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G. Jäger, Zur Beweistheorie der Kripke-Platek Mengenlehre
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Plan

1. KPω

2. Rathjen’s analysis of Π3-reflection

Well-foundedness proof in KPΠ3 (skipped)

3. First-order reflection

4. First-order reflection (contd.)

5. Π1
1-reflection

6. Π1
1-reflection (contd.)

7. Π1
1-reflection (contd.)

8. Π1-collection

9. Π1-collection (contd.)

An ordinal α is said to be recursive iff there exists a recursive (computable)
well ordering on ω of type α. ωCK1 (Church-Kleene ω1) denotes the least non-
recursive ordinal.

Definition 0.1 1. Prg[≺, U ] :⇔ ∀x[∀y ≺ x(y ∈ U) → x ∈ U ]
(U is progressive with respect to ≺).

2. TI[≺, A] :⇔ Prg[≺, A] → ∀xA(x) for formulas A(x), and
TI[≺, U ] ⇔ Prg[≺, U ] → ∀xU(x) (transfinite induction on ≺ ).

3. Let ≺ be a computable strict partial order on ω. If ≺ is well-founded,
then let |n|≺ := sup{|m|≺+1 : m ≺ n}, and | ≺ | := sup{|n|≺+1 : n ∈ ω}
(the order type of ≺). Otherwise let | ≺ | := ωCK1 .

Definition 0.2 For a theory T comprising elementary recursive arithmetic EA
the proof-theoretic ordinal |T | of T is defined by

|T | := sup{|≺| : T ⊢ TI[≺, U ] for some recursive well order ≺} (1)

where U is a fresh predicate constant.

Now, most brutally speaking, the aim of the ordinal analysis is to compute
and/or describe the proof-theoretic ordinals of natural theories, thereby mea-
suring the proof-theoretic strengths of theories with respect to Π1

1-consequences.
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1 Ordinal analysis of KPω

1.1 Kripke-Platek set theory

A fragment KP of Zermelo-Fraenkel set theory ZF, Kripke-Platek set theory, is
introduced Let Lset = {∈,=} be the set-theoretic language. In this section we
deal only with set-theoretic models ⟨X;∈↾(X ×X)⟩, and the model is identified
with the sets X.

Definition 1.1 (∆0,Σ1,Π2,Σ)

1. A set-theoretic formula is said to be a ∆0-formula if every quantifier oc-
curring in it is bounded by a set. Bounded quantifiers is of the form
∀x ∈ u,∃x ∈ u.

2. A formula of the form ∃xA with a ∆0-matrix A is a Σ1-formula.

Its dual ∀xA is a Π1-formula.

3. The set of Σ-formulas [Π-formulas] is the smallest class including ∆0-
formulas, closed under positive operations ∧,∨ , bounded quantifications
∀x ∈ u,∃x ∈ u, and existential (unbounded) quantification ∃x [universal
(unbounded) quantification ∀x], resp.
For example ∀x ∈ u∃yA (A ∈ ∆0) is a Σ-formula but not a Σ1-formula.

4. A formula of the form ∀xA with a Σ1-matrix A is a Π2-formula.

We see easily that ∆0-formulas are absolute in the sense that for any tran-
sitive sets X ⊂ Y (X is transitive iff ∀y ∈ X∀x ∈ y(x ∈ X)), X |= A[x̄] ⇔ Y |=
A[x̄] for any ∆0-formula A and x̄ = x1, . . . , xn with xi ∈ X.

Definition 1.2 Axioms of KP are Extensionality ∀a, b[∀x ∈ a(x ∈ b) ∧ ∀x ∈
b(x ∈ a) → a = b], Null set(the empty set ∅ exists), Pair ∀x, y∃a(x ∈ a∧y ∈ a),
Union ∀a∃b∀x ∈ a∀y ∈ x(y ∈ b), and the following three schemata.

∆0-Separation For any set a and any ∆0-formula A, the set b = {x ∈ a : A(x)}
exists. Namely ∃b∀x[x ∈ b↔ x ∈ a ∧A(x)].

∆0-Collection ∀x ∈ a∃y A(x, y) → ∃b∀x ∈ a∃y ∈ bA(x, y) for ∆0-formulas A.

Foundation or ∈-Induction ∀x[∀y ∈ xF (y) → F (x)] → ∀xF (x)
for arbitrary formula F .

KPω denotes KP plus Axiom of Infinity ∃x ̸= ∅∀y ∈ x[y ∪ {y} ∈ x].
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1.2 Constructible hierarchy and admissible sets

The constructible hierarchy {Lα : α ∈ ON}.

1. L0 := ∅.

2. Lα+1 is the collection of all definable sets in (Lα,∈).

3. Lλ :=
∪
α<λ Lα for limits λ.

4. L :=
∪
α∈ON Lα.

Note that Lωα |= KP− (∆0-Collection) for α > 0, and ω ∈ Lωα if α > 1.

Definition 1.3 1. A transitive set A is admissible if (A;∈) |= KP.

2. An ordinal α is admissible if Lα is admissible.

3. A relation R on an admissible set A is A-recursive [A-recursively enumer-
able, A-r.e.] (A-finite) if R is ∆1 [Σ1] (R ∈ A), resp.

4. A function on an admissible set A is A-recursive if its graph is A-r.e.

5. An ordinal α is recursively regular iff Lα |= KPω.

Observe that an ordinal α is recursively regular iff α is a multiplicative principal
number> ω, and for any Lα-recursive function f : β → α with a β < α,
sup{f(γ) : γ < β} < α holds.

Theorem 1.4 (Π2-Reflection on L)
For any Σ-predicate A

KPω ⊢ ∀x ∈ L∃y ∈ LA(x, y) → ∃z ∈ L∀x ∈ z∃y ∈ z A(x, y).

In particular for recursively regular ordinals Ω,

∀α < Ω∃β < ΩA(α, β) → ∃γ < Ω∀α < γ∃β < γ A(α, β).

Lemma 1.5 |KPω| ≤ |KPω|Σ := min{α : ∀A ∈ Σ(KPω ⊢ A⇒ Lα |= A)}.

Proof. Suppose KPω proves TI[≺, U ] for a computable order ≺ on ω, where a
unary predicate U may occur in Foundation schema, but not in ∆0-Separation
nor ∆0-Collection. Then ∀n ∈ ω∃α(α = |n|≺ = sup{|m|≺ + 1 : m ≺ n}) is
provable in KPω. Therefore |KPω| ≤ |KPω|Σ. 2

The Mostowski collapsing clpse(b) of a set b is defined by Cb(x) = {Cb(y) :
y ∈ x ∩ b} and clpse(b) := Cb(b) = {Cb(x) : x ∈ b}.

Definition 1.6 We say that a class C is Πn-classes for n ≥ 2 if there exists a
set-theoretic Πn-formula F (ā) with parameters ā such that for any transitive
set P with ā ⊂ P , P ∈ C ⇔ P |= F (ā) holds. For a whole universe L, L ∈ C
denotes the formula F (ā). By a Π1

0-class we mean a Πn-class for some n ≥ 2.
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1.3 Buchholz’ ψ-functions

In this section we work in KPω.
We are in a position to introduce a collapsing function ψσ(α) < σ (even if

α ≥ σ). The following definition is due to [Buchholz86].

Definition 1.7 Let Ω = ω1 or Ω = ωCK1 . Define simultaneously by recursion
on ordinals α < ΓΩ+1 the classes Hα(X) (X ⊂ Ω) and the ordinals ψΩ(α) as
follows.

Hα(X) is the Skolem hull of {0,Ω} ∪X under the functions +, φ, and β 7→
ψΩ(β) (β < α).

Let
ψΩ(α) = min({Ω} ∪ {β < Ω : Hα(β) ∩ Ω ⊂ β}) (2)

Let us interpret Ω = ω1. Then we see readily that Hα(X) is countable for
any countable X.

To see that the ordinal ψΩ(α) could be defined, it suffices to show the exis-
tence of an ordinal β < Ω such that Hα(β) ∩ Ω ⊂ β : let β = sup{βn : n ∈ ω}
with βn+1 = min{β < Ω : Hα(βn) ∩ Ω ⊂ β} and β0 = 0 < Ω. Then
Hα(β) ∩ Ω ⊂ β since Hα(β) =

∪
nHα(βn), and β < Ω since Ω > ω is reg-

ular.
The ordinal ψΩ1

(εΩ1+1) is called the Bachmann-Howard ordinal.

Proposition 1.8 1. α0 ≤ α1 ∧X0 ⊂ X1 ⇒ Hα0
(X0) ⊂ Hα1

(X1).

2. Hα(ψΩ(α)) ∩ Ω = ψΩ(α) and ψΩ(α) ̸∈ Hα(ψΩ(α)).

3. α0 ≤ α⇒ ψΩ(α0) ≤ ψΩ(α) ∧Hα0
(ψΩ(α0)) ⊂ Hα(ψΩ(α)).

4. α0 ∈ Hα(ψΩ(α)) ∩ α⇒ ψΩ(α0) < ψΩ(α). Therefore
α0 ∈ Hα0

(ψΩ(α0)) ∧ α ∈ Hα(ψΩ(α)) ⇒ (α0 < α↔ ψΩ(α0) < ψΩ(α)).

5. ψΩ(α) is a strongly critical number such that ψΩ(α) < Ω.

6. γ ∈ Hα(β) ⇔ SC(γ) ⊂ Hα(β), where SC(0) = SC(Ω) = ∅, SC(γ) = {γ} if
γ ̸= Ω is strongly critical, and SC(φγδ) = SC(γ + δ) = SC(γ) ∪ SC(δ).

7. Hα(ψΩ(α)) = Hα(0) and ψΩ(α) = min{ξ : ξ ̸∈ Hα(0) ∩ Ω}.

Proposition 1.8.7 means that ψΩ(α) is the Mostowski’s collapse of the point
Ω in the iterated Skolem hull Hα(0) of ordinals {0,Ω} under addition + and
the binary Veblen function φ. This suggests us that the ordinal ψΩ(α) could be
a substitute for Ω in a restricted situation.

0

[

ψΩ1
(α)

)

Ω1

[

Ω1 + ψΩ1
(α)

) . . . . . . . . .
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1.4 Computable notation system OT (Ω) of ordinals

By Proposition 1.8.7 we have HεΩ+1
(0) = HεΩ+1

(0) = HεΩ+1
(ψΩ(εΩ+1)), and

hence each ordinal below ψΩ(εΩ+1) can be denoted by terms built up from
0,Ω,+, φ, ψ. Although the representation is not uniquely determined from or-
dinals, e.g., ψΩ(ψΩ(Ω)) = ψΩ(Ω), α can be determined from the ordinal ψΩ(α) if
α ∈ Hα(0), cf. Propositions 1.8.4 and 1.8.7. We can devise a recursive notation
system OT (Ω) of ordinals with this restriction in such a way that the following
holds

Proposition 1.9 EA proves that (OT (Ω), <) is a linear order.

1.5 Ramified set theory

Definition 1.10 RS-terms t and their levels |t| are defined recursively as fol-
lows.

1. For each ordinal α ∈ OT (Ω)∩ (Ω+1), Lα is an RS-term of level |Lα| = α.

2. Let θ(x, y1, . . . , yn) be a formula in the set-theoretic language, and s1, . . . , sn
be RS-terms such that max{|si| : 1 ≤ i ≤ n} < α. Then the formal ex-
pression [x ∈ Lα : θLα(x, s1, . . . , sn)] is an RS-term of level |[x ∈ Lα :
θLα(x, s1, . . . , sn)]| = α.

RS denotes the set of all RS-terms.
Let θ(x1, . . . , xn) be a formula such that each quantifier is bounded by a

variable y, Qx ∈ y, all free variables occurring in θ are among the list x1, . . . , xn,
and each xi occurs freely in θ. An RS-formula is obtained from such a formula
θ(x1, . . . , xn) by substituting RS-terms ti for each xi.

Let k(Lα) := {α}, k([x ∈ Lα : θLα(x, s1, . . . , sn)]) = {α} ∪
∪
i≤n k(si) and

k(θ(t1, . . . , tn)) :=
∪
i≤n

k(ti), |θ(t1, . . . , tn)| := max{|t1|, . . . , |tn|, 0}.

The bound LΩ in ∃x ∈ LΩ and ∀x ∈ LΩ is the replacements of the unbounded
quantifiers ∃ and ∀, resp.

Definition 1.11 Let s, t be RS-terms with |s| < |t|.

(s∈̇t) :≡
{
B(s) t ≡ [x ∈ Lα : B(x)]
⊤ t ≡ Lα

where ⊤ denotes a true literal, e.g., ∅ ̸∈ ∅.

We assign disjunctions or conjunctions to sentences as follows. When a
disjunction

∨
(Ai)i∈J [a conjunction

∧
(Ai)i∈J ] is assigned to A, we denote A ≃∨

(Ai)i∈J [A ≃
∧
(Ai)i∈J ], resp.
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Definition 1.12 1. (A0∨A1) :≃
∨
(Ai)i∈J and (A0∧A1) :≃

∧
(Ai)i∈J with

J := 2.

2. (a ∈ b) :≃
∨
(t∈̇b ∧ t = a)t∈J and (a ̸∈ b) :≃

∧
(t∈̇b → t ̸= a)t∈J with

J := Tm(|b|) := {t ∈ RS : |t| < |b|}.

3. Let a, b be set terms.
(a ̸= b) :≃

∨
(¬Ai)i∈J and (a = b) :≃

∧
(Ai)i∈J with J := 2 and A0 :≡

(∀x ∈ a(x ∈ b)), A1 :≡ (∀x ∈ b(x ∈ a)).

4. ∃x ∈ bA(x) :≃
∨
(t∈̇b ∧ A(t))t∈J and ∀x ∈ bA(x) :≃

∧
(t∈̇b → A(t))t∈J

with J := Tm(|b|).

Lemma 1.13 ∀i ∈ J (k(i) ⊂ k(Ai) ⊂ k(A) ∪ k(i)) for A ≃
∨
(Ai)i∈J , where

k(0) = k(1) = ∅.

The rank rk(A), rk(a) < Ω+ω of RS-formulas A and RS-terms a are defined
so that the followings hold for any formula A.

Proposition 1.14 1. rk(A) ∈ {ω|A| + n : n ∈ ω} for RS-terms and RS-
formulas A.

2. rk(B(t)) ∈ {ω|t|+ n : n ∈ ω} ∪ {rk(B(L0))}.

3. Let A ≃
∨
(Ai)i∈J . Then ∀i ∈ J(rk(Ai) < rk(A)).

Definition 1.15 1. Let B(x1, . . . , xn) be a ∆0-formula, and a1, . . . , an ∈ RS
be |ai| < Ω. Then B(a1, . . . , an) is a ∆(Ω)-formula.

2. Let A(x1, . . . , xn) be a Σ-formula, and a1, . . . , an ∈ RS be |ai| < Ω. Then
A(LΩ)(a1, . . . , an) is a Σ(Ω)-formula, where for RS-terms c, A(c) denotes
the result of replacing unbounded existential quantifiers ∃x(· · ·) by ∃x ∈
c(· · ·).

3. Let B ≡ A(LΩ) be a Σ(Ω)-formula, and α ∈ OT (Ω) ∩ Ω. Then B(α,Ω) ≡
A(Lα). For Γ ⊂ Σ(Ω), Γ(α,Ω) := {B(α,Ω) : B ∈ Γ}.

Let us define a derivability relation Hγ [Θ] ⊢ab Γ for finite sets Θ of ordinals,
γ, a < εΩ+1, b < Ω+ ω and RS-sequents, i.e., finite sets of RS-formulas Γ.

Definition 1.16 Hγ [Θ] ⊢ab Γ holds if

{γ, a, b} ∪ k(Γ) ⊂ Hγ [Θ] (3)

and one of the following cases holds:

(
∨
) There are A ∈ Γ such that A ≃

∨
(Ai)i∈J , an i ∈ J with

|i| < a (4)

and an a(i) < a for which Hγ [Θ] ⊢a(i)b Γ, Ai holds.

Hγ [Θ] ⊢a(i)b Γ, Ai

Hγ [Θ] ⊢ab Γ
(
∨
)
(|i| < a)
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(
∧
) There is an A ∈ Γ such that A ≃

∧
(Ai)i∈J , and for each i ∈ J , there is an

a(i) such that a(i) < a for which Hγ [Θ ∪ k(i)] ⊢a(i)b Γ, Ai holds.

{Hγ [Θ ∪ k(i)] ⊢a(i)b Γ, Ai}i∈J
Hγ [Θ] ⊢ab Γ

(
∧
)

(cut) There are C and a0 < a such that rk(C) < b, Hγ [Θ] ⊢a0b Γ,¬C and
Hγ [Θ] ⊢a0b C,Γ.

Hγ [Θ] ⊢a0b Γ,¬C Hγ [Θ] ⊢a0b C,Γ (rk(C) < b)

Hγ [Θ] ⊢ab Γ
(cut)

(∆0(Ω)-Coll) b ≥ Ω, and there are a formula C ∈ Σ(Ω) and an a0 < a such
that Hγ [Θ] ⊢a0b Γ, C and Hγ [Θ ∪ {α}] ⊢a0b Γ,¬C(α,Ω) for every α < Ω.

Hγ [Θ] ⊢a0b Γ, C {Hγ [Θ ∪ {α}] ⊢a0b ¬C(α,Ω),Γ}α<Ω

Hγ [Θ] ⊢ab Γ
(∆0(Ω)-Coll)

Lemma 1.17 (Tautology) H0[k(A)] ⊢2d
0 ¬A,A with d = rk(A).

Lemma 1.18 (Inversion)
Hγ [Θ] ⊢ab Γ, A⇒ ∀i ∈ J(Hγ [Θ ∪ k(i)] ⊢ab Γ, Ai) for A ≃

∧
(Ai)i∈J .

Lemma 1.19 (Boundedness) Let a ≤ β ∈ Hγ [Θ] ∩ Ω and Λ ⊂ Σ(Ω). Then
Hγ [Θ] ⊢ab Γ,Λ ⇒ Hγ [Θ] ⊢ab Γ,Λ(β,Ω).

Lemma 1.20 (Embedding)
Let Γ[x⃗ := a⃗] (⃗a ⊂ RS) denote a closed instance of a sequent Γ with restriction
of unbounded quantifiers to LΩ. Assume KPω ⊢ Γ. Then

∃m, l < ω∀a⃗ ⊂ RS[H0[k(⃗a)] ⊢Ω+l
Ω+m Γ[x⃗ := a⃗]]

where k(⃗a) = k(a1) ∪ · · · k(an) for a⃗ = (a1, . . . , an).

Let θc(a) be the c-th iterate of θ1(a) = ωa. θ0(a) = a, θc+̇d(a) = θc(θd(a)),
and θωc(a) = φc(a).

Lemma 1.21 (Predicative Cut-elimination)

Hγ [Θ] ⊢ab+c Γ ⇒ Hγ [Θ] ⊢θc(a)b Γ if ¬(b < Ω ≤ b+ c).

Theorem 1.22 (Collapsing)
Suppose

Θ ⊂ Hγ(ψΩ(γ)) (5)

for a finite set Θ of ordinals, and Γ ⊂ Σ(Ω). Then for â = γ+ωa and β = ψΩ(â)

Hγ [Θ] ⊢aΩ Γ ⇒ Hâ+1[Θ] ⊢ββ Γ.
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Proof. This is seen by induction on a. Observe that k(Γ)∪ {β} ⊂ Hα̂+1[Θ] by
γ < α̂+ 1 and (3).

Case 1. The last inference is a (
∨
).

Let A ∈ Γ be such that A ≃
∨
(Ai)i∈J , and for an i ∈ J and an a(i) < a

Hγ [Θ] ⊢a(i)Ω Γ, Ai

Hγ [Θ] ⊢aΩ Γ
(
∨
)

By IH it suffices to show |i| < ψΩ(â) for (4). We can assume k(i) ⊂ k(Ai). Then
|i| ∈ k(Ai) ⊂ Hγ [Θ] ⊂ Hγ(ψΩ(γ)) by (3) and the assumption (5). On the other
hand we have |i| < Ω. Hence |i| ∈ Hâ(ψΩ(â)) ∩ Ω = ψΩ(â).

Case 2. The last inference is a (
∧
).

Let A ∈ Γ be such that A ≃
∧
(Ai)i∈J , and for each i ∈ J , there are a(i) < a

such that
{Hγ [Θ ∪ k(i)] ⊢a(i)Ω Γ, Ai}i∈J

Hγ [Θ] ⊢aΩ Γ
(
∧
)

By IH it suffices to show that ∀i ∈ J(k(i) ⊂ Hγ(ψΩ(γ))). For example consider
the case when A ≡ (∀x ∈ uB(x)) for a set term u. Then J = {t ∈ RS : |t| <
|u|}. Since A is a Σ(Ω)-sentence, we have |a| < Ω. On the other hand we have
|u| ∈ Hγ [Θ] for |u| = max k(u), and hence k(i) ⊂ |u| ∈ Hγ(ψΩ(γ)) ∩ Ω = ψΩ(γ)
for any i ∈ J .

Case 3. The last inference is a (∆0(Ω)-Coll).
There are a sentence C ∈ Σ(Ω) and an a0 < a such that

Hγ [Θ] ⊢a0Ω Γ, C {Hγ [Θ ∪ {α}] ⊢a0Ω ¬C(α,Ω),Γ}α<Ω

Hγ [Θ] ⊢aΩ Γ
(∆0(Ω)-Coll)

Let â0 = γ + ωa0 and β0 = ψΩ(â0). IH yields Hâ+1[Θ] ⊢β0

β0
Γ, C. Boundedness

1.19 yields Hâ0+1[Θ] ⊢β0

β0
Γ, C(β0,Ω), where β0 ∈ Hâ0+1[Θ]. On the other hand

we have Hγ [Θ∪ {β0}] ⊢a0Ω ¬C(β0,Ω),Γ, and Hâ0+1[Θ] ⊢a0Ω ¬C(β0,Ω),Γ. IH yields

Hâ0+ωa0+1[Θ] ⊢β1

β ¬C(β0,Ω),Γ, where β1 = ψΩ(â0 + ωa0) with â0 + ωa0 =

γ + ωa0 + ωa0 < â. A (cut) with rk(C(β0,Ω)) < β yields Hâ+1[Θ] ⊢ββ Γ.

Case 4. The last inference is a (cut).

Hγ [Θ] ⊢a0Ω Γ,¬C Hγ [Θ] ⊢a0Ω C,Γ

Hγ [Θ] ⊢aΩ Γ
(cut)

We obtain rk(C) < Ω, and rk(C) ∈ Hγ [Θ] ∩ Ω ⊂ ψΩ(γ) ≤ β. IH followed by a
(cut) yields the lemma. 2

Lemma 1.23 (Truth)
If Hγ [Θ] ⊢αΩ Γ with Γ ⊂ ∆(Ω), then LΩ |= Γ.
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Theorem 1.24 KPω ⊢ Γ and Γ ⊂ Σ(Ω1) ⇒ ∃m < ω
[
LΩ |= Γ(ψΩ(ωm(Ω+1)),Ω)

]
.

Proof. Let KPω ⊢ Γ for a set Γ of Σ-sentences. By Embedding 1.20 pick anm <
ω such that H0[∅] ⊢Ω+m

Ω+m Γ. Predicative Cut-elimination 1.21 yields H0[∅] ⊢aΩ Γ
for a = ωm(Ω + m). Let β = ψΩ(â) with â = ωa = ωm+1(Ω + m). We then

obtain Hâ+1[∅] ⊢ββ Γ by Collapsing 1.22, and Hâ+1[∅] ⊢ββ Γ(β,Ω) by Boundedness

1.19. We see LΩ |= Γ(β,Ω) from Truth 1.23. From β < ψΩ(ωm+2(Ω + 1)) and
the persistency of Σ-formulas, we conclude LΩ |= Γ(ψΩ(ωm+2(Ω+1)),Ω). 2

1.6 Well-foundedness proof in KPω

In this subsection α, β, γ, δ, . . . range over ordinal terms inOT (Ω), and< denotes
the relation between ordinal terms defined in Definition ??. An ordinal term α
is identified with the set {β ∈ OT (Ω) : β < α}. For ordinal terms α, β, ordinal
terms α+ β and ωα are defined trivially.

In this subsection we show that the theory ID for non-iterated positive ele-
mentary inductive definitions on N proves the fact that the relation < on OT (Ω)
is well-founded up to each α < ψΩ(εΩ+1).

Theorem 1.25 For each n < ω

ID ⊢ TI[<↾ψΩ(ωn(Ω + 1)), B]

for any formula B in the language L(ID).

Acc denotes the accessible part of < in OT (Ω), which is defined in ID as the
least fixed point PA of the operator A(X,α) :⇔ α ⊂ X ⇔ (∀β < α(β ∈ X)). It
suffices to show the following, which is equivalent to Theorem 1.25.

Theorem 1.26 For each α < ψΩ(εΩ+1), ID ⊢ α ∈ Acc.

The least fixed point Acc enjoys ∀α(α ⊂ Acc→ α ∈ Acc), and ∀α(α ⊂ F →
α ∈ F ) → Acc ⊂ F . From these we see easily that Acc is closed under +, φ
besides 0 ∈ Acc. Hence we obtain Γ0 = ψΩ(0) ∈ Acc. Likewise Γ1 = ψΩ(1) ∈
Acc follows. To prove ψΩ(Ω) ∈ Acc, we need to show ψΩ(α) ∈ Acc for any
α < Ω such that ψΩ(α) is an ordinal term, i.e., G(α) < α. This means that
when ψΩ(β) occurs in α, then β < α holds. Thus we have a chance to prove
inductively that ψΩ(α) ∈ Acc. The ordinal term α is built from 0, Ω and some
ordinal terms ψΩ(β) with β < α by +, φ. Let us assume that each of ordinals
ψΩ(β) < Ω occurring in α is in W0 = Acc ∩ Ω, and denote the set of such
ordinals α by M1. Though we don’t have Ω ∈ Acc in hand (since this means
that OT (Ω) ∩ Ω is well-founded, which is the fact we are going to prove), Ω is
in the accessible part W1 of the set M1. It turns out that W1 is progressive on
M1, and Ω ∈ W1. Moreover ωΩ+1 ∈ W1 is seen as for the jump set for epsilon
numbers. In this way we see that α ∈W1, i.e., ψΩ(α) ∈W0 for each α < εΩ+1.

Let SC(α) denote the set of strongly critical parts of α defined in Proposition
1.8.6, and let SCΩ(α) = SC(α) ∩ Ω.
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Definition 1.27 M1 = {α ∈ OT (Ω) : SCΩ(α) ⊂W0}.

Proposition 1.28 G(β) < α⇒ SCΩ(β) < ψΩ(α) for ψΩ(α) ∈ OT (Ω).

Proof. By induction on the length of ordinal terms β. Assume G(β) < α. By
IH we can assume β = ψΩ(γ). Then γ ∈ G(β) and SCΩ(β) = {β}. Hence γ < α
and β < ψΩ(α). 2

In what follows we work in ID except otherwise stated.

Lemma 1.29 M1 ∩ Ω =W0.

A(X) := {α ∈M1 :M1 ∩ α ⊂ X}.

Proposition 1.30 For each formula F , A(F ) ⊂ F → Ω ∈ F .

Proof. Assuming A(F ) ⊂ F , we see α ∈W0 ⇒ α ∈ F by induction on α ∈W0.
2

Lemma 1.31 For each formula F , A(F ) ⊂ F → A(j[F ]) ⊂ j[F ], where j[F ] :=
{β ∈ OT (Ω) : ∀α(M1 ∩ α ⊂ F →M1 ∩ (α+ ωβ) ⊂ F )}.

Lemma 1.32 For each formula F and each n < ω, A(F ) ⊂ F → ωn(Ω + 1) ∈
F .

α ∈W :⇔ (ψΩ(α) ∈ OT (Ω) → ψΩ(α) ∈W0) .

Lemma 1.33 A(W ) ⊂W .

Proof. Assume α ∈ A(W ) and ψΩ(α) ∈ OT (Ω). Then α ∈ M1 and M1 ∩ α ⊂
W . We show

γ < ψΩ(α) → γ ∈W0

by induction on the length of ordinal terms γ. We can assume that γ = ψΩ(β).
Then β < α. We see β ∈M1 from IH. Therefore β ∈M1 ∩α ⊂W , which yields
γ = ψΩ(β) ∈W0. Therefore ψΩ(α) ⊂W0. 2

Let us show Theorem 1.26. We show that ID proves ψΩ(ωn(Ω + 1)) ∈ W0

for each n < ω. By Lemmas 1.32 and 1.33 we obtain ωn(Ω + 1) ∈ W . Thus
ψΩ(ωn(Ω + 1)) ∈W0 by the definition of W .

2 Rathjen’s analysis of Π3-reflection

Given an analysis of KPω for a single recursively regular ordinal, it is not hard
to extend it to an analysis of theories of recursively regular ordinals of a given
order type, e.g., to KPℓ, or equivalently to Π1

1-CA+BI. Or to an iteration of
recursively regularities in another manner. Specifically an ordinal analysis of
KPM for recursively Mahlo ordinals is not an obstacle.
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Let us introduce a Πi-recursively Mahlo operation RMi and its iterations.
A Πi-recursively Mahlo operation RMi for 2 ≤ i < ω, is defined through a
universal Πi-formula Πi(a) such that for each Πi-formula φ(x) there exists a
natural number n such that KP ⊢ ∀x[φ(x) ↔ Πi(⟨n, x⟩)]. Let X be a collection
of sets.

P ∈ RMi(X ) :⇔ ∀b ∈ P [P |= Πi(b) → ∃Q ∈ X ∩ P (b ∈ Q |= Πi(b))]

(read: P is Πi-reflecting on X .)

Let RMi = RMi(V ), and V is Πi-reflecting if V ∈ RMi. Under the axiom
V = L of constructibility, V ∈ RM2 iff V |= KPω, and V ∈ RM2(RM2) iff V is
recursively Mahlo universe. When V = Lσ, the ordinal σ is recursively Mahlo
ordinal.

Let KPM denote a set theory for recursively Mahlo universes. For an ordinal
analysis of KPM , it suffices for us to have two step collapsings α 7→ σ = ψM (α) ∈
RM2 and (σ, β) 7→ ψσ(β).

Assume that P ∈ X is given by a ∆0-formula. Then there exists a Πi+1-
formula rmi such that for any non-empty transitive sets P ∈ V ∪ {V }, P ∈
RMi(X ) ↔ rmP

i , where rm
P
i denotes the result of restricting unbounded quan-

tifiers in rmi to P .
An iteration of RMi along a definable relation ≺ is defined as follows.

P ∈ RMi(a;≺) :⇔ a ∈ P ∈
∩

{RMi(RMi(b;≺)) : b ∈ P |= b ≺ a}.

Assume that b ≺ a is given by a Σ1-formula. Then there exists a Πi+1-formula
rmi(a,≺) such that for any non-empty transitive sets P ∈ V ∪ {V } and a ∈ P ,
P ∈ RMi(a;≺) ↔ rmP

i (a,≺).
For 2 ≤ N < ω, KPΠN denotes a set theory for ΠN -reflecting universes

V , which is obtained from KPω by adding an axiom V ∈ RMN (the axiom
for ΠN -reflection) stating that its universe is ΠN -reflecting. This means that
for each ΠN -formula φ, φ(a) → ∃c[adcN ∧ a ∈ c ∧ φc(a)] is an axiom, where
adc2 :≡ (∀x ∈ c∀y ∈ x(y ∈ c)), i.e., c is transitive, and for N > 2, ad ≡ adN
denotes a Π3-sentence such that P |= ad ⇔ P |= KPω for any transitive and
well-founded sets P . KPΠ2 is a subtheory of KPω+(V = L), which is interpreted
in KPω: KPω + (V = L) ⊢ φ⇒ KPω ⊢ φL, cf. Theorem 1.4.

KPΠN+1 is much stronger than KPΠN since ΠN -recursively Mahlo operation
RMN can be iterated in KPΠN+1. For example, KPΠN+1 proves ∀α ∈ ON [V ∈
RMN (α;<)] by induction on ordinals α. Suppose ∀β < α[V ∈ RMN (β;<)]. Let
φ be a ΠN -formula such that V |= φ, and β < α. We can reflect a ΠN+1-formula
V ∈ RMN (β;<) ∧ φ, and obtain a set P such that P ∈ RMN (β;<) ∧ P |= φ.
Hence V ∈ RMN (α;<). This means that V is in the diagonal intersection
△αRMN (α;<), i.e., V ∈

∩
{RMN (α;<) : α ∈ ON ∩ V }. Since this is a ΠN+1-

formula, the ΠN+1-reflecting universe V reflects it: there exists a set P ∈ V such
that P is in the diagonal intersection, i.e., P ∈

∩
{RMN (α;<) : α ∈ ON ∩ P},

and so forth.
Let ON ⊂ V denote the class of ordinals, ONε ⊂ V and <ε be ∆-predicates

such that for any transitive and well-founded model V of KPω, <ε is a well order
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of type εK+1 on ONε for the order type K of the class ON in V . ⌈ωn(K+1)⌉ ∈
ONε denotes the code of the ‘ordinal’ ωn(K + 1), which is assumed to be a
closed ‘term’ built from the code ⌈K⌉ and n, e.g., ⌈α⌉ = ⟨0, α⟩ for α ∈ ON ,
⌈K⌉ = ⟨1, 0⟩ and ⌈ωn(K+ 1)⌉ = ⟨2, ⟨2, · · · ⟨2, ⟨3, ⌈K⌉, ⟨0, 1⟩⟩⟩ · · ·⟩⟩.

<ε is assumed to be a standard epsilon order with base K (not on N, but
on V ) such that KPω proves the fact that <ε is a linear ordering, and for any
formula φ and each n < ω,

KPω ⊢ ∀x(∀y <ε xφ(y) → φ(x)) → ∀x <ε ⌈ωn(K+ 1)⌉φ(x) (6)

Theorem 2.1 ( [A14a])
For each N ≥ 2, KPΠN+1 is ΠN+1-conservative over the theory

KPω + {V ∈ RMN (⌈ωn(K+ 1)⌉;<ε) : n ∈ ω}.

From (6) we see that KPΠN+1 proves V ∈ RMN (⌈ωn(K+ 1)⌉;<ε) for each
n ∈ ω.

Let us consider the simplest case N = 3, i.e., an ordinal analysis of set theory
KPΠ3 for Π3-reflecting universe. It turns out that KPΠ3 is proof-theoretically re-
ducible to iterations of recursively Mahlo operations V ∈ RM2(⌈ωn(K+1)⌉;<ε
) (n ∈ ω), but how to analyze it proof-theoretically? Here we need a break-
through done by [Rathjen94].

2.1 Ordinals for KPΠ3

In this subsection we define collapsing functions ψξσ(a) for KPΠ3. It is much
easier for us to justify the definitions with an existence of a small large cardinal.
Let K be the least weakly compact cardinal, i.e., Π1

1-indescribable cardinal, and
Ω = ω1. In general for n ≥ 0, A ⊂ ON is Π1

n-indescribable in an ordinal π iff for
every Π1

n(P )-formula φ(P ) with a predicate P and C ⊂ π, if (Lπ, C) |= φ(P ),
then (Lα, C ∩ α) |= φ(P ) for an α ∈ A ∩ π. First let us introduce the Mahlo
operation. Let A ⊂ K be a set, and α ≤ K a limit ordinal. α ∈M2(A) iff A∩α
is Π1

0-indescribable in α.
As in Definition 1.7 we define the Skolem hull Ha(X) and simultaneously

classes Mha2(ξ) as follows.

Definition 2.2 Define simultaneously by recursion on ordinals a < εK+1 the
classes Ha(X) (X ⊂ ΓK+1), Mha2(ξ) (ξ < εK+1) and the ordinals ψξσ(a) as fol-
lows.

1. Ha(X) denotes the Skolem hull of {0,Ω,K}∪X under the functions +, φ,
and (σ, ν, b) 7→ ψνσ(b) (b < a).

2. Let for ξ > 0,

π ∈Mha2(ξ) :⇔ {a, ξ} ⊂ Ha(π)& ∀ν ∈ Ha(π) ∩ ξ (π ∈M2(Mha2(ν))) (7)

π ∈Mha2(0) iff π is a limit ordinal.
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3. For 0 ≤ ξ < εK+1,

ψξπ(a) = min ({π} ∪ {κ ∈Mha2(ξ) : {ξ, π, a} ⊂ Ha(κ)&Ha(κ) ∩ π ⊂ κ})
(8)

and ψΩ(α) = min{β < Ω : Hα(β) ∩ Ω ⊂ β}.

We see that each of x = Ha(y), x = ψξκa and x ∈Mha2(ξ), is a Σ1-predicate
as fixed points in ZFL

Since the cardinality of the set HεK+1
(π) is π for any infinite cardinal π ≤ K,

pick an injection f : HεK+1
(K) → K so that f”HεK+1

(π) ⊂ π for any weakly
inaccessibles π ≤ K.

Lemma 2.3 (Cf. Theorem 4.12 in [Rathjen94].)

1. There exists a Π1
1-formula mha2(x) such that π ∈Mha2(ξ) iff Lπ |= mha2(ξ)

for any weakly inaccessible cardinals π ≤ K with f”({a, ξ}) ⊂ Lπ.

2. K ∈Mha2(εK+1) ∩M2(Mha2(εK+1)) for every a < εK+1.

Proof. 2.3.1. Let π be a weakly inaccessible cardinal and f an injection such
that f”HεK+1

(π) ⊂ Lπ. Assume that f”({a, ξ}) ⊂ Lπ. Then for f(ξ) ∈
f”Ha(π), π ∈ Mha2(ξ) iff for any f(ν) ∈ Lπ, if f(ν) ∈ f”Ha(π) and ν < ξ,
then π ∈M2(Mha2(ν)), where f”Ha(π) ⊂ Lπ is a class in Lπ.

2.3.2. We show the following B(ξ) is progressive in ξ < εK+1:

B(ξ) :⇔ K ∈Mha2(ξ) ∩M2(Mha2(ξ))

Note that ξ ∈ Ha(K) holds for any ξ < εK+1.
Suppose ∀ν < ξ B(ν). We have to show that Mha2(ξ) is Π

1
0-indescribable in

K. It is easy to see that if π ∈M2(Mha2(ξ)), then π ∈Mha2(ξ) by induction on π.
Let θ(P ) be a first-order formula with a predicate P such that (LK, C) |= θ(P )
for C ⊂ K.

By IH we have ∀ν < ξ[K ∈ M2(Mha2(ν))]. In other words, K ∈ Mha2(ξ),
i.e., (LK, C) |= mha2(ξ) ∧ θ(P ). Since the universe LK is Π1

1-indescribable, pick
a π < K such that (Lπ, C ∩ π) enjoys the Π1

1-sentence mh
a
2(ξ) ∧ θ(P ), and

{f(a), f(ξ)} ⊂ Lπ. Therefore π ∈Mha2(ξ). Thus K ∈M2(Mha2(ξ)). 2

Lemma 2.4 For every {a, ξ} ⊂ εK+1, ψ
ξ
K(a) < K for the Π1

1-indescribable
cardinal K.

Proof. Let {a, ξ} ⊂ εK+1. By Lemma 2.3.2 we obtain K ∈ M2(Mha2(ξ)). On
the other, {κ < K : {ξ, a} ⊂ Ha(κ),Ha(κ)∩K ⊂ κ} is a club subset of K. Hence

ψξK(a) < K by the definition (8). 2

From the definition (8) we see

π ∈Mha2(µ) ∩Ha(π)& ξ ∈ Ha(π) ∩ µ⇒ π ∈M2(Mha2(ξ))&ψξπ(a) < π

In what follows M2 denote the Π2-recursively Mahlo operation RM2.
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2.2 Operator controlled derivations for KPΠ3

OT (Π3) denotes a computable notation system of ordinals with collapsing func-
tions ψνσ(b). κ = ψνσ(b) ∈ OT (Π3) if {σ, ν, b} ⊂ OT (Π3) ∩ Hb(κ), ν = m2(κ) <
m2(σ) and

SCK(ν) ⊂ κ& ν ≤ b (9)

where m2(Ω) = 1 and m2(K) = εK+1. We need the condition (9) in our well-
foundedness proof of OT (Π3), cf. Proposition 3.30 and Lemma 3.38.

Operator controlled derivations for KPΠ3 are defined as in Definition 1.16
for KPω together with the following inference rules. For ordinals π = ψξσ(a), let
m2(π) = ξ.

(rflΠ3(K)) b ≥ K. There exist an ordinal a0 ∈ Hγ [Θ]∩ a, and a Σ3(K)-sentence
A enjoying the following conditions:

Hγ [Θ] ⊢a0b Γ,¬A {Hγ [Θ ∪ {ρ}] ⊢a0b Γ, A(ρ,K) : ρ < K}
Hγ [Θ] ⊢ab Γ

(rflΠ3
(K))

The inference says that K ∈ RM3.

(rflΠ2
(α, π, ν)) There exist ordinals α < π ≤ b < K, ν < m2(π) such that
SCK(ν) ⊂ π and ν ≤ γ, cf. (9), a0 < a, and a finite set ∆ of Σ2(π)-
sentences enjoying the following conditions:

1. {α, π, ν} ⊂ Hγ [Θ].

2. For each δ ∈ ∆, Hγ [Θ] ⊢a0b Γ,¬δ.
3. For each α < ρ ∈Mh2(ν) ∩ π, Hγ [Θ ∪ {ρ}] ⊢a0b Γ,∆(ρ,π) holds.

By ρ ∈Mh2(ν) we mean ν ≤ m2(ρ).

{Hγ [Θ] ⊢a0
b Γ,¬δ}δ∈∆ {Hγ [Θ ∪ {ρ}] ⊢a0

b Γ,∆(ρ,π) : α < ρ ∈Mh2(ν) ∩ π}
Hγ [Θ] ⊢a

b Γ
(rflΠ2(α, π, ν))

The inference says that π ∈ M2(Mhγ2(ν)) provided that {m2(π), γ, ν} ⊂
Hγ(π).

The axiom for Π3-reflection follows from the inference (rflΠ3
(K)) as follows.

Let A ∈ Σ3(K) with d = rk(A) < K+ ω, and dρ = rk(A(ρ,K)) for ρ < K.

H0[k(A)] ⊢2d
0 A,¬A

H0[k(A) ∪ {ρ}] ⊢2dρ
0 A(ρ,K),¬A(ρ,K)

H0[k(A) ∪ {ρ}] ⊢K
0 ∃z A(z,K),¬A(ρ,K)

H0[k(A)] ⊢K+ω
K ¬A,∃z A(z,K)

(rflΠ3(K))

An appropriate name for this collapsing technique would be station-
ary collapsing since in order for this procedure to work, a single
derivation has to be collapsed into a “stationary” family of deriva-
tions. [Rathjen94]
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We see from the following proof that α = ψK(γ+K) holds in every inference

(rflΠ2
(α, κ, a0)) occurring in a witnessed derivation of Hâ+1[Θ ∪ {κ}] ⊢ββ Γ(κ,K).

Let us call the unique ordinal α a base.

Lemma 2.5 Assume Γ ⊂ Σ2(K), Θ ⊂ Hγ(ψK(γ)), and Hγ [Θ] ⊢aK Γ with a ≤ γ.

Then Hâ+1[Θ ∪ {κ}] ⊢ββ Γ(κ,K) holds for any κ ∈ Mh2(a) ∩ ψK(γ +K · ω) such

that ψK(γ +K) < κ, where â = γ + ωK+a and β = ψK(â).

Proof. By induction on a. Note that there exists a κ ∈ OT (Π3) such that
ψK(γ +K) < κ ∈Mh2(a) ∩ ψK(γ +K · ω). F.e. κ = ψaK(γ +K+ 1).
Case 1. Consider the case when the last inference is a (rflΠ3

(K)). For Σ3 ∋
A ≃

∨
(Ai)i∈J ,

Hγ [Θ] ⊢a0K Γ,¬A {Hγ [Θ ∪ {ρ}] ⊢a0K Γ, A(ρ,K) : ρ < K}
Hγ [Θ] ⊢aK Γ

(rflΠ3
(K))

Let
ψK(γ +K) ≤ σ ∈Mh2(a0) ∩ κ.

Let i ∈ Tm(σ), i.e., k(i) ⊂ σ. For each i ∈ Tm(σ) Inversion yields Hγ+|i|[Θ ∪
k(i)] ⊢a0K Γ,¬Ai with k(i) < ψK(γ+|i|). By IH we obtainHâ+1[Θ∪{σ}∪k(i)] ⊢β0

β

Γ(σ,K),¬A(σ,K)
i for every i ∈ Tm(σ), where β0 = ψK(â0) with â0 = γ + ωK+a0 =

γ + |i|+ ωK+a0 . A (
∧
) yields

Hâ+1[Θ ∪ {σ}] ⊢β0+1
β Γ(σ,K),¬A(σ,K)

On the other hand we have Hγ+σ[Θ∪{σ}] ⊢a0K Γ, A(σ,K) with σ ∈ Hγ+σ(ψK(γ+
σ)), but σ ̸∈ Hγ(ψK(γ+K)). We obtain κ ∈Mh2(a0) by a0 < a, and γ+σ+K =
γ +K. IH yields

Hâ+1[Θ ∪ {κ, σ}] ⊢β0

β Γ(κ,K), A(σ,K)

A (cut) of the cut formula A(σ,K) with rk(A(σ,K)) < κ < ψK(γ+K ·ω) ≤ β yields

Hâ+1[Θ ∪ {κ, σ}] ⊢β0+2
β Γ(κ,K),Γ(σ,K)

On the other side

Hγ [Θ ∪ {κ}] ⊢2d
0 ¬θ(κ,K),Γ(κ,K)

holds for each θ ∈ Γ ⊂ Σ2(K), where d = max{rk(θ(κ,K)) : θ ∈ Γ} < κ+ ω < β.
Moreover we have a0 < â, SCK(a0) ⊂ Hγ [Θ] ∩ K ⊂ Hγ(ψK(γ)) ∩ K ⊂

κ. A (rflΠ2
(δ, κ, a0)) with δ = ψK(γ + K), {δ, κ, a0} ⊂ Hâ+1[Θ ∪ {κ}] yields

Hâ+1[Θ ∪ {κ}] ⊢ββ Γ(κ,K).

{Hγ [Θ ∪ {κ}] ⊢2d
0 ¬θ(κ,K),Γ(κ,K)}θ∈Γ

Hâ+1[Θ ∪ {σ}] ⊢β0+1
β Γ(σ,K),¬A(σ,K) Hâ+1[Θ ∪ {κ, σ}] ⊢β0

β Γ(κ,K), A(σ,K)

{Hâ+1[Θ ∪ {κ, σ}] ⊢β0+2
β Γ(κ,K),Γ(σ,K)}δ<σ∈Mh2(a0)∩κ

Hâ+1[Θ ∪ {κ}] ⊢β
β Γ(κ,K)

(rflΠ2(δ, κ, a0))
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Case 2. The last inference is a (cut) of a cut formula C with rk(C) < K. Then
rk(C) ∈ Hγ [Θ] ∩ K ⊂ ψK(γ) < β by (3), Proposition 3.1 and the assumption
Θ ⊂ Hγ(ψK(γ)).
Case 3. The last inference is a (

∧
) with a main formula Π1(K) ∋ A ≃

∧
(Aι)ι∈J .

We may assume J = Tm(K). Then A(κ,K) ≃
∧
(Aι)ι∈Tm(κ), and we obtain the

lemma by pruning the branches for ι ̸∈ Tm(κ).
Case 4. The last inference is a (

∨
) with a main formula Σ2(K) ∋ A ≃

∨
(Aι)ι∈J .

We may assume J = Tm(K). Then A(κ,K) ≃
∨
(Aι)ι∈Tm(κ).

Hγ [Θ] ⊢a0K Γ, Aι

Hγ [Θ] ⊢aK Γ
(
∨
)

We may assume that k(ι) ⊂ k(Aι). Then by (3) and Θ ⊂ Hγ(ψK(γ)) we obtain
k(ι) ⊂ Hγ [Θ] ∩K ⊂ Hγ(ψK(γ)) ∩K ⊂ κ, and ι ∈ Tm(κ). 2

An ordinal term α in OT (Π3) is said to be regular if either α ∈ {Ω,K} or
α = ψνσ(a) for some σ, a and ν > 0.

Lemma 2.6 Let λ be regular, Γ ⊂ Σ1(λ) and Hγ [Θ] ⊢ab Γ, where a < K,
Hγ [Θ] ∋ λ ≤ b < K, and ∀κ ∈ [λ, b)(Θ ⊂ Hγ(ψκ(γ))). Let â = γ + θb(a) and
β = ψηλ(â) such that 0 ≤ η ∈ Hγ [Θ], η < m2(λ), SCK(η) ⊂ β and η ≤ γ. Then

Hâ+1[Θ] ⊢ββ Γ holds.

Proof. By main induction on b with subsidiary induction on a as in Theorem
1.22.
Case 1. Consider first the case when the last inference is a (rflΠ2(α, σ, ν)) with
b ≥ σ > α.

{Hγ [Θ] ⊢a0
b Γ,¬δ}δ∈∆ {Hγ [Θ ∪ {ρ}] ⊢a0

b Γ,∆(ρ,σ) : α < ρ ∈Mh2(ν) ∩ σ}
Hγ [Θ] ⊢a

b Γ
(rflΠ2(α, σ, ν))

where ∆ ⊂ Σ2(σ), {α, σ, ν} ⊂ Hγ [Θ], ν < m2(σ), ν ≤ γ and SCK(ν) ⊂ σ.
Case 1.1. σ < λ: Then {¬δ} ∪ ∆(ρ,σ) ⊂ ∆0(λ) for each δ ∈ ∆. For any
λ ≤ κ < b, we obtain ρ < σ ∈ Hγ [Θ] ∩ κ ⊂ ψκ(γ). SIH yields the lemma.
Case 1.2. σ ≥ λ: For each δ ∈ ∆, let δ ≃

∨
(δi)i∈J . We may assume J =

Tm(σ). Inversion yields Hγ+|i|[Θ ∪ k(i)] ⊢a0b Γ,¬δi. Let â0 = γ + θb(a0) and
ρ = ψνσ(â0 + α), where Θ ⊂ Hγ(ρ) by the assumption, {α, σ, ν, â0} ⊂ Hγ [Θ]
with ν < m2(σ). Hence {α, σ, ν, â0} ⊂ Hγ(ρ) and α < ρ by α < σ. Therefore,
cf. (9), SCK(ν) ⊂ ρ ∈Mh2(ν) ∩ σ ∩Hâ0+α+1[Θ].

For each k(i) ⊂ ρ and ¬δi ∈ Σ1(σ), we obtain γ + |i| + θb(a0) = â0 by
|i| < ρ < σ ≤ b, and Hâ0+1[Θ ∪ k(i)] ⊢ρ0ρ0 Γ,¬δi by SIH for ρ0 = ψ|sig(â0) ≤ ρ.
Hence Hâ0+α+1[Θ ∪ k(i)] ⊢ρρ Γ,¬δi By Boundedness we obtain Hâ0+α+1[Θ ∪
k(i)] ⊢ρρ Γ,¬δ

(ρ,σ)
i . A (

∧
) yields

Hâ0+α+1[Θ] ⊢ρ+1
ρ Γ,¬δ(ρ,σ).
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On the other hand we have Hγ [Θ ∪ {ρ}] ⊢a0b Γ,∆(ρ,σ), and Hâ0+α+1[Θ] ⊢a0b
Γ,∆(ρ,σ). By SIH we obtain

Hâ1+1[Θ] ⊢β1

β1
Γ,∆(ρ,σ)

for β1 = ψσ(â1) > ρ, with â1 = â0 + α+ θb(a0) ≤ γ + θb(a0) · 3 < â. Therefore

we obtain Hâ1+1[Θ] ⊢β1+ω
β1

Γ by several (cut)’s of rk(δ(ρ,σ)) < ρ+ ω < β1.
If σ = λ, then we are done. Let λ < σ ≤ b. Then λ ∈ Hγ [Θ] ∩ σ ⊂ β1. MIH

yields Hâ2+1[Θ] ⊢β2

β2
Γ, where â2 = â1 + θβ1(β1 + ω) < â by β1 < σ ≤ b, and

β2 = ψλ(â2) < ψλ(â) ≤ β.
Case 2. Next the last inference is a (cut) of a cut formula C with d = rk(C) < b.

Hγ [Θ] ⊢a0b Γ,¬C Hγ [Θ] ⊢a0b Γ, C

Hγ [Θ] ⊢ab Γ
(cut)

If d < λ, then SIH yields the lemma. Let λ ≤ d and â0 = γ + θb(a0).
Case 2.1. There exists a regular σ ∈ Hγ [Θ] such that d < σ ≤ b: For {¬C,C} ⊂
∆0(σ), we obtain Hâ0+1[Θ] ⊢β0

β0
Γ, C and Hâ0+1[Θ] ⊢β0

β0
Γ,¬C for β0 = ψσ(â0)

by SIH. A (cut) yields Hâ0+1[Θ] ⊢β0+1
β0

Γ. MIH yields Hâ1+1[Θ] ⊢β1

β1
Γ, where

â1 = â0 + θβ0
(β0 + 1) < â and β1 = ψλ(â1) < ψλ(â) ≤ β.

Case 2.2. Otherwise: Then there is no regular σ ∈ Hγ [Θ] such that d < σ ≤ b.

Let d+ c = b. Then by Cut-elimination we obtain Hγ [Θ] ⊢θc(a)d Γ. MIH yields

Hâ+1[Θ] ⊢ψλ(â)
ψλ(â)

Γ, where γ + θd(θc(a)) = γ + θb(a) = â. 2

Theorem 2.7 Assume KPΠ3 ⊢ θLΩ for θ ∈ Σ. Then there exists an n < ω
such that Lα |= θ for α = ψΩ(ωn(K+ 1)) in OT (Π3).

Proof. By Embedding there exists an m > 0 such that H0[∅] ⊢K+m
K+m θLΩ . By

Cut-elimination, H0[∅] ⊢aK θLΩ and Ha[∅] ⊢aK θLΩ for a = ωm(K + m). By

Lemma 2.5 we obtain Hωa+1[{κ}] ⊢ββ θLΩ , where β = ψK(ω
a), a + ωK+a = ωa,

(θLΩ)(κ,K) ≡ θLΩ and ψK(a + K) < κ ∈ Mh2(a) ∩ ψK(a + K · ω). F.e. κ =

ψaK(a+K+1) ∈ Ha+K+2[∅]. Hence Hωa+K+2[∅] ⊢ββ θLΩ . Lemma 2.6 then yields

Hγ+1[∅] ⊢β1

β1
θLΩ for γ = ωa + K + θβ(β) and β1 = ψΩ(γ) < ψΩ(ω

a + K · 2) <
ψΩ(ωm+2(K+ 1)) = α. Therefore Lα |= θ. 2

3 Well-foundedness proof in KPΠ3

OT (Π3) denotes the computable notation system in section 2. κ = ψνσ(b) ∈
OT (Π3) only if ν = m2(κ) < m2(σ), SCK(ν) ⊂ κ and ν ≤ b, cf. (9). In this
section we show the

Theorem 3.1 KPΠ3 proves the well-foundedness of OT (Π3) up to each α <
ψΩ(εK+1).

We assume a standard encoding OT (Π3) ∋ α 7→ ⌈α⌉ ∈ ω, and identify ordinal
terms α with its code ⌈α⌉.
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3.1 Distinguished sets

In this subsection we work in KPℓ.

Definition 3.2 [Buchholz00].
For α ∈ OT (Π3), X ⊂ OT (Π3), let

Cα(X) := closure of {0,Ω,K} ∪ (X ∩ α) under +, φ
and (σ, α, ν) 7→ ψνσ(α) for σ > α in OT (Π3) (10)

α+ = Ωa+1 denotes the least regular term above α if such a term exists.
Otherwise α+ := ∞.

Proposition 3.3 Assume ∀γ ∈ X[γ ∈ Cγ(X)] for a set X ⊂ OT (Π3).

1. α ≤ β ⇒ Cβ(X) ⊂ Cα(X).

2. α < β < α+ ⇒ Cβ(X) = Cα(X).

Proof. 3.3.1. We see by induction on ℓγ (γ ∈ OT (Π3)) that

∀β ≥ α[γ ∈ Cβ(X) ⇒ γ ∈ Cα(X) ∪ (X ∩ β)] (11)

For example, if ψνπ(δ) ∈ Cβ(X) with π > β ≥ α and {π, δ, ν} ⊂ Cα(X)∪ (X∩β),
then π ∈ Cα(X), and for any γ ∈ {δ, ν}, either γ ∈ Cα(X) or γ ∈ X ∩ β. If
γ < α, then γ ∈ X ∩ α ⊂ Cα(X). If α ≤ γ ∈ X ∩ β, then γ ∈ Cγ(X) by the
assumption, and by IH we have γ ∈ Cα(X)∪ (X∩γ), i.e., γ ∈ Cα(X). Therefore
{π, δ, ν} ⊂ Cα(X), and ψνπ(δ) ∈ Cα(X).

Using (11) we see from the assumption that ∀β ≥ α[γ ∈ Cβ(X) ⇒ γ ∈
Cα(X)].
3.3.2. Assume α < β < α+. Then by Proposition 3.3.1 we have Cβ(X) ⊂ Cα(X).
Cα(X) ⊂ Cβ(X) is easily seen from β < α+. 2

Definition 3.4 1. Prg[X,Y ] :⇔ ∀α ∈ X(X ∩ α ⊂ Y → α ∈ Y ).

2. For a definable class X , TI[X ] denotes the schema:
TI[X ] :⇔ Prg[X ,Y] → X ⊂ Y holds for any definable classes Y.

3. For X ⊂ OT (Π3), W (X) denotes the well-founded part of X.

4. Wo[X] :⇔ X ⊂W (X).

Note that for α ∈ OT (Π3), W (X) ∩ α =W (X ∩ α).

Definition 3.5 For X ⊂ OT (Π3) and α ∈ OT (Π3),

1.
D[X] :⇔ ∀α(α ≤ X →W (Cα(X)) ∩ α+ = X ∩ α+) (12)

A set X is said to be a distinguished set if D[X].
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2. W :=
∪
{X : D[X]}.

Let α ∈ X for a distinguished set X. Then W (Cα(X)) ∩ α+ = X ∩ α+.
Hence X is a well order.

Proposition 3.6 Let X be a distinguished set. Then α ∈ X ⇒ ∀β[α ∈ Cβ(X)].

Proof. Let D[X] and α ∈ X. Then α ∈ X ∩ α+ = W (Cα(X)) ∩ α+ ⊂ Cα(X).
Hence ∀γ ∈ X(γ ∈ Cγ(X)), and α ∈ Cβ(X) for any β ≤ α by Proposition 3.3.1.
Moreover for β > α we have α ∈ X ∩ β ⊂ Cβ(X). 2

Proposition 3.7 X ∩ α = Y ∩ α⇒ ∀β < α+
[
Cβ(X) = Cβ(Y )

]
if ∀γ ∈ X(γ ∈

Cγ(X)) and ∀γ ∈ Y (γ ∈ Cγ(Y )).

Proof. Assume that X ∩ α = Y ∩ α and α ≤ β < α+. We obtain Cα(X) =
Cα(Y ). On the other hand we have Cβ(X) = Cα(X) and similarly for Cβ(Y ) by
Proposition 3.3.2. Hence Cβ(X) = Cβ(Y ). 2

Proposition 3.8 α ≤ X &α ≤ Y ⇒ X ∩ α+ = Y ∩ α+ if D[X] and D[Y ].

Proof. For distinguished set X, α ≤ X ⇒ X ∩ α+ = W (Cα(X)) ∩ α+. Hence
the proposition follows from Propositions 3.6 and 3.7. 2

Proposition 3.9 W is the maximal distinguished class.

Proof. First we show ∀γ ∈ W(γ ∈ Cγ(W)). Let γ ∈ W, and pick a distin-
guished set X such that γ ∈ X. Then γ ∈ Cγ(X) ⊂ Cγ(W) by X ⊂ W.

Let α ≤ W. Pick a distinguished set X such that α ≤ X. We claim that
W ∩ α+ = X ∩ α+. Let Y be a distinguished set and β ∈ Y ∩ α+. Then
β ∈ Y ∩ β+ = X ∩ β+ by Proposition 3.8. The claim yields W (Cα(W)) ∩ α+ =
W (Cα(X)) ∩ α+ = X ∩ α+ = W ∩ α+. Hence D[W]. 2

Definition 3.10 G(X) := {α ∈ OT (Π3) : α ∈ Cα(X)& Cα(X) ∩ α ⊂ X}.

Lemma 3.11 For D[X], X ⊂ G(X).

Proof. Let γ ∈ X. We have γ ∈W (Cγ(X))∩ γ+ = X ∩ γ+. Hence γ ∈ Cγ(X).
Assume α ∈ Cγ(X)∩γ. Then α ∈W (Cγ(X))∩γ+ ⊂ X. Therefore Cγ(X)∩γ ⊂
X. 2

Definition 3.12 For ordinal terms α, δ ∈ OT (Π3), finite sets Gδ(α) ⊂ OT (Π3)
are defined recursively as follows.

1. Gδ(α) = ∅ for α ∈ {0,Ω,K}. Gδ(αm+· · ·+α0) =
∪
i≤mGδ(αi). Gδ(φβγ) =

Gδ(β) ∪Gδ(γ).

2. Gδ(ψ
ν
π(a)) =

{
Gδ({π, a, ν}) δ < π
{ψνπ(a)} π ≤ δ

.

Proposition 3.13 For {α, δ, a, b, ρ} ⊂ OT (Π3),
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1. Gδ(α) ≤ α.

2. α ∈ Ha(b) ⇒ Gδ(α) ⊂ Ha(b).

Proof. These are shown simultaneously by induction on the lengths ℓα of or-
dinal terms α. It is easy to see that

Gδ(α) ∋ β ⇒ β < δ& ℓβ ≤ ℓα (13)

3.13.1. Consider the case α = ψνπ(a) with δ < π. Then Gδ(α) = Gδ({π, a, ν}).
On the other hand we have {π, a, ν} ⊂ Ha(α). Proposition 3.13.2 with (13)
yields Gδ({π, a, ν}) ⊂ Ha(α) ∩ π ⊂ α. Hence Gδ(α) < α.
3.13.2. Since Gδ(α) ≤ α by Proposition 3.13.1, we can assume α ≥ b.

Consider the case α = ψνπ(a) with δ < π. Then {π, a, ν} ⊂ Ha(b) and
Gδ(α) = Gδ({π, a, ν}). IH yields the proposition. 2

Proposition 3.14 Let γ < β. Assume α ∈ Cγ(X) and ∀κ ≤ β[Gκ(α) < γ].
Moreover assume ∀δ[ℓδ ≤ ℓα& δ ∈ Cγ(X) ∩ γ ⇒ δ ∈ Cβ(X)]. Then α ∈ Cβ(X).

Proof. By induction on ℓα. If α < γ, then α ∈ Cγ(X)∩γ. The third assumption
yields α ∈ Cβ(X). Assume α ≥ γ. Except the case α = ψνπ(a) for some π, a, ν,
IH yields α ∈ Cβ(X). Suppose α = ψνπ(a) for some {π, a, ν} ⊂ Cγ(X) and
π > γ. If π ≤ β, then {α} = Gπ(α) < γ by the second assumption. Hence this
is not the case, and we obtain π > β. Then Gκ({π, a, ν}) = Gκ(α) < γ for any
κ ≤ β < π. IH yields {π, a, ν} ⊂ Cβ(X). We conclude α ∈ Cβ(X) from π > β.

2

Lemma 3.15 Suppose D[Y ] and α ∈ G(Y ). Let X =W (Cα(Y ))∩α+. Assume
that the following condition (71) is fulfilled. Then α ∈ X and D[X].

∀β
(
Y ∩ α+ < β&β+ < α+ →W (Cβ(Y )) ∩ β+ ⊂ Y

)
(14)

Proof. Let α ∈ G(Y ). By Cα(Y )∩α ⊂ Y and Wo[Y ] we obtain by Proposition
3.6

X ∩ α = Y ∩ α = Cα(Y ) ∩ α (15)

Hence α ∈ X.

Claim 3.16 α+ = γ+ & γ ∈ X ⇒ γ ∈ Cγ(X).

Proof of Claim 3.16. Let α+ = γ+ and γ ∈ X = W (Cα(Y )) ∩ α+. We
obtain γ ∈ Cα(Y ) = Cγ(Y ) by Propositions 3.6 and 3.3. Hence Y ∩ γ ⊂
Cγ(Y ) ∩ γ = Cα(Y ) ∩ γ. γ ∈W (Cα(Y )) yields Y ∩ γ ⊂ X. Therefore we obtain
γ ∈ Cγ(Y ) ⊂ Cγ(X). 2 of Claim 3.16.

Claim 3.17 D[X].
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Proof of Claim 3.17. We have X ∩ α = Y ∩ α by (15). Let β ≤ X. We show
W (Cβ(X)) ∩ β+ = X ∩ β+.
Case 1. β+ = α+: We obtain Cβ(X) = Cα(X) = Cα(Y ) by Proposition 3.3,
Claim 3.16 and (15).
Case 2. β+ < α+: Then β+ ≤ α.

First let Y ∩α+ < β. Then the assumption (71) yields W (Cβ(Y ))∩β+ ⊂ Y .
We obtain W (Cβ(X)) ∩ β+ ⊂ Y ∩ β+ = X ∩ β+ by (15). It remains to show
Y ∩ β+ ⊂ W (Cβ(Y )). Let γ ∈ Y ∩ β+. We obtain γ ∈ W (Cγ(Y )) by D[Y ].
On the other hand we have Cβ(Y ) ⊂ Cγ(Y ) by Proposition 3.3. Moreover
Proposition 3.6 yields γ ∈ Cβ(Y ). Hence γ ∈W (Cβ(Y )).

Next let β ≤ Y ∩ α+. We obtain Y ∩ β+ = W(Cβ(Y )) ∩ β+, and X ∩ β+ =
W(Cβ(X)) ∩ β+ by (15). 2 of Claim 3.17.

This completes a proof of Lemma 3.15. 2

Proposition 3.18 Let D[X].

1. Let {α, β} ⊂ X with α+ β = α#β and α > 0. Then γ = α+ β ∈ X.

2. If {α, β} ⊂ X, then φα(β) ∈ X.

Proof. Proposition 3.18.2 is seen by main induction on α ∈ X with subsidiary
induction on β ∈ X using Proposition 3.18.1. We show Proposition 3.18.1. We
obtain α ∈ X ∩ γ+ = W (Cγ(X)) ∩ γ+ with γ+ = α+. We see that α + β ∈
W (Cγ(X)) by induction on β ∈ X ∩ α ⊂ Cγ(X). 2

Proposition 3.19 Let X0 =W (C0(∅))∩0+ with 0+ = Ω, and X1 =W (CΩ(X0))∩
Ω+. Then 0 ∈ X0, Ω ∈ X1 and D[Xi] for i = 0, 1.

Proof. For each α ∈ {0,Ω} and any set Y ⊂ OT (Π3) we have α ∈ Cα(Y ). First
we obtain 0 ∈ G(∅) and D[∅]. Also there is no β such that β+ < 0+. Hence the
condition (71) is fulfilled, and we obtain 0 ∈ X0 and D[X0] by Lemma 3.15.

Next let γ ∈ CΩ(X0) ∩ Ω. We show γ ∈ X0 by induction on the lengths
ℓγ of ordinal terms γ as follows. We see that each strongly critical number
γ ∈ CΩ(X0) ∩ Ω is in X0 since if ψνσ(β) < Ω, then σ = Ω. Otherwise γ ∈ X0

is seen from IH using Proposition 3.18 and 0 ∈ X0. Therefore we obtain α ∈
G(X0). Let β+ < α+. Then β+ = Ω and β < Ω. Then W (Cβ(X0)) ∩ Ω =
W (C0(X0)) ∩ Ω = X0 by Proposition 3.3. Hence the condition (71) is fulfilled,
and we obtain Ω ∈ X1 and D[X1] by Lemma 3.15. 2

Definition 3.20 β ≺ α iff there exists a sequence {σi}i≤n(n > 0) such that
α = σ0, β = σn and for each i < n, there are some νi, ai such that σi+1 =
ψνiσi

(ai).

Note that β ≺ α⇒ m2(β) < m2(α).

Lemma 3.21 Suppose D[Y ] with {0,Ω} ⊂ Y , and for η ∈ OT (Π3)

η ∈ G(Y ) (16)
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and
∀γ ≺ η(γ ∈ G(Y ) ⇒ γ ∈ Y ) (17)

Let X =W (Cη(Y )) ∩ η+. Then η ∈ X and D[X].

Proof. By Lemma 3.15 and the hypothesis (16) it suffices to show (71), i.e.,

∀β
(
Y ∩ η+ < β&β+ < η+ →W (Cβ(Y )) ∩ β+ ⊂ Y

)
.

Assume Y ∩ η+ < β and β+ < η+. We have to show W (Cβ(Y )) ∩ β+ ⊂ Y . We
prove this by induction on γ ∈W (Cβ(Y )) ∩ β+. Suppose γ ∈ Cβ(Y ) ∩ β+ and

MIH : Cβ(Y ) ∩ γ ⊂ Y.

We show γ ∈ Y . We can assume that

Y ∩ η+ < γ (18)

since if γ ≤ δ for some δ ∈ Y ∩ η+, then by Y ∩ η+ < β and γ ∈ Cβ(Y )
we obtain δ < β, γ ∈ Cδ(Y ) and δ ∈ W (Cδ(Y )) ∩ δ+ = Y ∩ δ+. Hence
γ ∈W (Cδ(Y )) ∩ δ+ ⊂ Y .

We show first
γ ∈ G(Y ) (19)

First γ ∈ Cγ(Y ) by γ ∈ Cβ(Y ) ∩ β+ and Proposition 3.3. Second we show the
following claim by induction on ℓα:

α ∈ Cγ(Y ) ∩ γ ⇒ α ∈ Y (20)

Proof of (20). Assume α ∈ Cγ(Y ). We can assume γ+ ≤ β for otherwise we
have α ∈ Cγ(Y ) ∩ γ = Cβ(Y ) ∩ γ ⊂ Y by MIH.

By induction hypothesis on lengths, α < γ < β+ < η+, Proposition 3.18,
and {0,Ω} ⊂ Y , we can assume that α = ψνπ(a) for some π > γ such that
{π, a, ν} ⊂ Cγ(Y ).
Case 1. β < π: Then Gβ({π, a, ν}) = Gβ(α) < α < γ by Proposition 3.13.1.
Proposition 3.14 with induction hypothesis on lengths yields {π, a, ν} ⊂ Cβ(Y ).
Hence α ∈ Cβ(Y ) ∩ γ by π > β. MIH yields α ∈ Y .
Case 2. β ≥ π: We have α < γ < π ≤ β. It suffices to show that α ≤ Y ∩ η+.
Then by (18) we have α ≤ δ ∈ Y ∩ η+ for some δ < γ. Cδ(Y ) ∋ α ≤ δ ∈
Y ∩ δ+ =W (Cδ(Y )) ∩ δ+ yields α ∈W (Cδ(Y )) ∩ δ+ ⊂ Y .

Assume first that γ is not a strongly critical number. By α = ψνπ(a) < γ, we
can assume that γ ̸= 0. Let δ denote the largest immediate subterm of γ. We
obtain δ ∈ Cβ(Y )∩ γ by (18), Y ∩ η+ < γ ∈ Cβ(Y ). Hence δ ∈ Y by MIH. Also
by α < γ, we obtain α ≤ δ, i.e., α ≤ Y , and we are done.

Next let γ = ψξκ(b) for some b, ξ and κ > β by (18) and γ ∈ Cβ(Y ). We have
α < γ < π ≤ β < κ. We obtain π ̸∈ Hb(γ) since otherwise by π < κ we would
have π < γ. Therefore α = ψνπ(a) < ψξκ(b) = γ < π < κ with π ∈ Ha(α) and
π ̸∈ Hb(γ). This yields a > b and {κ, b, ξ} ̸⊂ Ha(α).
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On the other hand we have {κ, b, ξ} ⊂ Ha(γ). This means that there exists
a subterm δ < γ of one of κ, b, ξ such that δ ̸∈ Ha(α). Also we have {κ, b, ξ} ⊂
Cβ(Y ). Then δ ∈ Cβ(Y ) ∩ γ. By MIH we obtain α ≤ δ ∈ Cβ(Y ) ∩ γ ⊂ Y .

2 of (20) and (19).

Hence we obtain γ ∈ G(Y ). We have γ < β+ ≤ η and γ ∈ Cγ(Y ). If γ ≺ η, then
the hypothesis (17) yields γ ∈ Y . In what follows assume γ ̸≺ η.

If Gη(γ) < γ, then Proposition 3.14 yields γ ∈ Cη(Y ) ∩ η ⊂ Y by η ∈ G(Y ).
Suppose Gη(γ) = {γ}. This means, by γ ̸≺ η, that γ ≺ τ for a τ < η. Let

τ denote the maximal such one. We have γ < τ < η. From γ ∈ Cγ(Y ) we see
τ ∈ Cγ(Y ). Next we show that

Gη(τ) < γ (21)

Let τ = ψµκ(b). Then η < κ by the maximality of τ , and Gη(τ) = Gη({κ, b, µ}) <
τ by Proposition 3.13.1. On the other hand we have τ ∈ Ha(γ). Proposition
3.13.2 yields Gη(τ) ⊂ Ha(γ). We see Gη(τ) < γ inductively.

Proposition 3.14 with (21) yields τ ∈ Cη(Y ), and τ ∈ Cη(Y ) ∩ η ⊂ Y by
η ∈ G(Y ). Therefore Y ∩ η+ < γ < τ ∈ Y . This is not the case by (18). We are
done. 2

Proposition 3.22 α ≤ W ∩ β+ &α ∈ Cβ(W) ⇒ α ∈ W.

Proof. This is seen from Propositions 3.3, 3.6 an 7.39. 2

3.2 Mahlo universes

In Proposition 3.9, we saw that W is the maximal distinguished class, which is
Σ1−

2 -definable and a proper class in KPΠ3. WP in Definition 3.25 denotes the
maximal distinguished class inside a set P . WP exists as a set.

Let ad denote a Π−
3 -sentence such that a transitive set z is admissible iff

(z;∈) |= ad. Let lmtad :⇔ ∀x∃y(x ∈ y ∧ ady). Observe that lmtad is a Π−
2 -

sentence.

Definition 3.23 L denotes a whole universe, which is a model of KPΠ3.

1. By a universe we mean either the whole universe L or a transitive set
Q ∈ L with ω ∈ Q. Universes are denoted by P,Q, . . .

2. For a universe P and a set-theoretic sentence φ, P |= φ :⇔ (P ;∈) |= φ.

3. A universe P is said to be a limit universe if lmtadP holds, i.e., P is a
limit of admissible sets. The class of limit universes is denoted by Lmtad.

Lemma 3.24 W (Cα(X)) as well as D[X] are absolute for limit universes P .

Proof. Let P be a limit universe and X ∈ P(ω) ∩ P . Then W (X) is ∆1 in P ,
and so isW (Cα(X)). HenceW (Cα(X)) = {β ∈ OT (Π3) : P |= β ∈W (Cα(X))},
and D[X] ⇔ P |= D[X]. 2
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Definition 3.25 For a universe P , let WP :=
∪
{X ∈ P : D[X]}.

Lemma 3.26 Let P be a universe closed under finite unions, and α ∈ OT (Π3).

1. There is a finite set K(α) ⊂ OT (Π3) such that ∀Y ∈ P∀γ[K(α) ∩ Y =
K(α) ∩WP ⇒

(
α ∈ Cγ(WP ) ⇔ α ∈ Cγ(Y )

)
].

2. There exists a distinguished set X ∈ P such that ∀Y ∈ P∀γ[X ⊂ Y &D[Y ] ⇒
(α ∈ Cγ(WP ) ⇔ α ∈ Cγ(Y ))].

Proof. 3.26.1. F.e. the set of subterms of α enjoys the condition for K(α).
3.26.2. By X,Y ∈ P ⇒ X ∪ Y ∈ P , pick a distinguished set X ∈ P such that
K(α) ∩WP ⊂ X. 2

Proposition 3.27 For each limit universe P , D[WP ] holds, and ∃X(X = WP )
if P is a set.

Proof. D[WP ] is seen as in Proposition 3.9. 2

For a universal Πn-formula Πn(a) (n > 0) uniformly on admissibles, let

P ∈M2(C) :⇔ P ∈ Lmtad&∀b ∈ P [P |= Π2(b) → ∃Q ∈ C ∩ P (Q |= Π2(b))].

Lemma 3.28 Let C be a Π1
0-class such that C ⊂ Lmtad. Suppose P ∈ M2(C)

and α ∈ G(WP ). Then there exists a universe Q ∈ C such that α ∈ G(WQ).

Proof. Suppose P ∈M2(C) and α ∈ G(WP ). First by α ∈ Cα(WP ) and Lemma
3.26 pick a distinguished set X0 ∈ P such that α ∈ Cα(X0) and K(α) ∩WP ⊂
X0. Next writing Cα(WP ) ∩ α ⊂ WP analytically we have

∀β < α[β ∈ Cα(WP ) ⇒ ∃Y ∈ P (D[Y ] &β ∈ Y )]

By Lemma 3.26 we obtain β ∈ Cα(WP ) ⇔ ∃X ∈ P{D[X] &K(β) ∩ WP ⊂
X &β ∈ Cα(X)}. Hence for any β < α and any distinguished set X ∈ P , there
are γ ∈ K(β), Z ∈ P and a distinguished set Y ∈ P such that if γ ∈ Z &D[Z] →
γ ∈ X and β ∈ Cα(X), then β ∈ Y . By Lemma 3.24 D[X] is absolute for limit
universes. Hence the following Π2-predicate holds in the universe P ∈M2(C):

∀β < α∀X∃γ ∈ K(β)∃Z∃Y [{D[X] & (γ ∈ Z &D[Z] → γ ∈ X)&β ∈ Cα(X)}
⇒ (D[Y ] &β ∈ Y )] (22)

Now pick a universe Q ∈ C ∩ P with X0 ∈ Q and Q |= (22). Tracing the
above argument backwards in the limit universe Q we obtain Cα(WQ)∩α ⊂ WQ

and X0 ⊂ WQ =
∪
{X ∈ Q : Q |= D[X]} ∈ P . Thus Lemma 3.26 yields

α ∈ Cα(WQ). We obtain α ∈ G(WQ). 2

Definition 3.29 We define the class M2(α) of α-recursively Mahlo universes
for α ∈ OT (Π3) as follows:

P ∈M2(α) ⇔ P ∈ Lmtad&∀β ≺ α[SCK(m2(β)) ⊂ WP ⇒ P ∈M2(M2(β))]
(23)

M2(α) is a Π3-class.
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Proposition 3.30 If η ∈ G(Y ), then SCK(m2(η)) ⊂ Y .

Proof. Let ν = m2(η). Then SCK(ν) ⊂ η by (9). From η ∈ Cη(Y ) we see
SCK(ν) ⊂ Cη(Y ). Hence SCK(ν) ⊂ Cη(Y ) ∩ η ⊂ Y by η ∈ G(Y ). 2

Lemma 3.31 If η ∈ G(WP ) and P ∈M2(M2(η)), then η ∈ WP .

Proof. We show this by induction on ∈. Suppose, as IH, the lemma holds for
any Q ∈ P . By Lemma 3.28 pick a Q ∈ P such that Q ∈ M2(η), and for
Y = WQ ∈ P , {0,Ω} ⊂ Y and

η ∈ G(Y ) (16)

On the other the definition (23) yields ∀γ ≺ η[SCK(m2(γ)) ⊂ WQ ⇒ Q ∈
M2(M2(γ))]. Hence by Proposition 3.30 ∀γ ≺ η[γ ∈ G(WQ) ⇒ Q ∈M2(M2(γ))].

IH yields with Y = WQ

∀γ ≺ η(γ ∈ G(Y ) ⇒ γ ∈ Y ) (17)

Therefore by Lemma 3.21 we conclude η ∈ X andD[X] forX =W (Cη(Y ))∩η+.
X ∈ P follows from Y ∈ P ∈ Lmtad. Consequently η ∈ WP . 2

Lemma 3.32 1. CK(W) ∩K = W ∩K.

2. K ∈ CK(W).

3. For each n ∈ ω, TI[CK(W) ∩ ωn(K+ 1)].

Proof. We show Lemma 3.32.3. It suffices to show TI[W]. Assume Prg[W, A]
for a formula A, and α ∈ W. Pick a distinguished set X such that α ∈ X. Then
X ∩ α+ = W ∩ α+, and hence Prg[X ∩ (α+ 1), A]. Wo[X] yields A(α). 2

Lemma 3.33 ∀η[m2(η) ∈ CK(W) ∩ ωn(K + 1) ⇒ L ∈ M2(M2(η))] holds for
each n ∈ ω.

Proof. We show the lemma by induction on ν = m2(η) ∈ CK(W) up to each
ωn(K+ 1). Suppose ν ∈ CK(W) and L |= Π2(b) for a b ∈ L. We have to find a
universe Q ∈ L such that b ∈ Q, Q ∈M2(η) and Q |= Π2(b).

By the definition (23) L ∈M2(η) is equivalent to ∀γ ≺ η[m2(γ) ∈ CK(W) ⇒
L ∈ M2(M2(γ))]. We obtain γ ≺ η ⇒ m2(γ) < m2(η) = ν. Thus IH yields
L ∈ M2(η). Let g be a primitive recursive function in the sense of set theory
such that L ∈M2(η) ⇔ P |= Π3(g(η)). Then L |= Π2(b) ∧ Π3(g(η)). Since this
is a Π3-formula which holds in a Π3-reflecting universe L, we conclude for some
Q ∈ L, Q |= Π2(b) ∧Π3(g(η)) and hence Q ∈M2(η). We are done. 2

Remark 3.34 Only here we need Π3-reflection. Therefore it sufffices for a
whole universe L to admit iterations of Π2-recursively Mahlo operations along
a well founded relation ≺ which is Σ on L: L ∈ M≺

2 (µ) =
∩
{M2(M

≺
2 (ν)) :

L |= ν ≺ µ}. Hence our wellfoundednes proof is formalizable in a set theory
axiomatizing such universes L.
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Lemma 3.35 For each n ∈ ω, m2(η) < ωn(K+ 1)& η ∈ G(W) ⇒ η ∈ W.

Proof. Assume ν = m2(η) < ωn(K + 1) and η ∈ G(W). By Proposition 3.30
we obtain ν ∈ CK(W). Lemma 3.33 yields L ∈ M2(M2(η)). From this we see
L ∈ M2(C) with C = M2(M2(η)) as in the proof of Lemma 3.33 using Π3-
reflection of the whole universe L once again. Then by Lemma 3.28 pick a set
P ∈ L such that η ∈ G(WP ) and P ∈ C = M2(M2(η)). Lemma 3.31 yields
η ∈ WP ⊂ W. 2

3.3 Well-foundedness proof (concluded)

Definition 3.36 For terms α, κ, δ ∈ OT (Π3), finite sets E(α),Kδ(α), kδ(α) ⊂
OT (Π3) are defined recursively as follows.

1. E(α) = ∅ for α ∈ {0,Ω,K}. E(αm + · · · + α0) =
∪
i≤m E(αi). E(φβγ) =

E(β) ∪ E(γ). E(ψνπ(a)) = {ψνπ(a)}.

2. A(α) =
∪
{A(β) : β ∈ E(α)} for A ∈ {Kδ, kδ}.

3. Kδ(ψ
ν
π(a)) =

{
{a} ∪Kδ({π, a} ∪ SCK(ν)) ψνπ(a) ≥ δ
∅ ψνπ(a) < δ

.

4. kδ(ψ
ν
π(a)) =

{
{ψνπ(a)} ∪ kδ({π, a} ∪ SCK(ν)) ψνπ(a) ≥ δ
∅ ψνπ(a) < δ

.

Note that Kδ(α) < a⇔ α ∈ Ha(δ).

Definition 3.37 For a, ν ∈ OT (Π3), define:

A(a, ν) :⇔ ∀σ ∈ CK(W)[ψνσ(a) ∈ OT (Π3) ⇒ ψνσ(a) ∈ W]. (24)

MIH(a) :⇔ ∀b ∈ CK(W) ∩ a∀ν ∈ CK(W)A(b, ν). (25)

SIH(a, ν) :⇔ ∀ξ ∈ CK(W)[ξ < ν ⇒ A(a, ξ)]. (26)

Lemma 3.38 For each n the following holds: Assume {a, ν} ⊂ CK(W)∩ωn(K+
1), MIH(a), and SIH(a, ν) in Definition 3.37. Then

∀κ ∈ CK(W)[ψνκ(a) ∈ OT (Π3) ⇒ ψνκ(a) ∈ W].

Proof. Let α1 = ψνκ(a) ∈ OT (Π3) with {a, κ, ν} ⊂ CK(W) and ν ≤ a <
ωn(K+ 1), cf. (9). By Lemma 3.35 it suffices to show α1 ∈ G(W).

By Proposition 3.6 we have {κ, a, ν} ⊂ Cα1(W), and hence α1 ∈ Cα1(W). It
suffices to show the following claim.

∀β1 ∈ Cα1(W) ∩ α1[β1 ∈ W]. (27)

Proof of (27) by induction on ℓβ1. Assume β1 ∈ Cα1(W) ∩ α1 and let

LIH :⇔ ∀γ ∈ Cα1(W) ∩ α1[ℓγ < ℓβ1 ⇒ γ ∈ W].
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We show β1 ∈ W. By Propositions 3.18, 3.19 and LIH, we may assume that
β1 = ψξπ(b) for some π, b, ξ such that {π, b, ξ} ⊂ Cα1(W).

β1 = ψξπ(b) < ψνκ(a) = α1 holds iff one of the following holds: (1) π ≤ α1.
(2) b < a, β1 < κ and {π, b, ξ} ⊂ Ha(α1). (3) b = a, π = κ, ξ ∈ Ha(α1) and
ξ < ν. (4) a ≤ b and {κ, a, ν} ̸⊂ Hb(β1).
Case 1. π ≤ α1: Then β1 ∈ W by β1 ∈ Cα1(W).
Case 2. b < a, β1 < κ and {π, b, ξ} ⊂ Ha(α1): Let B denote a set of subterms
of β1 defined recursively as follows. First {π, b}∪SCK(ξ) ⊂ B. Let α1 ≤ β ∈ B.
If β =NF γm+ · · ·+γ0, then {γi : i ≤ m} ⊂ B. If β =NF φγδ, then {γ, δ} ⊂ B.
If β = ψµσ(c), then {σ, c} ∪ SCK(µ) ⊂ B.

Then from {π, b, ξ} ⊂ Cα1(W) we see inductively that B ⊂ Cα1(W). Hence
by LIH we obtain B ∩ α1 ⊂ W. Moreover if α1 ≤ ψµσ(c) ∈ B, then we see c < a
from {π, b, ξ} ⊂ Ha(α1). We claim that

∀β ∈ B(β ∈ CK(W)) (28)

Proof of (28) by induction on ℓβ. Let β ∈ B. We can assume that α1 ≤ β =
ψµσ(c) by induction hypothesis on the lengths. Then by induction hypothesis we
have {σ, c} ∪ SCK(µ) ⊂ CK(W). On the other hand we have µ ≤ c < a by (9).
MIH(a) yields β ∈ W. Thus (28) is shown. 2

In particular we obtain {π, b} ∪ SCK(ξ) ⊂ CK(W). Moreover we have ξ ≤
b < a by (9). Therefore once again MIH(a) yields β1 ∈ W.
Case 3. b = a, π = κ, ξ ∈ Ha(α1) and ξ < ν ≤ a: As in (28) we see that
SCK(ξ) ⊂ W from MIH(a). SIH(a, ν) yields β1 ∈ W.
Case 4. a ≤ b and {κ, a, ν} ̸⊂ Hb(β1): It suffices to find a γ such that β1 ≤
γ ∈ W ∩ α1. Then β1 ∈ W follows from β1 ∈ Cα1(W) and Proposition 3.22.

kδ(α) denotes the set in Definition 3.36. In general we see that a ∈ Kδ(α)
iff ψhσ(a) ∈ kδ(α) for some σ, h, and for each ψhσ(a) ∈ kδ(ψ

h0
σ0
(a0)) there exists

a sequence {αi}i≤m of subterms of α0 = ψh0
σ0
(a0) such that αm = ψhσ(a), αi =

ψhi
σi
(ai) for some σi, ai, hi, and for each i < m, δ ≤ αi+1 ∈ E(Ci) for Ci =

{σi, ai} ∪ SCK(hi).
Let δ ∈ SCK(f) ∪ {κ, a} such that b ≤ γ for a γ ∈ Kβ1(δ). Pick an α2 =

ψh2
σ2
(a2) ∈ E(δ) such that γ ∈ Kβ1

(α2), and an αm = ψhm
σm

(am) ∈ kβ1
(α2) for

some σm, hm and am ≥ b ≥ a. We have α2 ∈ W by δ ∈ W. If α2 < α1, then
β1 ≤ α2 ∈ W ∩ α1, and we are done. Assume α2 ≥ α1. Then a2 ∈ Kα1

(α2) <
a ≤ b, and m > 2.

Let {αi}2≤i≤m be the sequence of subterms of α2 such that αi = ψhi
σi
(ai)

for some σi, ai, hi, and for each i < m, β1 ≤ αi+1 ∈ E(Ci) for Ci = {σi, ai} ∪
SCK(hi).

Let {nj}0≤j≤k (0 < k ≤ m− 2) be the increasing sequence n0 < n1 < · · · <
nk ≤ m defined recursively by n0 = 2, and assuming nj has been defined so that
nj < m and αnj

≥ α1, nj+1 is defined by nj+1 = min({i : nj < i < m,αi <
αnj} ∪ {m}). If either nj = m or αnj < α1, then k = j and nj+1 is undefined.
Then we claim that

∀j ≤ k(αnj
∈ W)&αnk

< α1 (29)
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Proof of (29). By induction on j ≤ k we show first that ∀j ≤ k(αnj ∈ W).
We have αn0 = α2 ∈ W. Assume αnj ∈ W and j < k. Then nj < m, i.e.,
αnj+1

< αnj
, and by αnj

∈ Cαnj (W), we have Cnj
⊂ Cαnj (W), and hence

αnj+1 ∈ E(Cnj
) ⊂ Cαnj (W). We see inductively that αi ∈ Cαnj (W) for any i

with nj ≤ i ≤ nj+1. Therefore αnj+1
∈ Cαnj (W) ∩ αnj

⊂ W by Proposition
3.22.

Next we show that αnk
< α1. We can assume that nk = m. This means that

∀i(nk−1 ≤ i < m⇒ αi ≥ αnk−1
). We have α2 = αn0 > αn1 > · · · > αnk−1

≥ α1,
and ∀i < m(αi ≥ α1). Therefore αm ∈ kα1

(α2) ⊂ kα1
({κ, a} ∪ SCK(h)), i.e.,

am ∈ Kα1
({κ, a} ∪ SCK(h)) for αm = ψhm

σm
(am). On the other hand we have

Kα1
({κ, a} ∪ SCK(h)) < a for α1 = ψhσ(a). Thus a ≤ am < a, a contradiction.
(29) is shown, and we obtain β1 ≤ αnk

∈ W ∩ α1.
This completes a proof of (27) and of the lemma. 2

Lemma 3.39 For each α ∈ OT (Π3), α ∈ CK(W).

Proof. This is seen by meta-induction on ℓα. By Propositions 3.18, 3.19, and
Lemma 3.32, we may assume α = ψνκ(a). By IH pick an n < ω such that
{κ, ν, a} ⊂ CK(W) ∩ ωn+1(K+ 1). Lemma 3.38 yields α ∈ W. 2

Theorem 3.1 follows from Lemma 3.39 and the fact W∩Ω =W (C0(∅))∩Ω =
W (OT (Π3)) ∩ Ω.

4 Π4-reflection

In this paper we focus on the ordinal analysis of Π3 reflection. This
means no genuine loss of generality, as the removal of Π3 reflection
rules in derivations already exhibits the pattern of cut elimination
that applies for arbitrary Πn reflection rules as well. ( [Rathjen94])

In this section K denotes either a Π1
2-indescribable cardinal or a Π4-reflecting

ordinal. Skolem hull Ha(X) and a Mahlo class Mha3(ξ) are defined as in Defi-
nition 2.2: Let for ξ > 0,

π ∈Mha3(ξ) :⇔ [{a, ξ} ⊂ Ha(π)& ∀ν ∈ Ha(π) ∩ ξ (π ∈M3(Mha3(ν)))]

where α ∈M3(A) iff A is Π1
1-indescribable in α or α is Π3-reflecting on A.

Then as in (8)

ψξπ(a) = min ({π} ∪ {κ ∈Mha3(ξ) : {ξ, π, a} ⊂ Ha(κ)&Ha(κ) ∩ π ⊂ κ})

where ξ = m3(ψ
ξ
π(a)).

As in Lemmas 2.3 and 2.4 we see the following for Π1
2-indescribable cardinal

K.

Lemma 4.1 Let a ∈ Ha(K) ∩ εK+1. Then K ∈ M3(Mha3(εK+1)). For every

ξ ∈ Ha(K) ∩ εK+1, ψ
ξ
K(a) < K.
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Operator controlled derivations for KPΠ4 are closed under the following
inference rules. For convenience let us attach an assignment m̄ : π 7→ m̄(π) =
(m̄2(π), m̄3(π)) to the derivations, where m̄i(π) ≤ mi(π) for i = 2, 3. Although
our derivability relation should be written as (Hγ [Θ], m̄) ⊢ab Γ, let us write
Hγ [Θ] ⊢ab Γ.

(rflΠ4
(K)) b ≥ K. There exist an ordinal a0 ∈ Hγ [Θ]∩ a, and a Σ4(K)-sentence
A enjoying the following conditions:

Hγ [Θ] ⊢a0b Γ,¬A {Hγ [Θ ∪ {ρ}] ⊢a0b Γ, A(ρ,K) : ρ < K}
Hγ [Θ] ⊢ab Γ

(rflΠ4
(K))

(rflΠ3
(α, π, ν)) There exist ordinals α < π ≤ b < K, ν < m̄3(π) ≤ m3(π) with
SCK(ν) ⊂ π and ν ≤ γ, a0 < a, and a finite set ∆ of Σ3(π)-sentences
enjoying the following conditions:

1. {α, π, ν} ∪ m̄(π) ⊂ Hγ [Θ].

2. For each δ ∈ ∆, Hγ [Θ] ⊢a0b Γ,¬δ.
3. Let

ρ ∈Mh3(ν) :⇔ ν ≤ m3(ρ).

Then for each α < ρ ∈Mh3(ν) ∩ π, Hγ [Θ ∪ {ρ}] ⊢a0b Γ,∆(ρ).

{Hγ [Θ] ⊢a0
b Γ,¬δ}δ∈∆ {Hγ [Θ ∪ {ρ}] ⊢a0

b Γ,∆(ρ,π)}α<ρ∈Mh3(ν)∩π

Hγ [Θ] ⊢a
b Γ

(rflΠ3(α, π, ν))

Finite proofs in KPΠ4 are embedded to controlled derivations with inferences
(rflΠ4(K)), and then (rflΠ4(K)) is replaced by inferences (rflΠ3(α, π, ν)) as in
Lemma 2.5.

Lemma 4.2 Assume Γ ⊂ Σ3(K), Θ ⊂ Hγ(ψK(γ)), and Hγ [Θ] ⊢aK Γ with a ≤ γ.

Then Hâ+1[Θ∪ {κ}] ⊢ββ Γ(κ,K) holds for every κ ∈Mh3(a)∩ψK(γ +K ·ω) such
that ψK(γ +K) < κ, where â = γ + ωK+a and β = ψK(â).

Let us try to eliminate inferences (rflΠ3(α, π, ν)) from the resulting deriva-
tions following the proof of Lemma 2.5. Let Mh2(ξ; a) be a Mahlo class for
which the following holds.

Lemma 4.3 Let Γ ⊂ Σ2(π) with ξ = m3(π), and Hγ [Θ] ⊢aπ Γ. Then for any
κ ∈Mh2(ξ; a) ∩ π, Hγ [Θ ∪ {κ}] ⊢κ+ωaπ Γ(κ,π) holds1.

1Here we don’t need to collapse derivations and cut ranks< π.
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Consider the crucial case. Let ∆ ⊂ Σ3(π), π ∈Mh3(ξ) and ν < ξ.

{Hγ [Θ] ⊢a0π Γ,¬δ}δ∈∆ {Hγ [Θ ∪ {ρ}] ⊢a0π Γ,∆(ρ,π) : α < ρ ∈Mh3(ν) ∩ π}
Hγ [Θ] ⊢aπ Γ

(rflΠ3
(α, π, ν))

Let σ ∈Mh2(ξ; a0)∩ κ. By IH with Inversion we obtain Hγ [Θ∪ {σ}] ⊢κ+ωa0+1
π

Γ(σ,π),¬δ(σ,π) for each δ ∈ ∆.
On the other hand we haveHγ [Θ∪{σ}] ⊢a0π Γ,∆(σ,π) for α < σ ∈Mh3(ν)∩π.

AssumeMh2(ξ; a) ⊂Mh2(ξ; a0). IH yieldsHγ [Θ∪{κ, σ}] ⊢κ+ωa0π Γ(κ,π),∆(σ,π).
Let α < σ ∈ Mh2(ξ; a0) ∩Mh3(ν) ∩ κ. A (cut) of the cut formulas δ(σ,π)

then yields Hγ [Θ ∪ {κ, σ}] ⊢κ+ωa0+pπ Γ(κ,π),Γ(σ,π) for a p < ω.
On the other hand we have Hγ [Θ∪ {κ}] ⊢2d

0 ¬θ(κ,π),Γ(κ,π) for each θ ∈ Γ ⊂
Σ2(π), where d = max{rk(θ(κ,π)) : θ ∈ Γ} < κ+ ω < π.

Now κ ∈Mh2(ξ; a)∩π needs to reflect Π2(κ)-formulas ¬θ(κ,π) down to some
α < σ ∈Mh2(ξ; a0) ∩Mh3(ν) ∩ κ.

a0 < a& ν < ξ ⇒Mh2(ξ; a) ⊂M2(Mh2(ξ; a0) ∩Mh3(ν))

Thus we arrive at the following definition of the Mahlo classes Mhγ2(ξ; a),
which is a Π3-class in the sense that there is a Π3-formula θ(γ, ξ, a) such that
α ∈Mhγ2(ξ; a) iff Lα |= θ(γ, ξ, a), while Mhγ3(ν) is a Π4-class.

π ∈Mhγ2(ξ; a) iff {γ, ξ, a} ⊂ Hγ(π) and

∀{ν, b} ⊂ Hγ(π) [ν < ξ& b < a⇒ π ∈M2 (Mhγ2(ξ; b) ∩Mhγ3(ν))] .

It turns out that we need Mahlo classes Mhγ2(ξ̄; ā) for finite sequences ξ̄
and ā in our proof-theoretic study, cf. Lemma 4.13. Let us explain the classes
intuitively in the next subsection.

4.1 Mahlo classes

Let Mi = RMi and P,Q, . . . denote transitive classes in L ∪ {L} for a Π4-
reflecting universe L. For classes X ,Y and i = 2, 3 let

X ≺i Y :⇔ ∀P ∈ Y(P ∈Mi(X ))

Definition 4.4 Let

M2(ξ; a) :=
∩

{M2 (M2(ξ; b) ∩M3(ν)) : ν < ξ, b < a}.

In general for classes Y let

MY
2 (ξ; a) := Y ∩

∩
{M2

(
MY

2 (ξ; b) ∩M3(ν)
)
: ν < ξ, b < a}.

Proposition 4.5 For a Π3-class Y and µ < ξ, MY
2 (ξ; a)∩M3(µ) ≺2 Y∩M3(ξ)

and MY
2 (ξ; a) ⊃ Y ∩M3(ξ).
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Proof. By induction on a, we show P ∈ Y ∩M3(ξ) ⇒ P ∈MY
2 (ξ; a).

Let P ∈ Y ∩M3(ξ), ν < ξ and b < a. By IH we obtain P ∈MY
2 (ξ; b). Since

MY
2 (ξ; b) is a Π3-class, we obtain P ∈ M2

(
MY

2 (ξ; b) ∩M3(ν)
)
by P ∈ M3(ξ).

Therefore P ∈MY
2 (ξ; a).

Since MY
2 (ξ; a) is a Π3-class and P ∈ M3(ξ) ⊂ M3(M3(µ)), we obtain P ∈

M2(M
Y
2 (ξ; a) ∩M3(µ)). 2

Let ν < µ < ξ. From Proposition 4.5 we see M2(ξ; a) ∩M3(µ) ≺2 M3(ξ),
and MY

2 (µ; b) ∩M3(ν) ≺2 Y ∩M3(µ) for Y =M2(ξ; a).
Let us write M2((ξ, µ); (a, b)) for MY

2 (µ; b), where ξ > µ. Let ν < µ < ξ.
We obtain M2((ξ, µ); (a, b)) ∩M3(ν) ≺2 M2(ξ; a) ∩M3(µ) ≺2 M3(ξ).

Proposition 4.6 Let ξ1, ζ < ξ, c < b and d < a. Then M2((ξ, µ); (a, c)) ∩
M3(ν) ≺2 M2((ξ, µ); (a, b)) and M2((ξ, ξ1); (d, e)) ∩M3(ζ) ≺2 M2((ξ, µ); (a, b)).

Proof. Let Y = M2(ξ; a). Then M2((ξ, µ); (a, c)) ∩ M3(ν) = MY
2 (µ; c) ∩

M3(ν) ≺2 M
Y
2 (µ; b) =M2((ξ, µ); (a, b)) by c < b and ν < µ.

Next we show MX
2 (ξ1; e) ∩M3(ζ) ≺2 Y ⊃ MY

2 (µ; b), where X = M2(ξ; d)
and M2((ξ, ξ1); (d, e)) =MX

2 (ξ1; e). We have X ∩M3(ξ1) ∩M3(ζ) =M2(ξ; d) ∩
M3(ξ1)∩M3(ζ) ≺2 M2(ξ; a) = Y by d < a and ξ1, ζ < ξ. On the other hand we
have MX

2 (ξ1; e) ⊃ X ∩M3(ξ1) by Proposition 4.5. Hence MX
2 (ξ1; e)∩M3(ζ) ≺2

Y. 2

The same argument applies not only to pairs (ξ > µ), (a, b), but also to
triples, and so forth.

Let ξ̄ = (ξ0 > ξ1 > · · · > ξn) and ā = (a0, a1, . . . , an) be sequences in the
same lengths. By iterating the process Y 7→ {MY

2 (ξ; a)}a with M3(ξ), we now
define classes M2(ξ̄; ā) by induction on the length n of the sequences ξ̄, ā as
follows.

M2(⟨⟩; ⟨⟩) denotes the class of transitive sets in L ∪ {L}.
For ξ̄ ∗ (ξ) = (ξ0 > · · · > ξn > ξ) and ā ∗ (a) = (a0, . . . , an, a) define for the

Π3-class Y =M2(ξ̄; ā)

M2(ξ̄ ∗ (ξ); ā ∗ (a)) =MY
2 (ξ; a)

Namely

M2(ξ̄∗(ξ); ā∗(a)) =M2(ξ̄; ā)∩
∩

{M2

(
M2(ξ̄ ∗ (ξ); ā ∗ (b)) ∩M3(ν)

)
: ν < ξ, b < a}

Proposition 4.6 is extended to finite sequences. To state an extension, let us
redefine classes M2(ξ̄; ā) through ordinals α = Λξ0a0 + · · · + Λξnan as follows,
where Λ is a big enough ordinal such that Λ > a0.

Let α = Λξ0a0 + · · ·+ Λξnan, where ξ0 > · · · > ξn and a0, . . . , an ̸= 0.

M2(α) :=
∩

{M2(M2(β) ∩M3(ν)) : (β, ν) < α}

where for segments αi = Λξ0a0 + · · ·+ Λξiai of α = Λξ0a0 + · · ·+ Λξnan

(β, ν) < α :⇔ ∃i ≤ n [β < αi& ν < ξi] .
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F.e. in Proposition 4.6 we have (Λξa+Λµc, ν) < Λξa+Λµb and (Λξd+Λξ1e, ζ) <
Λξa+ Λµb, but (Λξa+ Λµc, µ) ̸< Λξa+ Λµb, where ν < µ < ξ, ξ1, ζ < ξ, c < b
and d < a.

Proposition 4.7 (β, ν) < α < γ ⇒ (β, ν) < γ.

α+̇β designates that α+ β = α#β.

Lemma 4.8 (Cf. Lemma 3.2 in [A09].)
If ξ > 0 and β < Λξ+1, then M2(α+̇β) ≺2 M2(α, ξ) :=M2(α) ∩M3(ξ).

Proof. Suppose P ∈M2(α, ξ) =M2(α) ∩M3(ξ) and β < Λξ+1.
We show P ∈ M2(α+̇β) by induction on ordinals β. Let (γ, ν) < α+̇β. We

need to show that P ∈M2(M2(γ, ν)).
Let δ be a segment of α+̇β such that γ < δ and ν < µ where δ = · · ·+Λµb.

If δ is a segment of α, then P ∈M2(M2(γ, ν)) by P ∈M2(α).
Let δ = α+̇β0, where β0 is a segment of β. Then ν < µ ≤ ξ. We claim that

P ∈ M2(γ). If γ < α, then Proposition 4.7 yields P ∈ M2(α) ⊂ M2(γ). Let
γ = α+̇γ0 < α+̇β0. IH yields P ∈ M2(γ). Thus the claim is shown. On the
other hand we have P ∈M3(ξ) and ν < ξ. Since M2(γ) is a Π3-class, we obtain
P ∈M3(M2(γ, ν)) ⊂M2(M2(γ, ν)). P ∈M2(α+̇β) is shown.

By P ∈ M2(α+̇β) and P ∈ M3(ξ) ⊂ M3 with ξ > 0, we obtain P ∈
M3(M2(α+̇β)) ⊂M2(M2(α+̇β)). 2

4.2 Skolem hulls and collapsing functions

We can assume ξ < εK+1 and a < Λ = K. For α < ΛεK+1 , let us define Mhγ2(α)
as follows. (β, ν) denotes pairs of ordinals β < ΛεK+1 and ν < εK+1 such that
β + Λν = β#Λν . Let α = Λβ0a0 + · · · + Λβnan, where εK+1 > β0 > · · · > βn
and 0 < a0, . . . , an < Λ. Then π ∈Mhγ2(α) iff {γ, α} ⊂ Hγ(π) and

∀{ν, β} ⊂ Hγ(π) [(β, ν) < α⇒ π ∈M2 (Mhγ2(β) ∩Mhγ3(ν))]

where for segments αi = Λβ0a0 + · · ·+ Λβiai of α = Λβ0a0 + · · ·+ Λβnan

(β, ν) < α :⇔ ∃i ≤ n [β < αi& ν < βi] .

For example, if ν < ξ and a0 < a, then (Λξa0, ν) < Λξa. The exponents βi of α
designate ‘Π3-Mahlo degrees’.

Proposition 4.9 (β, ν) < α < γ ⇒ (β, ν) < γ.

Definition 4.10 Define simultaneously by recursion on ordinals a < εK+1 the

classes Ha(X) (X ⊂ ΓK+1), Mha2(α) (ξ < εK+1), the ordinals ψ
(α,ξ)
σ (a) as fol-

lows.

1. Ha(X) denotes the Skolem hull of {0,Ω,K}∪X under the functions +, φ,
and the following.

Let {σ, b, α, ξ} ⊂ Ha(X), α ∈ {0} ∪ [Λ,ΛεK+1), ξ ∈ [0, εK+1) and b < a.

Then ψ
(α,ξ)
σ (b) ∈ Ha(X).
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2. π ∈ Mha3(ξ) :⇔ {a, ξ} ⊂ Ha(π)& ∀ν ∈ Ha(π) ∩ ξ (π ∈M3(Mha3(ν))),
where α ∈Mha3(0) iff α is a limit ordinal.

3. For α < ΛεK+1 and a < εK+1, π ∈Mha2(α) iff {a, α} ⊂ Ha(π) and

∀{β, ν} ⊂ Ha(π) [(β, ν) < α→ π ∈M2 (Mha2(β, ν))]

where
Mha2(β, ν) =Mha2(β) ∩Mha3(ν)

and α ∈Mha2(0) iff α is a limit ordinal. Note that Mha2(α) is a Π3-class.

4. Let m2(K) = 0, m3(K) = εK+1, m2(Ω) = 1 and m3(Ω) = 0.

(a) For {ξ, a} ⊂ Ha(K) ∩ εK+1 with 0 < ξ ≤ a, let

ψ
(0,ξ)
K (a) = min ({K} ∪ {κ ∈Mha3(ξ) : {ξ, a} ⊂ Ha(κ)&Ha(κ) ∩K ⊂ κ}).

m2(ψ
(0,ξ)
K (a)) = 0 and m3(ψ

(0,ξ)
K (a)) = ξ.

(b) Let 0 ≤ α < ΛεK+1 and 0 < ξ < εK+1 be ordinals, 0 < c ≤ a < Λ = K
with c ∈ Ha(σ) and σ ∈Mha2(α, ξ). Then for β = α+̇Λξc

ψ(β,0)
σ (a) = min ({σ} ∪ {κ ∈Mha2(β) : {σ, α, ξ, c, a} ⊂ Ha(κ)&Ha(κ) ∩ σ ⊂ κ}) .

m2(ψ
(β,0)
σ (a)) = β and m3(ψ

(β,0)
σ (a)) = 0.

(c) Let 0 < β,α < ΛεK+1 and 0 < ν < εK+1 be such that {β, ν} ⊂ Ha(σ),
SCK(β, ν) ⊂ (a+1) < K and (β, ν) < α. Then for σ ∈Mha2(α) with
m3(σ) = 0

ψ(β,ν)
σ (a) = min ({σ} ∪ {κ ∈Mha2(β, ν) : {σ, β, ν, a} ⊂ Ha(κ)&Ha(κ) ∩ σ ⊂ κ}) .

m2(ψ
(β,ν)
σ (a)) = β and m3(ψ

(β,ν)
σ (a)) = ν.

(d)

ψσ(a) = min{κ ≤ σ : {σ, a} ⊂ Ha(κ)&Ha(κ) ∩ σ ⊂ κ}.

We write ψσ(a) for ψ
(0,0)
σ (a).

Let K be a Π1
2-indescribable cardinal. As in Lemmas 2.3 and 2.4 we see that

ψ
(0,ξ)
K (a) < K for every {a, ξ} ⊂ Ha(K) ∩ εK+1.

It is easy to see that ψ
(β,ν)
σ (a) < σ if (β, ν) < α, σ ∈ Mha2(α) and {β, ν} ⊂

Ha(σ).

Lemma 4.11 (Cf. Lemma 3.2 in [A09].) Assume K ≥ σ ∈ Mha2(α, ξ) with
0 < ξ < εK+1, β < Λξ+1 and β ∈ Ha(σ). Then σ ∈ M3(Mha2(α+̇β)) holds, a
fortiori σ ∈M2(Mha2(α+̇β)).
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Proof. Suppose σ ∈Mha2(α, ξ) =Mha2(α) ∩Mha3(ξ) and β ∈ Ha(σ) with β <
Λξ+1. We show σ ∈Mha2(α+̇β) by induction on ordinals β. Let {γ, ν} ⊂ Ha(σ)
and (γ, ν) < α+̇β. We need to show that σ ∈M2(Mha2(γ, ν)).

Let δ be a segment of α+̇β such that γ < δ and ν < µ where δ = · · ·+Λµb.
If δ is a segment of α, then σ ∈M2(Mha2(γ, ν)) by σ ∈Mha2(α).

Let δ = α+̇β0, where β0 is a segment of β. Then ν < µ ≤ ξ. We claim
that σ ∈ Mha2(γ). If γ < α, then Proposition 4.9 with γ ∈ Ha(σ) yields
σ ∈ Mha2(α) ⊂ Mha2(γ). Let γ = α+̇γ0 < α+̇β0 with γ0 ∈ Ha(σ). IH yields
σ ∈Mha2(γ). Thus the claim is shown. On the other hand we have σ ∈Mha3(ξ)
and ν ∈ Ha(σ)∩ξ. SinceMha2(γ) is a Π3-class, we obtain σ ∈M3(Mha2(γ, ν)) ⊂
M2(Mha2(γ, ν)) withMha2(γ, ν) =Mha2(γ)∩Mha3(ν). σ ∈Mha2(α+̇β) is shown.

By σ ∈ Mha2(α+̇β) and σ ∈ Mha3(ξ) ⊂ M3 with ξ > 0, we obtain σ ∈
M3(Mha2(α+̇β)). 2

Corollary 4.12 If σ ∈Mha2(α, ξ) and c ∈ Ha(σ)∩Λ with ξ > 0, then ψ
(β,0)
σ (a) <

σ for β = α+̇Λξc.

Proof. We obtain σ ∈M2(Mha2(β)) by Lemma 4.11. Since {κ < σ : {β, a, σ} ⊂
Ha(κ),Ha(κ) ∩ σ ⊂ κ} is a club subset of σ, we obtain ψ

(β,0)
σ (a) < σ. 2

OT (Π4) denotes a computable notation system of ordinals with collapsing

functions ψ
(α,ξ)
σ (a). Although in our well-foundedness proof in KPΠ4, ordinal

terms ψ
(β,ν)
σ (a) has to obey some restrictions such as (9) for OT (Π3), it is

cumbersome to verify the conditions, and let us skip it.
Operator controlled derivations for KPΠ4 are closed under the inference rules

(rflΠ4
(K)), (rflΠ3

(α, π, ν)) and the following.

(rflΠ2(α, π, β, ν)) There exist ordinals α < π ≤ b < K, (β, ν) < m̄2(π) ≤
m2(π), a0 < a, and a finite set ∆ of Σ2(π)-sentences enjoying the following
conditions:

1. {α, π, β, ν} ∪ m̄(π) ⊂ Hγ [Θ].

2. For each δ ∈ ∆, Hγ [Θ] ⊢a0b Γ,¬δ.
3. For each α < ρ ∈Mh2(β, ν) ∩ π, Hγ [Θ ∪ {ρ}] ⊢a0b Γ,∆(ρ,π).

{Hγ [Θ] ⊢a0b Γ,¬δ}δ∈∆ {Hγ [Θ ∪ {ρ}] ⊢a0b Γ,∆(ρ,π)}α<ρ∈Mh2(β,ν)∩π

Hγ [Θ] ⊢ab Γ
(rflΠ2

(α, π, β, ν))

This inference says that π ∈M2(Mhγ2(β) ∩Mhγ3(ν)).

Lemma 4.13 Let Γ ⊂ Σ2(π). Assume Hγ [Θ] ⊢aπ Γ for a π < K, and {ξ, α} ⊂
Hγ [Θ] for α = m̄2(π), ξ = m̄3(π). Let η be the base for (rflΠ3(η, π, ν)) in
Hγ [Θ] ⊢aπ Γ. Then for any η < κ ∈Mh2(α+̇Λξ(1 + a))∩ π, Hγ [Θ∪ {κ}] ⊢κ+ωaπ

Γ(κ,π) holds, where α+̇Λξ(1+a) ≤ m̄2(κ) ∈ Hγ [Θ]. Moreover when Θ ⊂ Hγ(κ),
Hγ [Θ ∪ {κ}] ⊢κ+ωaκ Γ(κ,π) holds.

35



Proof. By induction on a. Let π′ = κ if Θ ⊂ Hγ(κ). Otherwise π′ = π. Note
that there exists a κ such that κ ∈Mh2(α+̇Λξ(1 + a)) ∩ π if Θ ∪ {π} ⊂ Hγ(π).

F.e. κ = ψ
(α+Λξ(1+a),0)
π (γ +maxΘ).

Let η be the base for (rflΠ3
(η, π, ν)) in Hγ [Θ] ⊢aπ Γ.

Case 1. (rflΠ3
(η, π, ν)): Then η < π, {η, π, ν} ∪ m̄(π) ⊂ Hγ [Θ], SCK(ν) ⊂ π,

and ν < m̄3(π) ≤ m3(π). Let ∆ ⊂ Σ3(π).

{Hγ [Θ] ⊢a0
π Γ,¬δ}δ∈∆ {Hγ [Θ ∪ {ρ}] ⊢a0

π Γ,∆(ρ,π)}η<ρ∈Mh3(ν)∩π

Hγ [Θ] ⊢a
π Γ

(rflΠ3(η, π, ν))

Let α0 = α+̇Λξ(1 + a0). Then (α0, ν) < α1 = α+̇Λξ(1 + a). We obtain
{κ, α1, ν, α0} ⊂ Hγ [Θ ∪ {κ}]. In the following derivation α1 ≤ m̄2(κ) with
m̄(κ) ⊂ Hγ [Θ].

{Hγ [Θ ∪ {κ}] ⊢2d
0 ¬θ(κ,π),Γ(κ,π)}θ∈Γ

{Hγ [Θ ∪ {σ}] ⊢σ+ωa0+1
π′ Γ(σ,π),¬δ(σ,π)}δ∈∆ Hγ [Θ ∪ {κ, σ}] ⊢κ+ωa0

π′ Γ(κ,π),∆(σ,π)

{Hγ [Θ ∪ {κ, σ}] ⊢κ+ωa0+p
π′ Γ(κ,π),Γ(σ,π)}η<σ∈Mh2(α0,ν)∩π

Hγ [Θ ∪ {κ}] ⊢κ+ωa
π′ Γ(κ,π)

(rflΠ2
(η, κ, α0, ν))

Case 2. (rflΠ2
(µ, π, β, ν)): (β, ν) < α = m̄2(π) ≤ m2(π), µ < π, {µ, π, α, β, ν} ⊂

Hγ [Θ] and ∆ ⊂ Σ2(π).

{Hγ [Θ] ⊢a0π Γ,¬δ}δ∈∆ {Hγ [Θ ∪ {ρ}] ⊢a0π Γ,∆(ρ,π)}µ<ρ∈Mh2(β,ν)∩π

Hγ [Θ] ⊢aπ Γ
(rflΠ2(π, β, ν))

Then (β, ν) < α1 = α+̇Λξ(1 + a) ≤ m̄2(κ) with the segment α of α+̇Λξ(1 + a).

We have ∆(ρ,π) =
(
∆(κ,π)

)(ρ,κ)
and {κ, α1, β, ν} ⊂ Hγ [Θ ∪ {κ}].

{Hγ [Θ ∪ {κ}] ⊢κ+ωa0+1
π′ Γ(κ,π),¬δ(κ,π)}δ∈∆ {Hγ [Θ ∪ {κ, ρ}] ⊢κ+ωa0

π′ Γ(κ,π),∆(ρ,π)}µ<ρ∈Mh2(β,ν)∩κ

Hγ [Θ ∪ {κ}] ⊢κ+ωa
π′ Γ(κ,π)

(rflΠ2 (µ, κ, β, ν))

Case 3. The last inference is a (cut) of a cut formula C: Then rk(C) ∈ Hγ [Θ]∩π
and C ∈ ∆0(π). If Θ ⊂ Hγ(κ), then rk(C) < κ.
Case 4. The last inference is either a (rflΠ3

(σ, ν)) or a (rflΠ2
(σ, δ, ν)) with

σ ∈ Hγ [Θ] ∩ π: IH yields the lemma. If Θ ⊂ Hγ(κ), then σ < κ. 2

We see from the above proof, if there is a base η for inferences (rflΠ3
(µ3, σ, ν))

and simultaneously for (rflΠ2
(µ2, σ, δ, ν)) in Hγ [Θ] ⊢aπ Γ (in the sense that

η = µ3 = µ2), then the same η is a base for inferences (rflΠ3
(µ3, σ, ν)) and

simultaneously for (rflΠ2
(µ2, σ, δ, ν)) in Hγ [Θ ∪ {κ}] ⊢κ+ωaπ′ Γ(κ,π).

Lemma 4.14 Let Γ ⊂ Σ1(λ) and Hγ [Θ] ⊢ab Γ with a < Λ = K, Hγ [Θ] ∋ λ ≤
b < K and λ regular, and assume ∀κ ∈ [λ, b)(Θ ⊂ Hγ(ψκ(γ))).

Let â = γ + θb(a) and δ = ψ
(β,ν)
λ (â) when λ ∈ Mhγ2(α), m3(λ) = 0 and

(β, ν) < α with {β, ν} ⊂ Hγ [Θ]. Then Hâ+1[Θ] ⊢δδ Γ holds.

Proof. By main induction on b with subsidiary induction on a as in Lemma
2.6. Let η be a base for reflection inferences in Hγ [Θ] ⊢ab Γ.
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Case 1. Consider the case when the last inference is a (rflΠ3(η, σ, ν)) with
b ≥ σ.

{Hγ [Θ] ⊢a0
b Γ,¬δ}δ∈∆ {Hγ [Θ ∪ {ρ}] ⊢a0

b Γ,∆(ρ,σ)}η<ρ∈Mh3(ν)∩σ

Hγ [Θ] ⊢a
b Γ

(rflΠ3(η, σ, ν))

where ∆ ⊂ Σ3(σ), SCK(ν) ⊂ σ, ν < ξ = m̄3(σ) ≤ m3(σ), α = m̄2(σ) ≤ m2(σ),
η < σ and {η, σ, ξ, α, ν} ⊂ Hγ [Θ]. We may assume that σ ≥ λ.
Case 1.1. There exists a regular π ∈ Hγ [Θ] such that σ < π ≤ b: Then ∆ ⊂
∆0(π) and σ < b0 = ψπ(â0) for â0 = γ + θb(a0). SIH yields Hâ0+1[Θ] ⊢b0b0 Γ,¬δ
for each δ ∈ ∆, and Hâ0+1[Θ ∪ {ρ}] ⊢b0b0 Γ,∆(ρ,σ) for each η < ρ ∈Mh3(ν) ∩ σ.
A (rflΠ3

(η, σ, ν)) yields Hâ0+1[Θ] ⊢b0+1
b0

Γ, where b0 < b. Let δ0 = ψλ(â1) with
â1 = â0 + θb0(b0 + 1) = γ + θb(a0) + θb0(b0 + 1) < γ + θb(a) = â. We obtain
Hâ1+1[Θ] ⊢δ0δ0 Γ by MIH, and the lemma follows.

Case 1.2. Otherwise: By Cut-elimination we obtain Hγ [Θ] ⊢θb(a0)σ Γ,¬δ for

each δ ∈ ∆, and Hγ [Θ ∪ {ρ}] ⊢θb(a0)σ Γ,∆(ρ,σ) for each η < ρ ∈ Mh3(ν) ∩ σ. A
(rflΠ3

(η, σ, ν)) yields Hγ [Θ] ⊢a1σ Γ for a1 = θb(a0) + 1. Let β = α + Λξ(1 + a1)

for α = m̄2(σ) ≤ m2(σ) and ξ = m̄3(π) ≤ m3(σ), and κ = ψ
(β,0)
σ (γ). We

obtain Θ ⊂ Hγ(κ) by the assumption. Hence {γ, σ, β} ⊂ Hγ(κ), and η < κ ∈
Mh2(β) ∩ σ, cf. Corollary 4.12. Moreover we have κ ∈ Hγ+1[Θ].

Lemma 4.13 yields Hγ [Θ ∪ {κ}] ⊢κ+ωa1κ Γ(κ,σ) and Hγ+1[Θ] ⊢κ+ωa1κ Γ(κ,σ),

where β ≤ m̄2(κ) with m̄(κ) ⊂ Hγ [Θ], and Γ(κ,σ) = Γ if λ < σ, and Γ(κ,σ) =

Γ(κ,λ) otherwise. In each case we obtain Hγ+1[Θ] ⊢κ+ωa1κ Γ. MIH then yields

Hâ1+1[Θ] ⊢δ1δ1 Γ, where δ1 = ψλ(â1) with â1 = γ + θκ(κ+ ωa1) < γ + θb(a) = â

by κ < σ ≤ b and a1 < θb(a).
Case 2. Consider the case when the last inference is a (rflΠ2(η, σ, β, ν)) with
b ≥ σ.

{Hγ [Θ] ⊢a0
b Γ,¬δ}δ∈∆ {Hγ [Θ ∪ {ρ}] ⊢a0

b Γ,∆(ρ,σ)}η<ρ∈Mh2(β,ν)∩σ

Hγ [Θ] ⊢a
b Γ

(rflΠ2(η, σ, β, ν))

where ∆ ⊂ Σ2(σ), (β, ν) < α = m̄2(σ) ≤ m2(σ), ξ = m̄3(σ) ≤ m3(σ), η < σ
and {η, σ, α, ξ, β, ν} ⊂ Hγ [Θ].

We may assume that σ ≥ λ. For each δ ∈ ∆, let δ ≃
∨
(δi)i∈J . We

may assume J = Tm(σ). Inversion yields Hγ+|i|[Θ ∪ k(i)] ⊢a0b Γ,¬δi, where
Γ ∪ {¬δi} ⊂ Σ1(σ). Let â0 = γ + θb(a0) and ρ = ψ

(β,ν)
σ (â0), where Θ ⊂

Hγ(ρ) by the assumption, {η, σ, β, ν, â0} ⊂ Hγ [Θ] with (β, ν) < m2(σ). Hence
{η, σ, β, ν, â0} ⊂ Hγ(ρ) and Hγ(ρ) ∩ σ ⊂ ρ. Therefore < η < ρ ∈ Mh2(β, ν) ∩
σ ∩Hâ0+1[Θ].

We see the lemma as in Lemma 2.6 by Inversion, picking the ρ-th branch
from the right upper seqeunts, and then introducing several (cut)’s instead of
(rflΠ2(η, σ, β, ν)). Use MIH when λ < σ.
Case 3. As in Lemma 2.6 we see the case when the last inference is a (cut) of
a cut formula C with d = rk(C) < b. 2

Theorem 4.15 Assume KPΠ4 ⊢ θLΩ for θ ∈ Σ. Then there exists an n < ω
such that Lα |= θ for α = ψΩ(ωn(K+ 1)) in OT (Π4).

37



Proof. By Embedding there exists an m > 0 such that H0[∅] ⊢K+m
K+m θLΩ . By

Cut-elimination, H0[∅] ⊢aK θLΩ for a = ωm(K +m). By Lemma 4.2 we obtain

Hωa+1[{κ}] ⊢ββ θLΩ , where β = ψK(ω
a), K + a = a, (θLΩ)(κ,K) ≡ θLΩ and

κ ∈ Mh2(a) ∩ ψK(K). F.e. κ = ψ
(0,a)
K (0) ∈ H1[∅]. Hence Hωa+1[∅] ⊢ββ θLΩ .

Lemma 4.14 then yields Hγ+1[∅] ⊢β1

β1
θLΩ for γ = ωa + θβ(β) and β1 = ψΩ(γ) <

ψΩ(ω
a +K) < ψΩ(ωm+2(K+ 1)) = α. Therefore Lα |= θ. 2

5 First order reflection

Having established an ordinal analysis for Π4-reflection in section 4, it is not
hard to extend it to first-order reflection. As expected, an exponential ordinal
structure emerges in resolving higher Mahlo classes.

Let K = Λ be either a Π1
N−2-indescribable cardinal or a ΠN -reflecting ordinal

for an integer N ≥ 3. Let for k > 0, α ∈Mk+2(A) iff A is Π1
k-indescribable in α

or α is Πk+2-reflecting on A. Let (νk, νk+1, . . . , νN−1) be a sequence of ordinals
νi < εΛ+1, and εΛ+1 > α = Λβ0a0 + · · · + Λβnan with β0 > · · · > βn and
0 < a0, . . . , an < Λ. Then (νk, νk+1, . . . , νN−1) < α iff there exists a segment
αi = Λβ0a0 + · · ·+ Λβiai of α such that νk < αi and (νk+1, . . . , νN−1) < βi.

Proposition 5.1 ν⃗ < α < γ ⇒ ν⃗ < γ.

5.1 Mahlo classes for ΠN -reflection

As in subsection 4.1 P ∈Mi(X ) designates that P is Πi-reflecting on X . Let

Mk(α) :=
∩

{Mk(Mk(ν̄)) : ν̄ = (νk, νk+1, . . . , νN−1) < α}

where
Mk((νk, νk+1, . . . , νN−1)) :=

∩
i≥k

Mi(νi).

By Proposition 5.1 we obtain α0 > α⇒Mk(α0) ⊂Mk(α). Hence for (max{ν̄, µ̄})i =
max{νi, µi}, cf.Case 1 in Lemma 5.8,

M2(ν̄) ∩M2(µ̄) =M2(max{ν̄, µ̄}).

Let ν̄ = (ν2, . . . , νN−1) and µ̄ = (µ2, . . . , µN−1). Then let

ν̄ ≺k µ̄ :⇔M2(ν̄) ≺k M2(µ̄).

Proposition 5.2 Let µ̄ = (µ2, . . . , µk−1), ν̄ = (νk+1, . . . , νN−1), and ξ̄ =
(ξk+1, . . . , ξN−1).

1. If (νk) ∗ ν̄ < ξk, then µ̄ ∗ (νk) ∗ ν̄ ≺k µ̄ ∗ (ξk) ∗ ξ̄.

2. (Cf. Lemma 4.8) If ξk+1, a > 0, then µ̄ ∗ (ξk+̇Λξk+1a) ∗ 0̄ ≺k µ̄ ∗ (ξk) ∗ ξ̄.
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Proof. 5.2.1. Let P ∈M2(µ̄ ∗ (ξk) ∗ ξ̄) ⊂M2(µ̄ ∗ 0̄)∩Mk(ξk). By (νk) ∗ ν̄ < ξk
we obtain P ∈Mk(Mk((νk) ∗ ν̄)). Since P ∈M2(µ̄ ∗ 0̄) is Πk on P , we conclude
P ∈Mk(M2(µ̄ ∗ 0̄) ∩Mk((νk) ∗ ν̄)) =Mk(Mk(µ̄ ∗ (νk) ∗ ν̄)).
5.2.2. It suffices to show thatMk(ξk+̇Λξk+1a) ≺k Mk(ξk)∩Mk+1(ξk+1), and this
follows from Mk(ξk) ∩Mk+1(ξk+1) ⊂ Mk(ξk+̇Λξk+1a). The latter is shown by
induction on a as in Lemma 4.8 using the fact that P ∈Mk(γ)∩Mk+1(ξk+1) ⇒
P ∈Mk(Mk(γ) ∩Mk+1(ν)) for ν < ξk+1. 2

5.2 Ordinals for first order reflection

Definition 5.3 Define simultaneously by recursion on ordinals a < εK+1 the
classes Ha(X) (X ⊂ ΓK+1), Mhak(ν⃗) (lh(ν⃗) = N − k), the ordinals ψν⃗σ(a) as
follows.

1. Ha(X) denotes the Skolem hull of {0,Ω,K}∪X under the functions +, φ,
and the following.

Let ν⃗ = (ν2, . . . , νN−1), {σ, b} ∪ ν⃗ ⊂ Ha(X) and b < a. Then ψν⃗σ(b) ∈
Ha(X).

2. For 2 ≤ k < N , π ∈Mhak(α) iff {a, α} ⊂ Ha(π) and

∀ν⃗ = (νk, . . . , νN−1) ⊂ Ha(π) [ν⃗ < α→ π ∈Mk (Mhak(ν⃗))]

where
Mhak(ν⃗) =

∩
i≥k

Mhai (νi).

Note that Mhak(α) is a Πk+1-class.

3. ψσ(a) = min ({σ} ∪ {κ < σ : {a, σ} ⊂ Ha(κ)&Ha(κ) ∩ σ ⊂ κ}).
mi(ψσ(a)) = 0 for i < N .

4. Let σ ∈Mha2(ξ⃗) for ξ⃗ = (ξ2, . . . , ξN−1) with ξk+1 > 0, and 0 < c < Λ = K
with c ∈ Ha(σ). Let ν⃗ = (ξ2, . . . , ξk−1, ξk+̇Λξk+1c, 0, . . . , 0). Then

ψν⃗σ(a) = min ({σ} ∪ {κ ∈Mha2(ν⃗) ∩ σ : {a} ∪ ν⃗ ⊂ Ha(κ)&Ha(κ) ∩ σ ⊂ κ}) .

mi(ψ
ν⃗
σ(a)) = νi for i < N , cf. Proposition 5.2.2.

5. Let σ ∈ Mha2(µ⃗ ∗ ξ⃗) with µ⃗ = (µ2, . . . , µk−1) and ξ⃗ = (ξk, . . . , ξN−1), and
ν⃗ = (νk, . . . , νN−1) < ξk, cf. Proposition 5.2.1.

ψµ⃗∗ν⃗σ (a) = min ({σ} ∪ {κ ∈Mha2(µ⃗ ∗ ν⃗) ∩ σ : {a} ∪ µ⃗ ∪ ν⃗ ⊂ Ha(κ)&Ha(κ) ∩ σ ⊂ κ}) .

mi(ψ
µ⃗∗ν⃗
σ (a)) = µi for i < k, and mi(ψ

µ⃗∗ν⃗
σ (a)) = νi for i ≥ k.

As in section 4 for Π4-reflection we see the following lemmas for Π1
N−2-

indescribable cardinal K.
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Lemma 5.4 Let a ∈ Ha(K) ∩ εK+1. Then K ∈ MN−1(MhaN−1(εK+1)), where

εK+1 denotes the sequence ν⃗ = 0⃗ ∗ (νN−1) with νN−1 = εK+1. For every ξ ∈
Ha(K) ∩ εK+1, ψ

0⃗∗(ξ)
K (a) < K.

Lemma 5.5 Let ν⃗ = (ξ2, . . . , ξk−1, ξk+̇Λξk+1c, 0, . . . , 0), where ξ⃗ = (ξ2, . . . , ξN−1)
with ξk+1 > 0, and 0 < c < Λ with c ∈ Ha(σ).

Assume σ ∈Mha2(ξ⃗). Then σ ∈M2(Mha2(ν⃗)) and ψ
ν⃗
σ(a) < σ, cf. Proposition

5.2.2.

Lemma 5.6 Let µ⃗ = (µ2, . . . , µk−1) and ν⃗ = (νk, . . . , νN−1) < ξ. Assume
ν⃗ ⊂ Ha(σ) and σ ∈Mha2(µ⃗ ∗ (ξ)). Then ψµ⃗∗ν⃗σ (a) < σ, cf. Proposition 5.2.1.

5.3 Operator controlled derivations for first order reflec-
tion

Operator controlled derivations for KPΠN are closed under the following infer-
ence rules. m̄ : π 7→ m̄(π) = (m̄2(π), . . . , m̄N−1(π)) is an additional data for
the derivations, where m̄i(π) ≤ mi(π) for 2 ≤ i ≤ N − 1.

(rflΠN
(K)) b ≥ K. There exist an ordinal a0 ∈ Hγ [Θ]∩a, and a ΣN (K)-sentence
A enjoying the following conditions:

Hγ [Θ] ⊢a0b Γ,¬A {Hγ [Θ ∪ {ρ}] ⊢a0b Γ, A(ρ,K) : ρ < K}
Hγ [Θ] ⊢ab Γ

(rflΠN
(K))

(rflΠk
(η, π, ν⃗)) for each 2 ≤ k ≤ N − 1, cf. Proposition 5.2.1.

There exist ordinals η < π ≤ b < K, ν⃗ = (νk, . . . , νN−1) < m̄k(π) ≤
mk(π), a0 < a, and a finite set ∆ of Σk(π)-sentences enjoying the following
conditions:

1. {η, π} ∪ ν⃗ ∪ m̄(π) ⊂ Hγ [Θ].

2. For each δ ∈ ∆, Hγ [Θ] ⊢a0b Γ,¬δ.
3. For any η < ρ ∈ Mh2(m̄<k(π) ∗ ν⃗) ∩ π, Hγ [Θ ∪ {ρ}] ⊢a0b Γ,∆(ρ,π),

where m̄<k(π) = (m̄2(π), . . . , m̄k−1(π)) and ρ ∈ Mhk(ν⃗) iff νi ≤
mi(ρ) for every k ≤ i ≤ N − 1.

{Hγ [Θ] ⊢a0b Γ,¬δ}δ∈∆ {Hγ [Θ ∪ {ρ}] ⊢a0b Γ,∆(ρ,π)}η<ρ∈Mh2(m̄<k(π)∗ν⃗)∩π

Hγ [Θ] ⊢ab Γ
(rflΠk

(η, π, ν⃗))

Lemma 5.7 Assume Γ ⊂ ΣN−1(K), Θ ⊂ Hγ(ψK(γ)), and Hγ [Θ] ⊢aK Γ. Then

Hâ+1[Θ∪{κ}] ⊢ββ Γ(κ,K) holds for any η = ψK(γ+K) < κ ∈MhN−1(a)∩ψK(γ+

K · ω), where â = γ + ωK+a and β = ψK(â).
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Lemma 5.8 Assume m̄(π) ⊂ Hγ [Θ], and there exists a 2 ≤ k < N−1 such that
m̄k+1(π) > 0, and let k = max{k : m̄k+1(π) > 0} and α = m̄k(π), ξ = m̄k+1(π).
Moreover assume Hγ [Θ] ⊢aπ Γ for a, π < K and Γ ⊂ Σk(π).

Then for any η < κ ∈ Mh2(m̄<k(π)) ∩ Mhk(α+̇Λξ(1 + a)) ∩ π, Hγ [Θ ∪
{κ}] ⊢κ+ωaπ Γ(κ,π) holds, where η is a base, α+̇Λξ(1 + a) ≤ m̄k(κ) ∈ Hγ [Θ]
and m̄<k(κ) = m̄<k(π). Moreover when Θ ⊂ Hγ(κ), Hγ [Θ ∪ {κ}] ⊢κ+ωaκ Γ(κ,π)

holds.

Proof. This is seen as in Lemma 4.13 by induction on a. Let π′ = κ if Θ ⊂
Hγ(κ). Otherwise π′ = π. Consider the cases when the last inference is a
(rflΠn

(η, π, ν⃗)). We have n ≤ k + 1, η < π, {η, π} ∪ ν⃗ ∪ m̄(π) ⊂ Hγ [Θ], ν⃗ =
(νn, . . . , νN−1) < m̄n(π) ≤ mn(π) and ∆ ⊂ Σn(π).

{Hγ [Θ] ⊢a0
π Γ,¬δ}δ∈∆ {Hγ [Θ ∪ {ρ}] ⊢a0

π Γ,∆(ρ,π)}η<ρ∈Mh2(m̄<n(π)∗ν⃗)∩π

Hγ [Θ] ⊢a
π Γ

(rflΠn(η, π, ν⃗))

Case 1. n = k + 1: Let α0 = α+̇Λξ(1 + a0). Then µ⃗ = (α0) ∗ ν⃗ < α1 =
α+̇Λξ(1 + a) by ν⃗ < ξ = m̄k+1(π). We obtain η < κ, {η, κ, α0} ∪ m̄(κ) ∪ ν⃗ ⊂
Hγ [Θ∪{κ}]. In the following derivation α1 ≤ m̄k(κ) with m̄(κ) ⊂ Hγ [Θ]. Note
that m̄<k(κ)∗µ⃗ = m̄<k(π)∗(α0)∗ν⃗ = max{(m̄<k(π)∗(α0)∗0̄), (m̄<k(π)∗(α)∗ν̄)}.

{Hγ [Θ ∪ {κ}] ⊢2d
0 ¬θ(κ,π),Γ(κ,π)}θ∈Γ

{Hγ [Θ ∪ {σ}] ⊢σ+ωa0+1
π′ Γ(σ,π),¬δ(σ,π)}δ∈∆ Hγ [Θ ∪ {κ, σ}] ⊢κ+ωa0

π′ Γ(κ,π),∆(σ,π)

{Hγ [Θ ∪ {κ, σ}] ⊢κ+ωa0+p
π′ Γ(κ,π),Γ(σ,π)}η<σ∈Mh2(m̄<k(κ)∗µ⃗)∩κ

Hγ [Θ ∪ {κ}] ⊢κ+ωa
π′ Γ(κ,π)

(rflΠk
(η, κ, µ⃗))

Case 2. n ≤ k: If n < k, then ν⃗ < m̄n(π) = m̄n(κ) ≤ mn(κ). If n = k, then
ν⃗ < α+̇Λξ(1 + a) ≤ m̄k(κ) with the segment α of α+̇Λξ(1 + a).

{Hγ [Θ ∪ {κ}] ⊢κ+ωa0+1
π′ Γ(κ,π),¬δ(κ,π)}δ∈∆ {Hγ [Θ ∪ {κ, ρ}] ⊢κ+ωa0

π′ Γ(κ,π),∆(ρ,π)}η<ρ∈Mh2(m̄<n(κ)∗ν⃗)∩κ

Hγ [Θ ∪ {κ}] ⊢κ+ωa
π′ Γ(κ,π)

(rflΠn (η, κ, ν⃗))

2

Lemma 5.9 Let Γ ⊂ Σ1(λ) and Hγ [Θ] ⊢ab Γ with a < K, Hγ [Θ] ∋ λ ≤ b < K
and λ regular. Assume ∀κ ∈ [λ, b)(Θ ⊂ Hγ(ψκ(γ))).

Let â = γ + θb(a) and δ = ψν⃗λ(â) when λ ∈ Mhγk(α) and ν⃗ < α with
ν⃗ ⊂ Hγ [Θ]. Then Hâ+1[Θ] ⊢δδ Γ holds.

Proof. This is seen as in Lemma 4.14 by main induction on b with subsidiary
induction on a. Let η be a base.
Case 1. Consider the case when the last inference is a (rflΠk+1

(η, σ, ν⃗)) with
2 ≤ k < N − 1 and b ≥ σ.

{Hγ [Θ] ⊢a0
b Γ,¬δ}δ∈∆ {Hγ [Θ ∪ {ρ}] ⊢a0

b Γ,∆(ρ,σ)}η<ρ∈Mh2(m̄≤k(σ)∗ν⃗)∩σ

Hγ [Θ] ⊢a
b Γ

(rflΠk+1(η, σ, ν⃗))

where ∆ ⊂ Σk+1(σ), ν⃗ < ξ = m̄k+1(σ) ≤ mk+1(σ), η < σ and {η, σ} ∪ m̄(σ) ∪
ν⃗ ⊂ Hγ [Θ]. We may assume that σ ≥ λ and there is no regular π ∈ Hγ [Θ] such
that σ < π ≤ b.
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We obtain the lemma by Cut-elimination, Lemma 5.8 for κ = ψ
m̄<k(σ)∗(β)∗0⃗
σ (γ)

with β = m̄k(σ)+̇Λm̄k+1(σ)(1 + a1) and a1 = θb(a0) + 1, and MIH.
Case 2. Next consider the case when the last inference is a (rflΠ2(η, σ, ν⃗)) with
b ≥ σ.

{Hγ [Θ] ⊢a0
b Γ,¬δ}δ∈∆ {Hγ [Θ ∪ {ρ}] ⊢a0

b Γ,∆(ρ,σ)}η<ρ∈Mh2(ν⃗)∩σ

Hγ [Θ] ⊢a
b Γ

(rflΠ2(η, σ, ν⃗))

where ∆ ⊂ Σ2(σ), ν⃗ < ξ = m̄2(σ) ≤ m2(σ), η < σ and {η, σ} ∪ m̄(σ) ∪ ν⃗ ⊂
Hγ [Θ]. We may assume that σ ≥ λ. Let ρ = ψν⃗σ(â0). We see η < ρ ∈
Mh2(ν⃗) ∩ σ ∩Hâ0+1[Θ] from the assumption Θ ⊂ Hγ(ρ).

We see the lemma as in Lemma 2.6 by Inversion, picking the ρ-th branch
from the right upper seqeunts, and then introducing several (cut)’s instead of
(rflΠ2(σ, ν⃗)). Use MIH when λ < σ. 2

OT (ΠN ) denotes a computable notation system of ordinals with collapsing
functions ψν⃗σ(a).

Theorem 5.10 Assume KPΠN ⊢ θLΩ for θ ∈ Σ. Then there exists an n < ω
such that Lα |= θ for α = ψΩ(ωn(K+ 1)) in OT (ΠN ).

Proof. This is seen from Lemmas 5.7 and 5.9. 2

6 Π1
1-reflection

Definition 6.1 σ is said to be α-stable for α > σ if Lσ ≺Σ1 Lα.

It is known that σ is (σ + 1)-stable iff σ is Π1
0-reflecting, and σ is σ+-stable

iff σ is Π1
1-reflecting, where σ

+ denotes the next admissible ordinal above σ,
cf. [Richter-Aczel74].

Let S1 denote the theory obtained from KPω + (V = L) by adding the
following axioms for an individual constant S: S is a limit ordinal and

LS ≺Σ1
L.

The latter denotes a schema

∃xB(x, v) ∧ v ∈ LS → ∃x ∈ LSB(x, v)

for each ∆0-formula B. Let L = LS+ |= S1.
An exponential structure emerges in iterating (recursively) Mahlo operations

to resolve first-order reflections MN in terms of Mahlo classes Mhak(α) and
Mhak(ν⃗). Viewing the vector ν⃗ = (ν2, ν3, . . . , νN−1) as a function {2, 3, . . . , N −
1} ∋ k 7→ νk, each k in its domain designates the class of Πk-formulas or the
Mahlo operationMk, while its value νk corresponds to the height of derivations,
cf.Case 1 in the proof of Lemma 5.8.

On the other side, the axiom LS ≺Σ1
LS+ says that S ‘reflects’ ΠS+ -formulas

in transfinite levels. In place of vectors in finite lengths, we need functions
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f : S+ → ON . Each c in the domain of the function f corresponds to formulas
of ranks< c in inference rules for higher reflections. Its support supp(f) = {c <
S+ : f(c) ̸= 0} may be assumed to be finite, while its value f(c) < εS++1.

A Veblen function θ̃b(ξ) is used to denote ordinals instead of the exponential
function θ̃1(ξ) = (S+)ξ. The relation ν⃗ < α in section 5 is replaced by a relation
f <c ξ for ordinals c, ξ and finite function f . f <c ξ holds if f(c) < µ for a
segment µ = · · · + θ̃b(ν) of ξ, and f(c + d) < θ̃−d(θ̃b(ν)) for d = min{d > 0 :
c+ d ∈ supp(f)}, and so forth, where θ̃−d(ξ) denotes an inverse of the function
ξ 7→ θ̃d(ξ).

Mahlo classes Mhac (ξ) introduced in (32) reflects every fact π ∈Mha0(gc) =∩
{Mhad(g(d)) : c > d ∈ supp(g)} on the ordinals π ∈ Mhac (ξ) in lower level,

down to ‘smaller’ Mahlo classes Mhac (f) =
∩
{Mhad(f(d)) : c ≤ d ∈ supp(f)},

where f <c ξ.
This apparatus would suffice to analyze reflections in transfinite levels. We

need another for the axiom LS ≺Σ1 LS+ of Π1
1-reflection, i.e., a (formal)Mostowski

collapsing : Assume that B(u, v) with v ∈ LS for a ∆0-formula B. We need to
find a substitute u′ ∈ LS for u ∈ LS+ , i.e., B(u′, v). For simplicity let us assume
that v = β < S and u = α < S+ are ordinals. We may assume that α ≥ S.
Let ρ < S be an ordinal, which is bigger than every ordinal< S occurring in the
‘context’ of B(α, β). This means that if an ordinal δ < S occurs in a ‘relevant’
branch of a derivation of B(α, β), δ < ρ holds. Then we can define a Mostwosiki
collapsing α 7→ α[ρ/S] for ordinal terms α such that β[ρ/S] = β for each relevant
β < S, S[ρ/S] = ρ and α[ρ/S] < (S+)[ρ/S] = ρ+ < S, cf. Definition 6.22. Then
we see that B(α[ρ/S], β) holds.

Although the above scheme would seem to work, how to implement the plan?
Let ES

ρ denote the set of ordinal terms α such that every subterm β < S of α is

smaller than ρ. It turns out thatHγ(E
S
ρ) ⊂ ES

ρ ifHγ(ρ)∩S ⊂ ρ. LetHγ [Θ] ⊢ab Γ,
and assume that (3), {γ, a, b}∪k(Γ) ⊂ Hγ [Θ] holds in Definition 1.16. Moreover
let us assume that Θ ⊂ ES

ρ holds. Then we obtain {γ, a, b} ∪ k(Γ) ⊂ Hγ [Θ] ⊂
Hγ(E

S
ρ) ⊂ ES

ρ. This means that k(Γ) ⊂ ES
ρ holds as long as Θ ⊂ ES

ρ holds, i.e.,

as long as we are concerned with branches for k(ι) ⊂ ES
ρ in, e.g., inferences (

∧
):

A ≃
∧
(Aι)ι∈J

{Hγ [Θ] ⊢a0b Γ, A,Aι}ι∈J
Hγ [Θ] ⊢ab Γ, A

(
∧
)
;

{Hγ [Θ] ⊢a0b Γ, A,Aι}ι∈J,k(ι)⊂ES
ρ

Hγ [Θ] ⊢ab Γ, A
(
∧
)

and dually k(ι) ⊂ ES
ρ for a minor formula Aι of a (

∨
) with the main formula

A ≃
∨
(Aι)ι∈J , provided that Hγ(ρ) ∩ S ⊂ ρ. The proviso means that γ1 ≥ γ

when ρ = ψfS (γ1). Such a ρ ∈ Hγ [Θ] only when ρ ∈ Θ. Let us try to replace the
inferences for the stability of S

(Hγ ,Θ) ⊢ Γ, B(u) {(Hγ ,Θ ∪ {σ}) ⊢ Γ,¬B(u)[σ/S]}Θ⊂ES
σ

(Hγ ,Θ) ⊢ Γ
(stbl)

by inferences for reflection of ρ with Θ ⊂ ES
ρ: If B(u)[ρ/S] holds, then B(u)[σ/S]
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holds for some σ < ρ.

(Hγ ,Θ ∪ {ρ}) ⊢ Γ[ρ/S], B(u)[ρ/S] {(Hγ ,Θ ∪ {ρ, σ}) ⊢ Γ[ρ/S],¬B(u)[σ/S]}Θ⊂ES
σ,σ<ρ

(Hγ ,Θ ∪ {ρ}) ⊢ Γ[ρ/S]
(rfl)

However we need to eliminate the inferences for reflections in transfinite
levels. In view of analysis in section 5 for first-order reflection, Γ[ρ/S], B(u)[ρ/S]

is replaced by Γ[σ/S], B(u)[σ/S], and Γ[ρ/S],¬B(u)[σ/S] by Γ[κ/S],¬B(u)[σ/S] with
σ < κ < ρ.

{(Hγ ,Θ ∪ {κ}) ⊢ Γ[κ/S],¬θ[κ/S]}θ∈Γ

(Hγ ,Θ ∪ {ρ, σ}) ⊢ Γ[σ/S], B(u)[σ/S] (Hγ ,Θ ∪ {κ, ρ, σ}) ⊢ Γ[κ/S],¬B(u)[σ/S]

{(Hγ ,Θ ∪ {κ, ρ, σ}) ⊢ Γ[κ/S],Γ[σ/S]}σ
(cut)

(Hγ ,Θ ∪ {κ, ρ}) ⊢ Γ[κ/S]
(rfl)

We are replacing formulas Γ[ρ/S] by Γ[σ/S] or by Γ[κ/S]. This means that α[σ/S]
is substituted for each α[ρ/S]. Namely a composition of uncollapsing and col-
lapsing α[ρ/S] 7→ α 7→ α[σ/S] arises. Hence we need α ∈ ES

σ ⊊ ES
ρ for σ < ρ.

However we have Θ ∪ {ρ} ̸⊂ ES
σ, and the schema seems to be broken. More-

over the finite sets Θ ∪ {ρ} becomes bigger to Θ ∪ {κ, ρ}. Is it remain finite in
eliminating inferences of reflections in transfinite level?

Looking back at the proof of Lemma 4.13, for Γ ⊂ Σ2 and ∆ ⊂ Π2

{Hγ [Θ] ⊢ Γ(π,K),¬δ(π,K)}δ∈∆ {Hγ [Θ ∪ {ρ}] ⊢ Γ(π,K),∆(ρ,K)}ρ
Hγ [Θ] ⊢ Γ(π,K)

(rflΠ3)

is rewritten to

{Hγ [Θ ∪ {κ}] ⊢ ¬θ(κ,K),Γ(κ,K)}θ∈Γ

{Hγ [Θ ∪ {σ}] ⊢ Γ(σ,K),¬δ(σ,K)}δ∈∆ Hγ [Θ ∪ {κ, σ}] ⊢ Γ(κ,K),∆(σ,K)

{Hγ [Θ ∪ {κ, σ}] ⊢ Γ(κ,K),Γ(σ,K)}σ
Hγ [Θ ∪ {κ}] ⊢ Γ(κ,K)

(rflΠ2)

This is done by replacing the restriction (π,K) by (σ,K) or (κ,K), and ordinals
π, σ, κ enter derivations, but do we need to control these ordinals? Instead
of the restriction (π,K), formulas could put on caps π, σ, κ in such a way that
k(A(σ)) = k(A). This means that the cap σ does not ‘occur’ in a capped formula
A(σ). If we choose an ordinal γ0 big enough (depending on a given finite proof
figure), every ordinal ‘occurring’ in derivations (including the subscript γ ≤ γ0
in the operators Hγ) is in Hγ0 = Hγ0(∅) for the ordinal γ0, while each cap
ρ exceeds the threshold γ0 in the sense that ρ ̸∈ Hγ0(ρ) ∩ S ⊂ ρ. Then every
ordinal ‘occurring’ in derivations is in the domain ES

ρ of the Mostowski collapsing
α 7→ α[ρ/S]. Now details follow.

6.1 Ordinals for one stable ordinal

For a while, S denotes a weakly inaccessible cardinal.

44



Definition 6.2 Let Λ = ωS+1 or Λ = S+. φb(ξ) denotes the binary Veblen
function on Λ+ with φ0(ξ) = ωξ, and φ̃b(ξ) := φb(Λ · ξ) for the epsilon number
Λ.

Let b, ξ < Λ+. θb(ξ) [θ̃b(ξ)] denotes a b-th iterate of φ0(ξ) = ωξ [of φ̃0(ξ) =
Λξ], resp.

Definition 6.3 Let ξ < φΛ(0) be a non-zero ordinal with its normal form:

ξ =
∑
i≤m

θ̃bi(ξi) · ai =NF θ̃bm(ξm) · am + · · ·+ θ̃b0(ξ0) · a0 (30)

where θ̃bi(ξi) > ξi, θ̃bm(ξm) > · · · > θ̃b0(ξ0), bi = ωci < Λ, and 0 < a0, . . . , am <
Λ. SCΛ(ξ) =

∪
i≤m({ai} ∪ SCΛ(ξi)).

θ̃b0(ξ0) is said to be the tail of ξ, denoted θ̃b0(ξ0) = tl(ξ), and θ̃bm(ξm) the
head of ξ, denoted θ̃bm(ξm) = hd(ξ).

1. ζ is a segment of ξ iff there exists an n (0 ≤ n ≤ m + 1) such that
ζ =NF

∑
i≥n θ̃bi(ξi) · ai = θ̃bm(ξm) · am + · · ·+ θ̃bn(ξn) · an for ξ in (30).

2. Let ζ =NF θ̃b(ξ) with θ̃b(ξ) > ξ and b = ωb0 , and c be ordinals. An ordinal
θ̃−c(ζ) is defined recursively as follows. If b ≥ c, then θ̃−c(ζ) = θ̃b−c(ξ).
Let c > b. If ξ > 0, then θ̃−c(ζ) = θ̃−(c−b)(θ̃bm(ξm)) for the head term

hd(ξ) = θ̃bm(ξm) of ξ in (30). If ξ = 0, then let θ̃−c(ζ) = 0.

Definition 6.4 1. A function f : Λ → φΛ(0) with a finite support supp(f) =
{c < Λ : f(c) ̸= 0} ⊂ Λ is said to be a finite function if ∀i > 0(ai = 1)
and a0 = 1 when b0 > 1 in f(c) =NF θ̃bm(ξm) · am + · · ·+ θ̃b0(ξ0) · a0 for
any c ∈ supp(f).

It is identified with the finite function f ↾ supp(f). When c ̸∈ supp(f),
let f(c) := 0. SCΛ(f) :=

∪
{{c} ∪ SCΛ(f(c))} : c ∈ supp(f)}. f, g, h, . . .

range over finite functions.

For an ordinal c, fc and f
c are restrictions of f to the domains supp(fc) =

{d ∈ supp(f) : d < c} and supp(f c) = {d ∈ supp(f) : d ≥ c}. gc ∗ f c
denotes the concatenated function such that supp(gc ∗ f c) = supp(gc) ∪
supp(f c), (gc ∗ f c)(a) = g(a) for a < c, and (gc ∗ f c)(a) = f(a) for a ≥ c.

2. Let f be a finite function and c, ξ ordinals. A relation f <c ξ is defined
by induction on the cardinality of the finite set {d ∈ supp(f) : d > c}
as follows. If f c = ∅, then f <c ξ holds. For f c ̸= ∅, f <c ξ iff there
exists a segment µ of ξ such that f(c) < µ and f <c+d θ̃−d(tl(µ)) for
d = min{c+ d ∈ supp(f) : d > 0}.

Proposition 6.5 f <c ξ ≤ ζ ⇒ f <c ζ.
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6.2 Mahlo classes for Π1
1-reflection

In Lemma 4.8 and Proposition 5.2.2, it is crucial the fact that P ∈ Mk(γ) ⇒
P ∈Mk(Mk(γ)∩Mk+1(ν)) if P ∈Mk+1(ξk+1) and ν < ξk+1. This means that if
P is in a higher Mahlo class, then P reflects a fact on P in lower Mahlo classes.

P ∈ Mc(ξ) is defined by main induction on c with subsidiary induction on
P .

P ∈Mc(ξ) :⇔ ∀f <c ξ∀g [P ∈M0(gc) ⇒ P ∈M2(M0(gc ∗ f c))] (31)

where f, g range over finite functions and

Mc(f) :=
∩

{Md(f(d)) : d ∈ supp(f c)} =
∩

{Md(f(d)) : c ≤ d ∈ supp(f)}.

From Proposition 6.5 we see ξ < ζ ⇒Mc(ξ) ⊃Mc(ζ).
For classes X let

P ∈Mc(X ) :⇔ ∀g [P ∈M0(gc) ⇒ P ∈M2(M0(gc) ∩ X )] .

Then byM0(gc∗f c) =M0(gc)∩Mc(f
c), P ∈Mc(ξ) ⇔ ∀f <c ξ [P ∈Mc(Mc(f

c))],
i.e., Mc(ξ) =

∩
f<cξMc(Mc(f

c)).

Proposition 6.6 Suppose P ∈Mc(ξ).

1. Let f <c ξ. Then P ∈Mc(Mc(f
c)).

2. Let P ∈Md(X ) for d > c. Then P ∈Mc(Mc(ξ) ∩ X ).

Proof. 6.6.1. Let g be a function such that P ∈M0(gc). By the definition (31)
of P ∈Mc(ξ) we obtain P ∈M2 (M0(gc) ∩Mc(f

c)).
6.6.2. Let P ∈Md(X ) for d > c. Let g be a function such that P ∈M0(gc). We
obtain by d > c with the function gc ∗ h, P ∈ M2 (M0(gc) ∩Mc(ξ) ∩ X ), where
supp(h) = {c} and h(c) = ξ. 2

Lemma 6.7 Assume P ∈ Md(ξ) ∩Mc(ξ0), ξ0 ̸= 0, and d < c. Moreover let
ξ1 ≤ θ̃c−d(ξ0). Then P ∈Md(ξ+̇ξ1) ∩Md(Md(ξ+̇ξ1)).

Proof. This is seen as in Lemma 4.11.
We obtain P ∈ Mc(ξ0) ⊂ Mc(Mc(∅)) by Proposition 6.6.1. Let P ∈

Md(ξ+̇ξ1) ∩M0(gd) for a function g. We show P ∈ M2

(
M0(gd) ∩Md(ξ+̇ξ1)

)
.

Let h = gd ∪ {(d, ξ+̇ξ1)}. Then P ∈ M0(hc) by d < c. P ∈ Mc(Mc(∅)) yields
P ∈M2 (M0(hc) ∩Mc(∅)), and hence P ∈M2

(
M0(gd) ∩Md(ξ+̇ξ1)

)
. Therefore

P ∈Md(Md(ξ+̇ξ1)).
Let f be a finite function such that f <d ξ + ξ1. We show P ∈Md(Md(f

d))
by main induction on the cardinality of the finite set {e ∈ supp(f) : e > d} with
subsidiary induction on ξ1.

First let f <d µ for a segment µ of ξ. We obtain P ∈ Md(µ) and P ∈
Md(Md(f

d)).

46



In what follows let f(d) = ξ+̇ζ with ζ < ξ1. By SIH we obtain P ∈
Md(f(d)) ∩ Md(Md(f(d))). If {e ∈ supp(f) : e > d} = ∅, then Md(f

d) =
Md(f(d)), and we are done. Otherwise let e = min{e ∈ supp(f) : e > d}.

By SIH we can assume f <e θ̃−(e−d)(tl(ξ1)). By ξ1 ≤ θ̃c−d(ξ0), we obtain

f <e θ̃−(e−d)(θ̃c−d(ξ0)) = θ̃−e(θ̃c(ξ0)). We claim that P ∈ Mc0(Mc0(f
c0)) for

c0 = min{c, e}. If c = e, then the claim follows from the assumption P ∈Mc(ξ0)
and f <e ξ0. Let e = c+ e0 > c. Then θ̃−e(θ̃c(ξ0)) = θ̃−e0(hd(ξ0)), and f <

c ξ0
with f(c) = 0 yields the claim. Let c = e+ c1 > e. Then θ̃−e(θ̃c(ξ0)) = θ̃c1(ξ0).
MIH yields the claim.

On the other hand we haveMd(f
d) =Md(f(d))∩Mc0(f

c0). P ∈Md(f(d))∩
Mc0(Mc0(f

c0)) with d < c0 yields by Proposition 6.6.2, P ∈Md (Md(f(d)) ∩Mc0(f
c0)),

i.e., P ∈Md(Md(f
d)). 2

For finite functions f and g,

M0(g) ≺M0(f) :⇔ ∀P ∈M0(f) (P ∈M2(M0(g))) .

Corollary 6.8 Let f, g be finite functions and c ∈ supp(f). Assume that there
exists an ordinal d < c such that (d, c)∩supp(f) = (d, c)∩supp(g) = ∅, gd = fd,
g(d) < f(d)+̇θ̃c−d(f(c)) · ω, and g <c f(c). Then M0(g) ≺M0(f) holds.

Proof. By Lemma 6.7. 2

Definition 6.9 An irreducibility of finite functions f is defined by induction
on the cardinality n of the finite set supp(f). If n ≤ 1, f is defined to be
irreducible. Let n ≥ 2 and c < c + d be the largest two elements in supp(f),
and let g be a finite function such that supp(g) = supp(fc) ∪ {c}, gc = fc and
g(c) = f(c) + θ̃d(f(c+ d)).

Then f is irreducible iff tl(f(c)) > θ̃d(f(c+ d)) and g is irreducible.

Definition 6.10 Let f, g be irreducible finite functions, and b an ordinal. Let
us define a relation f <blx g by induction on the cardinality #{e ∈ supp(f) ∪
supp(g) : e ≥ b} as follows. f <blx g holds iff f b ̸= gb and for the ordinal
c = min{c ≥ b : f(c) ̸= g(c)}, one of the following conditions is met:

1. f(c) < g(c) and let µ be the shortest part of g(c) such that f(c) < µ.
Then for any c < c + d ∈ supp(f), if tl(µ) ≤ θ̃d(f(c + d)), then f <c+dlx g
holds.

2. f(c) > g(c) and let ν be the shortest part of f(c) such that ν > g(c).
Then there exist a c < c + d ∈ supp(g) such that f <c+dlx g and tl(ν) ≤
θ̃d(g(c+ d)).

Proposition 6.11 If f <0
lx g, then M0(f) ≺M0(g).

Proof. This is seen from Corollary 6.8. 2
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6.3 Skolem hulls and collapsing functions

Definition 6.12 Let K = ωS+1, a < εK+1 and X ⊂ ΓK+1.

1. Ha(X) denotes the Skolem hull of {0,Ω,S,K} ∪ X under the functions
+, φ, β 7→ ψΩ(β) (β < a), S > α 7→ α+ and (π, b, f) 7→ ψfπ(b), where b < a
and f is a finite function such that f ∈ Ha(X) :⇔ SCK(f) ⊂ Ha(X).

2. Let c < K, a < εK+1 and ξ < φK(0). π ∈Mhac (ξ) iff {a, c, ξ} ⊂ Ha(π) and

∀f <c ξ∀g (SCK(f) ∪ SCK(g) ⊂ Ha(π)&π ∈Mha
0(gc) ⇒ π ∈M2(Mha

0(gc ∗ fc)))
(32)

where

Mhac (f) :=
∩

{Mhad(f(d)) : d ∈ supp(f c)} =
∩

{Mhad(f(d)) : c ≤ d ∈ supp(f)}.

3.

ψf
π(a) := min({π}∪{κ ∈Mha

0(f)∩π : Ha(κ)∩π ⊂ κ, {π, a}∪SCK(f) ⊂ Ha(κ)})
(33)

Shrewd cardinals are introduced by [Rathjen05b]. A cardinal κ is shrewd iff
for any η > 0, P ⊂ Vκ, and formula φ(x, y), if Vκ+η |= φ[P, κ], then there are

0 < κ0, η0 < κ such that Vκ0+η0 |= φ[P ∩ Vκ0 , κ0]. T̃ denotes the extension of
ZFC by the axiom stating that S is a shrewd cardinal.

Lemma 6.13 T̃ proves that S ∈ Mhac (ξ) ∩M2(Mhac (ξ)) for every a < εK+1,
c < K, ξ < φK(0) such that {a, c, ξ} ⊂ Ha(S).

Proof. We show the lemma by induction on ξ < φK(0).
Let {a, c, ξ} ∪ SCK(f) ⊂ Ha(S) and f <c ξ. We show S ∈ Mhac (f

c), and
S ∈M2 (Mha0(gc) ∩Mhac (f

c)) assuming S ∈Mha0(gc) and SCK(gc) ⊂ Ha(S).
For each d ∈ supp(f c) we obtain f(d) < ξ by θ̃−e(ζ) ≤ ζ. IH yields S ∈

Mhac (f
c).

We have to show S ∈M2(A∩B) for A =Mha0(gc)∩S and B =Mhac (f
c)∩S.

Let C be a club subset of S.
We have S ∈ Mha0(gc) ∩Mhac (f

c), and {a, c} ∪ SCK(gc, f
c) ⊂ Ha(S). Pick

a b < S so that {a, c} ∪ SCK(gc, f
c) ⊂ Ha(b), and a bijection F : S → Ha(S).

Each α ∈ Ha(S) ∩ ΓK+1 is identified with its code, denoted by F−1(α). Let P
be the class P = {(π, d, α) ∈ S3 : π ∈ MhaF (d)(F (α))}, where F (d) < K and

F (α) < φK(0) with {F (d), F (α)} ⊂ Ha(π). For fixed a, the set {(d, η) ∈ K ×
φK(0) : S ∈Mhad(η)} is defined from the class P by recursion on ordinals d < K.
Let φ be a formula such that VS+K |= φ[P,C, S, b] iff S ∈ Mha0(gc) ∩Mhac (f

c)
and C is a club subset of S. Since S is shrewd, pick b < S0 < K0 < S such
that VS0+K0 |= φ[P ∩ S0, C ∩ S0,S0, b]. We obtain S0 ∈ A ∩ B ∩ C. Therefore
S ∈Mhac (ξ) is shown. S ∈M2(Mhac (ξ)) is seen from the shrewdness of S. 2

48



Corollary 6.14 T̃ proves that ∀a < εK+1∀c < K[{a, c, ξ} ⊂ Ha(S) → ψfS (a) <
S)] for every ξ < φK(0) and finite functions f such that supp(f) = {c}, c < K
and f(c) = ξ.

Lemma 6.15 Assume S ≥ π ∈ Mhad(ξ) ∩Mhac (ξ0), ξ0 ̸= 0, and d < c. More-

over let ξ1 ∈ Ha(π) for ξ1 ≤ θ̃c−d(ξ0). Then π ∈Mhad(ξ+̇ξ1)∩Ma
d (Mhad(ξ+̇ξ1)).

Proof. As in Lemma 6.7. 2

Definition 6.16 For finite functions f and g,

Mha0(g) ≺Mha0(f) :⇔ ∀π ∈Mha0(f) (SCK(g) ⊂ Ha(π) ⇒ π ∈M2(Mha0(g))) .

Corollary 6.17 Let f, g be finite functions and c ∈ supp(f). Assume that there
exists an ordinal d < c such that (d, c)∩supp(f) = (d, c)∩supp(g) = ∅, gd = fd,
g(d) < f(d)+̇θ̃c−d(f(c)) · ω, and g <c f(c). Then Mha0(g) ≺ Mha0(f) holds. In
particular if π ∈Mha0(f) and SCK(g) ⊂ Ha(π), then ψ

g
π(a) < π.

Proposition 6.18 Let f, g : K → φK(0). If f <0
lx g, then Mha0(f) ≺Mha0(g).

Proof. This is seen from Corollary 6.17. 2

6.4 A Mostowski collapsing

OT (Π1
1) denotes a computable notation system of ordinals with a constant S

for a stable ordinal, collapsing functions ψgσ(a) for finite functions g, where
supp(g) = {d} for a d < K = S+ and g(d) < εK+1 if σ = S. Let m(α) = g for
α = ψgσ(a) and σ < S. For g ̸= ∅, α = ψgσ(a) ∈ OT (Π1

1) only when g is obtained
from f = m(σ) as follows, cf. Corollary 6.17. There are c and d such that
d < c ∈ supp(f), and (d, c) ∩ supp(f) = ∅. Then gd = fd, (d, c) ∩ supp(g) = ∅
g(d) < f(d) + θ̃c−d(f(c)) · ω, and g <c f(c).

In what follows, by ordinals we mean ordinal terms in OT (Π1
1). ΨS denotes

the set of ordinal terms ψfσ(a) for some a, f and σ ∈ ΨS ∪ {S}. Note that in
OT (Π1

1), ψ
f
σ(a) ≥ S only if σ = K = S+ and f = ∅.

We define a Mostowski collapsing α 7→ α[ρ/S], which is needed to replace
inference rules for stability by ones of reflections. The domain of the collapsing
α 7→ α[ρ/S] is a subset Mρ of ES

ρ. For a reason of the restriction, see the
beginning of subsection 6.5.

Definition 6.19 For ordinal terms ψfσ(a) ∈ ΨS ⊂ OT (Π1
1), define m(ψfσ(a)) :=

f and s(ψfσ(a)) := max(supp(f)). Also p0(ψ
f
σ(a)) = p0(σ) if σ < S, and

p0(ψ
f
S (a)) = a.

Definition 6.20 Mρ := Hb(ρ) for b = p0(ρ) and ρ ∈ ΨS.

α = ψgσ(a) ∈ OT (Π1
1) only when {σ, a} ⊂ Ha(α) and SCK(g) ⊂Mα.

OT (Π1
1) is defined to be closed under α 7→ α[ρ/S] for α ∈ Mρ. Specifically

if {α, ρ} ⊂ OT (Π1
1) with α ∈Mρ and ρ ∈ ΨS, then α[ρ/S] ∈ OT (Π1

1).
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Proposition 6.21 Let ρ ∈ ΨS.

1. Hγ(Mρ) ⊂Mρ if γ ≤ p0(ρ).

2. Mρ ∩ S = ρ and ρ ̸∈Mρ.

3. If σ < ρ and p0(σ) ≤ p0(ρ), then Mσ ⊂Mρ.

Definition 6.22 Let α ∈ Mρ with ρ ∈ ΨS. We define an ordinal α[ρ/S] recur-
sively as follows. α[ρ/S] := α when α < S. In what follows assume α ≥ S.

S[ρ/S] := ρ. K[ρ/S] ≡ (S+)[ρ/S] := ρ+. (ψK(a)) [ρ/S] = (ψS+(a)) [ρ/S] =
ψρ+(a[ρ/S]). The map commutes with + and φ.

Lemma 6.23 For ρ ∈ ΨS, {α[ρ/S] : α ∈ Mρ} is a transitive collapse of
Mρ in the sense that β < α ⇔ β[ρ/S] < α[ρ/S], β ∈ Hα(γ) ⇔ β[ρ/S] ∈
Hα[ρ/S](γ[ρ/S])) for γ > S, and OT (Π1

1) ∩ α[ρ/S] = {β[ρ/S] : β ∈ Mρ ∩ α} for
α, β, γ ∈Mρ.

Let ρ ≤ S, and ι an RS-term or an RS-formula such that k(ι) ⊂Mρ, where
MS = K. Then ι[ρ/S] denotes the result of replacing each unbounded quantifier
Qx by Qx ∈ LK[ρ/S], and each ordinal term α ∈ k(ι) by α[ρ/S] for the Mostowski
collapse in Definition 6.22.

Proposition 6.24 Let ρ ∈ ΨS ∪ {S}.

1. Let v be an RS-term with k(v) ⊂ Mρ, and α = |v|. Then v[ρ/S] is an

RS-term of level α[ρ/S],
∣∣v[ρ/S]∣∣ = α[ρ/S] and k(v[ρ/S]) = (k(v))[ρ/S].

2. Let α ≤ K be such that α ∈ Mρ. Then (Tm(α))
[ρ/S]

:= {v[ρ/S] : v ∈
Tm(α), k(v) ⊂Mρ} = Tm(α[ρ/S]).

3. Assume Hγ(ρ) ∩ S ⊂ ρ. For an RS-formula A with k(A) ⊂ Hγ(ρ), A
[ρ/S]

is an RS-formula such that k(A[ρ/S]) ⊂ {α[ρ/S] : α ∈ k(A)} ∪ {K[ρ/S]}.

For each sentence A, either a disjunction is assigned as A ≃
∨
(Aι)ι∈J , or a

conjunction is assigned as A ≃
∧
(Aι)ι∈J . In the former case A is said to be a∨

-formula, and in the latter A is a
∧
-formula.

Definition 6.25 Let [ρ]Tm(α) := {u ∈ Tm(α) : k(u) ⊂Mρ}.

Proposition 6.26 Let ρ ∈ ΨS ∪ {S}. For RS-formulas A, let A ≃
∨
(Aι)ι∈J

and assume k(A) ⊂ Mρ. Then A[ρ/S] ≃
∨(

(Aι)
[ρ/S])

ι∈[ρ]J
. The case A ≃∧

(Aι)ι∈J is similar.
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6.5 Operator controlled derivations for Π1
1-reflection

We define a derivability relation (Hγ ,Θ; QΠ) ⊢∗a
c Γ;Π[·] where QΠ is a finite set

of ordinals in ΨS, c is a bound of ranks of the inference rules (stbl) and of ranks
of cut formulas. The relation depends on an ordinal γ0, and should be written
as (Hγ ,Θ; QΠ) ⊢∗a

c,γ0 Γ;Π[·]. However the ordinal γ0 will be fixed. So let us omit
it.

The rôle of the calculus ⊢∗a
c is twofold: first finite proof figures are embedded

in the calculus, and second the cut rank c in ⊢∗a
c is lowered to K = S+. In the

next subsection 6.6 the relation ⊢∗a
c is embedded in another derivability relation

⊢ac,e,b1 A
(ρ) with caps ρ. In the latter calculus, cut ranks c as well as the ranks

of formulas to be reflected are lowered to S, and the inferences for reflections
are removed. For this we need to distinguish formulas with smaller ranks< S
from higher ones.

As in Lemma 4.13, in eliminating of inferences for reflections,

{Hγ [Θ] ⊢ Γ(ρ),¬δ(ρ)}δ∈∆ {Hγ [Θ ∪ {σ}] ⊢ Γ(ρ),∆(σ)}σ
Hγ [Θ] ⊢a Γ(ρ)

(rflρ)

is rewritten to, cf. Recapping 6.47

{Hγ [Θ] ⊢ ¬θ(κ),Γ(κ)}θ∈Γ

{

.... ρ; σ

Hγ [Θ] ⊢ Γ(σ),¬δ(σ)}δ∈∆

.... ρ; κ

Hγ [Θ ∪ {σ}] ⊢ Γ(κ),∆(σ)

{Hγ [Θ ∪ {σ}] ⊢ Γ(κ),Γ(σ)}σ
(cut)

Hγ [Θ] ⊢ Γ(κ)
(rflκ)

where σ < κ < ρ. In the rewriting, the inference (rflρ) is replaced by (rflκ)
for a smaller κ < ρ. This means that (rflρ) is replaced by (rflσ) in the part
ρ ; σ. κ reflects Γ to some σ, and σ has to reflect ∆, where rk(∆) > rk(Γ) is
possible. Therefore the termination of the whole process of removing is seen to
be by induction on reflecting ordinals ρ, cf. Lemma 6.48.

The Mahlo degree g = m(κ) in κ = ψgρ(α) is obtained by (an iteration of) a
stepping-down (f, d, c) 7→ g, where f = m(ρ), d < c ∈ supp(f), (d, c)∩supp(f) =
∅, gd = fd, (d, c) ∩ supp(g) = ∅, g(d) < f(d) + θ̃c−d(f(c)) · ω, and g <c f(c). g
depends on a, ρ and rk(Γ(ρ)) := rk(Γ). In showing

SCK(g) ⊂ Hα(κ)

ρ and rk(Γ(ρ)) are harmless since these relates to the given ordinal ρ, while
the ordinal a causes trouble, since all of the reflecting ordinals ρ, . . . share the
ordinal depth a of the derivation. We need a ∈ Hα0(ρ) if ρ = ψfσ(α0), and
a ∈ Hβ(τ) if τ = ψhλ(β), and so forth. This leads us to the set Mρ = Hb(ρ)

for b = p0(ρ), where ρ = ψf
. . .ψS(b)

(α0), and the condition (35) that a as well as

ordinals occurring in the derivation should be in Mρ for every reflecting ordinal
ρ occurring in derivations. Note that Mρ = Hb(ρ) ⊂ Hα0

(ρ) by b ≤ α0, but
ES
ρ ̸⊂ Hα0

(ρ). This is the reason why we restrict the domain of the Mostowski

collapsing α 7→ α[ρ/S] to α ∈Mρ ⊊ ES
ρ.
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QΠ in (Hγ ,Θ; QΠ) ⊢∗a
c Γ;Π[·], is the set of ordinals σ which is introduced

in a right upper sequent (Hγ ,Θ ∪ {σ}; QΠ ∪ {σ}) ⊢∗a0
c Γ;Π[·],¬B(u)[σ/S] of an

inference (stbl) for stability occurring below (Hγ ,Θ; QΠ) ⊢∗a
c Γ;Π[·], while the

set Π[·] =
∪
{Π[σ/S]

σ : σ ∈ QΠ} is the collection of formulas ¬B(u)[σ/S].

(Hγ ,Θ; QΠ) ⊢∗a0
c Γ, B(u); Π[·] {(Hγ ,Θ ∪ {σ}; QΠ ∪ {σ}) ⊢∗a0

c Γ;Π[·],¬B(u)[σ/S]}σ
(Hγ ,Θ; QΠ) ⊢∗a

c Γ;Π[·]
(stbl)

These motivates the following Definitions 6.27, 6.28 and 6.40.

Definition 6.27 Let Q ⊂ ΨS be a finite set of ordinals, and A ≃
∨
(Aι)ι∈J .

Define MQ :=
∩
σ∈QMσ,

[Q]AJ := [Q]¬AJ := {ι ∈ J : rk(Aι) ≥ S ⇒ k(ι) ⊂MQ}

kS(Γ) :=
∪

{k(A) : A ∈ Γ, rk(A) ≥ S}

Definition 6.28 Let Θ be a finite set of ordinals, γ ≤ γ0 and a, c ordinals2,
and QΠ ⊂ ΨS a finite set of ordinals such that p0(σ) ≥ γ0 for each σ ∈ QΠ. Let
Π =

∪
{Πσ : σ ∈ QΠ} ⊂ ∆0(K) be a set of formulas such that k(Πσ) ⊂ Mσ for

each σ ∈ QΠ, Π
[·] =

∪
{Π[σ/S]

σ : σ ∈ QΠ}, Θ(σ) = Θ ∩Mσ and ΘQΠ = Θ ∩MQΠ .
(Hγ ,Θ; QΠ) ⊢∗a

c Γ;Π[·] holds for a set Γ of formulas if

k(Γ) ⊂ Hγ [Θ]& ∀σ ∈ QΠ

(
k(Πσ) ⊂ Hγ [Θ

(σ)]
)

(34)

{γ, a, c} ∪ kS(Γ) ∪ kS(Π) ⊂ Hγ [ΘQΠ ] (35)

and one of the following cases holds:

(
∨
) 3 There exist A ≃

∨
(Aι)ι∈J , an ordinal a(ι) < a and an ι ∈ J such that

A ∈ Γ, (Hγ ,Θ; QΠ) ⊢∗a(ι)
c Γ, Aι; Π

[·].

(
∨
)[·] There exist A ≡ B[σ/S] ∈ Π[·], B ≃

∨
(Bι)ι∈J , an ordinal a(ι) < a and an

ι ∈ [σ]J such that (Hγ ,Θ; QΠ) ⊢∗a(ι)
c Γ;Π[·], Aι with Aι ≡ B

[σ/S]
ι .

(
∧
) There exist A ≃

∧
(Aι)ι∈J , ordinals a(ι) < a such that A ∈ Γ and (Hγ ,Θ∪

k(ι); QΠ) ⊢∗a(ι)
c Γ, Aι; Π

[·] for each ι ∈ [QΠ]AJ .

(
∧
)[·] There exist A ≡ B[σ/S] ∈ Π[·], B ≃

∧
(Bι)ι∈J , ordinals a(ι) < a such that

(Hγ ,Θ ∪ k(ι); QΠ) ⊢∗a(ι)
c Γ;Aι,Π

[·] for each ι ∈ [QΠ]BJ ∩ [σ]J .

(cut) There exist an ordinal a0 < a and a formula C such that (Hγ ,Θ; QΠ) ⊢∗a0
c

Γ,¬C; Π[·] and (Hγ ,Θ; QΠ) ⊢∗a0
c C,Γ;Π[·] with rk(C) < c.

2In this subsection 6.5 we can set γ = S.
3The condition (4), |ι| < a is absent in the inference (

∨
), cf.Case 3 in Lemma 6.44.
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(Σ-rfl) There exist ordinals aℓ, ar < a and a formula C ∈ Σ(π) for a π ∈ {Ω,K =
S+} such that c ≥ π, (Hγ ,Θ; QΠ) ⊢∗aℓ

c Γ, C; Π[·] and (Hγ ,Θ; QΠ) ⊢∗ar
c

¬∃x < π C(x,π),Γ;Π[·].

(stbl) There exist an ordinal a0 < a, a
∧
-formula B(0) ∈ ∆0(S), and a u ∈

Tm(K) for which the following hold: S ≤ rk(B(u)) < c, (Hγ ,Θ; QΠ) ⊢∗a0
c

Γ, B(u); Π[·], and (Hγ ,Θ∪{σ}; QΠ ∪{σ}) ⊢∗a0
c Γ;Π[·],¬B(u)[σ/S] holds for

every ordinal σ ∈ ΨS such that Θ ⊂Mσ.

(Hγ ,Θ; QΠ) ⊢∗a0
c Γ, B(u); Π[·] {(Hγ ,Θ ∪ {σ}; QΠ ∪ {σ}) ⊢∗a0

c Γ;Π[·],¬B(u)[σ/S]}Θ⊂Mσ

(Hγ ,Θ; QΠ) ⊢∗a
c Γ;Π[·]

(stbl)

Note that (Θ ∪ {σ})QΠ∪{σ} = ΘQΠ if ΘQΠ ⊂Mσ.

Proposition 6.29 (Tautology) Let γ ∈ Hγ [k(A)] and d = rk(A).

1. (Hγ , k(A); ∅) ⊢∗2d
0 ¬A,A; ∅.

2. (Hγ , k(A) ∪ {σ}; {σ}) ⊢∗2d
0 ¬A[σ/S];A[σ/S] if k(A) ⊂Mσ and γ ≥ S.

Proof. Both are seen by induction on d. Consider Proposition 6.29.2.
We have (k(A) ∪ {σ}) ∩ Mσ = k(A) for (34) and (35), and k(A[σ/S]) ⊂

HS((k(A) ∩ S) ∪ {σ}) for (34). Note that σ ̸∈ Hγ [k(A)] since σ ̸∈ k(A) ⊂ Mσ

and γ ≤ γ0 ≤ p0(σ), and rk(A[σ/S]) ̸∈ Hγ [(k(A) ∪ {σ}) ∩Mσ].

Let A ≃
∨
(Aι)ι∈J . Then A[σ/S] ≃

∨
(A

[σ/S]
ι )ι∈[σ]J by Proposition 6.26 and

k(ι[σ/S]) ⊂ HS[(k(ι) ∩ S) ∪ {σ}]. Let I = {ι[σ/S] : ι ∈ [σ]J}. Then A[σ/S] ≃∨
(Bν)ν∈I withBν ≡ A

[σ/S]
ι for ν = ι[σ/S], and [{σ}]A[σ/S]I = I by rk(A[σ/S]) < S.

For dι = rk(Aι) ∈ Hγ [k(A, ι)] with ι ∈ [σ]J = [{σ}]A(σ)J we obtain

(Hγ , k(A, ι) ∪ {σ}; {σ}) ⊢∗2dι
0 ¬A[σ/S]

ι ;A
[σ/S]
ι

(Hγ , k(A, ι) ∪ {σ}; {σ}) ⊢∗2dι+1
0 ¬A[σ/S]

ι ;A[σ/S]
(
∨
)[·]

(Hγ , k(A) ∪ {σ}; {σ}) ⊢∗2d
0 ¬A[σ/S];A[σ/S] (

∧
)

and
(Hγ , k(A) ∪ k(ι) ∪ {σ}; {σ}) ⊢∗2dι

0 A
[σ/S]
ι ;¬A[σ/S]

ι

(Hγ , k(A) ∪ k(ι) ∪ {σ}; {σ}) ⊢∗2dι+1
0 A[σ/S];¬A[σ/S]

ι

(
∨
)

(Hγ , k(A) ∪ {σ}; {σ}) ⊢∗2d
0 A[σ/S];¬A[σ/S] (

∧
)[·]

2

Lemma 6.30 (Embedding of Axioms) For each axiom A in S1, there is an
m < ω such that (HS, ∅; ∅) ⊢∗K·2

K+m A; holds for K = S+.

Proof. We show that the axiom ∃xB(x, v) ∧ v ∈ LS → ∃x ∈ LSB(x, v) (B ∈
∆0) follows by an inference (stbl). In the proof let us omit the operator HS.
Let B(0) ∈ ∆0(S) be a

∧
-formula and u ∈ Tm(K). We may assume that

K > d = rk(B(u)) ≥ S. Let k0 = k(B(0)) and ku = k(u). Let k0 ∪ ku ⊂ Mσ.
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Then for ∃x ∈ LSB(x) ≃
∨
(B(v))v∈J , we obtain u[σ/S] ∈ J = Tm(S) by

rk(∃x ∈ LSB(x)) = S. We have B(u[σ/S]) ≡ B(u)[σ/S], k
[σ/S]
u = k(u[σ/S]) ⊂

HS[k(u) ∪ {σ}], (k0 ∪ ku)∅ = k0 ∪ ku and (k0 ∪ ku ∪ {σ}) ∩Mσ = k0 ∪ ku.

k0 ∪ ku;⊢∗2d
0 ¬B(u), B(u); {

k0 ∪ ku ∪ {σ}; {σ} ⊢∗2d
0 B(u[σ/S]);¬B(u)[σ/S]

k0 ∪ ku ∪ {σ}; {σ} ⊢∗2d+1
0 ∃x ∈ LSB(x);¬B(u)[σ/S]}k0∪ku⊂Mσ

(
∨
)

k0 ∪ ku;⊢∗K
K ¬B(u), ∃x ∈ LSB(x);

(stbl)

k0;⊢∗K+1
K ¬∃xB(x), ∃x ∈ LSB(x);

(
∧
)

2

Proposition 6.31 (Inversion) Let A ≃
∧
(Aι)ι∈J with A ∈ Γ, ι ∈ [QΠ]AJ and

(Hγ ,Θ; QΠ) ⊢∗a
c Γ;Π[·]. Then (Hγ ,Θ ∪ k(ι); QΠ) ⊢∗a

c Γ, Aι; Π
[·].

Proposition 6.32 Let (Hγ ,Θ; QΠ) ⊢∗a
c Γ;Π[·]. Assume Θ ⊂Mσ. Then

(Hγ ,Θ ∪ {σ}; QΠ ∪ {σ}) ⊢∗a
c Γ;Π[·].

Proof. By induction on a. We obtain (Θ ∪ {σ})QΠ∪{σ} = ΘQΠ by the assump-
tion. In an inference (stbl), the right upper sequents are restricted to τ such
that σ ∈ Mτ . Also we need to prune some branches at (

∧
) and (

∧
)[·] since

[(QΠ ∪ {σ})]AJ ⊂ [QΠ]AJ . 2

Proposition 6.33 (Reduction) Let C ≃
∨
(Cι)ι∈J and K = S+ ≤ rk(C) ≤ c.

Assume (Hγ ,Θ; QΠ) ⊢∗a
c Γ,¬C; Π[·] and (Hγ ,Θ; QΠ) ⊢∗b

c C,Γ;Π[·].
Then (Hγ ,Θ; QΠ) ⊢∗a+b

c Γ;Π[·].

Proof. By induction on b using Inversion 6.31 and Proposition 6.32.

Note that if (Hγ ,Θ; QΠ) ⊢∗b(ι)
c Cι,Γ;Π

[·] for an ι ∈ J such that rk(Cι) ≥ K,
we obtain k(Cι) ⊂ Hγ [ΘQΠ(S)] ⊂ MQΠ(S) by (35) and Proposition 6.21 with
γ ≤ γ0 ≤ p0(σ) for σ ∈ QΠ. Hence ι ∈ [QΠ]CJ if k(ι) ⊂ k(Cι). 2

Proposition 6.34 (Cut-elimination) Assume (Hγ ,Θ; QΠ) ⊢∗a
c+1 Γ;Π[·] with c ≥

S+ = K. Then (Hγ ,Θ; QΠ) ⊢∗ωa

c Γ;Π[·].

Proof. This is seen by induction on a using Reduction 6.33. 2

Lemma 6.35 (Collapsing) Let Γ ⊂ Σ be a set of formulas, and Π ⊂ ∆0(K).
Suppose Θ ⊂ Hγ(ψK(γ)) and (Hγ ,Θ; QΠ) ⊢∗a

K Γ;Π[·]. Let β = ψK(â) with

â = γ + ωa. Then (Hâ+1,Θ; QΠ) ⊢∗β
β Γ(β,K); Π[·] holds.

Proof. By induction on a as in Theorem 1.22. We have {γ, a} ⊂ Hγ [ΘQΠ ] by
(35), and β ∈ Hâ+1[ΘQΠ ].

When the last inference is a (stbl), let B(0) ∈ ∆0(S) be a
∧
-formula and

a term u ∈ Tm(K) such that S ≤ rk(B(u)) < K, k(B(u)) ⊂ Hγ [Θ], and
(Hγ ,Θ; QΠ) ⊢∗a0

K Γ, B(u); Π[·] for an ordinal a0 ∈ Hγ [ΘQΠ ] ∩ a. Then we obtain
rk(B(u)) < β.
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Consider the case when the last inference is a (Σ-rfl) on K. We have ordinals
aℓ, ar < a and a formula C ∈ Σ such that (Hγ ,Θ; QΠ) ⊢∗aℓ

K Γ, C; Π[·] and
(Hγ ,Θ; QΠ) ⊢∗ar

K ¬∃xC(x,K),Γ;Π[·].

Let βℓ = ψK(âℓ) ∈ Hâℓ+1[ΘQΠ ]∩β with âℓ = γ+ωaℓ . IH yields (Hâ+1,Θ; QΠ) ⊢∗βℓ

β

Γ(β,K), C(βℓ,K); Π[·]. On the other, Inversion 6.31 yields (Hâℓ+1,Θ; QΠ) ⊢∗ar
K

¬C(βℓ,K),Γ;Π[·]. For βr = ψK(âr) ∈ Hâ+1[ΘQΠ ] ∩ β with âr = âℓ + ωar , IH

yields (Hâ+1,Θ; QΠ) ⊢∗βr

β ¬C(βℓ,K),Γ(β,K); Π[·]. We obtain (Hâ+1,Θ; QΠ) ⊢∗β
β

Γ(β,K); Π[·] by a (cut).
Note that since Π ⊂ ∆0(K), inferences (

∧
)[·] are harmless for the condition

Θ ⊂ Hγ(ψK(γ)). 2

6.6 Operator controlled derivations with caps

In this subsection we introduce another derivability relation (Hγ ,Θ, Q) ⊢ac,e,b1 Γ,
which depends again on an ordinal γ0, and should be written as (Hγ ,Θ, Q) ⊢ac,e,γ0,b1
Γ. However the ordinal γ0 will be fixed, and specified in the proof of Theorem
6.51. So let us omit it.

The inference rules (stbl) are replaced by inferences (rfl(ρ, d, f, b1)) by putting
a cap ρ on formulas in Lemma 6.44. In (Hγ ,Θ, Q) ⊢ac,e,b1 Γ, c is a bound for cut
ranks and e a bound for ordinals ρ in the inferences (rfl(ρ, d, f, b1)) occurring in
the derivation. b1 is a bound such that s(ρ) = max(supp(m(ρ))) ≤ b1. Although
the capped formula A(ρ) in Definition 6.36, is intended to denote the formula
A[ρ/S], we need to distinguish it from A[ρ/S]. Our main task is to eliminate
inferences (rfl(ρ, d, f)) from a resulting derivation D1. In Recapping 6.47 the
cap ρ in inferences (rfl(ρ, d, f, b1)) are replaced by another cap κ < ρ. In this
process new inferences (rfl(σ, d1, f1, b1)) arise with σ < κ. Iterating this process,
we arrive at a derivation D2 such that s(ρ) ≤ S, i.e., supp(m(ρ)) ⊂ S+1. Then
caps play no rôle, i.e., A(ρ) is ‘equivalent’ to A for A ∈ ∆0(S). Finally inferences
(rfl(ρ, d, f, b1)) are removed from D2 by throwing up caps and replacing these
by a series of (cut)’s, cf. Lemma 6.48.

The ordinal, i.e., the threshold γ0 will be specified in the end of this section.

Definition 6.36 By a capped formula we mean a pair (A, ρ) of RS-sentence A
and an ordinal ρ < S such that k(A) ⊂ Mρ. Such a pair is denoted by A(ρ). A

sequent is a finite set of capped formulas, denoted by Γ
(ρ0)
0 , . . . ,Γ

(ρn)
n , where each

formula in the set Γ
(ρi)
i puts on the cap ρi ∈ S. When we write Γ(ρ), we tacitly

assume that k(Γ) ⊂Mρ. A capped formula A(ρ) is said to be a Σ(π)-formula if
A ∈ Σ(π). Let k(A(ρ)) := k(A).

Definition 6.37 Let f be a non-empty (and irreducible) finite function. Then
f is said to be special if there exists an ordinal α such that f(cmax) = α+K for
cmax = max(supp(f)). For a special finite function f , f ′ denotes a finite function
such that supp(f ′) = supp(f), f ′(c) = f(c) for c ̸= cmax, and f

′(cmax) = α with
f(cmax) = α+K.
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The ordinal K in f(cmax) = α+K is a ‘room’ to be replaced by a smaller ordinal,
cf. Definition 6.45.

Definition 6.38 A finite set Q ⊂ ΨS is said to be a finite family for ordinals
γ0 and b1 if ρ ∈ Hγ0+S = Hγ0+S(0), m(ρ) : K → φK(0) is special such that
s(ρ) = max(supp(m(ρ))) ≤ b1 and p0(ρ) ≥ γ0 for each ρ ∈ Q.

The resolvent class Hρ(f, b1, γ0,Θ) in the following Definition 6.39 is the set
of ordinals σ < ρ, which are candidates of substitutes for ρ in the inference
(rfl(ρ, d, f, b1)) for reflection. Note that if p0(σ) ≤ p0(ρ) and σ < ρ, then
Mσ ⊂ Mρ = Hp0(ρ)(ρ). Moreover if p0(σ) ≥ γ0 ≥ γ and Θ ⊂ Mσ, then
Hγ [Θ] ⊂Mσ by Proposition 6.21.

Definition 6.39 Hρ(f, b1, γ0,Θ) denotes the resolvent class for finite functions
f , ordinals ρ, b1, γ0 and finite sets Θ of ordinals defined by σ ∈ Hρ(f, b1, γ0,Θ)
iff σ ∈ Hγ0+S ∩ ρ, SCK(m(σ)) ⊂ Hγ0 [Θ], Θ ⊂ Mσ, p0(σ) = p0(ρ) ≥ γ0, and
m(σ) is special such that s(f) = max(supp(f)) ≤ s(σ) ≤ b1 and f ′ ≤ (m(σ))′,
where f ≤ g ⇔ ∀i(f(i) ≤ g(i)).

We define a derivability relation (Hγ ,Θ, Q) ⊢ac,e Γ, where S ≤ γ ≤ γ0 is an
ordinal, Θ a finite set of ordinals, Q a finite family for γ0, b1, and a, c < K = S+.
c a bound of cut ranks, e a bound of ρ in inference rules (rfl(ρ, d, f, b1)), and b1
a bound on s(ρ). The relation ⊢ac,e depends on fixed ordinals γ0 and b1.

For d = rk(A) < S, it may be k(A) ∪ {d} ̸⊂ MQ. Let us avoid deriving the
tautology ¬A,A by a standard derivation to show ⊢2d ¬A,A.

Definition 6.40 Let Θ(ρ) = Θ ∩Mρ, [Q]A(ρ)J = [Q]AJ ∩ [ρ]J , S ≤ γ ≤ γ0 and
e ∈ Hγ0+S(0).

(Hγ ,Θ, Q) ⊢ac,e,γ0,b1 Γ holds for a set Γ =
∪
{Γ(ρ)

ρ : ρ ∈ Q} of formulas if

∀ρ ∈ Q
(
k(Γρ) ⊂ Hγ [Θ

(ρ)]
)

(36)

{γ, a, c, b1} ∪ kS(Γ) ⊂ Hγ [ΘQ] (37)

and one of the following cases holds:

(Taut) {¬A(ρ), A(ρ)} ⊂ Γ for a ρ ∈ Q and a formula A such that rk(A) < S.

(
∨
) There exist A ≃

∨
(Aι)ι∈J , a cap ρ ∈ Q, an ordinal aι < a and an ι ∈ [ρ]J

such that A(ρ) ∈ Γ and (Hγ ,Θ, Q) ⊢aιc,e,γ0,b1 Γ, (Aι)
(ρ)

.

Note that if rk(Aι) ≥ S, then k(Aι) ⊂ Hγ [ΘQ] ⊂ MQ by (37). Hence
ι ∈ [Q]AJ = {ι ∈ J : rk(Aι) ≥ S ⇒ k(ι) ⊂MQ}.

(
∧
) There exist A ≃

∧
(Aι)ι∈J , a cap ρ ∈ Q, ordinals aι < a for each ι ∈ [Q]A(ρ)J

such that A(ρ) ∈ Γ and (Hγ ,Θ ∪ k(ι), Q) ⊢aιc,e,γ0,b1 Γ, (Aι)
(ρ)

.

Note that if rk(Aι) ≥ S, then k(ι) ⊂ MQ by ι ∈ [Q]A(ρ)J . Hence kS(Aι) ⊂
Hγ [(Θ ∪ k(ι))Q] for (37), where (Θ ∪ k(ι))Q = ΘQ ∪ k(ι).
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(cut) There exist a cap ρ ∈ Q, an ordinal a0 < a and a formula C such that
(Hγ ,Θ, Q) ⊢a0c,e,γ0,b1 Γ,¬C(ρ) and (Hγ ,Θ, Q) ⊢a0c,e,γ0,b1 C

(ρ),Γ with rk(C) <
c.

(Σ-rfl(Ω)) There exist a cap ρ ∈ Q, ordinals aℓ, ar < a, and an uncapped
formula C ∈ Σ(Ω) such that c ≥ Ω, (Hγ ,Θ, Q) ⊢aℓc,e,γ0,b1 Γ, C(ρ) and

(Hγ ,Θ, Q) ⊢arc,e,γ0,b1 ¬
(
∃x < π C(x,Ω)

)(ρ)
,Γ.

(rfl(ρ, d, f, b1)) There exist a cap ρ ∈ Q such that Θ ⊂ Mρ, ordinals d ∈
supp(m(ρ)), and a0 < a, a special finite function f , and a finite set ∆
of uncapped formulas enjoying the following conditions.

(r0) ρ < e if s(ρ) > S.
(r1) ∆ ⊂

∨
(d) := {δ : rk(δ) < d, δ is a

∨
-formula} ∪ {δ : rk(δ) < S}.

(r2) For the special finite function g = m(ρ), s(f) ≤ b1, SCK(f, g) ⊂
Hγ0 [Θ

(ρ)] and fd = gd& fd <d g′(d).

(r3) For each δ ∈ ∆, (Hγ ,Θ, Q) ⊢a0c,e,γ0,b1 Γ,¬δ(ρ).

(r4) (Hγ ,Θ∪{σ}, Q∪{σ}) ⊢a0c,e,γ0,b1 Γ,∆(σ) holds for every σ ∈ Hρ(f, b1, γ0,Θ
(ρ)).

{(Hγ ,Θ, Q) ⊢a0
c,e Γ,¬δ(ρ)}δ∈∆ {(Hγ ,Θ ∪ {σ}, Q ∪ {σ}) ⊢a0

c,e Γ,∆(σ)}σ∈Hρ(f,b1,γ0,Θ
(ρ))

(Hγ ,Θ, Q) ⊢a
c,e Γ

(rfl(ρ, d, f, b1))

Note that (Θ ∪ {σ})Q∪{σ} = ΘQ∪{σ} = ΘQ by Θ(ρ) ⊂Mσ and ρ ∈ Q.

{e} ∪ Q ⊂ Hγ [Θ] need not to hold.
Suppose (Hγ ,Θ, Q) ⊢ac,e Γ holds with A(ρ) ∈ Γ and ρ ∈ Q. By (36) we have

k(A) ⊂ Hγ [Θ
(ρ)]. We obtain k(A) ⊂Mρ by Proposition 6.21.

In this subsection the ordinals γ0 and b1 will be fixed, and we write ⊢ac,e for
⊢ac,e,γ0,b1 .

Proposition 6.41 (Tautology) Let {γ} ∪ kS(A) ⊂ Hγ [ΘQ] and σ ∈ Q, k(A) ⊂
Hγ [Θ

(σ)]. Then (Hγ ,Θ, Q) ⊢2d
0,0 ¬A(σ), A(σ) holds for d = max{S, rk(A)}.

Proof. By induction on d. Let A ≃
∨
(Aι)ι∈J with rk(A) ≥ S. For ι ∈

[Q]A(σ)J ⊂ [σ]J , let dι = 0 if rk(Aι) < S. Otherwise dι = max{S, rk(Aι)}. In
each case we have dι < d. IH yields

(Hγ ,Θ ∪ k(ι), Q) ⊢2dι
0,0 ¬A(σ)

ι , A
(σ)
ι

(Hγ ,Θ ∪ k(ι), Q) ⊢2dι+1
0,0 ¬A(σ)

ι , A(σ)
(
∨
)

(Hγ ,Θ, Q) ⊢2d
0,0 ¬A(σ), A(σ)

(
∧
)

2

Proposition 6.42 (Inversion) Let A ≃
∧
(Aι)ι∈J with A(ρ) ∈ Γ and rk(A) ≥ S,

ι ∈ [Q]A(ρ)J with ρ ∈ Q and (Hγ ,Θ, Q) ⊢ac,e Γ. Then (Hγ ,Θ ∪ k(ι), Q) ⊢ac,e Γ, Aι.
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Proposition 6.43 (Cut-elimination) Let (Hγ ,Θ, Q) ⊢ac+d,e Γ with Hγ [ΘQ] ∋
c ≥ S. Then (Hγ ,Θ, Q) ⊢φd(a)

c,e Γ.

Proof. By main induction on d with subsidiary induction on a using an ana-
logue to Reduction 6.33 with (37). Note that rk(C) ∈ Hγ [ΘQ] when rk(C) ≥ S
and (Hγ ,Θ, Q) ⊢ac,e Γ, C. 2

Lemma 6.44 (Capping) Let Γ ∪ Π ⊂ ∆0(K) with Π =
∪
{Πσ : σ ∈ QΠ}.

Suppose (Hγ ,Θ; QΠ) ⊢∗a
c,γ0 Γ;Π[·] for a, c < K and Π[·] =

∪
{Π[σ/S]

σ : σ ∈ QΠ}.
Let ρ = ψgS(γ1) be an ordinal such that QΠ ⊂ ρ,

Θ ⊂Mρ (38)

and g = m(ρ) a special finite function such that supp(g) = {c} and g(c) =
α0 + K, where K(2a + 1) ≤ α0 + K ≤ γ0 ≤ γ1 with {γ1, c, α0} ⊂ Hγ [Θ] ∩ Hγ0 ,

and p0(σ) ≤ p0(ρ) = γ1 for each σ ∈ QΠ. Let Γ̂ =
∪
{A(ρ) : A ∈ Γ}, Π̂ =∪

{Π(σ)
σ : σ ∈ QΠ} and Q = QΠ ∪ {ρ}.

Then (Hγ ,ΘΠ, Q) ⊢ac,ρ+1,γ0,c Γ̂, Π̂ holds holds for ΘΠ = Θ ∪ QΠ.

Proof. By induction on a. Let us write ⊢ac for ⊢ac,ρ+1,γ0,c in the proof. By

assumptions we have Θ ⊂Mρ and QΠ ⊂ ρ. Hence Θ = Θ(ρ) and ΘQΠ = ΘQ. On

the other hand we have k(Γ) ⊂ Hγ [Θ] and for σ ∈ QΠ, k(Πσ) ⊂ Hγ [Θ
(σ)] by

(34). Therefore (36) is enjoyed. We have {γ, a, c} ⊂ Hγ [ΘQΠ ] by (35). Hence
(37) is enjoyed. Moreover we have SCK(g) ⊂ Hγ [Θ] ⊂Mρ.
Case 1. First consider the case when the last inference is a (stbl):

(Hγ ,Θ; QΠ) ⊢∗a0
c Γ, B(u); Π[·] {(Hγ ,Θ ∪ {σ}; QΠ ∪ {σ}) ⊢∗a0

c Γ;¬B(u)[σ/S],Π[·]}Θ⊂Mσ

(Hγ ,Θ; QΠ) ⊢∗a
c Γ;Π[·]

(stbl)

Note that it may be the formula B(u)[σ/S] is in Γ, cf. Embedding 6.30. σ
in Θ ∪ {σ} ensures us k(B(u)[σ/S]) ⊂ Hγ [Θ ∪ {σ}] in (34). This explains the

additional set QΠ in (Hγ ,ΘΠ, Q) ⊢ac Γ̂, Π̂, and the addition would be an obstacle
to a ∈ ΘQ in (37).

We have an ordinal a0 < a, a
∧
-formula B(0) ∈ ∆0(S), and a term u ∈

Tm(K) such that S ≤ rk(B(u)) < c. We have (Hγ ,Θ; QΠ) ⊢∗a0
c Γ, B(u); Π[·].

(Hγ ,ΘΠ, Q) ⊢a0c Γ̂, (B(u))
(ρ)
, Π̂ follows from IH.

On the other hand we have (Hγ ,Θ ∪ {σ}; QΠ ∪ {σ}) ⊢∗a0
c Γ;¬B(u)[σ/S],Π[·]

for every ordinal σ such that Θ ⊂Mσ.
Let h be a special finite function such that supp(h) = {c} and h(c) =

K(2a0 + 1). Then hc = gc = ∅ and hc <c g′(c) by h(c) = K(2a0 + 1) <
K(2a) ≤ α0 = g′(c). Let σ ∈ Hρ(h, c, γ0,Θ). For example σ = ψhρ (γ1 + η)
with η = max({1} ∪ES(Θ)), where ES(Θ) =

∪
α∈ΘES(α) with the set ES(α) of

subterms< S of α. We obtain Θ ⊂ Hγ1(σ) =Mσ by Θ ⊂Mρ, and {γ1, c, a0} ⊂
Hγ [Θ] ⊂ Hγ1(σ).

We have kS(B(u)) = k(B(u)) ⊂ Hγ [ΘQ] ⊂ Mσ for (37), and (Hγ ,ΘΠ ∪
{σ}, Q ∪ {σ}) ⊢a0c Γ̂,¬B(u)(σ), Π̂ follows from IH with σ ∈Mρ. Since this holds
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for every such σ, we obtain (Hγ ,ΘΠ, Q) ⊢ac,ρ+1 Γ̂, Π̂ by an inference (rfl(ρ, c, h, c))
with rk(B(u)) < c ∈ supp(m(ρ)). In the following figure let us omit the operator
Hγ .

(ΘΠ, Q) ⊢a0
c Γ̂, B(u)(ρ), Π̂ {(ΘΠ ∪ {σ}, Q ∪ {σ}) ⊢a0

c Γ̂,¬B(u)(σ), Π̂}σ
(ΘΠ, Q) ⊢a

c Γ̂, Π̂
(rfl(ρ, c, h, c))

Case 2. Second the last inference introduces a
∨
-formula A.

Case 2.1. First let A ∈ Γ be introduced by a (
∨
), and A ≃

∨
(Aι)ι∈J . There

are an ι ∈ J an ordinal a(ι) < a such that (Hγ ,Θ; QΠ) ⊢∗a(ι)
c Γ, Aι; Π

[·]. Let
k(ι) ⊂ k(Aι). We obtain k(ι) ⊂ Hγ [Θ] ⊂Mρ by (34), Θ ⊂Mρ and γ ≤ γ0 ≤ γ1.

Hence ι ∈ [ρ]J . IH yields (Hγ ,ΘΠ, Q) ⊢a(ι)c Π̂, Γ̂, (Aι)
(ρ)

. (Hγ ,ΘΠ, Q) ⊢ac Π̂, Γ̂
follows from a (

∨
).

Case 2.2. Second A ≡ B[σ/S] ∈ Π[·] is introduced by a (
∨
)[·] with B(σ) ∈ Π̂

and σ ∈ QΠ. Let B ≃
∨
(Bι)ι∈J . Then A ≃

∨(
B

[σ,S]
ι

)
ι∈[σ]J

by Proposition

6.26. There are an ι ∈ [σ]J and an ordinal a(ι) < a such that (Hγ ,Θ; QΠ) ⊢a(ι)c

Γ;B
[σ/S]
ι ,Π[·] for Aι ≡ B

[σ/S]
ι . IH yields (Hγ ,ΘΠ, Q) ⊢a(ι)c Π̂, Γ̂, (Bι)

(σ)
. We

obtain (Hγ ,ΘΠ, Q) ⊢ac Π̂, Γ̂ by a (
∨
).

Case 3. Third the last inference introduces a
∧
-formula A.

Case 3.1. First let A ∈ Γ be introduced by a (
∧
), and A ≃

∧
(Aι)ι∈J . For every

ι ∈ [QΠ]AJ there exists an a(ι) < a such that (Hγ ,Θ∪k(ι); QΠ) ⊢∗a(ι)
c Γ, Aι; Π

[·].

IH yields (Hγ ,ΘΠ∪k(ι), Q) ⊢a(ι)c Π̂, Γ̂, (Aι)
(ρ)

for each ι ∈ [Q]A(ρ)J ⊂ [QΠ]AJ ,

where k(ι) ⊂Mρ. We obtain (Hγ ,ΘΠ, Q) ⊢ac Π̂, Γ̂ by a (
∧
).

Case 3.2. Second A ≡ B[σ/S] ∈ Π[·] is introduced by a (
∧
)[·] with B(σ) ∈ Π̂

and σ ∈ QΠ. Let B ≃
∧
(Bι)ι∈J with A ≃

∧(
B

[σ/S]
ι

)
ι∈[σ]J

. For each ι ∈

[QΠ]BJ ∩ [σ]J there is an ordinal a(ι) < a such that (Hγ ,Θ ∪ k(ι); QΠ) ⊢∗a(ι)
c

Γ;Aι,Π
[·] for Aι ≡ B

[σ/S]
ι . IH yields (Hγ ,ΘΠ ∪ k(ι), Q) ⊢a(ι)c Π̂, Γ̂, (Bι)

(σ)
for

each ι ∈ [Q]B(σ)J ⊂ [QΠ]BJ ∩ [σ]J , where k(ι) ⊂Mσ ⊂Mρ. (Hγ ,ΘΠ, Q) ⊢ac Π̂, Γ̂
follows from a (

∧
).

The other cases (cut) or (Σ-rfl) on Ω are seen from IH. 2

6.7 Eliminations of inferences (rfl)

In this subsection, (rfl(ρ, c, γ)) are removed from operator controlled derivations
of Σ1-sentences θ

LΩ over Ω.

Definition 6.45 For a special finite function g and ordinals a < K, b < cmax =
max(supp(g)) < K, let us define a special finite function h = hb(g; a) as follows.
max(supp(h)) = b, and hb = gb. To define h(b), let {b = b0 < b1 < · · · <
bn = cmax} = {b, cmax}∪ ((b, cmax) ∩ supp(g)). Define recursively ordinals αi by
αn = α + a with g(cmax) = α + K. αi = g(bi) + θ̃ci(αi+1) for ci = bi+1 − bi.
Finally put h(b) = α0 +K.
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Proposition 6.46 Let f and g be special finite functions with cmax = max(supp(g)).

1. Let b < e < cmax and a0, a1 < a. Then hb(he(g; a0); a1) ≤ (hb(g; a))′.

2. Suppose f <d g′(d) for a d ∈ supp(g). Let b < d. Then fb = (hb(g; a))b
and f <b (hb(g; a))′(b).

Recall that s(ρ) = max(supp(m(ρ))).

Lemma 6.47 (Recapping)

Let (Hγ ,Θ, Q) ⊢ac1,e,γ0,b2 Π, Γ̂ for a finite family Q for γ0, b2, Qt ⊂ Q, ∀ρ ∈
Qt(s(ρ) > S) and Qf = Q \ Qt, Γ∪Π ⊂ ∆0(K), Γ̂ =

∪
{Γ(ρ)

ρ : ρ ∈ Qt}, where each
θ ∈ Γ is either a

∨
-formula or rk(θ) < S, and Π a set of formulas such that

τ ∈ Qf for every A(τ) ∈ Π.
Let max{s(ρ) : ρ ∈ Qt} ≤ b1. For each ρ ∈ Qt, let S ≤ b(ρ) ∈ Hγ [Θ

(ρ)]

with rk(Γρ) < b(ρ) < s(ρ), and κ(ρ) ∈ Hρ(h
b(ρ)(m(ρ);ω(b1, a)), b2, γ0,Θ

(ρ)) with

ω(b, a) = ωω
b

a. Assume b1 ∈ Hγ [ΘQ].

Then (Hγ ,Θ, Q(κ)) ⊢ω(b1,a)cb1 ,e
κ,γ0,b2

Π, Γ̂κ holds, where Q(κ) = Qf ∪ {κ(ρ) : ρ ∈
Qt}, cb1 = max{c1, b1}, eκ = max({τ ∈ Qf : s(τ) > S} ∪ {κ(ρ) : ρ ∈ Qt}) + 1,

Γ̂κ =
∪
{Γ(κ(ρ))

ρ : ρ ∈ Qt}.
eκ < e holds when Qt = {ρ ∈ Q : s(ρ) > S} ̸= ∅.

Proof. We show the lemma by main induction on b1 with subsidiary induction
on a. The subscripts γ0, b2 are omitted in the proof. We obtain {γ, b1, a, c1} ∪
kS(Π,Γ) ⊂ Hγ [ΘQ] by the assumption and (37). Then {γ, ω(b1, a), cb1}∪kS(Π,Γ) ⊂
Hγ [ΘQ(κ)] since Θ(ρ) ⊂ Mκ(ρ) for each ρ ∈ Qt. Hence (37) is enjoyed in

(Hγ ,Θ, Q(κ)) ⊢ω(b1,a)cb1 ,e,γ0,b2
Π, Γ̂κ.

Let ρ ∈ Qt. We have b(ρ) ∈ Hγ [Θ
(ρ)], SCK(m(ρ)) ⊂ Hγ0 [Θ

(ρ)] and Θ(ρ) ⊂
Mκ(ρ). SCK(h

b(ρ)(m(ρ);ω(b1, a))) ⊂ Hγ0 [Θ
(ρ)] follows. Moreover we have

SCK(m(κ(ρ))) ⊂ Hγ0 [Θ
(ρ)] ⊂Mκ(ρ).

Consider the case when the last inference is a (rfl(ρ, d, f, b2)) for a ρ ∈ Q.
The case ρ ∈ Qf is seen from SIH. Assume ρ ∈ Qt. Let b = b(ρ), g = m(ρ),

b1 ≥ s(ρ) ≥ d ∈ supp(g), κ = κ(ρ), Γ = Γρ, Λ̂ =
∪
ρ ̸=τ∈Qt{Γ

(τ)
τ }, and Λ̂κ =∪

ρ ̸=τ∈Qt{Γ
κ(τ)
τ }. We have a sequent ∆ ⊂

∨
(d) such that rk(∆) < d ≤ s(ρ) ≤ b1

and kS(∆) ⊂ Hγ [ΘQ] ⊂MQ by (37) and kS(∆) ⊂MQ(κ) by ΘQ = ΘQ(κ). There is

an ordinal a0 ∈ Hγ [ΘQ] ∩ a such that (Hγ ,Θ, Q) ⊢a0c1,e Π, Λ̂,Γ(ρ),¬δ(ρ) for each
δ ∈ ∆. For each δ ∈ ∆ ⊂

∨
(d) with rk(δ) ≥ S, we have δ ≃

∨
(δι)ι∈J . Let

b0 = max({S} ∪ {rk(δ) : δ ∈ ∆}). Then s(ρ) > b0 ∈ Hγ [ΘQ]. Inversion 6.42
yields for rk(δ) ≥ S

(Hγ ,Θ ∪ k(ι), Q) ⊢a0c1,e Π, Λ̂,Γ
(ρ),¬(δι)(ρ) (39)

for each ι ∈ [Q]δ(ρ)J , where J ⊂ Tm(b0) and ¬δι ∈
∨
(b0) by rk(δι) < rk(δ).
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On the other side for each σ ∈ Hρ(f, b2, γ0,Θ
(ρ))

(Hγ ,Θ ∪ {σ}, Q ∪ {σ}) ⊢a0c1,e Π, Λ̂,Γ
(ρ),∆(σ) (40)

f is a special finite function such that s(f) ≤ b2, fd = gd, f
d <d g′(d) and

SCK(f) ⊂ Hγ0 [Θ
(ρ)]. Let (Q ∪ {σ})f = Qf ∪ {σ}.

Case 1. b0 < b: Then rk(∆) < b. Let rk(δ) ≥ S. From (39) we obtain by

SIH with b > b0 ≥ S, (Hγ ,Θ ∪ k(ι), Q(κ)) ⊢ω(b1,a0)cb1 ,e
κ Π, Λ̂κ,Γ

(κ),¬(δι)(κ) for each
ι ∈ [Q(κ)]δ(κ)J ⊂ [Q]δ(ρ)J . An inference (

∧
) yields

(Hγ ,Θ, Q(κ)) ⊢ω(b1,a0)+1
cb1 ,e

κ Π, Λ̂κ,Γ
(κ),¬δ(κ) (41)

Moreover SIH yields (41) for rk(δ) < S. Let d1 = min{b, d}. Then ∆ ⊂
∨
(d1)

by b > b0.
We claim for the special finite function h = hb(g;ω(b1, a)) that

fd1 = hd1 & fd1 <d1 h′(d1) (42)

If d1 = d ≤ b, then hd = gd and g′(d) = g(d) ≤ h′(d). Proposition 6.5 yields the
claim. If d1 = b < d, then Proposition 6.46.2 yields the claim.

On the other hand, for each σ ∈ Hκ(f, b2, γ0,Θ
(ρ)) ⊂ Hρ(f, b2, γ0,Θ

(ρ)) we
have by (40) and SIH,

(Hγ ,Θ ∪ {σ}, Q(κ) ∪ {σ}) ⊢ω(b1,a0)cb1 ,e
κ Π, Λ̂κ,Γ

(κ),∆(σ) (43)

We have κ = κ(ρ) < κ(ρ) + 1 ≤ eκ for (r0). An inference (rfl(κ, d1, f, b2))

with (42), (41) and (43) yields (Hγ ,Θ, Q(κ)) ⊢ω(b1,a)cb1 ,e
κ Π, Λ̂κ,Γ

(κ), where d1 ∈
supp(m(κ)) and kS(∆) ⊂ Hγ [ΘQ(κ)].

Case 2. b ≤ b0: When b = b0, let τ = κ. When b < b0, let τ ∈ Hρ(h, b2, γ0,Θ
(ρ))

be such that κ < τ and m(τ) = h = hb0(g; a1) with a1 = ω(b1, a0) + 1.
Let σ ∈ Hτ (f, b2, γ0,Θ

(ρ)). SIH with (40) and b0 < s(ρ) yields

(Hγ ,Θ ∪ {σ}, Qτ ∪ {σ}) ⊢ω(b1,a0)cb1 ,e
τ ∆(σ),Π, Λ̂κ,Γ

(τ) (44)

where Qτ = Qf ∪ {κ(λ) : ρ ̸= λ ∈ Qt} ∪ {τ}, and eτ = max({λ ∈ Qf : s(λ) >
S} ∪ {κ(λ) : ρ ̸= λ ∈ Qt} ∪ {τ}) + 1. Let σ ∈ R := {σ ∈ Hτ (f, b2, γ0,Θ

(ρ)) :
(m(σ))′ ≥ (hb0(g;ω(b1, a0)))

′}. We see σ ∈ Hρ(h
b0(g;ω(b1, a0)), b2, γ0,Θ

(ρ)).
Moreover rk(¬δι) < b0 if rk(δ) ≥ S, and rk(¬δ) < b0 if rk(δ) < S ≤ b0.

For each ι ∈ [Q]δ(ρ)J and rk(δ) ≥ S, we obtain (Hγ ,Θ ∪ k(ι), Qσ) ⊢ω(b1,a0)cb1 ,e
σ

Π, Λ̂κ,Γ
(σ),¬(δι)(σ) by rk(¬δι) < b0, SIH and (39), where Qσ ∪ {τ} = Qτ ∪ {σ}.

A (
∧
) yields (Hγ ,Θ, Qσ) ⊢ω(b1,a0)+1

cb1 ,e
σ Π, Λ̂κ,Γ

(σ),¬δ(σ). When rk(δ) < S, this
follows from SIH. Also MQσ =MQσ∪{τ} and eσ ≤ eτ by τ > σ. Therefore

(Hγ ,Θ, Qτ ∪ {σ}) ⊢ω(b1,a0)+1
cb1 ,e

τ Π, Λ̂κ,Γ
(σ),¬δ(σ) (45)
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From (44) and (45) by several (cut)’s of δ with rk(δ) < d ≤ b1 ≤ cb1 we obtain
for a p < ω,

∀σ ∈ R
[
(Hγ ,Θ ∪ {σ}, Qτ ∪ {σ}) ⊢ω(b1,a0)+pcb1 ,e

τ Π, Λ̂κ,Γ
(σ),Γ(τ)

]
(46)

On the other hand we have r = max{S, rk(Γ)} ≤ b < b1 and kS(Γ) ⊂ Hγ [ΘQ] =
Hγ [ΘQτ ] ⊂ MQτ by (37), where ΘQ = ΘQτ by Θ(ρ) ⊂ Mτ . Tautology 6.41 yields
for each θ ∈ Γ

(Hγ ,Θ, Qτ ) ⊢2r
0,0 Γ(τ),¬θ(τ) (47)

Let us define a finite function h by supp(h) = supp(gb0) ∪ supp(f b0+1) ∪ {b0},
hb0 = gb0 and hb0+1 = f b0+1. Let (hb0(g;ω(b1, a0)))(b0) = α+K. Then h(b0) =
α if f b0+1 ̸= ∅. Otherwise h(b0) = α+K. We see that R = Hτ (h, γ0,Θ

(ρ)), and
hb0 <b0 (m(τ))

′
(b0).

By an inference (rfl(τ, b0, h, b2)) with its resolvent classR = Hτ (h, b2, γ0,Θ
(ρ))

and Γ ⊂
∨
(b0) we conclude from (47) and (46) for rk(Γ) < b ≤ b0 ≤ s(τ)

(Hγ ,Θ, Qτ ) ⊢a2cb1 ,eτ Π, Λ̂κ,Γ
(τ) (48)

where a2 = max{2r, ω(b1, a0) + p} + 1 < ω(b1, a) = ωω
b1
a. If b0 = b, we are

done. In what follows assume b < b0. We have a1 < ω(b1, a) and ω(b0, a2) =

ωω
b0
a2 < ω(b1, a) by b0 < b1. Moreover Proposition 6.46.1 form(τ) = hb0(g; a1)

yields (hb(m(τ);ω(b0, a2)))
′ = (hb(hb0(g; a1);ω(b0, a2)))

′ ≤ (hb(g;ω(b1, a)))
′.

Let (Qτ )
t = {τ} and κ(τ) = κ(ρ) = κ. Then (eτ )κ = max({λ ∈ (Qτ )

f :
s(λ) > S} ∪ {κ}) + 1 = eκ. We have kS(Γ) ∪ {b0} ⊂ Hγ [ΘQτ ], rk(Γρ) <
b(ρ) = b < b0 = s(τ) < b1 for Γ = Γρ and b ∈ Hγ [Θ

(τ)], ω(b0, a2) <
ω(b1, a) and max{cb1 , b0} = cb1 . Also κ ∈ Hρ(h

b(g;ω(b1, a)), b2, γ0,Θ
(ρ)) ∩ τ ⊂

Hτ (h
b(m(τ);ω(b1, a2)), b2, γ0,Θ

(ρ)). MIH with (48) yields (Hγ ,Θ, Q(κ)) ⊢ω(b1,a)cb1 ,e
κ

Π,Γ(κ).
Second consider the case when the last inference (

∨
) introduces a

∨
-formula

B: If B ∈ Π, SIH yields the lemma. Assume that B ≡ A(ρ) ∈ Γ
(ρ)
ρ with

A ≃
∨
(Aι)ι∈J and ρ ∈ Q. We may assume ρ ∈ Qt. We have (Hγ ,Θ, Q) ⊢a0c1,e

Π, Γ̂, (Aι)
(ρ)

, where a0 < a, ι ∈ [ρ]J . We claim that ι ∈ [κ(ρ)]J . We may
assume k(ι) ⊂ k(Aι). We have k(Aι) ⊂ Hγ [Θ

(ρ)] by (36). Θ(ρ) ⊂ Mκ(ρ) yields
k(Aι) ⊂Mκ(ρ).

Let Aι ≃
∧
(Bν)ν∈I for

∨
-formulas Bν , and assume rk(Aι) ≥ S. Inversion

7.25 yields for each ν ∈ [Q]
A

(ρ)
ι
I, (Hγ ,Θ ∪ k(ν), Q) ⊢a0c1,e Π, Γ̂, (Bν)

(ρ)
.

SIH yields for each ν ∈ [Q(κ)]
A

(ρ)
ι
I ⊂ [Q]

A
(ρ)
ι
I that (Hγ ,Θ∪k(ν), Q(κ)) ⊢ω(b1,a0)cb1 ,e

κ

Π, Γ̂κ, (Bν)
(κ)

. (Hγ ,Θ, Q(κ)) ⊢ω(b1,a0)+1
cb1 ,e

κ Π, Γ̂κ, (Aι)
(κ)

follows from a (
∧
). An

inference (
∨
) yields (Hγ ,Θ, Q(κ)) ⊢ω(b1,a)cb1 ,e

κ Π, Γ̂κ.
Other cases are seen from SIH. 2

For c ≤ S, (Hγ ,Θ) ⊢∗a
c Γ denotes (Hγ ,Θ; ∅) ⊢∗a

c Γ; ∅. Since Θ∅ = Θ, (34)
and (35) amount to (3) {γ, a, c}∪ k(Γ) ⊂ Hγ [Θ], and there occurs no inferences
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(
∨
)[·], (

∧
)[·] nor (stbl). The inference (Σ-rfl) is only on Ω. This means that

(Hγ ,Θ) ⊢∗a
c Γ is equivalent to Hγ [Θ] ⊢ac Γ in Definition 1.16.

Lemma 6.48 (Elimination of inferences (rfl))

Let Q be a finite family for γ0 and b1 ≥ S. Let max(rk(Γ)) < S, Γ̂ =
∪
{Γ(ρ)

ρ : ρ ∈
Q} and Γ =

∪
{Γρ : ρ ∈ Q}, where k(Γρ) ⊂Mρ. Suppose (Hγ ,Θ, Q) ⊢aS,e,γ0,b1 Γ̂.

Then (Hγ1 ,Θ) ⊢∗ã
S Γ holds for γ1 = γ0 + S, ã = φe(b1 + a).

Proof. By main induction on e with subsidiary induction on a. We have
{e} ∪ Q ⊂ Hγ1 by Definitions 6.40 and 6.38, b1 ∈ Hγ [ΘQ] by (37), and ∅ =
kS(Γ) ⊂ Hγ [ΘQ].

Case 1. First let {¬A(σ), A(σ)} ⊂ Γ̂ with rk(A) < S by (Taut). Then
(H0, k(A)) ⊢∗S

0 ¬A,A by Tautology 6.29.1 and (Hγ1 ,Θ) ⊢∗ã
S Γ by ã > S.

Case 2. Second consider the case when the last inference is a (rfl(ρ, d, f, b1))
for a ρ ∈ Q. Let Qt = {τ ∈ Q : s(τ) > S}, Qf = Q \ Qt, and κ(τ) ∈
Hτ (h

S(m(τ);ω(b, a)), b1, γ0,Θ
(τ)) for each τ ∈ Qt. Let g = m(ρ), s(ρ) ≥ d ∈

supp(g), κ = κ(ρ) when ρ ∈ Qt, Π̂ =
∪
ρ ̸=τ∈Qf Γ

(τ)
τ , Λ̂ =

∪
ρ ̸=τ∈Qt Γ

(τ)
τ , and

Λ̂κ =
∪
ρ̸=τ∈Qt Γ

κ(τ)
τ . We have a sequent ∆ ⊂

∨
(d) and an ordinal a0 < a such

that rk(∆) < d ≤ s(ρ) and (Hγ ,Θ, Q) ⊢a0S,e,γ0,b1 Π̂, Λ̂,Γ
(ρ)
ρ ,¬δ(ρ) for each δ ∈ ∆.

On the other hand we have (Hγ ,Θ ∪ {σ}, Q ∪ {σ}) ⊢a0S,e,γ0,b1 Π̂, Λ̂,Γ
(ρ)
ρ ,∆(σ),

where σ ∈ Hρ(f, b1, γ0,Θ
(ρ)), f is a special finite function such that s(f) ≤ b1,

fd = gd, f
d <d g′(d) and SCK(f) ⊂ Hγ0 [Θ

(ρ)].
Case 2.1 s(ρ) ≤ S: We have rk(∆) < d ≤ s(ρ) ≤ S. Let ã0 = φe(b1 + a0). By
SIH we obtain (Hγ1 ,Θ) ⊢∗ã0

S Π,Λ,Γρ,¬δ for each δ ∈ ∆, and (Hγ1 ,Θ∪{σ}) ⊢∗ã0
S

Π,Λ,Γρ,∆, where σ ∈ Hγ0+S ⊂ Hγ1 [Θ]. Several (cut)’s of rk(δ) < S yields
(Hγ1 ,Θ) ⊢∗ã

S Π,Λ,Γρ for Γ = Π ∪ Λ ∪ Γρ.

Case 2.2. s(ρ) > S: Then ρ ∈ Qt ̸= ∅. (Hγ ,Θ, Q(κ)) ⊢ω(b1,a)b1,eκ,γ0,b1
Π̂, Λ̂κ,Γ

(κ)
ρ fol-

lows by Recapping 6.47, where b1 ≥ S and eκ < e. Cut-elimination 6.43 yields

for a1 = φb1(ω(b1, a)), (Hγ ,Θ, Q(κ)) ⊢a1S,eκ,γ0,b1 Π̂, Λ̂κ,Γ
(κ)
ρ . MIH then yields

(Hγ1 ,Θ) ⊢∗ã1
S Γ, where Γ = Π ∪Λ ∪ Γρ and ã1 = φeκ(b1 + a1) < φe(b1 + a) = ã

by eκ < e and a, b1 < ã.
Case 3. The last inference is a (

∧
): We have a(ι) < a, A(ρ) ∈ Γ̂ with

A ≃
∧
(Aι)ι∈J , and (Hγ ,Θ ∪ k(ι), Q) ⊢a(ι)S,e,γ0,b1 Γ̂, (Aι)

(ρ) for each ι ∈ [Q]A(ρ)J .

Since A ∈ ∆0(S), we obtain [Q]A(ρ)J = [ρ]J = J . SIH yields (Hγ1 ,Θ) ⊢∗ã(ι)
S Γ, Aι

for each ι ∈ J , where ã(ι) = φe(b1 + a(ι)) < ã. A (
∧
) yields (Hγ1 ,Θ) ⊢∗ã

S Γ.
Other cases are seen from SIH. 2

Proposition 6.49 (Collapsing) Suppose Θ ⊂ Hγ(ψΩ(γ)), (Hγ ,Θ) ⊢∗a
Ω Γ and

Γ ⊂ Σ(Ω). Then for â = γ + ωa and β = ψΩ(â), (Hâ+1,Θ) ⊢∗β
β Γ(β,Ω) holds.

Proposition 6.50 (Cut-elimination) Suppose (Hγ ,Θ) ⊢∗a
c+d Γ with c + d ≤ S

and ¬(c < Ω ≤ c+ d). Then (Hγ ,Θ) ⊢∗θd(a)
c Γ.

Theorem 6.51 Assume S1 ⊢ θLΩ for θ ∈ Σ. Then there exists an n < ω such
that Lα |= θ for α = ψΩ(ωn(K+ 1)) in OT (Π1

1).
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Proof. Let S1 ⊢ θLΩ for a Σ-sentence θ. By Embedding 6.30 pick an m so
that (HS, ∅; ∅) ⊢∗K·2+m

K+m θLΩ ; ∅. Cut-elimination 6.34 yields (HS, ∅; ∅) ⊢∗a
K θLΩ

for a = ωm(K · 2 + m) < ωm+1(K + 1). Now let γ0 = ωm+2(K + 1). Let
β = ψK(ω

a) > S, where ωa < γ0 = ωm+2(K + 1). Collapsing 7.18 yields

(Hωa+1, ∅; ∅) ⊢∗β
β θLΩ ; ∅.

Let ρ = ψgS(γ0) with g = {(β, β + K)}, where K(β + 1) = β + K. We

obtain (Hωa+1, ∅, {ρ}) ⊢ββ,ρ+1,γ0,β
(θLΩ)(ρ) by Capping 6.44. Cut-elimination

6.43 yields (Hωa+1, ∅, {ρ}) ⊢a1S,ρ+1,γ0,β
(θLΩ)(ρ) for a1 = φβ(β).

We obtain (Hγ1 , ∅) ⊢
∗a2
S θLΩ by Lemma 6.48, where a2 = φρ+1(β + a1) and

γ1 = γ0+S. Cut-elimination 6.50 yields (Hγ1 , ∅) ⊢
∗a3
Ω θLΩ for a3 = θS(a2). Col-

lapsing 6.49 yields (Hγ1+a3+1, ∅) ⊢∗η
η θLη for η = ψΩ(γ1 + a3) < ψΩ(ωm+3(K+

1)). Cut-elimination 6.50 yields (Hγ1+a3+1, ∅) ⊢
∗θη(η)
0 θLη . We then see Lη |= θ

by induction up to θη(η). 2

Actually the bound is shown to be tight.

Theorem 6.52 [A∞d]
KPω + (M ≺Σ1

V ) proves the well-foundedness up to ψΩ(ωn(S+ + 1)) for each
n.

KPω + (M ≺Σ1
V ) proves an axiom of Σ1-Separation with parameters from

M . ∃b [b = {x ∈ a : φ(x, c)} = {x ∈ a :M |= φ(x, c)}], where c ∈ M , a ∈ M ∪
{M} and φ ∈ Σ1. However it is open for us whether the parameter-free Σ1

2-
Comprehension Axiom holds in KPω + (M ≺Σ1

V ).

7 Π1-Collection

The axioms of the set theory KPω + Π1-Collection + (V = L) consist of those
of KPω + (V = L) plus the axiom schema Π1-Collection: for each Π1-formula
A(x, y) in the language of set theory, ∀x ∈ a∃yA(x, y) → ∃b∀x ∈ a∃y ∈ bA(x, y).
It is easy to see that the second order arithmetic Σ1

3−DC+ BI is interpreted to
KPω +Π1-Collection + (V = L) canonically.

Next we show that KPω + Π1-Collection + (V = L) is contained in a set
theory SI. The language of the theory SI is {∈, St,Ω} with a unary predicate
constant St and an individual constant Ω. ∆0(St) denotes the set of bounded
formulas in the language {∈, St,Ω}, in which atomic formulas St(t) may occur.
Similarly Σ1(St) the set of Σ1-formulas in the expanded language. St(α) is
intended to denote the fact that α is a stable ordinal, Lα ≺Σ1 L, and Ω = ωCK1 .
The axioms of SI are obtained from those 4 of KPω by adding the following
axioms. Let ON denote the class of all ordinals. For ordinals α, α† denotes the
least stable ordinal above α. A successor stable ordinal is an ordinal α† for an
α. Note that the least stable ordinal 0† is a successor stable ordinal.

4In the axiom schemata ∆0-Separation and ∆0-Collection, ∆0-formulas remain to mean a
∆0-formula in which St does not occur, while the axiom of foundation may be applied to a
formula in which St may occur.
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1. V = L, and the axioms for recursively regularity of Ω.

2. ∆0(St)-collection:

∀x ∈ a∃y θ(x, y) → ∃b∀x ∈ a∃y ∈ b θ(x, y)

for each ∆0(St)-formula θ in which the predicate St may occurs.

3. L =
∪
{Lσ : St(σ)}, i.e.,

∀α ∈ ON∃σ (α < σ ∧ St(σ)) (49)

.

4. For a successor stable ordinal σ < I, Lσ ≺Σ1 L = LI:

SSt(σ) ∧ φ(u) ∧ u ∈ Lσ → φLσ (u) (50)

for each Σ1-formula φ in the language of set theory, i.e., the constant St
does not occur in φ.

Lemma 7.1 SI is an extension of KPω+Π1-Collection+ (V = L). Namely SI
proves Π1-Collection.

Proof. Argue in SI. Let A(x, y) be a Π1-formula in the language of set theory.
We obtain by the axioms (49) and (50)

A(x, y) ↔ ∃β(St(β†) ∧ x, y ∈ Lβ† ∧ALβ† (x, y)) (51)

Assume ∀x ∈ a∃yA(x, y). Then we obtain ∀x ∈ a∃y∃β(St(β†) ∧ x, y ∈ Lβ† ∧
ALβ† (x, y)) by (51). Since St(β†)∧ x, y ∈ Lβ† ∧ALβ† (x, y) is a Σ1(St)-formula,

pick a set c such that ∀x ∈ a∃y ∈ c∃β ∈ c(St(β†) ∧ x, y ∈ Lβ† ∧ ALβ† (x, y)) by
∆0(St)-Collection. Again by (51) we obtain ∀x ∈ a∃y ∈ cA(x, y). 2

Conversely in KPω+Π1-Collection+(V = L), the predicate St(α) is defined
by a Π1-formula st(α) so that (50) is provable, and ∆0(St)-collection follows
from Π1-Collection.

Lemma 7.2 KPω+Π1-Collection proves each of Σ1-Separation, ∆2-Separation
and Σ2-Replacement.

Proof. We show that {x ∈ a : φ(x)} exists as a set for a Σ1-formula φ ≡
∃yθ(x, y) with a ∆0 matrix θ. We have by logic ∀x ∈ a∃y(∃zθ(x, z) → θ(x, y)).
By Π1-Collection pick a set b so that ∀x ∈ a∃y ∈ b(φ(x) → θ(x, y)). In other
words, {x ∈ a : φ(x)} = {x ∈ a : ∃y ∈ b θ(x, y)}. 2

Let HullΣ1
(α) denote the Σ1-Skolem hull HullΣ1

(α) of an ordinal α. HullΣ1
(α)

is the collection of Σ1-definable elements from parameters< α in the universe.
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Specifically let {φi : i ∈ ω} denote an enumeration of Σ1-formulas. Each is of
the form φi ≡ ∃yθi(x, y;u) (θ ∈ ∆0) with fixed variables x, y, u. Set for b ∈ α

r(i, b) ≃ the <L -least c ∈ L such that L |= θi((c)0, (c)1; b)

h(i, b) ≃ (r(i, b))0

HullΣ1(α) = {h(i, b) ∈ L : i ∈ ω, b ∈ α}

The domain of the partial ∆1-map r is a Σ1-subset of ω × α, and from
Lemma 7.2 (Σ1-Separation) we see that the domain exists as a set, and so does
HullΣ1(α). Therefore its Mostowski collapse5 ordinal β ≥ α. This shows (49).

Note that a limit of admissible ordinals need not to be admissible since
there exists a Π−

3 -formula ad such that for any transitive set x, x is admissible
iff adx holds. On the other side every limit κ of stable ordinals is stable: for
c ∈ Lκ, pick a stable ordinal σ < κ such that c ∈ Lσ. Then for Σ1-formula A,
L |= A(c) ⇒ Lσ |= A(c) ⇒ Lκ |= A(c).

7.1 Ordinals for Π1-Collection

In this subsection up to subsection 7.2 we work in a set theory ZFC(St), where
St is a unary predicate symbol. We assume that St is an unbounded class of
ordinals below I such that the least element S0 of St is larger than Ω. α† denotes
the least ordinal> α in the class St when α < I. α† := I if α ≥ I. Then S0 = Ω†.
Let SSt := {α† : α ∈ ON} and LS = St \ SSt. For natural numbers k, α†k is
defined recursively by α†0 = α and α†(k+1) = (α†k)†.

φb(ξ) denotes the binary Veblen function on I+ = ωI+1 with φ0(ξ) = ωξ Let
Λ ≤ I be a strongly critical number. As in Definition 6.2, φ̃b(ξ) := φb(I · ξ). Let
b, ξ < I+. θb(ξ) [θ̃b(ξ)] denotes a b-th iterate of φ0(ξ) = ωξ [of φ̃0(ξ) = Iξ], resp.

Definition 7.3 A finite function f : I → φI(0) is said to be a finite function if
∀i > 0(ai = 1) and a0 = 1 when b0 > 1 in f(c) =NF θ̃bm(ξm)·am+· · ·+θ̃b0(ξ0)·a0
for any c ∈ supp(f). Let SCI(f) :=

∪
{{c} ∪ SCI(f(c)) : c ∈ supp(f)}.

For a finite function f , c < I and ξ < φI(0). A relation f <cI ξ is defined
by induction on the cardinality of the finite set {d ∈ supp(f) : d > c} as in
Definition 6.4.2.

Definition 7.4 Let A ⊂ I be a set, and α ≤ I a limit ordinal.

α ∈M(A) :⇔ A ∩ α is stationary in α⇔ every club subset of α meets A.

Classes Ha(X) ⊂ ΓI+1,Mhac (ξ) ⊂ (I+1), and ordinals ψfκ(a) ≤ κ are defined
simultaneously as follows.

Ha(X) denotes the closure of {0,Ω, I} ∪ X under +, φ, a 7→ ψΩ(a), a 7→
ψI(a) ∈ LS, α 7→ α† ∈ SSt, and (π, b, f) 7→ ψfπ(b).

5The collapse coincides with Lβ for the least ordinal β not in HullΣ1
(α).
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π ∈ Mhac (ξ) iff {a, c, ξ} ⊂ Ha(π) and the following condition is met for any
finite functions f, g : I → φI(0) such that f <cI ξ

SCI(f, g) ⊂ Ha(π)&π ∈Mha0(gc) ⇒ π ∈M(Mha0(gc ∗ f c))

where

Mhac (f) :=
∩

{Mhad(f(d)) : d ∈ supp(f c)}

=
∩

{Mhad(f(d)) : c ≤ d ∈ supp(f)}

Let a, π ordinals and f : I → φI(0) a finite function. Then ψfπ(a) denotes
the least ordinal κ < π such that

κ ∈Mha0(f)&Ha(κ) ∩ π ⊂ κ& {π, a} ∪ SCI(f) ⊂ Ha(κ) (52)

if such a κ exists. Otherwise set ψfπ(a) = π.

ψI(a) := min({I} ∪ {κ ∈ LS : Ha(κ) ∩ I ⊂ κ}) (53)

For classes A ⊂ I, let α ∈ Ma
c (A) iff α ∈ A and for any finite functions

g : I → φI(0)

α ∈Mha0(gc)&SCI(gc) ⊂ Ha(α) ⇒ α ∈M (Mha0(gc) ∩A) (54)

Proposition 7.5 Each of x ∈ Ha(y), x ∈Mhac (f) and x = ψfκ(a) is a ∆1(St)-
predicate in ZFC(St).

7.2 A small large cardinal hypothesis

It is convenient for us to assume the existence of a small large cardinal in
justification of the above definition.

Subtle cardinals are introduced by R. Jensen and K. Kunen. It is shown in
Lemma 2.7 of [Rathjen05b] that the set of shrewd cardinals in Vπ is stationary
in a subtle cardinal π. From this fact we see that the set of shrewd limits of
shrewd cardinals in Vπ is also stationary in a subtle cardinal π, where for a
shrewd cardinal κ in Vπ, κ is a shrewd limit iff κ is a limit of shrewd cardinals
in Vπ.

Let C be a closed subset of π, and C0 ⊂ C be a subset defined by κ ∈ C0 iff
κ ∈ C and κ is a limit of shrewd cardinals. Since the set of shrewd cardinals is
stationary in Vπ, C0 is a club subset of π. Hence the exists a shrewd cardinal
in C0.

In this subsection we work in an extension T of ZFC by adding the axiom
stating that there exists a regular cardinal I such that the set St of shrewd
cardinals in VI is stationary in I. In this subsection Ω denotes the least un-
countable ordinal ω1, and LS denotes the set of shrewd limits in VI. The class
LS is stationary in I. A successor shrewd cardinal is a shrewd cardinal in VI,
not in LS.
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Lemma 7.6 ∀a[ψI(a) < I].

Proof. The set C = {κ < I : Ha(κ) ∩ I ⊂ κ} is a club subset of the regular
cardinal I. This shows the existence of a κ ∈ LS ∩ C, and hence ψI(a) < I by
the definition (53). 2

Lemma 7.7 Let S be a shrewd cardinal, a < ε(I), h : I → φI(0) a finite function
with {a} ∪ SCI(h) ⊂ Ha(S). Then S ∈Mha0(h) ∩M(Mha0(h)).

Proof. By induction on ξ < φI(0) we show S ∈ Mhac (ξ) for {a, c, ξ} ⊂ Ha(S)
as in Lemma 6.13. 2

Lemma 7.8 Let S be a shrewd cardinal, a an ordinal, and f : I → φI(0) a finite

function such that {a} ∪ SCI(f) ⊂ Ha(S). Then ψfS (a) < S holds.

Corollary 7.9 Let f, g : I → φI(0) be finite functions and c ∈ supp(f). Assume
that there exists an ordinal d < c such that (d, c)∩supp(f) = (d, c)∩supp(g) = ∅,
gd = fd, g(d) < f(d) + θ̃c−d(f(c); I) · ω, and g <cI f(c).

Then Mha0(g) ≺ Mha0(f) holds. In particular if π ∈ Mha0(f) and SCI(g) ⊂
Ha(π), then ψ

g
π(a) < π.

Proof. This is seen as in Corollary 6.17. 2

An irreducibility of finite functions f : I → φI(0) is defined as in Definition
6.9, and a lexicographic order f <blx g on finite functions f, g as in Definition
6.10. Then f <0

lx g ⇒Mha0(f) ≺Mha0(g) is seen as in Proposition 6.18.

A computable notation system OT (I) for Π1-collection is defined so as to be
closed under Mostowski collapsings. A new constructor I[·] is used to generate
terms in OT (I). Note that there is no clause for constructing κ = ψS(a) from a
for S ∈ LS.

Definition 7.10 1. {(ρ, σ) : ρ ≺ σ} denotes the transitive closure of the
relation {(ρ, σ) : ∃f, a(ρ = ψfσ(a))}. Let ρ ⪯ σ :⇔ ρ ≺ σ ∨ ρ = σ.

2. Let α ≺ S for an S ∈ SSt and b = p0(α). Then let

Mα := Hb(α).

3. For α ∈ Ψ an ordinal p0(α) is defined.

(a) Let α ⪯ ψgS(b) for an S ∈ SSt. Then p0(α) = b.

(b) There exists an S = T† ∈ SSt and a T < τ < S such that α ≺ τ †k

for a k > 0. Let ρ ≺ S be such that α = β[ρ/S] for a β ∈ Mρ. Let
p0(α) = p0(β).

(c) p0(α) = 0 otherwise.
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α = ψfS (a) ∈ OT (I) only if

SCI(f) ⊂ Ha(SCI(a)) (55)

where a = p0(α).
Let {π, a, d} ⊂ OT (I) with π ≺ S ∈ SSt, m(π) = f , d < c ∈ supp(f), and

(d, c) ∩ supp(f) = ∅.
When g ̸= ∅, let g be an irreducible finite function such that SCI(g) ⊂ OT (I),

gd = fd, (d, c) ∩ supp(g) = ∅, g(d) < f(d) + θ̃c−d(f(c); I) · ω, and g <cI f(c).
Then α = ψgπ(a) ∈ OT (I) only if

SCI(g) ⊂Mα (56)

The Mostowski collapsing α 7→ α[ρ/S] (α ∈Mρ) is defined as follows. (S)[ρ/S] :=
ρ, (S†)[ρ/S] := ρ†, and (I)[ρ/S] := I[ρ]. (τ †)[ρ/S] = (τ [ρ/S])†, where S < τ †.
(I[τ ])[ρ/S] = I[τ [ρ/S]], where I[τ ] ̸= I.

A relation α < β for α, β ∈ OT (I) is defined so that ψfκ(a) < κ and ρ <
ψg
ρ†
(b) < ρ† < τ = ψI[ρ](c) < ψhτ†(d) < τ † < I[ρ] for every κ, ρ, a, b, c, d and

f, g, h.

Proposition 7.11 There is no ψfσ(a) ∈ OT (I) such that ρ < ψfσ(a) ≤ ρ† < σ.

Lemma 7.12 For ρ ≺ S and S ∈ SSt, {α[ρ/S] : α ∈ Mρ} is a transitive
collapse of Mρ as in Lemma 6.23.

7.3 Operator controlled derivations for Π1-Collection

We consider RS-formulas in a language with a unary predicate St(a), where
a = Lκ for a stable ordinal κ. Specifically St(a) :≃

∨
((∀x ∈ ι(x ∈ a)) ∧ (∀x ∈

a(x ∈ ι)))ι∈J with J = {Lκ : κ ∈ St ∩ (|a|+ 1)} for St ⊂ OT (I).

Definition 7.13 A finite family is a finite function Q ⊂
⨿

S ΨS such that its
domain dom(Q) is a finite set of successor stable ordinals, and Q(S) is a finite
set of ordinals in ΨS for each S ∈ dom(Q). Let Q(T) = ∅ for T ̸∈ dom(Q) and∪
Q =

∪
S∈dom(Q) Q(S). Define MQ(S) =

∩
σ∈Q(S)Mσ.

For A ≃
∨
(Aι)ι∈J and ι ∈ J

ι ∈ [Q]AJ = [Q]¬AJ :⇔ ∀U ∈ dom(Q)
(
rk(Aι) ≥ U ⇒ k(ι) ⊂MQ(U)

)
We define a derivability relation (Hγ ,Θ; QΠ) ⊢∗a

c Γ;Π·] where c is a bound
of ranks of the inference rules (stbl) and of ranks of cut formulas. The relation
depends on an ordinal γ0, and should be written as (Hγ ,Θ; QΠ) ⊢∗a

c,γ0 Γ;Π·].
However the ordinal γ0 will be fixed. So let us omit it.

Definition 7.14 Let Θ a finite set of ordinals, a, c ordinals, and QΠ a finite
family such that γ0 ≤ p0(σ) for each (S, σ) ∈ QΠ. Let Π =

∪
σ∈

∪
QΠ

Πσ ⊂ ∆0(I)
be a set of formulas such that k(Πσ) ⊂ Mσ for each (S, σ) ∈ QΠ. Let Π[·] =∪
σ∈

∪
QΠ

Π
[σ/S]
σ and ΘQΠ(S) = Θ ∩MQΠ(S).
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(Hγ ,Θ; QΠ) ⊢∗a
c Γ;Π[·] holds for a set Γ of formulas if γ ≤ γ0

k(Γ) ⊂ Hγ [Θ]& ∀σ ∈
∪

QΠ

(
k(Πσ) ⊂ Hγ [Θ

(σ)]
)

(57)

∀S ∈ dom(QΠ)
(
{γ, a, c, γ0} ∪ kS(Γ,Π) ⊂ Hγ [ΘQΠ(S)]

)
6 (58)

∀{U ≤ S} ⊂ dom(QΠ)
(
S ∈ Hγ [ΘQΠ(U)]

)
(59)

and one of the following cases holds:

(
∨
) 7 There exist A ≃

∨
(Aι)ι∈J , an ordinal a(ι) < a and an ι ∈ J such that

A ∈ Γ and (Hγ ,Θ; QΠ) ⊢∗a(ι)
c Γ, Aι; Π

[·].

(
∨
)[·] There exist σ ∈

∪
QΠ, A ≃

∨
(Aι)ι∈J , an ordinal a(ι) < a and an ι ∈ [σ]J

such that A[σ/S] ∈ Π[·], (Hγ ,Θ; QΠ) ⊢∗a(ι)
c Γ; (Aι)

[σ/S]
,Π[·].

(
∧
) There exist A ≃

∧
(Aι)ι∈J , ordinals a(ι) < a such that A ∈ Γ and for each

ι ∈ [QΠ]AJ , (Hγ ,Θ ∪ k(ι); QΠ) ⊢∗a(ι)
c Γ, Aι; Π

[·].

(
∧
)[·] There exist σ ∈

∪
QΠ, A ≃

∧
(Aι)ι∈J , ordinals a(ι) < a such that A[σ/S] ∈

Π[·], and (Hγ ,Θ∪k(ι); QΠ) ⊢∗a(ι)
c Γ;Π[·], (Aι)

[σ/S]
for each ι ∈ [QΠ]AJ∩[σ]J .

(cut) There exist an ordinal a0 < a and a formula C such that (Hγ ,Θ; QΠ) ⊢∗a0
c

Γ,¬C; Π[·] and (Hγ ,Θ; QΠ) ⊢∗a0
c C,Γ;Π[·] with rk(C) < c.

(Σ(St)-rfl) There exist ordinals aℓ, ar < a and a formula C ∈ Σ(St) such that
c ≥ I, (Hγ ,Θ; QΠ) ⊢∗aℓ

c Γ, C; Π[·] and (Hγ ,Θ; QΠ) ⊢∗ar
c ¬∃xC(x,I),Γ;Π[·].

(Σ(Ω)-rfl) There exist ordinals aℓ, ar < a and a formula C ∈ Σ(Ω) such that c ≥
Ω, (Hγ ,Θ; QΠ) ⊢∗aℓ

c Γ, C; Π[·] and (Hγ ,Θ; QΠ) ⊢∗ar
c ¬∃x < ΩC(x,Ω),Γ;Π[·].

(stbl(S)) There exist an ordinal a0 < a, a successor stable ordinal S, a
∧
-formula

B(0) ∈ ∆0(S) and a u ∈ Tm(I) for which the following hold:

S ∈ Hγ [ΘQΠ(S)] & ∀U ∈ dom(QΠ) ∩ S
(
S ∈ Hγ [ΘQΠ(U)]

)
(60)

S ≤ rk(B(u)) < c, (Hγ ,Θ; QΠ) ⊢∗a0
c Γ, B(u); Π[·], and (Hγ ,Θ ∪ {σ}; QΠ ∪

{(S, σ)}) ⊢∗a0
c Γ;¬B(u)[σ/S],Π[·] holds for every ordinal σ ∈ ΨS such that

p0(σ) ≥ γ0 and
Θ ∪ {S} ⊂Mσ (61)

where dom(QΠ ∪ {(S, σ)}) = dom(QΠ) ∪ {S}, and (QΠ ∪ {(S, σ)}) (S) =
QΠ(S) ∪ {σ}.

(Hγ ,Θ; QΠ) ⊢∗a0
c Γ, B(u); Π[·] {(Hγ ,Θ ∪ {σ}; QΠ ∪ {(S, σ)}) ⊢∗a0

c Γ;¬B(u)[σ/S],Π[·]}σ
(Hγ ,Θ; QΠ) ⊢∗a

c Γ;Π[·]

Assume (60) and (61). Then (Θ ∪ {σ})(QΠ∪{(S,σ)})(S) = ΘQΠ(S), and (Θ ∪
{σ})(QΠ∪{(S,σ)})(U) = (Θ ∪ {σ})QΠ(U) ⊃ ΘQΠ(U) for U ∈ dom(QΠ) ∩ S.

6(58) means {γ, a, c, γ0} ⊂ Hγ [Θ] when dom(QΠ) = ∅.
7The condition |ι| < a is absent in the inference (

∨
).
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Lemma 7.15 (Tautology) Let γ ∈ Hγ [k(A)] and d = rk(A).

1. (Hγ , k(A); ∅) ⊢∗2d
0 ¬A,A; ∅.

2. (Hγ , k(A) ∪ {S, σ}; {(S, σ)}) ⊢∗2d
0 ¬A[σ/S];A[σ/S] if k(A) ∪ {S} ⊂ Mσ and

γ ≥ S.

Proof. Each is seen by induction on d = rk(A). For example consider the
lemma 7.15.2. We have rk(A[σ/S]) < S and (k(A) ∪ {S, σ}) ∩Mσ = k(A) ∪ {S}
for (58) and (59), and k(A[σ/S]) ⊂ HS((k(A) ∩ S) ∪ {σ}) for (57). 2

Lemma 7.16 (Embedding of Axioms) For each axiom A in SI there is an
m < ω such that (HI, ∅; ∅) ⊢∗I·2

I+m A; ∅ holds.

Proof. Let us suppress the operator HI. We show first that the axiom (50),
SSt(σ)∧φ(u)∧ u ∈ Lσ → φLσ (u) by an inference (stbl(S)) for successor stable
ordinals S < I. Let B(0) ∈ ∆0(S) be a

∧
-formula, and u ∈ Tm(I).

We may assume that I > d = rk(B(u)) ≥ S. Let k0 = k(B(0)) and ku = k(u).
Then k(B(0)) ⊂ H0(k0). Let σ ∈ ΨS be an ordinal such that k0∪ku∪{S} ⊂Mσ

and γ0 ≤ p0(σ).

k0 ∪ ku;⊢∗2d
0 ¬B(u), B(u); {

k0 ∪ ku ∪ {S, σ}; {(S, σ)} ⊢∗2d
0 B(u[σ/S]);¬B(u)[σ/S]

k0 ∪ ku ∪ {S, σ}; {(S, σ)} ⊢∗2d+1
0 ∃x ∈ LSB(x);¬B(u)[σ/S]}σ

(
∨
)

k0 ∪ ku ∪ {S};⊢∗I
I ¬B(u), ∃x ∈ LSB(x);

(stbl(S))

k0 ∪ {S};⊢∗I+1
I ¬∃xB(x), ∃x ∈ LSB(x);

(
∧
)

Therefore (HI, ∅; ∅) ⊢∗I+ω
I ∀S, v

[
SSt(S) ∧A(v) ∧ v ∈ LS → A(S,I)(v)

]
; ∅, where

SSt(α) :⇔ (St(α) ∧ ∃β < α∀γ < α(St(γ) → γ ≤ β)]).
Next we show the axiom (49). Let α be an ordinal such that α < I. We obtain

for α < α† < I with d0 = rk(α < α†) and α† ≤ d1 = rk(St(α†)) < d2 = ω(α†+1)
with α† ∈ H0[{α}]

{α}; ∅ ⊢∗d0
0 α < α†; ∅ {α}; ∅ ⊢∗2d1

0 St(α†); ∅
{α}; ∅ ⊢∗d2

0 α < α† ∧ St(α†); ∅
(
∧
)

{α}; ∅ ⊢∗d2+1
0 ∃σ (α < σ ∧ St(σ)) ; ∅

(
∨
)

∅; ∅ ⊢∗I
0 ∀α ∈ ON∃σ (α < σ ∧ St(σ)) ; ∅

(
∧
)

2

Lemma 7.17 (Cut-elimination) Assume (Hγ ,Θ; QΠ) ⊢∗a
c+1 Γ;Π[·] with c ≥ I.

Then (Hγ ,Θ; QΠ) ⊢∗ωa

c Γ;Π[·].

Proof. Use the fact: if (Hγ ,Θ; QΠ) ⊢∗a
c Γ;Π[·] and Θ∪{S} ⊂Mσ, then (Hγ ,Θ∪

{σ}; QΠ ∪ {(S, σ)}) ⊢∗a
c Γ;Π[·]. 2

Lemma 7.18 (Collapsing) Let Γ ⊂ Σ(St) be a set of formulas. Suppose Θ ⊂
Hγ(ψI(γ)) and (Hγ ,Θ; QΠ) ⊢∗a

I Γ;Π[·]. Let β = ψI(â) with â = γ + ωa. Then

(Hâ+1,Θ; QΠ) ⊢∗β
β Γ(β,I); Π[·] holds.
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Proof. By induction on a. We have {γ, a} ⊂ Hγ [ΘQΠ(S)] by (58), and β ∈
Hâ+1[ΘQΠ(S)] for S ∈ dom(QΠ)

When the last inference is a (stbl(S)), let B(0) ∈ ∆0(S) be a
∧
-formula

and a term u ∈ Tm(I) such that S ≤ rk(B(u)) < I, k(B(u)) ⊂ Hγ [Θ], and
(Hγ ,Θ; QΠ) ⊢∗a0

I Γ, B(u); Π[·] for an ordinal a0 ∈ Hγ [ΘQΠ ] ∩ a. Then we obtain
S ≤ rk(B(u)) < β. 2

7.4 Operator controlled derivations with caps

Let (Hγ ,Θ; QΠ) ⊢∗a
K Γ;Π[·] in the calculus for Π1

1-reflection in subsection 6.5.
In Capping 6.44, each formula A ∈ Γ puts on a cap ρ such that QΠ ⊂ ρ and
(38), Θ ⊂ Mρ. (38) is needed in Case 3.1 of the proof. Namely when Γ ∋
A ≃

∨
(Aι)ι∈J is introduced by a (

∨
) such that (Hγ ,Θ; QΠ) ⊢∗a(ι)

K Γ, Aι; Π
[·],

we need ι ∈ [ρ]J , i.e., k(ι) ⊂ Mρ, which follows from k(Aι) ⊂ Hγ [Θ] ⊂ Mρ by
(34) and Θ ⊂Mρ.

We are concerned here with several stable ordinals S,T, . . .. It is convenient
for us to regard uncapped formulas A as capped formulas A(u) with its cap u.
Let Mu = OT (I).

In Capping 7.29 Γ is classified into Γ = Γu ∪
∪

S∈dom(QΠ) ΓS. ΓS is the set of

formulas B(u) in inferences for the stability of a successor stable ordinal S.

(Hγ ,Θ; QΠ ∪ {S}) ⊢∗a0
c Γ, B(u); Π[·] {(Hγ ,Θ ∪ {σ}; QΠ ∪ {(S, σ)}) ⊢∗a0

c Γ;¬B(u)[σ/S],Π[·]}σ
(Hγ ,Θ; QΠ) ⊢∗a

c Γ;Π[·]

Each formula A ∈ ΓS puts on a cap ρS for the stable ordinal S. Then (38) runs
Θ ⊂MρS for every S ∈ dom(QΠ). This means Θ ⊂M∂Q :=

∩
κ∈∂QMκ, where

∂Q = {max(Q(S)) : S ∈ dom(Q), Q(S) ̸= ∅}.

Ordinals occurring in derivations are restricted to the set M∂Q.

In section 6 for Π1
1-reflection, an ordinal γ0 is a threshold, which means that

every ordinal occurring in derivations is in Hγ0(0) and the subscript γ ≤ γ0 in
Hγ , while each ρ ∈ Q exceeds γ0 in such a way that p0(ρ) ≥ γ0. This ensures us
that Hγ(Mρ) ⊂ Mρ. In the end, inferences (rfl(ρ, d, f)) are removed in Lemma
6.48 by moving outside Hγ0(0). Specifically Q ⊂ Hγ0+S(0).

Now we have several (successor) stable ordinals S,T, . . . ∈ dom(Q). In-
ferences (stbl(S)) and their children (rflS(ρ, d, f)) are eliminated first for big-
ger S > T, and then smaller ones (stbl(T)). Therefore we need assignment
dom(Q) ∋ S 7→ γQS for thresholds so that γQS < γQT if S > T. This is done by gap-
ping, i.e., a gap I ·2a between γQS and γQT in advance, when (Hγ ,Θ; QΠ) ⊢∗a

c Γ;Π[·]

is embedded to (Hγ ,ΘΠ, Q) ⊢ac,c,γ0 Γ̂, Π̂, cf. Capping 7.29.

Definition 7.19 A triple (Q, γQ, eQ) is said to be a finite family for ordinals γ0
and b1 if Q is a finite family in the sense of Definition 7.13 and the following
conditions are met:
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1. γQ is a map dom(Q) ∋ S 7→ γQS such that γ0 + I2 > γQS ≥ γ0, γ
Q
S ≥ γQT + I for

{S < T} ⊂ dom(Q) and S ∈ HγQS+I for S ∈ dom(Q).

Q is said to have gaps η if γQS ≥ γQT + I · η holds for {S < T} ⊂ dom(Q), and
γQS ≥ γ0 + I · η for S ∈ dom(Q).

2. For each ρ ∈ Q(S), m(ρ) : I → φI(0) is special, s(ρ) ≤ b1, ρ ∈ HγQS+I(0),

and γQS ≤ p0(ρ).

3. eQ assigns an ordinal eQS ∈ HγQS+I ∩ (S+ 1) to each S ∈ dom(Q) such that

max({0} ∪ {ρ ∈ Q(S) : s(ρ) > S}) < eQS (62)

Let eQS = S when S ̸∈ dom(Q).

Definition 7.20 For a finite family Q, and for A ≃
∨
(Aι)ι∈J

[Q]A(ρ)J = [Q]¬A(ρ)J = [Q]AJ ∩ [∂Q]J ∩ [ρ]J

where [u]J = J and

[∂Q]J =
∩
κ∈∂Q

[κ]J.

Definition 7.21 1. For a finite family Q, let ∂Q = {max(Q(S)) : S ∈ dom(Q), Q(S) ̸=
∅} and M∂Q =

∩
κ∈∂QMκ.

2.

[Q]A(ρ)J = [Q]¬A(ρ)J = [Q]AJ ∩ [∂Q]J ∩ [ρ]J

where [u]J = J and [∂Q]J =
∩
κ∈∂Q[κ]J .

Definition 7.22 HQ
ρ(f, b1, γ,Θ) denotes the resolvent class for Q, ρ, special

functions f , ordinals b1, γ, and finite sets Θ of ordinals defined as follows: σ ∈
HQ
ρ(f, γ,Θ) iff σ ∈ Hγ+I(0) ∩ ρ ∩ M∂Q, SCI(m(σ)) ⊂ Hγ [Θ], Θ ⊂ Mσ, γ ≤

p0(σ) ≤ p0(ρ) and m(σ) is special such that s(f) ≤ s(m(σ)) ≤ b1, f
′ ≤ (m(σ))′,

where σ, ρ ≺ S and f ≤ g ⇔ ∀i(f(i) ≤ g(i)).

We define another derivability relation (Hγ ,Θ, Q) ⊢ac,ξ,γ0,b1 Γ, where c is a
bound of ranks of cut formulas, and ξ a bound of ordinals S in the inference
rules (rflS(ρ, d, f, b1)).

Definition 7.23 Let Θ(ρ) = Θ ∩Mρ and Θ∂Q = Θ ∩M∂Q. Let a, b, c, ξ < I, a
finite set Θ ⊂ I, and Q be a finite family for γ0, b1 such that dom(Q) ⊂ (ξ + 1).

(Hγ ,Θ, Q) ⊢ac,ξ,γ0,b1 Γ holds for a sequent Γ =
∪
{Γ(ρ)

ρ : ρ ∈ {u} ∪
∪
Q} if

γ ≤ γ0

∀ρ ∈ {u} ∪
∪

Q
(
k(Γρ) ⊂ Hγ [Θ

(ρ)] ∩Hγ [Θ∂Q]
)

(63)
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∀S ∈ dom(Q)
(
{γ, a, c, ξ, γ0, b1} ⊂ Hγ [ΘQ(S)] ∩Hγ [Θ∂Q]

)
8 (64)

∀{U ≤ S} ⊂ dom(Q)
(
{S, γQS} ⊂ Hγ [ΘQ(U)] ∩Hγ [Θ∂Q]

)
(65)

∀ρ ∈ {u} ∪
∪

Q∀S ∈ dom(Q)
(
kS(Γρ) ⊂ Hγ

[
ΘQ(S)

]
∩Hγ [Θ∂Q]

)
(66)

∀(S, ρ) ∈ Q
(
SCI(m(ρ)) ⊂ HγQS

[
Θ(ρ) ∪ {S} ∪Θ∂Q

])
(67)

and one of the following cases holds:

(Taut) {¬A(ρ), A(ρ)} ⊂ Γ for a ρ ∈ {u} ∪
∪
Q and a formula A such that

rk(A) < S ≤ ξ for some successor stable ordinal S.
If rk(A) < S, then (Hγ ,Θ, Q) ⊢0

0,S,γ0,b1 ¬A(σ), A(σ) by (Taut) provided
that (64) and (66) are met.

(
∨
) There exist A ≃

∨
(Aι)ι∈J , a cap ρ ∈ {u} ∪

∪
Q, an ordinal a(ι) < a and

an ι ∈ [ρ]J ∩ [∂Q]J such that A(ρ) ∈ Γ and (Hγ ,Θ, Q) ⊢a(ι)c,ξ,γ0,b1
Γ, (Aι)

(ρ)
.

(
∧
) There exist A ≃

∧
(Aι)ι∈J , a cap ρ ∈ {u} ∪

∪
Q, ordinals a(ι) < a for each

ι ∈ [Q]A(ρ)J such that A(ρ) ∈ Γ and (Hγ ,Θ ∪ k(ι), Q) ⊢a(ι)c,ξ,γ0,b1
Γ, (Aι)

(ρ)
.

(cut) There exist a cap ρ ∈ {u}∪
∪
Q, ordinals a0 < a and a formula C such that

rk(C) < c, (Hγ ,Θ, Q) ⊢a0c,ξ,γ0,b1 Γ,¬C(ρ) and (Hγ ,Θ, Q) ⊢a0c,ξ,γ0,b1 C
(ρ),Γ.

(Σ(Ω)-rfl) There exist ordinals aℓ, ar < a and an uncapped formula C ∈ Σ(Ω)
such that c ≥ Ω, (Hγ ,Θ, Q) ⊢aℓc,ξ,γ0,b1 Γ, C and (Hγ ,Θ, Q) ⊢arc,ξ,γ0,b1 ¬∃x <
π C(x,Ω),Γ.

(rflS(ρ, d, f, b1)) There exist a successor stable ordinal S ≤ ξ and an ordinal
ρ ≺ S such that

ΘQ(S) ∪ {S} ∪Θ∂Q ⊂Mρ (68)

and ρ ∈ Q(S) if S ∈ dom(Q). Let R = Q if S ∈ dom(Q). Otherwise
R = Q ∪ {(S, ρ)}, where Q ∪ {(S, ρ)} is a finite family for γ0 extending
Q such that dom(R) = dom(Q) ∪ {S}, R(S) = Q(S) ∪ {ρ}, eRT = eQT for
S ̸= T ∈ dom(Q), γQT ≥ γRS + I for every S > T ∈ dom(Q) and γRS ≥ γ0 + I.
Also there exist an ordinal d ∈ supp(m(ρ)), a special function f , an ordinal
a0 < a, and a finite set ∆ of uncapped formulas enjoying the following
conditions.

(r0) ρ < eRS if s(ρ) = max(supp(m(ρ))) > S.
(r1) ∆ ⊂

∨
S (d) := {δ : rk(δ) < d, δ is a

∨
-formula} ∪ {δ : rk(δ) < S}.

8(64) means {γ, a, c, ξ, γ0} ⊂ Hγ [Θ] when dom(Q) = ∅.
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(r2) For g = m(ρ), s(f) ≤ b1, SCI(f) ∪ SCI(g) ⊂ HγRS
[Θ(ρ)] and fd =

gd& fd <dI g
′(d).

(r3) For each δ ∈ ∆, (Hγ ,Θ, R) ⊢a0c,ξ,γ0 Γ,¬δ(ρ).

(r4) Let γR∪{(S,σ)} = γR, eR∪{(S,σ)} = eR and σ ∈ HR
ρ(f, b1, γ

R
S ,Θ

(ρ) ∪Θ∂Q).

Then (Hγ ,Θ ∪ {σ}, R ∪ {(S, σ)}) ⊢a0c,ξ,γ0 Γ,∆(σ) holds.

In particular σ < eRS if s(σ) > S by (62).

Note that
∪
Q ⊂ Hγ [Θ] need not to hold. Moreover (Θ ∪ {σ})(R(S)∪{σ}) =

ΘR(S) = ΘQ(S) and Θ∂R = Θ∂Q by Θ(ρ) ⊂Mσ and (68).
In this subsection the ordinals γ0 and b1 will be fixed, and we write ⊢ac,ξ for

⊢ac,ξ,γ0,b1 .

Lemma 7.24 (Tautology) Let {γ, γ0,S} ∪ kT(A) ⊂ Hγ [ΘQ(T)] ∩ Hγ [Θ∂Q] for

every T ∈ dom(Q) ⊂ (S+1), σ ∈ {u}∪
∪
Q and k(A) ⊂Mσ. Then (Hγ ,Θ, Q) ⊢2d

0,S
¬A(σ), A(σ) holds for d = max{S, rk(A)}.

Lemma 7.25 (Inversion) Let A ≃
∧
(Aι)ι∈J and (H,Θ, Q) ⊢ac,ξ Γ with A(ρ) ∈ Γ

and there is no S ∈ SSt such that rk(A) < S ≤ ξ. Then for any ι ∈ [Q]A(ρ)J ,

(H,Θ ∪ k(ι), Q) ⊢ac,ξ Γ, (Aι)
(ρ)

.

Proof. We need to assume that there is no S ∈ SSt such that rk(A) < S ≤ ξ
due to (Taut). 2

Lemma 7.26 (Reduction) Let C ≃
∨
(Cι)ι∈J and Ω ≤ rk(C) ≤ c. Assume

(Hγ ,Θ, Q ⊢ac,ξ Γ,¬C(τ) and (Hγ ,Θ, Q) ⊢bc,ξ C(τ),Γ with SSt ∩ (c, ξ] = ∅.
Then (Hγ ,Θ, Q) ⊢a+bc,ξ Γ.

Lemma 7.27 (Cut-elimination) If (Hγ ,Θ, Q) ⊢ac+c1,ξ Γ with Ω ≤ c < I, ∀S ∈
dom(Q)(c ∈ Hγ [ΘQ(S)]∩Hγ [Θ∂Q]) and SSt∩(c, ξ] = ∅, then (Hγ ,Θ, Q) ⊢

φc1 (a)

c,ξ Γ.

Lemma 7.28 (Collapsing) Let Γ ⊂ Σ(Ω) be a sets of uncapped formulas. Sup-
pose Θ ⊂ Hγ(ψΩ(γ)) and (Hγ ,Θ, ∅) ⊢aΩ,0 Γ. Let β = ψΩ(â) with â = γ + ωa <

γ0. Then (Hâ+1,Θ, ∅) ⊢ββ,0 Γ(β,Ω) holds.

7.5 Eliminations of stable ordinals

Lemma 7.29 (Capping) Let Γ ∪ Π ⊂ ∆0(I) be a set of uncapped formulas.
Suppose (Hγ ,Θ; QΠ) ⊢∗a

c,γ0 Γ;Π[·], where a, c < I, dom(QΠ) ⊂ c, Γ = Γu ∪∪
S∈dom(QΠ) ΓS, Π

[·] =
∪

(S,σ)∈QΠ Π
[σ/S]
σ .

For each S ∈ dom(QΠ), let ρS = ψgSS (δS) be an ordinal with an ordinal
δS ∈ Hγ [Θ] and a special finite function gS = m(ρS) : I → φI(0) such that
supp(gS) = {c} with gS(c) = αS + I, I(2a+ 1) ≤ αS + I, SCI(gS) = SCI(c, αS) ⊂
H0(SCI(δS)) ∩ Hγ [Θ], cf. (55) and (67). Also let Π̂ =

∪
(S,σ)∈QΠ Π

(σ)
σ , Γ̂ =

Γ
(u)
u ∪

∪
S∈dom(QΠ) Γ

(ρS)
S .
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Let Q be a finite family for γ0 ≥ γ such that Q(S) = QΠ(S) ∪ {ρS} for S ∈
dom(QΠ) = dom(Q), ρS ∈ HγQS+I(0) for S ∈ dom(Q), and αS + I ≤ γQS ≤ δS <

γQS + I. Also eQS = ρS + 1.
Assume ∀S ∈ dom(QΠ)(γ

Q
S ∈ Hγ [Θ]), QΠ(S) ⊂ ρS, Θ ∪ {S} ⊂ MρS , p0(σ) ≤

p0(ρS) = δS and SCI(m(σ)) ⊂ HγQS
[Θ ∪ {S}] for each (S, σ) ∈ QΠ, ∀{U < S} ⊂

dom(QΠ)(ρS ∈MρU), and Q has gaps 2a.

Then (Hγ ,ΘΠ, Q) ⊢ac,c,γ0,c Γ̂, Π̂ holds for ΘΠ = Θ ∪
∪
QΠ.

Remark 7.30 When αS = I(2a) and Θ = ∅, δS < γQS + I denotes the natural
sum γQS#a#c. Then Θ ∪ {S} ⊂ MρS and {a, c} ⊂ H0(SCI(δS)). Hence (55) is
enjoyed for ρS. Namely SCI(gS) = {c, αS + I} ⊂ H0(SCI(δS)) ⊂ HδS(SCI(δS))
holds.

Let U ∈ dom(QΠ) ∩ S. We have {γ0,S, a, c} ⊂ Hγ [ΘQΠ(U)] by (58). We

intend to be γQS = γ0 + I · 2a · n for n = #{T ∈ dom(Q) : T ≥ S}. Then
{S, a, c, γQS} ⊂ Hγ [ΘQΠ(U)] ∩Hγ [Θ∂Q] for (64) and (65).

On the other hand we have QΠ(S) ⊂ ρS, and ρS = max(Q(S)), i.e., ∂Q = {ρS :
S ∈ dom(QΠ)}. Also {S, δS} ∪ SCI(gS) ⊂ H0({S, a, c, γQS} ∪Θ) ⊂MρU = HδU(ρU)
for U ≤ S. Therefore ρS ∈MρU for U < S by δS, γ

Q
S+ I ≤ γQU. Moreover ρS ∈MρU

for U > S since ρS < S < ρU.

Proof of Lemma 7.29. This is seen by induction on a as in Capping 6.44. Let
us write ⊢ac for ⊢ac,c,γ0,c in the proof. By assumptions we have QΠ(S) ⊂ ρS and

Θ ⊂ MρS . Hence Θ = Θ(ρS) = Θ∂Q and ΘQΠ(S) = ΘQ(S). On the other hand we

have k(Γ) ⊂ Hγ [Θ] and for σ ∈
∪
QΠ, k(Πσ) ⊂ Hγ [Θ

(σ)] by (57). Therefore (63)
and (66) are enjoyed. We have {γ, a, c, γ0, γQS ,S} ⊂ Hγ [ΘQΠ(U)] ∩ Hγ [Θ∂Q] for
every {U ≤ S} ⊂ dom(Q) = dom(QΠ) by the assumption, (58) and (59). Hence
(64) and (65) are enjoyed. Moreover for (67) we have SCI(m(ρS)) ⊂ Hγ [Θ] and
γ ≤ γQS .
Case 1. First consider the case when the last inference is a (stbl(S)): We have
a successor stable ordinal S, an ordinal a0 < a, a

∧
-formula B(0) ∈ ∆0(S), and

a term u ∈ Tm(I) with S ≤ rk(B(u)) < c.
For every ordinal σ such that Θ ∪ {S} ⊂Mσ and p0(σ) ≥ γ0

(Hγ ,Θ, QΠ) ⊢∗a0
c Γ, B(u); Π[·] (Hγ ,Θ ∪ {S, σ}; QΠ ∪ {(S, σ)}) ⊢∗a0

c Γ;¬B(u)[σ/S],Π[·]

(Hγ ,Θ; QΠ) ⊢∗a
c Γ;Π[·]

Let h be a special finite function such that supp(h) = {c} and h(c) =
I(2a0+1). Then hc = (gS)c = ∅ and hc <cI (gS)′(c) by h(c) = I(2a0+1) < I(2a) ≤
α0 = (gS)

′(c). Let R = Q ∪ {(S, ρS)} and σ ∈ HR
ρS
(h, c, γRS ,Θ

(ρS) ∪ {S} ∪ Θ∂Q),

where Θ(ρS) ∪Θ∂Q = Θ.
For example let σ = ψhρS(δS+η) with η = max({1}∪ES(Θ)). We obtain Θ∪

{S} ⊂ HδS(σ) =Mσ by Θ∪{S} ⊂Mρ, and {δS, a0, c} ⊂ Hγ [Θ]. Let ρU ∈ ∂R. We
claim that σ ∈MρU . If U ≥ S, then σ < ρU. Let U < S. Then we have ρS ∈MρU

by the assumption, and σ ∈MρU follows from {c, a0, δS}∪Θ ⊂ Hγ [Θ] ⊂ HδU(ρU)
and δS + η < γQS + I ≤ γQU ≤ δU. Therefore σ ∈ HR

ρS
(h, c, γRS ,Θ

(ρS) ∪ {S} ∪Θ∂Q).
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Since Q is assumed to have gaps 2a, we may assume that R∪{(S, σ)} as well
as R has gaps 2a0 .

IH yields (Hγ ,ΘΠ, R) ⊢a0c Γ̂, B(u)(ρS), Π̂, and for u[σ/S] ∈ Tm(S) andB(u[σ,S]) ≡
B(u)[σ,S], (Hγ ,ΘΠ ∪ {S, σ}, R ∪ {(S, σ)}) ⊢a0c Γ̂,¬B(u)(σ), Π̂ follows, where ρS >
σ ∈MρS and we have by (59), k(B(u)) ⊂ Hγ [ΘQΠ(T)]∩Hγ [Θ∂Q] if rk(B(u)) ≥ T.
Hence k(B(u)) ⊂ Hγ [ΘR(T)]∩Hγ [Θ∂Q] by ΘR(T) = ΘQΠ(T) for (59). Moreover we

have S ∈ Hγ [ΘQ(T)] for every T < c, ΘQΠ(S) ∪ Θ∂Q ⊂ MρS for (68), ρS < eQS for
(r0), rk(B(u)) < c and s(ρS) ≤ c for (r1).

We obtain by an inference (rflS(ρS, c, h, c))

(Hγ ,ΘΠ, R) ⊢a0
c Γ̂, B(u)(ρS), Π̂ (Hγ ,ΘΠ ∪ {S, σ}, R ∪ {(S, σ)}) ⊢a0

c Γ̂,¬B(u)(σ), Π̂

(Hγ ,ΘΠ, Q) ⊢a
c Γ̂, Π̂

in the right upper sequents σ ranges over the resolvent class σ ∈ HR
ρS
(h, c, γRS ,Θ

(ρS)∪
{S} ∪Θ∂Q).
Case 2. When the last inference is a (cut): There exist a0 < a and C such
that rk(C) < c, (Hγ ,Θ; QΠ) ⊢∗a0

c Γ,¬C; Π[·] and (Hγ ,Θ; QΠ) ⊢∗a0
c Γ, C; Π[·]. IH

followed by a (cut) with an uncapped cut formula C(u) yields the lemma.
Case 3. Third the last inference introduces a

∨
-formula A in Γ. Let A ≃∨

(Aι)ι∈J . Then A(ρS) ∈ Γ
(ρS)
S . There are an ι ∈ J , an ordinal a(ι) < a such

that (Hγ ,Θ; QΠ) ⊢∗a(ι)
c Γ, Aι; Π

[·]. We can assume k(ι) ⊂ k(Aι), and claim that
ι ∈ [∂Q]J with ρS ∈ ∂Q. We obtain k(ι) ⊂ Hγ [Θ∂Q] ⊂ M∂Q by (57) for Θ∂Q = Θ
and γ ≤ γ0 ≤ γQS ≤ δS ≤ p0(ρS).

IH yields (Hγ ,Θ, Q) ⊢a(ι)c Γ̂, (Aι)
(ρS), Π̂. (Hγ ,Θ, Q) ⊢ac Γ̂, Π̂ follows from a

(
∨
).
Other cases are seen from IH as in Capping 6.44. 2

Lemma 7.31 (Recapping)

Let S be a successor stable ordinal, (Hγ ,Θ, Q) ⊢ac1,S,γ0,b2 Π, Γ̂ with a finite family

Q for γ0, b2, Γ ∪ Π ⊂ ∆0(I), and Γ̂ =
∪
{Γ(ρ)

ρ : ρ ∈ Qt(S)}, where each θ ∈ Γ̂ is
either a

∨
-formula or rk(θ) < S, Qt ⊂ Q such that Qt(S) ⊂ Q(S) with dom(Qt) ⊂

{S} and ∀ρ ∈ Qt(S)(s(ρ) > S), and Qf is a family such that Qf (S) = Q(S) \ Qt(S)
and Qf (T) = Q(T) for T ̸= S. Π is a set of formulas such that τ ∈ {u} ∪

∪
Qf

for every A(τ) ∈ Π.

Let max{s(ρ) : ρ ∈ Qt(S)} ≤ b1 and ω(b, a) = ωω
b

a. For each ρ ∈ Qt(S), let
S ≤ b(ρ) ∈ Hγ [Θ

(ρ)] ∩ Hγ [Θ∂Q] with rk(Γρ) < b(ρ) < s(ρ), and κ(ρ) be ordinals

such that κ(ρ) ∈ HQ
ρ(h

b(ρ)(m(ρ);ω(b1, a)), b2, γ
Q
S ,Θ

(ρ) ∪ {S} ∪ Θ∂Q). Assume
∀T ≤ S(b1 ∈ Hγ [ΘQ(T)] ∩Hγ [Θ∂Q]).

Then (Hγ ,Θ, Q
κ) ⊢ω(b1,a)cb1 ,S,γ0,b2

Π, Γ̂κ holds, where Γ̂κ =
∪
{Γ(κ(ρ))

ρ : ρ ∈ Qt(S)},
cb1 = max{c1, b1}, Qκ = Qf ∪ {(S, κ(ρ)) : ρ ∈ Qt(S)}, γQ

κ

T = γQT, e
Qκ

T = eQT for

T ̸= S and eQ
κ

S = max({τ ∈ Qf (S) : s(τ) > S} ∪ {κ(ρ) : ρ ∈ Qt(S)}) + 1.

eQ
κ

S < eQS holds when Qt = {(S, ρ) ∈ Q : s(ρ) > S} ̸= ∅.

Proof. This is shown by main induction on b1 with subsidiary induction on a
as in Recapping 6.47. 2
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Lemma 7.32 (Elimination of one stable ordinal)

Let S = T† be a successor stable ordinal and (Hγ ,Θ, Q) ⊢aS,S,γ0,b1 Π, Γ̂ with a

finite family Q for γ0 and b1 ≥ S, Π ⊂ ∆0(I), Γ ⊂ ∆0(S), Γ̂ =
∪
{Γ(ρ)

ρ : ρ ∈
Q(S)}, and Qt = {(S, τ) ∈ Q : s(τ) > S}, Qf = Q \ Qt. Π is a set of formulas such
that for each A(τ) ∈ Π, τ ∈ {u} ∪

∪
U<S Q(U).

Let ã = φb1+eQS
(a), Q1 = Q↾S = {(T, ρ) ∈ Q : T < S} and γ1 = γQS+I < γ0+I2.

Then Q1 is a finite family for γ1, b1 and (Hγ1 ,Θ, Q1) ⊢ãT,T,γ1,b1 Π,Γ(u) holds

for Γ(u) =
∪
{Γ(u)

ρ : ρ ∈ Q(S)}.

Proof. This is seen by main induction on eQS with subsidiary induction on a
as in Lemma 6.48. When S ∈ dom(Q), we have Q(S) ⊂ Hγ1 and eQS ∈ Hγ1

for γ1 = γQS + I by Definition 7.19. Q1 is a finite family for γ1, b1. Then γ1 ∈
Hγ [ΘQ1(T)] ∩Hγ [Θ∂Q] for every T ∈ dom(Q1) by (64).

First assume Qt(S) ̸= ∅. For each ρ ∈ Qt(S), let κ(ρ) be an ordinal such

that κ(ρ) ∈ HQ
ρ(h

S(m(ρ);ω(b1, a)), b1, γ
Q
S ,Θ

(ρ) ∪{S}∪Θ∂Q) with ω(b, a) = ωω
b

a.

We obtain (Hγ ,Θ, Q
κ) ⊢ω(b1,a)b1,S,γ0,b1 Π, Γ̂κ by Recapping 7.31. Cut-elimination 7.27

with SSt ∩ (S,S] = ∅ yields for a1 = φb1(ω(b1, a)), (Hγ ,Θ, Q
κ) ⊢a1S,S,γ0,b1 Π, Γ̂κ,

where eQ
κ

S = max{κ(ρ) : ρ ∈ Qt(S)}+ 1 < eQS. MIH yields (Hγ1 ,Θ, Q1) ⊢
ã1
T,T,γ1,b1

Π,Γ(u), where ã1 = φb1+eQ
κ

S
(a1) < φb1+eQS

(a) and γ1 = γQS + I.
In what follows assume Qt(S) = ∅.

Case 1. First let {¬A(σ), A(σ)} ⊂ Π∪ Γ̂ with σ ∈ {u} ∪
∪
Q and d = rk(A) < S

by (Taut). If d < T, then (Hγ1 ,Θ, Q1) ⊢ãT,T,γ1,b1 Π,Γ(u) by (Taut).

Let T ≤ d < S. Then (Hγ1 ,Θ, Q1) ⊢2d
0,T,γ1,b1 Π,Γ(u) by Tautology 7.24 and

(Hγ1 ,Θ, Q1) ⊢ã0,T,γ1,b1 Π,Γ(u) by ã > S > d.
Case 2. Second consider the case when the last inference is a (rflU(ρ, d, f, b1)).
If U ≤ T, then SIH followed by a (rflU(ρ, d, f, b1)) yields the lemma. Let U = S.

Let g = m(ρ) and s(ρ) ≥ d ∈ supp(g). Let R = Q ∪ {(S, ρ)} and γ1 =
γRS + I. We have a sequent ∆ ⊂

∨
S(d) and an ordinal a0 < a such that

rk(∆) < d ≤ s(ρ) and (Hγ ,Θ, R) ⊢a0S,S,γ0,b1 Π, Γ̂,¬δ(ρ) for each δ ∈ ∆. On

the other hand we have (Hγ ,Θ ∪ {σ}, R ∪ {(S, σ)}) ⊢a0S,S,γ0,b1 Π, Γ̂,∆(σ), where

σ ∈ HQ
ρ(f, b1, γ

R
S ,Θ

(ρ) ∪ {S} ∪ Θ∂Q), f is a special finite function such that

s(f) ≤ b1, fd = gd, f
d <d g′(d) and SCI(f) ⊂ HγRS

[Θ(ρ)].
Case 2.1. s(ρ) ≤ S: Then ∆ ⊂ ∆0(S). Let ã0 = φb1+eRS(a0). SIH yields

(Hγ1 ,Θ, Q1) ⊢
ã0
T,T,γ1,b1 Π,Γ(u),¬δ(u) for each δ ∈ ∆, and (Hγ1 ,Θ∪{σ}, Q1) ⊢ã0T,T,γ1,b1

Π,Γ(u),∆(u) for σ ∈ HγRS+I = Hγ1 . We obtain (Hγ1 ,Θ, Q1) ⊢
ã0+p
S,T,γ1,b1 Π,Γ(u) by

several (cut)’s for a p < ω. Cut-elimination 7.27 with SSt ∩ (T,T] = ∅ yields

(Hγ1 ,Θ, Q1) ⊢
φS(ã0+p)
T,T,γ1,b1 Π,Γ(u), where φS(ã0 + p) < ã = φb1+eQS

(a) by b1 + eQS > S.
Case 2.2. s(ρ) > S: Then S ̸∈ dom(Q) and Γ = ∅. We have (Hγ ,Θ, R) ⊢aS,S,γ0,b1
Π. Let Rt = {(S, ρ)}. Recapping 7.31 yields (Hγ ,Θ, R

κ) ⊢ω(b1,a)S,S,γ0,b1 Π and

eR
κ

S = κ + 1 < ρ < eRS. MIH yields (Hγ1 ,Θ, Q1) ⊢a1T,T,γ1,b1 Π with a1 =

φb1+eRκS (ω(b1, a)) < φb1+eQS
(a) = ã by eR

κ

S < S = eQS.
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Case 3. The last inference is a (
∧
): We have a(ι) < a, A(ρ) ∈ Γ̂ and for each

ι ∈ [Q]A(ρ)J with A ≃
∧
(Aι)ι∈J , we have (Hγ ,Θ∪k(ι), Q) ⊢a(ι)S,S,γ0,b1 Π, Γ̂, (Aι)

(ρ).

Since A ∈ ∆0(S), we obtain k(A) ⊂ Hγ [Θ
(ρ)] ∩ S ⊂ Mρ ∩ S = ρ for ρ ∈ Q(S).

This means A ∈ ∆0(ρ), and [ρ]J = J . Hence [Q]A(ρ)J = [Q1]A(u)J . SIH

yields (Hγ1 ,Θ ∪ k(ι), Q1) ⊢ã(ι)T,T,γ1,b1 Π,Γ(u), (Aι)
(u) for each ι ∈ [Q]AJ , where

ã(ι) = φb1+eQS
(b+ a(ι)) < ã. A (

∧
) yields (Hγ1 ,Θ, Q1) ⊢ãT,T,γ1,b1 Π,Γ(u).

Other cases are seen from SIH. 2

Definition 7.33 We define the S-rank srk(A(ρ)) of a capped formula A(ρ) as
follows. Let srk(A(u)) = 0, and srk(A(ρ)) = S for ρ ≺ S ∈ SSt.

srk(Γ) = max{srk(A(ρ)) : A(ρ) ∈ Γ}.

Lemma 7.34 (Elimination of stable ordinals)
Suppose (Hγ ,Θ, Q) ⊢aξ,ξ,γ0,b1 Γ and srk(Γ) ≤ S < ξ ≤ b1 < I, where S is either a
stable ordinal or S = Ω such that ∀U ∈ dom(QS)(S ∈ Hγ [ΘQ(U)] ∩ Hγ [Θ∂Q]) for
QS = Q↾S.

Then there exists an ordinal γ0 ≤ γS < γ0+ I2 such that QS is a finite family

for γS, b1 and (HγS ,Θ, QS) ⊢
f(ξ,a)
S,S,γS,b1 Γ holds for f(ξ, a) = φb1+ξ+1(a).

Proof. By main induction on ξ with subsidiary induction on a. (64) in

(HγS ,Θ, QS) ⊢
f(ξ,a)
S,S,γS,b1 Γ follows from (64) and (65) in (Hγ ,Θ, Q) ⊢aξ,ξ,γ0,b1 Γ.

Case 1. Consider the case when the last inference is a (rflT(ρ, d, f, b1)) for a
T = U† ≤ ξ. If T ≤ S, then SIH yields the lemma. Let S < T ∈ dom(R) for R =
Q∪{(T, ρ)}. We have ∀U ∈ dom(QT)(T ∈ Hγ [ΘQ(U)]∩Hγ [Θ∂Q]) by (64). Let ∆ be

a finite set of sentences such that (Hγ ,Θ, R) ⊢a0ξ,ξ,γ0,b1 Γ,¬δ(ρ) for each δ ∈ ∆, and

(Hγ ,Θ, R∪{(T, σ)}) ⊢a0ξ,ξ,γ0,b1 Γ,∆(σ) for each σ ∈ HQ
ρ(f, b1γ

R
T,Θ

(ρ)∪{T}∪Θ∂Q),

and a0 < a. We have srk(δ(ρ)) = srk(∆(σ)) = T. By SIH there exists a γT <
γ0+ I2 such that for a1 = f(ξ, a0) = φb1+ξ+1(a0), (HγT ,Θ, QT) ⊢

a1
T,T,γT,b1 Γ,¬δ(ρ)

for each δ ∈ ∆, and (HγT ,Θ, QT ∪ {(T, σ)}) ⊢a1T,T,γT,b1 Γ,∆(σ). (rflT(ρ, d, f, b1))
yields (HγT ,Θ, QT) ⊢

a2
T,T,γT,b1 Γ for a2 = a1 + 1.

On the other hand we have srk(Γ) ≤ S < T = U† ≤ ξ. By Lemma 7.32
pick a γU < γT + I2 = γ0 + I2 such that (HγU ,Θ, QU) ⊢

a3
U,U,γU,b1 Γ, where a3 =

φ
b1+e

Q1
T
(a2) = φ

b1+e
Q1
T
(f(ξ, a0) + 1) < φb1+ξ+1(a) = f(ξ, a) by eQ1T ≤ T ≤ ξ. If

S = U, then we are done. Let S < U with U < ξ. Then by MIH pick a γS such
that (HγS ,Θ, QS) ⊢a4S,S,γS,b1 Γ for a4 = f(U, a3) = φb1+U+1(a3) < φb1+ξ+1(a) =
f(ξ, a) by U < ξ.
Case 2. Next consider the case when the last inference is a (cut) of a cut
formula C(σ) wth rk(C) < ξ and T = srk(C(σ)) ≤ ξ. We have an ordinal a0 < a
such that (Hγ ,Θ, Q) ⊢a0ξ,ξ,γ0,b1 Γ,¬C(σ) and (Hγ ,Θ, Q) ⊢a0ξ,ξ,γ0,b1 C

(σ),Γ.
Let U = max{S,T}. First assume U < ξ. By SIH pick a γU such that

(HγU ,Θ, QU) ⊢
a1
U,U,γU,b1 Γ,¬C(σ) and (HγU ,Θ, QU) ⊢

a1
U,U,γU,b1 C

(σ),Γ, where a1 =

f(ξ, a0) = φb1+ξ+1(a0). A (cut) yields (HγU ,Θ, QU) ⊢
a1+1
ξ,U,γU,b1 Γ. Cut-elimination

7.27 with SSt ∩ (U,U] = ∅ yields (HγU ,Θ, QU) ⊢
a2
U,U,γU,b1 Γ, where a2 = φξ(a1 +

1) < φb1+ξ+1(a) = f(ξ, a) by ξ < b1 + ξ + 1. If U = S, then we are done. Let
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U = T > S. By MIH with U < ξ we obtain (HγS ,Θ, QS) ⊢a3S,S,γS,b1 Γ for a γS,
where a3 = f(U, a2) = φb1+U+1(a2) < φb1+ξ+1(a) = f(ξ, a) by U < ξ.

Second let T = U = ξ = W† > S. Then C ∈ ∆0(T). By Lemma 7.32 pick
a γW such that (HγW ,Θ, QW) ⊢ã0W,W,γW,b1 Γ,¬C(u) and (HγW ,Θ, QW) ⊢ã0W,W,γW,b1
C(u),Γ, where ã0 = φb1+eQT

(a0). A (cut) yields (HγW ,Θ, QW) ⊢ã0+1
T,W,γW,b1 Γ, and we

obtain (HγW ,Θ, QW) ⊢a4W,W,γW,b1 Γ by Cut-elimination 7.27, where a4 = φT(ã0+1)
and SSt ∩ (W,W] = ∅. By MIH pick a γS such that (HγS ,Θ, QS) ⊢

a5
S,S,γS,b1 Γ for

W < ξ and a5 = f(W, a4) = φb1+W+1(a4) < φb1+ξ+1(a) by W < ξ, T = ξ <
b1 + ξ + 1, eQT ≤ T = ξ < ξ + 1 and a0 < a.
Case 3. There exists an A such that {¬A(ρ), A(ρ)} ⊂ Γ with srk(A(ρ)) ≤ S
and d = rk(A) < T ≤ ξ for a T ∈ SSt by (Taut). We may assume d ≥ S.
Then (Hγ ,Θ, QS) ⊢2d

0,S,γ0,b1 Γ by Tautology 7.24 and the lemma follows from
d < ξ < f(ξ, a).

Other cases are seen from SIH. 2

Theorem 7.35 Suppose KPω + Π1-Collection + (V = L) ⊢ θLΩ for a Σ1-
sentence θ. Then LψΩ(εI+1) |= θ holds.

Proof. Let SI ⊢ θLΩ for a Σ-sentence θ. By Embedding 7.16 pick an m > 0
so that (HI, ∅; ∅) ⊢∗I·2+m

I+m θLΩ . Cut-elimination 7.17 yields (HI, ∅; ∅) ⊢∗a
I θLΩ for

a = ωm(I·2+m) < ωm+1(I+1). Then Collapsing 7.18 yields (Hâ+1, ∅; ∅) ⊢∗β
β θLΩ

for β = ψI(â) ∈ LS with â = ωI+a = ωm+1(I · 2 +m) > β. Capping 7.29 then

yields (Hâ+1, ∅, ∅) ⊢ββ,β,γ0,β θ
LΩ where γ0 = â+ 1 and θLΩ ≡ (θLΩ)(u).

Let α = φβ·2+1(β). By Lemma 7.34 we obtain (HγΩ , ∅, ∅) ⊢αΩ,Ω,γΩ,β θ
LΩ for a

γΩ < γ0+I2. This means (HγΩ , ∅, ∅) ⊢αΩ,0,γΩ,β θ
LΩ . (HγΩ+α+1, ∅, ∅) ⊢δδ,0,γΩ,β θ

Lδ

follows from Collapsing 7.28 for δ = ψΩ(γΩ + α) with ωα = α. Cut-elimination

7.27 yields (HγΩ+α+1, ∅, ∅) ⊢φδ(δ)
0,0,γΩ,β

θLδ . We see that θLδ is true by induction
up to φδ(δ), where δ < ψΩ(ωm+2(I+ 1)) < ψΩ(εI+1).

7.6 Well-foundedness proof in Σ1
3-DC+BI

Theorem 7.36 [A∞c]
Σ1

3-DC+BI ⊢Wo[α] for each α < ψΩ(εI+1).

To prove Theorem 7.36, let us introduce 1-distinguished sets D1[X], which is
obtained from Definition 3.5.1 of distinguished sets D[X], first by replacing the
next regular α+ by the next stable α†, and second by changing the well-founded
part W (Cα(X)) to the maximal distinguished set Wα

1 (X) =
∪
{P : Dα

0 [P ;X]}
relative to α and X, where P ∩ α = X ∩ α if Dα

0 [P ;X] and α is stable. We see
that W =

∪
{X : D1[X]} is the maximal 1-distinguished and Σ1

3-class.
In this subsection let us sketch a part of a well-foundeness proof in Σ1

3-DC+BI
by pinpointing the lemma for which we need Σ1

3-DC.

An ordinal term σ in OT (I) is said to be regular if ψfσ(a) is in OT (I) for some
f and a. Reg denotes the set of regular terms. In this section we need the next

80



regular ordinal above an ordinal α in defining distinguished sets. Although it is
customarily denoted by α+, it is hard to discriminate α+ from the next stable
ordinal α†. Therefore let us write for α < I, α+1

= min{σ ∈ SSt : σ > α}
for the next stable ordinal α†, and α+0

= min{σ ∈ Reg : σ > α} for the next

regular ordinal α+. Let α+1

:= α+0

:= ∞ if α ≥ I. Let α−1

:= max{σ ∈
StI ∪ {0} : σ ≤ α} when α < I, and α−1

:= I if α ≥ I. Since SSt ⊂ Reg, we

obtain α+0 ≤ α+1

and β+0

< σ if β < σ ∈ St since each σ ∈ St is a limit of
regular ordinals.

Definition 7.37 Cα(X) is the closure of {0,Ω, I}∪(X∩α) under +, φ, {σ, β}∪
SCI(f) 7→ ψfσ(β) for σ > α, and ρ 7→ I[ρ], ρ† for I[ρ], ρ† ≥ α in OT (I).

Definition 7.38 For P,X ⊂ OT (I) and γ ∈ OT (I) ∩ I, let

Wα
0 (P ) := W (Cα(P ))

Dγ
0 [P ;X] :⇔ P ∩ γ−

1

= X ∩ γ−
1

&Wo[X ∩ γ−
1

] & (69)

∀α
(
γ−

1

≤ α ≤ P →Wα
0 (P ) ∩ α+0

= P ∩ α+0
)

Wγ
1 (X) :=

∪
{P ⊂ OT (I) : Dγ

0 [P ;X]}

D1[X] :⇔ Wo[X] & ∀γ
(
γ ≤ X → Wγ

1 (X) ∩ γ+
1

= X ∩ γ+
1
)

(70)

W2 :=
∪

{X ⊂ OT (I) : D1[X]}

A set P is said to be a 0-distinguished set for γ and X if Dγ
0 [P ;X], and a set

X is a 1-distinguished set if D1[X].

Observe that in Σ1
2-AC, W

α
0 (P ) is Π1

1, D
γ
0 [P ;X] is ∆1

2, W
γ
1 (X) is Σ1

2, and
D1[X] is ∆1

3. Hence W2 is a Σ1
3-class.

Let α ∈ P for a 0-distinguished set P for γ < I and X. If α < γ−
1

, then
α ∈ X with Wo[X]. Otherwise W (Cα(P )) ∩ α+0

= Wα
0 (P ) ∩ α+0

= P ∩ α+0

with α < α+0

. Hence P is a well order.

Lemma 7.39 (Σ1
2-CA)

Suppose Wo[X ∩ γ−1

]. Then Wγ
1 (X) is the maximal 0-distinguished set for γ

and X, i.e., Dγ
0 [W

γ
1 (X);X] and ∃Y (Y = Wγ

1 (X)).

Proof. This is seen as in Proposition 3.9. 2

Lemma 7.40 1. Let X and Y be 1-distinguished sets.

Then γ ≤ X & γ ≤ Y ⇒ X ∩ γ+1

= Y ∩ γ+1

.

2. W2 is the 1-maximal distinguished class, i.e., D1[W2].

3. For a family {Yj}j∈J of 1-distinguished sets, the union Y =
∪
j∈J Yj is

also a 1-distinguished set.
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Lemma 7.41 1. CI(W2) ∩ I = W2 ∩ I =W (CI(W2)) ∩ I.

2. (BI) For each n < ω, TI[CI(W2) ∩ ωn(I + 1)], i.e., for each class X ,
Prg[CI(W2),X ] → CI(W2) ∩ ωn(I+ 1) ⊂ X .

3. For each n < ω, CI(W2)∩ωn(I+1) ⊂W (CI(W2)). In particular {I, ωn(I+
1)} ⊂W (CI(W2)).

As in Definition 3.10, GX := {α ∈ OT (I) : α ∈ Cα(X)& Cα(X) ∩ α ⊂ X}.

Lemma 7.42 (Σ1
2-CA)

Suppose D1[Y ] and α ∈ GY . Let X = Wα
1 (Y ) ∩ α+1

. Assume that one of the
following conditions (71) and (72) is fulfilled. Then α ∈ X and D1[X]. In

particular α ∈ W2 holds. Moreover if α−1 ≤ Y , then α ∈ Y holds.

∀β
(
Y ∩ α+1

< β&β+0

< α+0

→W β
0 (Y ) ∩ β+0

⊂ Y
)

(71)

∀β ≥ α−1
(
Y ∩ α+1

< β&β+0

< α+0

→W β
0 (Y ) ∩ β+0

⊂ Y
)

&∀β < α−1

∃γ(β < γ+
1

& γ−
1

≤ Y ) (72)

Proof. This is seen as in Lemma 3.15 by showing that Dα
0 [P ;Y ], α ∈ X and

D1[X] for P =Wα
0 (Y ) ∩ α+0

=W (Cα(Y )) ∩ α+0

. 2

Lemma 7.43 Assume D1[Y ], I > S ∈ Y ∩ (St ∪ {0}) and {0,Ω} ⊂ Y . Then

S+1

= S† ∈ W2.

Proof. Since the condition (72) in Lemma 3.15 is fulfilled with (S+1

)−
0

=

(S+1

)−
1

= S+1

and S−1

= S, it suffices to show that S+1 ∈ GY . Let α = S+1

.
α ∈ Cα(Y ) follows from S ∈ Y ∩ α. Moreover γ ∈ Cα(Y ) ∩ α ⇒ γ ∈ Y is seen
by induction on ℓγ using the assumption {0,Ω} ⊂ Y . Therefore α ∈ GY . 2

Lemma 7.44 (Σ1
3-DC)

If α ∈ GW2 , then there exists a 1-distinguished set Z such that {0,Ω} ⊂ Z,
α ∈ GZ and ∀S ∈ Z ∩ (St ∪ {Ω})[S† ∈ Z].

Proof. Let α ∈ GW2 . We have α ∈ Cα(W2). Pick a 1-distinguished set X0 such
that α ∈ Cα(X0). We can assume {0,Ω} ⊂ X0. On the other hand we have
Cα(W2) ∩ α ⊂ W2 and ∀S ∈ W2 ∩ (StI ∪ {Ω})[S† ∈ W2] by Lemma 7.43. We
obtain

∀n∀X∃Y {D1[X] → D1[Y ]

∧ ∀β ∈ OT (I) (ℓβ ≤ n ∧ β ∈ Cα(X) ∩ α→ β ∈ Y )

∧ ∀S ∈ (St ∪ {Ω})
(
ℓS ≤ n ∧ S ∈ X → S† ∈ Y

)
}

82



Since D1[X] is ∆1
3, Σ

1
3-DC yields a set Z such that Z0 = X0 and

∀n{D1[Zn] → D1[Zn+1]

∧ ∀β ∈ OT (I) (ℓβ ≤ n ∧ β ∈ Cα(Zn) ∩ α→ β ∈ Zn+1)

∧ ∀S ∈ (St ∪ {Ω})
(
ℓS ≤ n ∧ S ∈ Zn → S† ∈ Zn+1

)
}

Let Z =
∪
n Zn. We see by induction on n that D1[Zn] for every n. Lemma

7.40.3 yields D1[Z]. Let β ∈ Cα(Z) ∩ α. Pick an n such that β ∈ Cα(Zn)
and ℓβ ≤ n. We obtain β ∈ Zn+1 ⊂ Z. Therefore α ∈ GZ . Furthermore let
S ∈ Z ∩ (St ∪ {Ω}). Pick an n such that S ∈ Zn and ℓS ≤ n. We obtain
S† ∈ Zn+1 ⊂ Z. 2

Remark 7.45 Lemma 7.44 is a Σ1
4-statement, which is proved in Σ1

3-DC. Alter-
natively we could prove the lemma in Σ1

3-AC if we assign fundamental sequences
to limit ordinals as in [Jäger83].
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[Jäger83] G. Jäger, A well-ordering proof for Feferman’s theory T0, Archiv f.
math. Logik u. Grundl., 23(1983), 65-77.

[Rathjen94] M. Rathjen, Proof theory of reflection, Ann. Pure Appl. Logic 68
(1994) 181–224.

[Rathjen05a] M. Rathjen, An ordinal analysis of stability, Arch. Math. Logic
44 (2005) 1-62.

[Rathjen05b] M. Rathjen, An ordinal analysis of parameter free Π1
2-

comprehension, Arch. Math. Logic 44 (2005) 263-362.

[Richter-Aczel74] W.H. Richter and P. Aczel, Inductive definitions and reflect-
ing properties of admissible ordinals, Generalized Recursion Theory, Stud-
ies in Logic, vol.79, North-Holland, 1974, pp.301-381.

84


