IH. m|

6.7 Eliminations of inferences (rfl)

In this subsection, (rfl(p, ¢,v)) are removed from operator controlled derivations
of ¥1-sentences X2 over ).

Definition 6.45 For a special finite function g and ordinals a < K, b < cpax =
max(supp(g)) < K, let us define a special finite function h = h®(g; a) as follows.
max(supp(h)) = b, and h, = g,. To define h(b), let {b = by < by < -+ <
b = Cmax} = {b, Cmax } U ((b, cmax) Nsupp(g)). Define recursively ordinals ; by
ap = a+ a with g(emax) = o + K. a; = g(b;) + 0, (aiy1) for ¢; = by — b;.
Finally put h(b) = ap + K.
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Proposition 6.46 Let f and g be special finite functions with cymax = max(supp(g)).
1. Let b < e < cmax and ag,ay < a. Then h®(h*(g;a0);a1) < (h°(g;a))’.

2. Suppose f <% ¢'(d) for a d € supp(g). Let b < d. Then f, = (hb(g;a))s
and f <" (h*(g; a))'(b).

Recall that s(p) = max(supp(m(p))).

Lemma 6.47 (Recapping)
Let (H+,0,Q) F& orobm ILT for a finite family Q for vo,bs, @ C Q, Vp €
Q'(s(p) >S) and @f =Q\ @', TUTI C Ag(K), T = U{TY : p € Q'}, where each
0 € T is either a \/-formula or tk(6) < S, and II a set of formulas such that
el for every A e11.

Let max{s(p) : p € Q'} < by. For each p € Q, let S < bl») € H,[0F)]
with Tk(T',) < b < s(p), and k(p) € H,(h*"” (m(p);w(by,a)), by, Y0, OP) with
w(b,a) = w*’a. Assume by € H~[Oq).

Then (H~,0,Q(k)) o (b1a) II,T, holds, where Q(k) = @/ U {k(p) : p €

Cby+€%,70,b2
Q}, ¢, = max{cy, b1}, e® = max({r € Qf : s(r) > S} U {k(p) : p € Q'}) + 1,
T, = U{FE)H(P)) pe Qt}.
e < e holds when Q' = {p € Q : s(p) > S} # 0.

Proof. We show the lemma by main induction on b; with subsidiary induction

on a. The subscripts 7, by are omitted in the proof. We obtain {~,b;,a,c;} U

kS(II,T') C H[Og] by the assumption and (37). Then {v,w (b1, a), cp, JUKS(II,T) C

H,[Oq(w)] since ©F) C M, for each p € Q. Hence (37) is enjoyed in
w(bi,a ’\

(H5,0,Q(0)) F "%, LT

Let p € Q1. We have b(") € H,[00)], SCx(m(p)) C H,,[0P)] and 6 C
M) SCK(hb(p) (m(p);w(bi,a))) C Hey, [@(")] follows. Moreover we have
SCie(m(r(p))) C Moy 0] C My,

Consider the case when the last inference is a (rfl(p, d, f,b2)) for a p € Q.
The case p € Q is seen from SIH. Assume p € Q%. Let b = b?), g = m(p),
by > s(p) > d € supp(g), K = #(p), T =Ty A = U, cq {1V}, and A, =
UP#TEQt{Ff(T)}. We have a sequent A C \/(d) such that rk(A) < d < s(p) < by
and k®(A) C H,[Oq] C My by (37) and k®(A) C Mg,y by Oq = Oq). There is
an ordinal ag € H,[Oq] N a such that (H,,O,Q) Fe, II, A, T 5 for each
d € A. For each § € A C \/(d) with rk(d) > S, we have 6 ~ \/(0,) ;. Let
bp = max({S} U {rk(d) : § € A}). Then s(p) > by € H[Oq]. Inversion 6.42
yields for rk(d) > S

(H, © Uk(1),Q) 2, ILA, T, =(5,)® (39)

for each ¢ € [Q]5(» J, where J C T'm(bg) and —d, € \/(bo) by rk(d,) < rk(d).
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On the other side for each o € H,(f, b2, 0, o)
(H,,©U {0},QU {o}) F&  ILA,TW A (40)

f is a special finite function such that s(f) < b, fa = ga, f¢ <% ¢’(d) and
SCx(f) € H[0). Let (QU {o})/ =0/ U{o}.

Case 1. by < b: Then rk(A) < b. Let rk(d) > S. From (39) we obtain by
SIH with b > by > S, (H.,© Uk(1),Q(k)) F0) I, A, T, =(5,)%) for each

Cpy e

t € [Q(k)]semJ C [QlseJ. An inference (/) yields
(H’Yv e, Q(FC)) |_jb(1b71e,go)+1 11, Km F(”), _,5(N) (41)

Moreover SIH yields (41) for rk(d) < S. Let dy = min{b,d}. Then A C \/(dy)
by b > bo.
We claim for the special finite function h = h®(g;w(by, a)) that

fa, = ha, & f4 <b W (dy) (42)

If di = d < b, then hq = gq and ¢'(d) = g(d) < h/(d). Proposition 6.5 yields the
claim. If d; = b < d, then Proposition 6.46.2 yields the claim.

On the other hand, for each o € H,(f,ba,v0,0")) C H,(f,b2,7,0")) we
have by (40) and STH,

(M1, 0 U {0},0(k) U {o}) Faui) 11 A, 1), AL (43)
We have k = k(p) < k(p) +1 < e” for (r0). An inference (rfl(s,dy, f,b2))
with (42), (41) and (43) yields (H,,0,0(x)) F5 28 LA, ), where dy €
supp(m(x)) and k*(A) C H,[Oq(x))-
Case 2. b < by: When b = by, let 7 = k. When b < by, let 7 € H,(h, b2, 7, 0"))
be such that x < 7 and m(7) = h = h*(g;a1) with a; = w(by,ag) + 1.

Let o € H,(f,b2,7,0). SIH with (40) and by < s(p) yields

(H,,0U{0}.0, U {o}) Fo") A 11, &, 1) (44)

where Q; = @ U{x(\) : p # X € @} U {7}, and 7 = max({\ € @/ : s(\) >
SYU{N) :p#XeQIU{r})+1. Let 0 € R:= {0 € H.(f, bz,7,0") :
(m(0))" = (h*(g;w (b, a0)))'}. We see o € Hp(h™(g;w(b1,a0)),bz,70,0)).
Moreover rk(—d,) < bg if rk(d) > S, and rk(—d) < by if rk(5) < S < by.

For each ¢ € [Q]s»J and rk(d) > S, we obtain (H., O U k(¢),Qs) peo(b1-a0)

Cpy,€7
I, A, T(), =(6,)(7) by rk(=d,) < bg, SIH and (39), where Q, U {7} = Q, U {o}.
A (A) yields (H,,0,Q,) FolLe ™ IR, 1@, =6(). When 1k(d) < S, this

follows from SIH. Also My, = My, u¢r} and €7 < e” by 7 > 0. Therefore

(Hy:©,Q; U{o}) bo T LA, 1), —6(7) (45)

Cpy €7
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From (44) and (45) by several (cut)’s of 6 with k() < d < b1 < ¢, we obtain
fora p < w,

by

Yo € R [(7—[7, OU{o},Q- U{o}) F bl,CLO)JFP LA, T 1) (46)

On the other hand we have r = max{S,rk(I')} < b < b; and k*(T') C H,[Oq] =
H,[0q.] C My, by (37), where ©q = ©g, by ©) C M,. Tautology 6.41 yields
for each 6 € T’

(H,0,Q:) Hg7 T, -6 (47)

Let us define a finite function h by supp(h) = supp(gs,) U supp(f*o+1) U {bo},
By, = gb, and hboFl = footl Tet (k% (g;w(b1,a0)))(bo) = a+K. Then h(by) =
a if fPot1 = (. Otherwise h(by) = o+ K. We see that R = H,(h, o, ©®), and
hbo <bo (m(1)) (bo).

By an inference (rfl(r, b, h, by)) with its resolvent class R = H,(h, ba, vo, ()
and I' € \/(bg) we conclude from (47) and (46) for rk(I') < b < by < s(7)

(Hy,0,Q,) &2 . I, A, T (48)

where ay = max{2r,w(by,a0) + p} + 1 < w(by,a) = we a. If by = b, we are
done. In what follows assume b < by. We have a1 < w(by,a) and w(bg,az) =
w*"ay < w(by,a) by by < by. Moreover Proposition 6.46.1 for m(7) = h®(g; a1)
yields (h®(m(r);w(bo, a2)))" = (h*(h™ (g: a1);w(bo, a2)))" < (h*(giw(br,a)))"

Let (Q;)" = {7} and /1(7) = k(p) = k. Then (e7)* = max({\ € (Q,)/ :
s(A) > S} U{k}) +1 = e*. We have k5(I') U {bo} C H,[Oq.], 1k(T,) <
b)) = b < by = s(1) < b1 for I' = T, and b € H,[0D], w(by,a2) <
w(by,a) and max{cp,,bo} = ¢p,. Also k € Hp(hb(g;w(bl,a)),bg,%,@(p)) Nt C
H. (h(m(r);w(b1, az2)), b2, 70, ©)). MIH with (48) yields (H,,©,Q(x)) F o
I, 1),

Second consider the case when the last inference (\/) introduces a \/-formula
B: If B € 1II, SIH yields the lemma. Assume that B = A ¢ Fff') with
A ~\/(A),c; and p € Q. We may assume p € Q". We have (#,,0,Q) -2

C1,€
I,T, (4,)%, where ap < a, ¢ € [p]J. We claim that ¢ € [k(p)]J. We may
assume k(¢) C k(A,). We have k(4,) C H,[0¥)] by (36). ©®) C M, vields
k(AL) C Mﬁ(p)

Let A, ~ A (B,),; for \/-formulas B,, and assume rk(AL) > S. Inversion

vel

7.25 yields for each v € [Q]Agp)l, (H,, © Uk(v),Q) Feo  T1 (By)(”).

STH yields for each v € [Q(k )]A(p)I C [Q]A<p>Ithat (H~, @Uk(l/), Q(k)) I—fb(lbfe’g‘))
IL,T,, (B,)"™. (H,,0,a(k)) Cb(ble’go)ﬂ IL,T,, (A)" follows from a (/). An
inference (/) yields (H~,©,Q(k)) ?b(ble’g) IL, T,.

Other cases are seen from SIH. a

For ¢ <8, (H,,0) F:* I' denotes (H.,O;0) F:* I';0. Since Oy = O, (34)
and (35) amount to (3) {v,a,c} Uk(I") C H,[B], and there occurs no inferences
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(W)U, (A)F nor (stbl). The inference (X-rfl) is only on Q. This means that
(H~,0) F:* T is equivalent to H,[O] F¢ T' in Definition 1.16.

Lemma 6.48 (Elimination of inferences (rfl))

Let Q be a finite family for vo and by > S. Let max(rk(I')) < S, = U{I‘,(D”) :

Q} and I' = U{T', : p € Q}, where k(I',) C M,. Suppose (H~,0,Q) -
Then (H,,©) F8 T holds for v1 = Y0 +S, @ = @e(b1 + a).

€

e

a
S,e,70,b1

Proof. By main induction on e with subsidiary induction on a. We have
{e} UQ C H,, by Definitions 6.40 and 6.38, by € H[Oq] by (37), and 0 =
kS(F) C Hy[eq]
Case 1. First let {-A) A@} c T with tk(4) < S by (Taut). Then
(Ho, k(A)) F§° —A, A by Tautology 6.29.1 and (H.,,0) F T by @ > S.
Case 2. Second consider the case when the last inference is a (rfl(p, d, f,b1))
forap e Q LetQ ={req:s()>S} e =Qq\Q, and (1) €
H.(hS(m(7);w(b,a)),b1,v0,0)) for each 7 € Q. Let g = m(p), s(p) > d €
supp(g), & = k(p) when p € Q' Il = U, cqr I A = Upsreq I'7 5 and
A, = Upsreqr T We have a sequent A C \/(d) and an ordinal ag < a such
that tk(A) < d < s(p) and (H,,0,Q) FE, ., LA, TY), =6 for each § € A.
On the other hand we have (H,,0 U {o},QU {o}) k¢’ ﬁ,K,I‘Ef’),A(U),
where o € H,(f,b1,70, O), f is a special finite function such that s(f) < by,
fa=ga, [* < g'(d) and SCx(f) C H,,[0P)].
Case 2.1 s5(p) < S: We have rk(A) < d < s(p) < S. Let ap = @e(b1 + ao). By
SIH we obtain (H.,,©) F¢" I, A,T',, =6 for each 6 € A, and (H,,OU{c}) F&*°
ILA T, A, where 0 € Hyyys C H,,[O]. Several (cut)’s of rk(6) < S yields
(Hy,,0) HEG ILA,T, for T=IUAUT,.
Case 2.2. s(p) > S: Then p € Q' # 0. (H,,0,0(x)) Fy 4 | TLA,, TV fol-
lows by Recapping 6.47, where b; > S and e" < e. Cut-elimination 6.43 yields
for a1 = pp, (w(b1,a)), (Hy,0,Q(K)) Felen o p, ﬁ7KK,F§,K). MIH then yields
(H,,0) F54 T, where I = TTUAUT, and @1 = @en (b1 + a1) < pe(by +a) = a
by e" < e and a,b; < a. R
Case 3. The last inference is a (A): We have a(1) < a, A® € T' with
A~ A\(A).es, and (H4,0 Uk(2),Q) '_(Sl,(eL,)ﬂm,bl T, (A,)® for each ¢ € [Q) 40 .
Since A € Ag(S), we obtain [Q] g»J = [p]J = J. SIH yields (H,,0) }—ga@ T,A,
for each ¢ € J, where a(1) = pe(b1 + a(t)) < a. A (A) yields (H,,0) F2 T.
Other cases are seen from SIH. a

Proposition 6.49 (Collapsing) Suppose © C H(Va(7)), (H4,0) F& T and
' C X(Q). Then for a =7 +w® and B = a(a), (Hat1,0) F;’ T holds.

Proposition 6.50 (Cut-climination) Suppose (H.,©) Fre, T with c+d < S
and (¢ < Q< c+d). Then (Hy,0) pxbala) 1,

Theorem 6.51 Assume Sy - 0% for § € . Then there exists an n < w such
that Lo, = 0 for a = ¢o(w,(K + 1)) in OT(I13).
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Proof. Let S; F 6% for a Y-sentence §. By Embedding 6.30 pick an m so

that (Hs,0;0) }—Egizjm 6L: (. Cut-elimination 6.34 yields (Hs, 0;0) Fz2 9L

for a = w,,(K-2+m) < wm+1(K +1). Now let 79 = wpmao(K +1). Let
B = Yg(w?®) > S, where w* < 79 = wmao(K + 1). Collapsing 7.18 yields
(Huwat1,0;0) H7 05250

Let p = 1/15(70) w1th g = {(B8,8 +K)}, where K(+1) = g+ K. We
obtain (Hye41,0,{p}) F 5p+1 70,8 (6%2)(?) by Capping 6.44. Cut-elimination

6.43 yields (Huwet1,0,{p}) Fely1 05 (0F2)®) for a; = pg(B).

We obtain (H,,,0) F5** 672 by Lemma 6.48, where a2 = ¢,11(8 + a1) and
71 = Y0 +S. Cut-elimination 6.50 yields (H.,,0) & 0L2 for ag = 0s(az). Col-
lapsing 6.49 yields (H+, yaz+1,0) 57 057 for n = Pa(n + a3) < Ya(wmis(K+
1)). Cut-elimination 6.50 yields (H, +aq11,0) Fi'"™ L1, We then see L, |= 0
by induction up to 6, (7). O

Actually the bound is shown to be tight.

Theorem 6.52 [Acod]
KPw + (M <sx, V) proves the well-foundedness up to g (w, (St + 1)) for each
n.

KPw + (M <5, V) proves an axiom of 3;-Separation with parameters from
M. dp={zca:px,c)}={r€a: MEp(x,c)}], where c€e M, a € M U
{M} and ¢ € ;. However it is open for us whether the parameter-free :3-
Comprehension Axiom holds in KPw + (M <5, V).

7 II;-Collection

The axioms of the set theory KPw + II;-Collection 4+ (V' = L) consist of those
of KPw + (V' = L) plus the axiom schema II;-Collection: for each II;-formula
A(z,y) in the language of set theory, Va € adyA(x,y) — Ve € aTy € bA(x,y).
It is easy to see that the second order arithmetic ©}—DC + BI is interpreted to
KPw + IT;-Collection + (V = L) canonically.

Next we show that KPw + II;-Collection + (V' = L) is contained in a set
theory Sy. The language of the theory Sy is {€,5t,Q} with a unary predicate
constant St and an individual constant Q. Ay(St) denotes the set of bounded
formulas in the language {€, St,Q}, in which atomic formulas St(t) may occur.
Similarly 31(St) the set of 3;-formulas in the expanded language. St(a) is
intended to denote the fact that « is a stable ordinal, L, <x, L, and Q = w{'¥.
The axioms of S are obtained from those ¢ of KPw by adding the following
axioms. Let ON denote the class of all ordinals. For ordinals o, a denotes the
least stable ordinal above a. A successor stable ordinal is an ordinal af for an
a. Note that the least stable ordinal 0 is a successor stable ordinal.

4In the axiom schemata Ag-Separation and Ag-Collection, Ag-formulas remain to mean a,
Ap-formula in which St does not occur, while the axiom of foundation may be applied to a
formula in which St may occur.
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1. V = L, and the axioms for recursively regularity of (2.
2. Ag(St)-collection:
Va € aJyf(z,y) — IVx € aTy € bl(z,y)
for each Ag(St)-formula 6 in which the predicate St may occurs.
3. L=\{Ly: St(o)}, i.e.,

Vo€ ON3Jo (a < o A St(o)) (49)

4. For a successor stable ordinal 0 < I, L, <x, L = L:
SSt(a) Ap(u) Au € Ly — @l (u) (50)

for each ¥;-formula ¢ in the language of set theory, i.e., the constant St
does not occur in ¢.

Lemma 7.1 Sy is an extension of KPw + II;-Collection 4+ (V' = L). Namely Sy
proves 11;-Collection.

Proof. Arguein Sy. Let A(x,y) be a II1-formula in the language of set theory.
We obtain by the axioms (49) and (50)

Az, y) < IB(StBY) A,y € Lt A A5t (2,y)) (51)

Assume Vz € adyA(z,y). Then we obtain Vo € a3y3B(St(B) Ax,y € Lgt A
ALst (2, y)) by (51). Since St(BN) Ax,y € Lgs A ARt (2, y) is a By (St)-formula,
pick a set ¢ such that Vo € a3y € ¢33 € c(St(B) Az, y € Lgt A Alst (z,9)) by
Ag(St)-Collection. Again by (51) we obtain Vz € a3y € cA(z,y). |

Conversely in KPw +1I;-Collection+ (V' = L), the predicate St(«) is defined
by a II;-formula st(«) so that (50) is provable, and Ag(St)-collection follows
from II;-Collection.

Lemma 7.2 KPw+II;-Collection proves each of 31-Separation, As-Separation
and Yo-Replacement.

Proof. We show that {x € a : ¢(x)} exists as a set for a X;-formula ¢ =
Jyb(x,y) with a Ay matrix §. We have by logic Vo € aJy(320(x, 2) — 6(z,y)).
By II;-Collection pick a set b so that Vo € a3y € b(e(x) — 0(z,y)). In other
words, {z €a:p(x)} ={xr €a:Fycbb(z,y)}. O

Let Hully, (o) denote the ¥1-Skolem hull Hully,, («) of an ordinal «. Hully,, ()
is the collection of Yi-definable elements from parameters< « in the universe.
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Specifically let {¢; : i € w} denote an enumeration of ¥;-formulas. Each is of
the form ¢; = Jyb;(z,y;u) (6 € Ag) with fixed variables x,y, u. Set for b € «

r(i,b) =~ the <y, -least ¢ € L such that L = 0;((¢c)o, (c)1;b)
h(i,b) (r(i,0))o
Hully, (o) = {h(i,b)eL:icw,beca}

12

The domain of the partial Aj-map r is a Xj-subset of w X «a, and from
Lemma 7.2 (31-Separation) we see that the domain exists as a set, and so does
Hully, (o). Therefore its Mostowski collapse® ordinal 3 > . This shows (49).

Note that a limit of admissible ordinals need not to be admissible since
there exists a II; -formula ad such that for any transitive set x, = is admissible
iff ad® holds. On the other side every limit x of stable ordinals is stable: for
c € L., pick a stable ordinal o < k such that ¢ € L,. Then for X;-formula A,
LE A(c)= L, E A(c) = Ly E A(c).

7.1 Ordinals for II;-Collection

In this subsection up to subsection 7.2 we work in a set theory ZFC(St), where
St is a unary predicate symbol. We assume that St is an unbounded class of
ordinals below I such that the least element Sy of St is larger than . af denotes
the least ordinal> « in the class St when a < L. af :==Tif @ > I. Then Sg = QF.
Let SSt:= {al : @ € ON} and LS = St \ SSt. For natural numbers k, af* is
defined recursively by af® = a and of*+1) = (ofF)T.

©p(€) denotes the binary Veblen function on IT = wy, 1 with ¢g(€) = w® Let
A <1 be a strongly critical number. As in Definition 6.2, @p(§) := wp(I- ). Let
b, <Tt. 0,(€) [05(€)] denotes a b-th iterate of o (&) = wé [of Go(€) = I¢], resp.

Definition 7.3 A finite function f : T — ¢r(0) is said to be a finite function if
Vi > 0(a; = 1) and ap = 1 when by > 1in f(¢) =nF b, (§m) - am+- - -+0b,(&0) a0
for any ¢ € supp(f). Let SCi(f) := U{{c} USCi(f(c)) : ¢ € supp(f)}.

For a finite function f, ¢ < I and & < ¢p(0). A relation f <f & is defined
by induction on the cardinality of the finite set {d € supp(f) : d > ¢} as in
Definition 6.4.2.

Definition 7.4 Let A C I be a set, and o < I a limit ordinal.
a € M(A) :& AN« is stationary in « < every club subset of a meets A.

Classes Ho(X) C Try1, Mh3(€) C (I4+1), and ordinals ¢ (a) < & are defined
simultaneously as follows.

Ho(X) denotes the closure of {0,Q,I} U X under +,p, a — ¢gq(a), a —
Y1(a) € LS, a v of € SSt, and (7,b, f) — L (b).

5The collapse coincides with Lg for the least ordinal 8 not in Hully, («).
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m € Mhe(§) iff {a,c,&} C Hy(m) and the following condition is met for any
finite functions f, g : I — ¢p(0) such that f <f &

SCi1(f,g9) C Ho(m) &7 € Mhi(ge) = ™€ M(Mhi(ge * f))

where

Mhe(f) = (Mhg(f(d)): d € supp(f°)}
= [(UMRG(f(d) : ¢ < d € supp(f)}

Let a,7 ordinals and f : I — (0) a finite function. Then 7 (a) denotes
the least ordinal x < 7 such that

k€ Mh(f)&Hq (k)N C k& {m,a} USCL(f) C Ha(k) (52)
if such a x exists. Otherwise set 17 (a) = .

Yr(a) ;= min({I} U{k € LS : Hy(k) NI C k}) (53)

For classes A C I, let « € M?(A) iff @ € A and for any finite functions
g:I— Lp]I(O)

a € Mhi(ge) & SCr(ge) C Ho(a) = o € M (Mhi(g:) N A) (54)

Proposition 7.5 Each of v € Ha(y), v € MRE(f) and x = ] (a) is a A1 (St)-
predicate in ZFC(St).

7.2 A small large cardinal hypothesis

It is convenient for us to assume the existence of a small large cardinal in
justification of the above definition.

Subtle cardinals are introduced by R. Jensen and K. Kunen. It is shown in
Lemma 2.7 of [Rathjen05b] that the set of shrewd cardinals in V. is stationary
in a subtle cardinal 7. From this fact we see that the set of shrewd limits of
shrewd cardinals in V. is also stationary in a subtle cardinal w, where for a
shrewd cardinal k in V;, x is a shrewd limit iff x is a limit of shrewd cardinals
in V.

Let C be a closed subset of 7, and Cy C C' be a subset defined by x € Cj iff
k € C and k is a limit of shrewd cardinals. Since the set of shrewd cardinals is
stationary in V, Cy is a club subset of m. Hence the exists a shrewd cardinal
in CQ.

In this subsection we work in an extension T of ZFC by adding the axiom
stating that there exists a regular cardinal I such that the set St of shrewd
cardinals in 1 is stationary in I. In this subsection 2 denotes the least un-
countable ordinal wy, and LS denotes the set of shrewd limits in V7. The class
LS is stationary in 1. A successor shrewd cardinal is a shrewd cardinal in V7,
not in LS.
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Lemma 7.6 Va[yy(a) <TJ.

Proof. The set C' = {k < I: Hy(k) NI C k} is a club subset of the regular
cardinal I. This shows the existence of a k € LS N C, and hence ¢1(a) < I by
the definition (53). O

Lemma 7.7 LetS be a shrewd cardinal, a < e(I), h: T — ¢1(0) a finite function
with {a} USC1(h) C Ha(S). Then S € Mhi(h) N M(MhE(h)).

Proof. By induction on & < ¢1(0) we show S € Mh(&) for {a,c, &} C Ha(S)
as in Lemma 6.13. a

Lemma 7.8 LetS be a shrewd cardinal, a an ordinal, and f : T — ¢1(0) a finite
function such that {a} U SC1(f) C Ha(S). Then wg(a) < S holds.

Corollary 7.9 Let f,g: 1 — ¢1(0) be finite functions and ¢ € supp(f). Assume
that there exists an ordinal d < ¢ such that (d, ¢c)Nsupp(f) = (d, c)Nsupp(g) = 0,

9a = fa, 9(d) < f(d) + Oc—a(f(c);]) - w, and g <¢ f(c).
Then Mh&(g) < Mh&(f) holds. In particular if 1 € Mh&(f) and SCi(g) C
Hao(m), then YI(a) < .

Proof. This is seen as in Corollary 6.17. a

An irreducibility of finite functions f : T — ¢r(0) is defined as in Definition
6.9, and a lexicographic order f <? ¢ on finite functions f, g as in Definition
6.10. Then f <9 g = Mh&(f) < Mh&(g) is seen as in Proposition 6.18.

A computable notation system OT(I) for II;-collection is defined so as to be
closed under Mostowski collapsings. A new constructor I[-] is used to generate
terms in OT'(I). Note that there is no clause for constructing x = ¢s(a) from a
forSe LS.

Definition 7.10 1. {(p,0) : p < o} denotes the transitive closure of the
relation {(p,0) : 3f,a(p =vL(a))}. Let p o= p<0Vp=o.

2. Let « < S for an S € SSt and b = pp(«). Then let

Ma = Hb(a).

3. For @ € ¥ an ordinal po(«) is defined.

(a) Let a < 9d(b) for an S € SSt. Then py(a) = b.

(b) There exists an S = TT € SSt and a T < 7 < S such that a < 71¥
for a k > 0. Let p < S be such that o = S[p/S] for a 8 € M,. Let

po(a) = po(f).
(¢) po(a) = 0 otherwise.
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o= wg(a) € OT(I) only if

SCi(f) € Ha(SC1(a)) (55)

where a = po(a).

Let {m,a,d} C OT(I) with 7 < S € §St, m(w) = f, d < ¢ € supp(f), and
(d,c) Nsupp(f) = 0.

When g # (), let g be an irreducible finite function such that SCi(g) € OT(I),
94 = fa, (d,c) Nsupp(g) =0, g(d) < f(d) + Oc—a(f(c); 1) - w, and g <f f(c).

Then a = ¥2(a) € OT(I) only if

5Ci(g) € Mq (56)

The Mostowski collapsing a — a[p/S] (o € M) is defined as follows. (S)[p/S]
p, (SH[p/S] := pt, and (D)[p/S] := I[p]. (71)[p/S] = (7[p/S])T, where S < 7i.
(I[)lp/S] = Tirlp/S]), where Tir] £1.
A relation a < 3 for a, 8 € OT(I) is defined so that ¥{(a) < x and p <
?gf(l;b) < pt <7 =ty (c) < Y (d) < 77 < I[p] for every k,p, a,b,c,d and
7g7 *

Proposition 7.11 There is no ¥} (a) € OT(I) such that p < ¢l (a) < pf < 0.

Lemma 7.12 For p < S and S € SSt, {a[p/S] : o € M,} is a transitive
collapse of M, as in Lemma 6.23.

7.3 Operator controlled derivations for 1I;-Collection

We consider RS-formulas in a language with a unary predicate St(a), where
a = L, for a stable ordinal . Specifically St(a) :~ \/((Vz € v(z € a)) A (Vz €
a(x € 1)))es with J ={Ly : K € StN (|a| + 1)} for St C OT(I).

Definition 7.13 A finite family is a finite function Q C [[¢ ¥s such that its
domain dom(Q) is a finite set of successor stable ordinals, and Q(S) is a finite
set of ordinals in Wg for each S € dom(Q). Let Q(T) = 0 for T ¢ dom(Q) and

U Q= USEdom(Q) Q(S) Define MQ(S) = mo‘EQ(S) M,.
For A~\/(A,),esjand c € J

v € [QaJ = [Q]-aJ & VU € dom(Q) (rk(A,) > U = k(1) C M)

We define a derivability relation (H-,©;Qm) 3¢ [;II'! where ¢ is a bound
of ranks of the inference rules (stbl) and of ranks of cut formulas. The relation
depends on an ordinal 7o, and should be written as (H,,©;Qun) F:%, r;am.
However the ordinal 7y will be fixed. So let us omit it.

Definition 7.14 Let © a finite set of ordinals, a,c ordinals, and Qr a finite
family such that vo < po(c) for each (S,0) € Qu. Let Il = U, ¢ ¢, Ho € Ao(I)

be a set of formulas such that k(II,) C M, for each (S,0) € Q. Let bl =
UUEUQH H[:/S] and @QH(S) =0nN MQH(S)-
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(H.,©;Qn) 2 T; 1 holds for a set I' of formulas if v < 7o

k(T) € H,[0]&Vo € | Jan (k(n,,) CH, [@<ﬂ>]) (57)
VS € dom(Qm) ({V,a, ¢, v} UKS(D,II) HW[GQH(S)]) 6 (58)
V{U < S} C dom(QH) (S S H’Y[GQH(U)]) (59)

and one of the following cases holds:

(\/) 7 There exist A ~ \/(4,),cs, an ordinal a(:) < a and an ¢ € J such that
A€T and (H,,0;Qn) H: T, A, 110

(\V)! There exist o € |JQm, A ~ \/(A,).cs, an ordinal a(1) < a and an ¢ € [0].J
such that Al°/SI e 11 (1, ©;Qm) Fre® (AL)[J/S] RIA

(A\) There exist A ~ A(A,),e, ordinals a(:) < a such that A € I and for each
L€ [Qu)ad, (Hy, © Uk(): Qr) F2%) T, A, T

(MU There exist o € JQm, A ~ A(A,).cs, ordinals a(1) < a such that Al°/S] ¢
10 and (H., OUK(2); Qm) Fee® oIl (AL)[J/S] for each ¢ € [Qr]aJN[o]J.

(cut) There exist an ordinal ay < @ and a formula C such that (#., ©;Qm) F:%
I, -C; 11 and (H., 0;0Qn) i C,T; 1 with 1k(C) < e.

(2(St)-rfl) There exist ordinals as,a, < a and a formula C' € 3(St) such that
c>1, (Hy,0;Qm) Fi T, 05100 and (H,, ©;Qn) 20 =32 C@D T 110,

(3(Q)-rfl) There exist ordinals as, a, < a and a formula C' € () such that ¢ >
Q, (H,,0;Qm) Foe T, C; T and (H,, ©;Qn) For -3z < Q@D Ty 100,

(stbl(S)) There exist an ordinal ag < a, a successor stable ordinal S, a A-formula
B(0) € Ay(S) and a u € Tm(I) for which the following hold:

S € H4[Oqy(s)] & VU € dom(Qu) NS (S € H4[Og,v))) (60)

S <rk(B(w)) < ¢, (H~,0; Q) Fi*o T, B(u); T, and (H4,0U{c};Qn U
{(S,0)}) F% T;=B(u)l*/5) T holds for every ordinal o € Wg such that
po(o) > 70 and

OU{S} Cc M, (61)
where dom(Qn U {(S,0)}) = dom(Qn) U {S}, and (Qn U {(S,0)})(S) =
QH(S) U {J}

(H+,0:Qn) F2% T, Bu); I {(H,, 0 U{o};an U{(S,0)}) Fi® Iy -B(u)l7/5 1},

(H+,0;Qn) Fe Tl

Assume (60) and (61). Then (© U {o})@quuis,o))s) = Oaus), and (O U
{U})(QHU{(S,U)})(U) = (@ U {0})QH(U) D eQn(U) for U e dom(Qn) ns.

6(58) means {v,a,c,70} C H~[©] when dom(Qr;) = 0.
"The condition |¢| < a is absent in the inference (\/).
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Lemma 7.15 (Tautology) Let v € H[k(A)] and d = rk(A).
1. (Hy, k(A); 0) F524 = A, A; 0.

2. (Hq, k(A) U LS, o} {(S,0)}) g2 ~Ale/Sl Ale/S]if k(A) U {S} € M, and
v >8S.

Proof. Each is seen by induction on d = rk(A). For example consider the
lemma 7.15.2. We have rk(Al°/S) < S and (k(4) U {S,0}) N M, = k(A) U {S}
for (58) and (59), and k(Al7/5)) € Hs((k(4) NS) U {o}) for (57). O

Lemma 7.16 (Embedding of Axioms) For each axiom A in Sy there is an
m < w such that (Hy,0;0) F12, A; O holds.

Proof. Let us suppress the operator Hy. We show first that the axiom (50),
SSt(a) Ap(u) Au € Ly — ol (u) by an inference (stbl(S)) for successor stable
ordinals S < I. Let B(0) € Ag(S) be a A-formula, and u € T'm(I).
We may assume that I > d = rk(B(u)) > S. Let ko = k(B(0)) and k,, = k(u).
Then k(B(0)) C Ho(ko). Let o € ¥g be an ordinal such that kg Uk, U{S} C M,
and vy < po(0).
ko Uky U{S,0};{(S,0)} F52¢ B(ulo/8l); =B (u)lo/8]
ko Uku; 524 2B (u), B(u); {ko Uku U {8,0}:{(S,0)} F§***" 3z € LsB(a); ~B(w)"/ I},
ko Uku U {S};F! =B(u), 3z € LsB(z);
ko U {S}; ™! =3z B(z), 3z € LsB(x);

V)
(stb1(S))

Therefore (Hi, 0;0) H' VS, v [SSt(S) A A(v) Av € Lg — ASD(v)] ; 0, where
SSt(a) & (St(a) AIB < a¥y < aSt(y) =7 < B)]).

Next we show the axiom (49). Let « be an ordinal such that o < I. We obtain
for @ < af < Twith dy = rk(a < af) and af < d; = rk(St(al)) < dy = w(af+1)
with af € Ho[{a}]

{a};0 5% a < ati0 {a};0 52" St(at);0
{a};0 % o < ot A St(at); 0 V)
{a};0 52" 3o (o < 0 A St(0)) ;0 N
0;0 F5t Yo € ON3o (a < o A St(a)) ;0

O

Lemma 7.17 (Cut-elimination) Assume (H.,©;Qu) H:¢, Iy with ¢ > 1
Then (H.,©; Q) F:* T; 110,
Proof. Use the fact: if (#,, ©;Qm) F:¢ ;111 and ©U{S} € M,,, then (., @U
{o};Qu U {(S,0)}) Fre T;1Ill,

Lemma 7.18 (Collapsing) Let I' C X(St) be a set of formulas. Suppose © C
Ho(P1(7)) and (H,©;Qm) Fo T;T00. Let B = yy(a) with @ = v + w®. Then
(Has+1,0:Qn) H5° TED: T holds.
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Proof. By induction on a. We have {v,a} C H,[Oq, ()] by (58), and § €
H&Jrl[@QH(S)] for S € dom(Qnm)

When the last inference is a (stbl(S)), let B(0) € Ao(S) be a A-formula
and a term u € Tm(I) such that S < rk(B(u)) < I, k(B(u)) C H,[©], and
(H,0; Q) H T, B(u); TIL! for an ordinal ag € H,[Og,] N a. Then we obtain
S <rk(B(u)) < B. a

7.4 Operator controlled derivations with caps

Let (H.,0;0Qn) 5 ;T in the calculus for TT}-reflection in subsection 6.5.
In Capping 6.44, each formula A € I' puts on a cap p such that Q C p and
(38), © C M,. (38) is needed in Case 3.1 of the proof. Namely when I' 5
A ~\/(A,),c; is introduced by a (\/) such that (H.,O;Qm) }—E‘(Q(L) I, A, 11l
we need ¢ € [p]J, i.e., k(t) C M,, which follows from k(A,) C H,[O©] C M, by
(34) and © C M,,.

We are concerned here with several stable ordinals S, T, .... It is convenient
for us to regard uncapped formulas A as capped formulas A® with its cap u.
Let M, = OT(I).

In Capping 7.29 T" is classified into I' = T', U USEdom(Qn) I's. I's is the set of
formulas B(u) in inferences for the stability of a successor stable ordinal S.

(Hy,©:Qn U{S}) F:% T, B(u); I {(H,, 0 U{o};Qu U{(S,0)}) Fi* T3 ~B(w)"/", 1M},

(H+,©;Qm) F:o Tt

Each formula A € T's puts on a cap ps for the stable ordinal S. Then (38) runs
© C M, for every S € dom(Qr). This means © C Maq := () M,,, where

8Q = {max(Q(S)) : S € dom(Q),Q(S) # 0}.

KEOQ

Ordinals occurring in derivations are restricted to the set Mpq.

In section 6 for ITi-reflection, an ordinal v, is a threshold, which means that
every ordinal occurring in derivations is in -, (0) and the subscript v < v in
., while each p € Q exceeds 7y in such a way that po(p) > 0. This ensures us
that H(M,) C M,. In the end, inferences (rfl(p, d, f)) are removed in Lemma
6.48 by moving outside H,(0). Specifically Q C H,+s(0).

Now we have several (successor) stable ordinals S, T,... € dom(Q). In-
ferences (stbl(S)) and their children (rfls(p,d, f)) are eliminated first for big-
ger S > T, and then smaller ones (stbl(T)). Therefore we need assignment
dom(Q) 3 S + 7§ for thresholds so that 78 < 42 if S > T. This is done by gap-
ping, i.e., a gap I-2% between 'yg and ’y% in advance, when (H., ©;Qm) F:* T il
is embedded to (H.,01,Q) & . ., f,ﬁ, cf. Capping 7.29.

Definition 7.19 A triple (Q,~%, e%) is said to be a finite family for ordinals o
and by if Q is a finite family in the sense of Definition 7.13 and the following
conditions are met:
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1. Y% is a map dom(Q) > S ’yg such that o + 12 > 7§ > v, 7§ > 'y% +1 for
{S< T} Cdom(Q) and S € Hgyq for S € dom(Q).

Q is said to have gaps 1 if 78 > 42 +1-7 holds for {S < T} C dom(Q), and
73 >4+ 1y for S € dom(Q).

2. For each p € Q(S), m(p) : I — ¢1(0) is special, s(p) < by, p € H73+H(O),
and 7§ < po(p).
3. €® assigns an ordinal €] € Hyapr N (S+1) to each S € dom(Q) such that

max({0} U {p € Q(S) : s(p) > S}) < e3 (62)
Let e =S when S ¢ dom(Q).
Definition 7.20 For a finite family Q, and for A ~ \/(A,),cs
Qs = [Q-amJ = [QJad N [0Q]J N [p]]

where [u]J = J and
09 = () [8]-

KEAQ

Definition 7.21 1. For a finite family Q, let 0@ = {max(Q(S)) : S € dom(Q), Q(S) #
0} and Maq = N,caq Me-

[Qaw J = [Q]-awmd = [Qlad N [0Q]J N [p]]
where [u]J = J and [0Q]J = [,.caqlx]J-

Definition 7.22 Hg(f7 b1,7,0) denotes the resolvent class for Q, p, special
functions f, ordinals by, y, and finite sets © of ordinals defined as follows: o €
HY(f,~,0) iff o € H\y1(0) N p N Mag, SCi(m(o)) C H,[O], © C M,, v <
po(0) < po(p) and m(o) is special such that s(f) < s(m(o)) < by, ' < (m(0)),
where 0,p < S and f < g < Vi(f(i) < g(i)).

We define another derivability relation (H,,0,Q) k¢, , I', where cis a
bound of ranks of cut formulas, and £ a bound of ordinals S in the inference
rules (I‘ﬂg(p, d7 f7 bl))

Definition 7.23 Let (") = © N M, and Oy = © N Maq. Let a,b,c,é <1, a
finite set © C I, and Q be a finite family for o, b1 such that dom(Q) C (€ + 1).

(H+,0,Q) Fie . 5, I holds for a sequent I' = U{FE)’J) cp e {ubuyq}if
7 <%

vp e {u} uJa (kT,) € H,[09] 0 1, O] (63)
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VS € dom(Q) ({7, a,¢,&,70,b1} C H~[Ogs)] N H~[Oaq]) ® (64)
V(U <8} € dom(@) ({878} < My [Baqwy] 1 s [Osc)) (65)
Vp € {u} U(Javs € dom(Q) (k°(T,) C Hy [Ogs)) N HA[Osq])  (66)

v(8,p) € Q (SCulmi(p)) € Mz [ U {S}U Oun) ) (67)

and one of the following cases holds:

(Taut) {-=A® AP} c T for a p € {u} UYQ and a formula A such that
rk(A) < S < ¢ for some successor stable ordinal S.

If tk(4) < S, then (#,,0,Q) F)g_ , —A), Al by (Taut) provided
that (64) and (66) are met.

(V) There exist A ~ \/(A4,),es, a cap p € {u} UUAQ, an ordinal a(:) < a and
an 1 € [p]J N [0Q)J such that A® €T and (#,,0,Q) F*¢. , T, (4,)".

€701 7

(A) There exist A~ A(A,).,es, acap p € {u} UJQ, ordinals a(¢) < a for each
L € [Q) e J such that A®) € T and (H,,© Uk(z),Q) F*¢. T, (4,)%.

¢&v0,01 7

(cut) There exist a cap p € {u}UJQ, ordinals ag < a and a formula C such that

tk(C) < ¢, (H4,0,Q) F% 5, T -C®) and (H,,0,Q) % oy C®) . T.

(2(©2)-rfl) There exist ordinals as, a, < a and an uncapped formula C € %(Q)
such that ¢ > Q, (H,,0,Q) k2%, ,, I, C and (H,,0,Q) For ) —32 <
7 C@D) T

(rfls(p, d, f,b1)) There exist a successor stable ordinal S < ¢ and an ordinal
p < S such that
@Q(g) U {S} UBgq C Mp (68)
and p € Q(S) if S € dom(Q). Let R = Q if S € dom(Q). Otherwise
R = QU {(S,p)}, where QU {(S,p)} is a finite family for 7 extending
Q such that dom(R) = dom(Q) U {S}, R(S) = Q(S) U {p}, €& = e for
S# T € dom(Q), 7 > A& + 1 for every S > T € dom(Q) and & > o + L.
Also there exist an ordinal d € supp(m(p)), a special function f, an ordinal

ag < a, and a finite set A of uncapped formulas enjoying the following
conditions.

(x0) p < €& if 5(p) = max(supp(m(p))) > .
(r1) A CVs(d):={d:1k(d) <d,0is a \/-formula} U {4 : rk(d) < S}.

8(64) means {v,a,c,&, 70} C H~[O] when dom(Q) = 0.
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(r2) For g = m(p), s(f) < b, SCi(f) U SCi(g) C Hz[0P)] and f4 =
ga& f<d g ().
(r3) For each § € A, (H,,0,R) 2% | T, —6(P),

(rd) Let y*{E} = 4R RUED} = ek and o € HE(f,b1,7%,0() UByy).
Then (H,,0U{o},RU{(S,0)}) Fe% ., T, A holds.
In particular o < €& if s(o) > S by (62).

Note that |JQ C H,[O] need not to hold. Moreover (© U {0})rs)u{o}) =
@R(g) = @Q(S) and Oy = 66Q by @(p) C M, and (68).
In this subsection the ordinals 7y and b; will be fixed, and we write I—ig for

a
}_075770751'

Lemma 7.24 (Tautology) Let {7,70,S} Uk"(A) C H,[Oqm)] N Hy[Osq] for
every T € dom(Q) C (S+1), o € {u}ulUQ and k(A) C M,. Then (H,,0,Q) i—gfis
-A©@) A9 holds for d = max{S,rk(A)}.

Lemma 7.25 (Inversion) Let A ~ A\(A,).e; and (H,0,Q) Fi . I' with AP eT
and there is no S € SSt such that tk(A) < S < £. Then for any v € [Ql 4 J,

(Ha ou k(L)7 Q) Fg,g Fa (AL)(p)

Proof. We need to assume that there is no S € S5t such that rk(4) < S < ¢
due to (Taut). O

Lemma 7.26 (Reduction) Let C' ~ \/(C,),cs and Q < tk(C) < ¢. Assume
(14,0,QF2, T,=-C") and (H,,0,Q) F2 . C), T with SStN (c,&] = 0.
Then (H,0,Q) HE" T

Lemma 7.27 (Cut-elimination) If (#,,0,Q) Fi . [ withQ <c <L, VS €
dom(Q)(c € H,[Oq(e)| NH,[Oaq]) and S5tN (c,€] = 0, then (H.,,0,0) 2@ T,

Lemma 7.28 (Collapsing) Let T' C () be a sets of uncapped formulas. Sup-
pose © C Hy(va(v)) and (H,,0,0) kg o T Let 8 = ¢q(a) with @ = v+ w® <
vo. Then (Hat1,0,0) }_g,o LB polds.

7.5 Eliminations of stable ordinals

Lemma 7.29 (Capping) Let T UII C Ag(I) be a set of uncapped formulas.
Suppose (H~,0;Qm) Fi% ;T where a,¢ < T, dom(Q) C ¢, T' = Ty U

c,Yo
. o/S
Usedom(am Tsr T = Ug oyean 1157

For each S € dom(Qu), let ps = 9 (ds) be an ordinal with an ordinal
ds € H,[O] and a special finite function gs = m(ps) : I — ¢u1(0) such that
supp(gs) = {¢} with gs(c¢) =as+1, [(2a+ 1) < as+ I, SCi(gs) = SCi(c,as) C

~

Ho(SCi(0s)) N H, (O], cf. (55) and (67). Also let Tl = g yyeq, 115, T =
Fl(lu) U USEdom(Qn) FéPS)
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Let Q be a finite family for vo > v such that Q(S) = Qu(S) U {ps} for S €
dom(Qm) = dom(Q), ps € H’Y§+H(O) for'S € dom(Q), and as +1 < fyg < s <
’yg + 1. Also eg =ps+1.

Assume VS € dom(Qm) (73 € H,[O)), Qu(S) C ps, O U{S} C M., po(o) <
po(ps) = s and SCi(m(o)) C Ho [© U {S}] for each (S,0) € Qu, Y{U < S} C
dom(Qm)(ps € M,,), and Q has gaps 2°.

Then (H,Om,Q) e . T, 11 holds for O = © U Q.

Remark 7.30 When ag = I(2a) and © = (), 65 < 7¢ + I denotes the natural
sum ya#a#tc. Then © U {S} C M,, and {a,c} C Ho(SCi(ds)). Hence (55) is
enjoyed for ps. Namely SCi(gs) = {c,as + I} C Ho(SC1(ds)) C Hs:(SCu(ds))
holds.

Let U € dom(Qu) N'S. We have {y0,S,a,c} C H,[Oq,w)] by (58). We
intend to be 'yg =% +1-2%-nforn =#{T € dom(Q) : T > S}. Then
{S,a,¢,78} € H,[Ogy )] N H[Oaq] for (64) and (65).

On the other hand we have Qi (S) C ps, and ps = max(Q(S)), i.e., 0Q = {ps :
S € dom(Qn)}. Also {S,ds} USCi(gs) € Ho({S,a,¢,73} UO) C M, = Hs,(pv)
for U < S. Therefore ps € M, for U < S by Js, 'yg +1< 'y%. Moreover ps € M,
for U > S since ps < S < py.

Proof of Lemma 7.29. This is seen by induction on a as in Capping 6.44. Let
us write ¢ for ¢ . . in the proof. By assumptions we have Qi (S) C ps and

© C M,,. Hence © = () = Oy and Ogn(s) = Oq(s)- On the other hand we
have k(I') € H,[0] and for ¢ € |JQm, k(IL,) C H,[0O)] by (57). Therefore (63)
and (66) are enjoyed. We have {v,a,c,7,78,S} C H+[Ogy)] N H+[Ooq] for
every {U < S} C dom(Q) = dom(Qq) by the assumption, (58) and (59). Hence
(64) and (65) are enjoyed. Moreover for (67) we have SCr(m(ps)) C H[O] and
7<%

Casesl. First consider the case when the last inference is a (stbl(S)): We have
a successor stable ordinal S, an ordinal ag < a, a A-formula B(0) € Ay(S), and
a term u € Tm(I) with S <rk(B(u)) < c.

For every ordinal o such that ©® U {S} C M, and po(c) > Yo

(H1+,0,Qu) F:% T, B(u); I (7,0 U{S,0};Qn U{(S,0)}) Fi% Ty ~B(w)/ 11l
(H~,©;Qm) Fo Tt

Let h be a special finite function such that supp(h) = {c} and h(c) =
I(2ap+1). Then h. = (gs). = 0 and h® <{ (gs)'(c) by h(c) = I(2ap+1) < I(2a) <
ap = (gs)'(c). Let R =QU{(S,ps)} and o € Hgs(h,c, ’yg,@(pg) U {S} U Byy),
where ©(75) U ©4q = O.

For example let o = ¢! (85 +n) with 7 = max({1} U E5(©)). We obtain ©U
{S} € Hs.(0) = M, by OU{S} C M, and {s, ap, c} C H,[O]. Let py € OR. We
claim that o € M,,. If U > S, then o < py. Let U < S. Then we have ps € M,
by the assumption, and o € M, follows from {c, ag, ds}UO C H[O] C Hs,(pv)
and 6s +n <8 + 1 < 43 < dy. Therefore o € HE (h,c,~E, 0s) U {S} U Byy).
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Since Q is assumed to have gaps 2%, we may assume that RU{(S,0)} as well
as R has gaps 2%°. N R

TH yields (H.,, O, R) F% T, B(u)®) I, and for ul?/S] € Tm(S) and B(ul""l) =
B(w)Sl, (H,,01 U{S,0},RU{(S,0)}) F2% T, —B(u)@) 11 follows, where ps >
o € M,; and we have by (59), k(B(u)) C H[Oq, (1] NH[Oaq] if rk(B(u)) > T.
Hence k(B(u)) C H[Orcr)] N H~[Oaq] by Oty = Ogy (1) for (59). Moreover we
have S € H.,[Ogm)] for every T < ¢, Ogy(s) U Oag C M, for (68), ps < eg for
(r0), rk(B(u)) < ¢ and s(ps) < ¢ for (rl).

We obtain by an inference (rfls(ps, ¢, h, ¢))

(H,0m,R) F2 T, B(uw)®) I (Hy, Ou U{S, o}, RU{(S,0)}) 20 T, -~B(u), 11
(H'y,@th) }_2 f7ﬁ

in the right upper sequents o ranges over the resolvent class o € Hgg (h,c,7&, ey
{S} U Qaq).
Case 2. When the last inference is a (cut): There exist ag < a and C' such
that 1k(C) < ¢, (H,,0;Qn) F:% T, =C; T and (H,,0;0Qn) Fioo T, ;1. TH
followed by a (cut) with an uncapped cut formula C®) yields the lemma.
Case 3. Third the last inference introduces a \/-formula A in I". Let A ~
V (A,),c;- Then AP € Fépg). There are an ¢ € J, an ordinal a(t) < a such
that (H~,©;Qm) e I, A,; I We can assume k() C k(A4,), and claim that
v € [0Q]J with ps € 9. We obtain k(1) C H,[Oaq] C Maq by (57) for ©sq = ©
and v < 79 < 78 < ds < po(ps)-

IH yields (H4,0,Q) o L, (AL)(pS),ﬁ. (H4,0,Q) F¢ L, 1I follows from a
(V)

Other cases are seen from IH as in Capping 6.44. O

Lemma 7.31 (Recapping)
Let S be a successor stable ordinal, (H.,©, Q) Fe S0 W T with a finite family

Q for Yo, b2, TUTL C Ag(I), and T = J{TY) : p € Q*(S)}, where each 0 € T is
either a \/-formula or tk(0) < S, Q" C Q such that Q*(S) C Q(S) with dom(Q") C
{S} and ¥p € Q*(S)(s(p) > S), and Qf is a family such that QF(S) = Q(S) \ Q¥(S)
and QF(T) = Q(T) for T #S. Il is a set of formulas such that T € {u} UJQS
for every A e 1I.

Let max{s(p) : p € Q'(S)} < by and w(b,a) = w*"a. For each p € QY(S), let
S < b € H,[0P] N H,[Osq] with tk(T,) < bP) < s(p), and r(p) be ordinals
such that r(p) € HI(h" (m(p);w(bi,a)), bz, 73, 0% U {S} U Opg). Assume
VT < S(b1 € Hy[Og(r)] N H[Oaq))-

Then (H~,0,Q%) peta) T T holds, where Ty, = U{F(pﬁ(p)) :p € Q(S)},

by ,5,70,b2 _’
= max{ey,bi}, @ = @ U{(S,5(p)) : p € Q) T = 28, e = e for
T #S and e =max({r € Q(S) : s(1) > S} U {k(p) : p € A/(S)}) + L.
ed" < €2 holds when Q' = {(S, p) € Q: 5(p) > S} # 0.

Proof. This is shown by main induction on b; with subsidiary induction on a
as in Recapping 6.47. O
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Lemma 7.32 (Elimination of one stable ordinal)
Let S = TT be a successor stable ordinal and (H.,©,Q) l_SS’Y(J b, 1L T with a
finite family Q for o and by > S, I € Ag(I), T € Ag(S), T = J{T¥ : p €
Q(S)}, and @ = {(S,7) € Q: s(r) > S}, @ =Q\ Q. I is a set of formulas such
that for each A7) €11, 7 € {u} UlUps Q(U).
Leta = <pbl+€g(a), 0 =Q/S={(T,p)€Q:T<S} andy = 'ngr]I < yo+I2.
Then Q1 is a finite family for v1,b1 and (H717@,Q1) '_%,T,'n,bl H,F(“) holds

for T® = U{I‘(pu) :p €Q(S)}.

Proof. This is seen by main induction on eg with subsidiary induction on a
as in Lemma 6.48. When S € dom(Q), we have Q(S) C H,, and el € H.,
for v1 = ’yg + I by Definition 7.19. Q; is a finite family for v;,b;. Then 11 €
H[Oq, (r)] N HA[Oaq] for every T € dom(Q;) by (64).

First assume Q'(S) # 0. For each p € Q!(S), let x(p) be an ordinal such
that r(p) € HI(hS(m(p);w(bi,a)), bi, 3, ©@ U{S}UOsq) with w(b, a) = v’ a.
We obtain (#.,0,Q") }—fl(g%)m I1, T, by Recapping 7.31. Cut-elimination 7.27
with SStN (S, S] = 0 yields for a1 = s, (w(b1,a)), (H+,0,Q%) gl 4, IL, T,
where e = max{k(p) : p € Q'(S)} + 1 < €. MIH yields (H,,,0,Q;) }_%TT,'n,bl
I, T™ | where a; = Ppy el (a1) < galereg(a) and v; =18 + 1.

In what follows assume Q*(S) = 0.

Case 1. First let {=A(7), A} CTTUT with o € {u} UUJQand d =rk(A) <S
by (Taut). If d <T, then (H,,,0,0Q1) P51, 5, 1L I'® by (Taut).

Let T <d < S. Then (H,,,0,01) 3%, ,, ILT® by Tautology 7.24 and
(Hy,,0,Q1) Fip 5, ILT® by @ > S > d.

Case 2. Second consider the case when the last inference is a (rfly(p, d, f,b1)).
If U < T, then SIH followed by a (rfly(p, d, f,b1)) yields the lemma. Let U = S.

Let ¢ = m(p) and s(p) > d € supp(g). Let R = QU {(S,p)} and v; =
78 + 1. We have a sequent A C \/g(d) and an ordinal ay < a such that
rk(A) < d < s(p) and (H4,0,R) Fg% 4, II,T, -6 for each § € A. On
the other hand we have (H,,© U {o},RU{(S,0)}) Fg% ., 5, II,T, A, where
o € H3(f,b1,78,0) U {S} U Oy), [ is a special finite function such that
s(f) < b1, fa=ga, f* <? ¢'(d) and SCi(f) C H, [9(")]

Case 2.1. s(p) < S: Then A C Ay(S). Let ag = = @y, +ex(ao). SIH yields
(Hyis ©,Q0) o, TLT®, =60 foreach § € A, and (H,,0U{c}, Q1) F3%
ILT®, A for ¢ € Hoypiy = H,,. We obtain (Hy,,0,Q:) H? | TLT® by
beveral (cut)’s for a p < w. Cut-elimination 7.27 with SSt N (T, T] = (0 ylelds
(Hy,, 0, Q1) FEDH TLT®, where s (a0 +p) < @ = @y, 4 9(a) by by + eS > S.
Case 2.2. s(p) > S: Then S g dom(Q) and I" = (). We have (7—[7,@ R) F§ 5001
II. Let R® = {(S,p)}. Recapping 7.31 yields (H,,©,R") Fs,(sb,fyz%l IT and
¥ = k+1 < p< ek MH yields (H,,0,Q1) e, H with a1 =
Poy e (W(b1,0)) <y, a(a) =aby e <S=e.
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Case 3. The last inference is a (A): We have a(1) < a, A® € T and for each
L € [Q g J with A~ A\(A,),es, we have (H,,OUk(:),Q) l_g,(SL,)'yo,bl ILT, (A,)®.
Since A € Ay(S), we obtain k(4) C H,[0P]NS C M,NS = p for p € Q(S).
This means A € Ag(p), and [p]J = J. Hence [Qla»J = [Q]awJ. SIH
yields (H+,,© U k(t),Q1) '_%ETLT),n,bl I, T®™ (A,)® for each ¢ € [QaJ, where
30 = 9y, 4s(b+a(0)) < 3. A (A) yields (,.0,0)) Fi g, LT

Other cases are seen from SIH. a

Definition 7.33 We define the S-rank stk(A®)) of a capped formula A% as
follows. Let stk(A®™) =0, and stk(A®)) =S for p < S € SSt.
stk(T") = max{stk(A()) : A() € T}.

Lemma 7.34 (Elimination of stable ordinals)
Suppose (H~,0,Q) F¢ €00 L and stk(T") < S <€ < by <1, where S is either a
stable ordinal or S = Q such that YU € dom(Qs)(S € H,[Oqu)] N H,[Oaq)) for
Qs =QIS.

Then there exists an ordinal vo < vs < o+ I? such that Qs is a finite family
for vs,b1 and (H, O, Qs) I—g,(sé’%),bl I' holds for f(&,a) = vb,+e+1(a).

Proof. By main induction on ¢ with subsidiary induction on a. (64) in

(Hre, ©,Qs) Fgg’;};bl I follows from (64) and (65) in (H.,0,Q) F¢, . , T
Case 1. Consider the case when the last inference is a (rflp(p, d, f,b1)) for a
T =Ur <& If T <SS, then SIH yields the lemma. Let S < T € dom(R) for R =
QU{(T, p)}. We have YU € dom(Qr)(T € H,[Oqw)]NH[Oaq]) by (64). Let A be
a finite set of sentences such that (%, ©,R) }—ngm’bl I, -6 for each § € A, and
(Hy, ©,RU{(T,0)}) F¢% o5, T A) for each o € H3(f, b1, 0P U{T}UBsy),
and ag < a. We have stk(6(”)) = stk(A(®)) = T. By SIH there exists a yp <
Yo +I? such that for a1 = f(&,a0) = @b, +£+1(a0); (Hre, ©,Qr) Fr'p 5 T —6(P)
for each 0 € A, and (H,,,0,Qr U{(T,0)}) Fp'p . 4, L,A@. (efip(p, d, f,b1))
yields (H~., 9, Qr) '_'lﬂl‘?ﬁl‘,w,bl I for as = a; + 1.

On the other hand we have stk(I') < S < T = Uf < ¢&. By Lemma 7.32
pick a vy < vr + I? = 49 + I2 such that (H,,©,Qu) I—%?Uﬁmbl I', where a3z =
<Pb1+e?r1 (a2) = <Pb1+e?r1 (f(§7a0) + 1) < Sob1+5+l(a’) = f(gaa’) by e'?l‘l <T< g If
S = U, then we are done. Let S < U with U < ¢. Then by MIH pick a s such
that (H;,0,Qs) Fg .0, I for as = f(U,a3) = @p,4us1(as) < pp4e41(a) =
f(&a) by U <.

Case 2. Next consider the case when the last inference is a (cut) of a cut
formula C(*) wth rk(C) < € and T = srk(C(?)) < ¢, We have an ordinal ag < a
such that (H,,©,Q) F¢% 4 I, -C©@) and (H,,0,Q) FE% o b C)T.

Let U = max{S, T}. First assume U < ¢. By SIH pick a 4y such that
(M, 0, Q) iy, T 2C ) and (Hy,, ©,Qu) Fity 6, €5 T, where a; =
(€, a0) = wp+e+1(a0). A (cut) yields (H~,, O, Qu) F?}J;U)bl I'. Cut-elimination
7.27 with S8t N (U, U] = 0 yields (H,, ©,Qu) F{y 4,5, 1> where as = pe(ar +
1) < @piqeri(a) = f(€,a) by E <bi+ &+ 1. If U=S, then we are done. Let

79



U=T>S. By MIH with U < § we obtain (H.,0,Qs) kg%, I for a s,
where a3 = f(U, a2) = ¢p,+u+1(a2) < p4¢41(a) = f(§,a) by U <&

Second let T =U = £ = WT > S. Then C € Ag(T). By Lemma 7.32 pick
a yw such that (Hy,,0,Qw) F§ w5 T, =C™ and (Hy,, 0, Qw) 504500,
C™ T, where ag = Py, +e (ag). A (cut) yields (H,, O, Qw) l_%?&,lvw,bl T, and we
obtain (H,,, ©,Qw) F w ., 5, I by Cut-elimination 7.27, where a4 = pr(ao+1)
and SSt N (W, W] = 0. By MIH pick a 7g such that (#.,,0,Qs) F% ., [ for
W < & and a5 = f(W,a4) = pp,4wr1(aa) < @pqet1(a) by W <& T =€ <
b1+€+1,e%§T:£<§+1anda0<a.
Case 3. There exists an A such that {=A®) AP} C T with stk(A®)) < S
and d = rk(A) < T < ¢ for a T € SSt by (Taut). We may assume d > S.
Then (#.,0,Qs) }—(2)757707171 I’ by Tautology 7.24 and the lemma follows from
d< &< f(&a)

Other cases are seen from SIH. O

Theorem 7.35 Suppose KPw + II;-Collection + (V = L) + 62 for a ¥;-
sentence 0. Then Ly (.., ) = 0 holds.

Proof. Let S; - 642 for a Y-sentence §. By Embedding 7.16 pick an m > 0
so that (Hi,0;0) ;2™ L2, Cut-elimination 7.17 yields (Hy, 0; ) Hi@ 6L for
a = Wy, (I-24m) < wype1(I+1). Then Collapsing 7.18 yields (Ha11, 0; 0) F;}ﬂ gLe
for B = ¢(a) € LS with & = w'"™* = w41 (I-2 +m) > 3. Capping 7.29 then
yields (Ha1,0,0) }—g’ﬁ’%ﬁ 9L where 79 = @ + 1 and gL = (9Lo)®,

Let o = @g.241(8). By Lemma 7.34 we obtain (H,q,0,0) F& , ., 5 07 for a
Yo < Yo+I2. This means (g, 0,0) 8 o . 5 077 (Hygrat1,0,0) '_g,o,'m,ﬁ oFs
follows from Collapsing 7.28 for § = q(yq + a) with w®* = «. Cut-elimination
7.27 yields (Hyg+a+1,0,0) F(f’%(’i)mﬂ 6%5. We see that 075 is true by induction
up to s(0), where § < Yo(wWm2(l+ 1)) < Ya(ert).

7.6 Well-foundedness proof in X-DC+BI

Theorem 7.36 [Acoc]
Y1-DC+BIF Wola] for each o < ¥ (er41)-

To prove Theorem 7.36, let us introduce 1-distinguished sets D [X], which is
obtained from Definition 3.5.1 of distinguished sets D[X], first by replacing the
next regular a® by the next stable af, and second by changing the well-founded
part W(C*(X)) to the maximal distinguished set W{*(X) = U{P : D§[P; X]}
relative to o and X, where PNa = X Na if D§[P; X] and « is stable. We see
that W = ([ J{X : D1[X]} is the maximal 1-distinguished and ¥3-class.

In this subsection let us sketch a part of a well-foundeness proof in £1-DC+BI
by pinpointing the lemma for which we need :3-DC.

An ordinal term ¢ in OT'(II) is said to be regular if 1/ (a) is in OT(I) for some
f and a. Reg denotes the set of regular terms. In this section we need the next
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regular ordinal above an ordinal « in defining distinguished sets. Although it is
customarily denoted by at, it is hard to discriminate ot from the next stable
ordinal af. Therefore let us write for a < I, at' = min{c € SSt : ¢ > a}
for the next stable ordinal af, and at’ = min{c € Reg : 0 > «a} for the next
regular ordinal o™ Let at := ot := co if @ > I. Let o~ := max{o €
Sty U {0} : 0 < a} when a < I, and o~ :=Tif o > 1. Since SSt C Reg, we
obtain at’ < ot and Bt < o if B < o € St since each ¢ € St is a limit of
regular ordinals.

Definition 7.37 C%(X) is the closure of {0, 2, I} U(X Na) under +, ¢, {0, S} U
SCi(f) w I (B) for ¢ > a, and p — I[p], p' for I[p], p! > a in OT(I).

Definition 7.38 For P, X C OT(I) and v € OT(I) N1, let

W§(P) = W(C(P))
D)P;X] & PNy =XnNqy &WolXNy & (69)
Vo (7_1 <a<P—-WP) Nat’ = Pﬂa+0)

wix) = P cor : nylpix))
Di[X] & WolX]&Vy (’y <X SWI(X)Nyt =Xn 'y+1) (70)

W, {x cor@m : Dy[x]}

A set P is said to be a 0-distinguished set for v and X if DJ[P; X], and a set
X is a 1-distinguished set if D1[X].

Observe that in X3-AC, W&(P) is I, DJ[P; X] is AL, W] (X) is X3, and
D;[X] is AL. Hence W is a i-class.

Let a € P for a 0-distinguished set P for v < T and X. If o < 'y_l, then
a € X with Wo[X]. Otherwise W(C*(P)) Nat’ = W (P)nat’ = Pnat’
with o < at’. Hence P is a well order.

Lemma 7.39 (33-CA)
Suppose Wo[X N 7_1]. Then W{ (X)) is the maximal 0-distinguished set for -y
and X, i.e., DJIW{(X); X] and Y (Y = W] (X)).

Proof. This is seen as in Proposition 3.9. O

Lemma 7.40 1. Let X andY be 1-distinguished sets.
Then v < X &~ < Y:>X07+1 :Yﬂ*y"‘l.

2. Wy is the 1-mazimal distinguished class, i.e., D1[Wha)].

3. For a family {Y;}jes of 1-distinguished sets, the union Y = J;c;Y; is
also a 1-distinguished set.
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Lemma 7.41 1. C'W)NI=Wo Nl =W (C'(Ws))NL

2. (BI) For each n < w, TIC' (W) Nw,(I + 1)], i.e., for each class X,
Prg[Ct(Ws), X] — C'Ws) Nw, (I +1) C X.

3. Foreach n < w, C'(Wa) Nw, (I4+1) € W(C'(Ws)). In particular {1, w, (I+
1} c W(C(W2)).

As in Definition 3.10, GX := {a € OT(I) : a € C*(X) & C*(X) N C X}.

Lemma 7.42 (31-CA)

Suppose D1[Y] and o € GY. Let X = W(Y) N . Assume that one of the
following conditions (71) and (72) is fulfilled. Then o € X and D1[X]. In
particular o € Wy holds. Moreover if a <Y, then a €Y holds.

i (Y Nnat <& <ot S WEY)NBH Y) (71)
V8 >a (Ym ot < B&pt <ot S WEY)N B C Y)
LV <a” H(B <yt &y <Y) (72)

Proof. This is seen as in Lemma 3.15 by showing that DJ[P;Y], @ € X and
Dy[X] for P=We(Y)Nnat =W (Y))Nnat’. O

Lemma 7.43 Assume D1[Y], I >S € Y N (StU{0}) and {0,Q} C Y. Then
st =8t e W,

Proof. Since the condition (72) in Lemma 3.15 is fulfilled with (S*l)*O =
(ST~ =St and S~ =S, it suffices to show that S*' € G¥. Let o = S+,
a € C*(Y) follows from S € Y Na. Moreover v € C*(Y)Na = v € Y is seen
by induction on £y using the assumption {0, Q} C Y. Therefore o € G¥. O

Lemma 7.44 (£}-DC)
If a € G2, then there exists a 1-distinguished set Z such that {0,Q} C Z,
a€G? and VS € Zn (Stu{Q})[St € 7).

Proof. Let a € G™2. We have a € C*(W,). Pick a 1-distinguished set X such
that o € C*(Xp). We can assume {0,922} C Xy. On the other hand we have
COWo)Na € Wy and VS € Wy N (Stp U {Q})[ST € Wy] by Lemma 7.43. We
obtain

VYV X3Y {D,[X] — Di[Y]
A YBeOT(M(UB<nABECHX)Na— BEY)
A VSe(Stu{Qh)(tS<nASeX —»Stey)}
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Since D1[X] is AL, ¥3-DC yields a set Z such that Z; = X, and

Vn{Dl [Zn} — Dl [Zn+1]
A VBeOTM(UB<nABEC(Zy)Na— BE Zpii)
A VSe(Stu{Q})(tS<nAS€eZ,—»S € Z,41)}

Let Z = J,, Zn. We see by induction on n that D;[Z,] for every n. Lemma
7.40.3 yields D1[Z]. Let f € C*(Z) Na. Pick an n such that 8 € C*(Z,)
and 3 < n. We obtain 8 € Z,,1 C Z. Therefore a € G#. Furthermore let
S e Zn (Stu{Q}). Pick an n such that S € Z,, and ¢S < n. We obtain
St € Z,41 C Z. |

Remark 7.45 Lemma 7.44 is a ¥-statement, which is proved in 23-DC. Alter-
natively we could prove the lemma in $1-AC if we assign fundamental sequences
to limit ordinals as in [Jéger83].
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