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Abstract
In [4] it is shown that an ordinal vq(es+,,) is an upper bound for
the proof-theoretic ordinal of a set theory KPw + (M <x, V). In this

note we show that KPw + (M <s, V) proves the well-foundedness up to
Yo (wn (ST + 1)) for each n.

1 Introduction

In [4] the following theorem is shown, where KPw + (M <5, V) extends KPw
with an axiom stating that ‘there exists an non-empty and transitive set M
such that M <x, V. Q = w{X and vq is a collapsing function such that
Yo(a) < Q. S is an ordinal term denoting a stable ordinal, and ST the least
admissible ordinal above S in the theorems.

Theorem 1.1 Suppose KPw + (M <x, V) F 62 for a X1-sentence 6. Then
we can find an n < w such that for a = o (w, (ST + 1)), Ly = 6.

OT denotes a computable notation system of ordinals in [2] for an ordinal
analysis of KP{" + (M <x, V), or equivalently of 37 -CA + IT}-CAq. OTy is a
restriction of OT such that OT = .y, OTn and 9q(eq,, y+1) denotes the
order type of OTy N Q. Let OT(I1}) = OT;. The aim of this paper is to show
the following theorem, thereby the bound in Theorem 1.1 is seen to be tight.

Theorem 1.2 KPw+(M <y, V) proves the well-foundedness up to q(w,(ST+
1)) for each n.

The ordinal 1 (eg+11) is the proof-theoretic ordinal of KPw + (M <g, V).
Theorem 1.3 ¢q(es+11) = |[KPw + (M <5, V)|se.

To prove the well-foundedness of a computable notation system, we utilize
the distinguished class introduced by W. Buchholz [5].

A set theory KPw + (M <y, V) extends KPw by adding an individual
constant M and the axioms for the constant M: M is non-empty M # 0,



transitive Vo € MVy € z(y € M), and stable M <y, V for the universe V.
M <y, V means that p(ui,...,u,) A{ut,...,u} C M — oM(uy,..., u,) for
each ¥;-formula ¢ in the set-theoretic language.

Since the axiom £ does not hold in the theory KPw + (M <yx, V), we need
to modify the proof in [2], cf. subsection 3.1. Proofs of propositions and lemmas
are omitted when they are found in [1,2].

2 Ordinals for one stable ordinal

In this section let us recall briefly ordinal notations systems in [2].

For ordinals o« > 3, a — f denotes the ordinal v such that « = 5 + . Let
a and 8 be ordinals. a+8 denotes the sum « + 38 when o + 8 equals to the
commutative (natural) sum a#, i.e., when either « = 0 or a = a9 + w™* with
watl > 3

S denotes a weakly inaccessible cardinal, and A = S* the next regular car-
dinal above S.

Definition 2.1 Let A = ST. ¢;(£) denotes the binary Veblen function on A™
with (&) = w®, and @y (£) := p(A - €) for the epsilon number A.

Let b,& < AT. 0,(€) [05(€)] denotes a b-th iterate of ¢o(&) = wé [of Go(€) =
A¢], resp.

Definition 2.2 Let £ < ¢4 (0) be a non-zero ordinal with its normal form:

E=04(8) - ai =nF O, (Em) - am + -+ + 6y (0) - a0 (1)

i<m

where ébi(fi) > &, ébm (&m) > > ébo(fo), bi=w <A, and 0 < ag,...,am <
A SCA(E) = U<, ({ai} USCA(&)).

Oy, (€0) is said to be the tail of &, denoted By, (&) = tI(€), and 6y, (&) the
head of &, denoted 0, (&) = hd(€).

1. ¢ is a segment of £ iff there exists an n (0 < n < m + 1) such that
C=NFP 2imn 00,(&) - ai = 0b,,(Em) - am + -+ + 0b, (&) - ap for £in (1).

2. Let ( =nr 0 (€) with 6,(€) > € and b = wb, and ¢ be ordinals. An ordinal
0_c(¢) is defined recursively as follows. If b > ¢, then 6_.(¢) = Oy—c(&).

Let ¢ > b. If £ > 0, then 6_.(¢) = é_(c_b)(ébm (&m)) for the head term
hd(€) = By, (€m) of € in (1). If € = 0, then let 6_.(¢) = 0.

Definition 2.3 1. A function f : A — A (0) with a finite support supp(f) =
{c < A: f(e) # 0} C A is said to be a finite function if Vi > 0(a; = 1)
and ap = 1 when by > 1 in f(¢) =nF ébm(fm) N ébo(fo) - ag for
any ¢ € supp(f).

It is identified with the finite function f | supp(f). When ¢ ¢ supp(f),
let f(c) :=0. SCA(f) :== U{{c} USCA(f(c))} : ¢ € supp(f)}. f,g,h,...

range over finite functions.



For an ordinal ¢, f. and f¢ are restrictions of f to the domains supp(f.) =
{d € supp(f) : d < ¢} and supp(f©) = {d € supp(f) : d > ¢}. g.* f°
denotes the concatenated function such that supp(g. * f¢) = supp(g.) U
supp(f©), (ge * f¢)(a) = g(a) for a < ¢, and (g. * f¢)(a) = f(a) for a > c.

2. Let f be a finite function and ¢, & ordinals. A relation f <€ £ is defined
by induction on the cardinality of the finite set {d € supp(f) : d > ¢}
as follows. If f¢ = (), then f <¢ £ holds. For f¢ # 0, f <¢ £ iff there
exists a segment g of & such that f(c) < p and f <<t G_4(tl(1)) for
d = min{c+ d € supp(f) : d > 0}.

Proposition 2.4 f<¢¢(< (= f<°(.

In the following Definition 2.5, paf = ¢.(8) denotes the binary Veblen
function on AT = St 6,(€) the function defined in Definition 2.1 for A = S*.
For a < S, ' denotes the next regular cardinal above a.

For a < epq1, ¢ < A, and € < T'p41, define simultaneously classes H,(X) C
Cay1, Mh2(€) C (S+ 1), and ordinals ¢/ (a) < k by recursion on ordinals a as
follows.

Definition 2.5 Let A =S*. Let a < epy; and X C Tpyg.
1. (Inductive definition of H,(X).)

(a) {0,91,S,ST}UX C Ho(X).

(b) If x,y € Ho(X), then z+y € Ho(X), and oy € Ho(X).

(c) Let @ € Ho(X)N'S. Then at € Ho(X).

(d) Let a = ¥L(b) with {m,b} C Ha(X), b < a, and a finite function f
such that SCA(f) C Hao(X) NHp(). Then a € Ho(X).

2. (Definitions of Mh%(&) and Mh2(f))
The classes Mh%(&) are defined for ¢ < A, and ordinals a < ep41, € <
I'a41. Let m be a regular ordinal< S. Then by main induction on ordinals
7 < S with subsidiary induction on ¢ < A we define 7 € Mh%(¢) iff
{a,¢,&} C Hq(m) and

Vf <€ &Vg (SCA(f,9) C Ho(m)&m € Mhi(ge) = m € M(Mh(ge * fc)()))
2

where f,g vary through finite functions, and
MR(f) = ({MRG(f(d)) : d € supp(f)}
= ({MRg(f(d)) : ¢ < d € supp(f)}.

In particular Mhg(ge) = ({Mhg(g(d)) : d € supp(ge)} = N{Mhg(g(d)) :
c¢>d €supp(g)}. When f=0or f¢=10,let Mh%(0) := A.



3. (Definition of 9 (a))
Let a < ep41 be an ordinal, 7 a regular ordinal and f a finite function.
Then let

¥f(a) == min({r}U{k € MRE(f)N7 : Ha(r)N7T C K, {m,a}USCA(f) C Ha(fiz};
3

For the empty function ), 1, (a) := ¥2(a).

4. For classes A C (S+1), let « € M2(A) iff « € A and

Vglao € Mhi(ge) & SCa(ge) C Hola) = a € M (Mhi(g.) NA)]  (4)

Assuming an existence of a shrewd cardinal introduced by M. Rathjen [6],
we show in [3] that wgf(a) < Sif{a,c,&} C Ha(S) with ¢ < ST, a,& < eg+ 41, and
supp(f) = {c} and f(c) = £ Moreover 99 (b) < 7 provided that = € MAS(f),
SCa(g)U{m, b} C Hp(m), and ¢ is a finite function defined from a finite function
f and ordinals d, c as follows. d < ¢ € supp(f) with (d,c) Nsupp(f) = (d,c) N
supp(9) = 0, ga = fa, 9(d) < f(d) 4+ 0c—a(f(c)) - w, and g <° f(c). Also the
following Lemma 2.6 is shown in [3].

Lemma 2.6 AssumeS > € Mhg(§)NMhi(&o), & # 0, d < ¢, and {a,c,d} C
He(m). Moreover let 0._q(&o) > &1 € Ho(m) and t1(E) > & when € # 0. Then
™€ Mhg(€+ &) N Mg(Mhg(€ +&1))-

2.1 Normal forms in ordinal notations

Definition 2.7 An irreducibility of finite functions f is defined by induction
on the cardinality n of the finite set supp(f). If n < 1, f is defined to be
irreducible. Let n > 2 and ¢ < ¢ + d be the largest two elements in supp(f),
and let g be a finite function such that supp(g) = supp(f.) U {c}, 9. = f. and
g(e) = f(¢) +04(f(c+d)). Then f is irreducible iff tI(f(c)) > 04(f(c+d)) and
g is irreducible.

Definition 2.8 Let f, g be irreducible functions, and b, @ ordinals.

1. Let us define a relation f <? g¢ by induction on the cardinality of the
finite set {e € supp(f) Usupp(g) : e > b} as follows. f <’ g holds iff
fb # g® and for the ordinal ¢ = min{c > b : f(c) # g(c)}, one of the
following conditions is met:

(a) f(c) < g(c) and let p be the shortest segment of g
f(¢) < . Then for any ¢ < ¢+ d € supp(f), if ti(n) <
then f < g holds.

(b) f(¢) > g(c) and let v be the shortest segment of f(c) such that
v > g(c). Then there exist a ¢ < ¢+ d € supp(g) such that f <7 ¢

and tl(v) < O4(g(c + d)). "

(c¢) such that

ed(f(c + d))a



2.

Mhg(f) < Mhg(g) holds iff

V€ Mhi(g)¥bo < b (SCA(f) C Ha(m) & m € Mhi, (fo) = m € M(Mh, (f))) -

Lemma 2.9 Let f,g be irreducible finite functions, and b an ordinal such that
fo#£gb If f <b, g, then MRE(f) < Mhg(g) holds for every ordinal a.

Proposition 2.10 Let f, g be irreducible finite functions, and assume that 1f(b) <
m and ¢YI(a) < k.
Then 1 (b) < ¥d(a) iff one of the following cases holds:

1.

S & o e

7 < pi(a).

b < a, pl(b) <k and SCA(f) U {m, b} C Ho(¥9(a)).
b>a and SCx(g) U {k,a} ¢ Hp(¥L(b)).

b=a, k <7 and k & Hy(1(b)).

b=a, m=r, SCA(f) C Ha(¥&(a)), and f <{, g.
b=a, 7=k, SCx(g)  Ho(¥L(D)).

Definition 2.11 1. a(§) denotes an ordinal defined recursively by a(0) = 0,

2.

and a(€) = Y2, Ob, (w - a(&)) when & =yp 32, 00,(&) - a; in (1)

For irreducible functions f let us associate ordinals o(f) < I's+1 as fol-
lows. o(f)) = 0 for the empty function f = 0. Let {0} Usupp(f) = {0 =
o<1 <<ty fleg) =& <Tgriq fori >0, and § = 0. Define or-
dinals ¢; = O(f; ci) by ¢n = W'a(gn)v and ¢; = W'a(gi) +96i+1*Ci (CiJrl + 1)
Finally let o(f) = (o = o(f; co)-

Let SCA(f) < < A be an epsilon number. Then o,(f) is defined from
o(f) by replacing the base A of  in f(c) by p. This means that A is
replaced by p, and 6;(¢) = AS by pf.

Lemma 2.12 Let f be an irreducible finite function defined from an irreducible
function g and ordinals c,d as follows. f. = g., ¢ < d € supp(g) with (c,d) N
supp(g) = (¢, d) Nsupp(f) = 0, f(c) < g(c) + Oa—c(9(d)) - w, and f <? g(d).
Then o(f) < o(g) holds.

Moreover when SCa(f,g) < p <A, 0,(f) < ou(g) holds.

Lemma 2.13 For irreducible finite functions f and g, assume f <?w g. Then

o(f)

< o(g) holds.

Moreover when SCa(f,9) < p <A, 0,(f) < ou(g) holds.

By Proposition 2.10 a notation system OT'(IT3) = OTj is defined.



Definition 2.14 OT(I1}) is closed under S > a + at. There are two cases
when an ordinal term 1 (a) is constructed in OT(I1}), from {m,a} C OT(I1})
and an irreducible function f with SCi(f) C OT(II}) and A = ST. FEs(a)
denotes the set of subterms< S of a.

1. Let £,a,c € OT(I}), € > 0, ¢ < ST and {{,a,c¢} C Ha(a). Then o =
Pl(a) € OT(I) and ot € OT(IT}) with supp(f) = {c} and f(c) = € if
max(SCs+(f)) < max(SCs+(a)). Let f =m(a).

2. Let {a,d, 7} C OT(I1}), f = m(w), d < ¢ € supp(f), and (d, c)Nsupp(f) =
(. Let g be an irreducible function such that SCa(g) = U{{c,g9(c)} :

c € supp(g)} C OT(IL}), ga = fa, (d,c) Nsupp(g) = B g(d) < f(d) +
Oe—a(f(c)) -w, and g <€ f(c). Moreover if max(SCy(f)) < p < A for an
epsilon number y, then max(SCy(g)) < p.

Then o = ¥d(a) € OT(II}) and ot € OT(I) if {m,a} U SCx(f,g9) C
Ho (), and, cf. Proposition 3.23.

SCa(g) C Ma (5)
M., is defined as follows.
Definition 2.15 For ordinal terms v/ (a) € ¥s C OT(I1}), define m(yf(a)) :=
f and py(4(a)) = po(0) if o < S, and po (¢ (a)) = a.
Definition 2.16 M, := H(p) for b=po(p) and p € Ts.

Definition 2.17 For v < S, an epsilon number S < = A(y) < ST is defined.
Let v = 9L (a) < ¢Z(b) with b = po(y). Then A(y) denotes the least epsilon
number S < p < ST such that max(SCs+ (b)) < p.

From Definition 2.14 we see max(SCg+ (f)) < A(7).
OT(I1}) is closed under a + a[p/S] for o € M,. Specifically if {o, p} C
OT(I1}) with a € M, and p € Us, then afp/S] € OT(I1}).

Definition 2.18 Let a € M, with p € U5. We define an ordinal a[p/S] recur-
sively as follows. a[p/S] := a when a < S. In what follows assume o > S.

Slp/S] := p- Klp/S] = (§7)[p/S] := p*. (¢¥x(a)) [p/S] = (Ys+(a)) [p/S] =
Y,+ (a[p/S]). The map commutes with 4 and .

Lemma 2.19 For p € s, {a[p/S] : a« € M,} is a transitive collapse of
M, in the sense that B < a < Blp/S| < «a[p/S|, B € Ha(y) & Blp/S| €

Haloss(V0/S))) for v > S, and OT(I1}) Nalp/S] = {Blp/S] : B € M, Na} for
a, B,y € M,.

Proposition 2.20 Let p € Us.
1M1y (Mp) € M if v < po(p)-
2. M,NS=pandp¢g M,.
3. If 0 < p and po(o) < po(p), then My C M,.



3 Well-foundedness proof with the maximal dis-
tinguished set

In this section working in the set theory KPw + (M <y, V), we show the well-
foundedness of the notation system OT(II1) up to each g (w, (ST + 1)). Let
us write Lg for M, i.e., Lg <x, L. The proof is based on distinguished classes,
which was first introduced by Buchholz [5].

3.1 Distinguished sets

X,Y,... range over subsets of OT(I1}). We define sets C*(X) C OT(I1}) for
a € OT(I}) and X C OT(I1}) as follows.

Definition 3.1 Let o, 8 € OT(I}) and X C OT(I1}).
C*(X) denotes the closure of {0,€,S,ST} U (X Na) under +, 0 — o™,

(B,7) = 9By, and (o, B, f) + »L(B) for o > a in OT(I1}).
The last clause says that, ¥/ (3) € C¥(X) if {0, 8} U SCA(f) C C*(X) and
o> Q.

Proposition 3.2 Assume Vy € X[y € CY(X)] for a set X C OT(I1}).
1. a < B=CPX)CCHX).
2. a<f<at=ClX)=CYX).

Definition 3.3 1. Prg[X,Y]:©Vae X(XNaCY wacY).

2. For a definable class X, T'I[X] denotes the schema:
TI[X] & Prg[X,Y] — X C Y holds for any definable classes V.

3. For X Cc OT(I1}), W(X) denotes the well-founded part of X.
4. WolX] & X Cc W(X).

5. o € Wx(X) denotes a X1-formula saying that o € X and ‘there exists an
embedding f: XN(a+1) = ON’,ie., If € “ONVS,v € XN(a+1)(8 <
v — f(B) < f(7)), where ON is the class of all ordinals, 3 < « in OT(II})
and f(B8) < f(v) in ON.

6. Wox[X] denotes a ¥;-formula saying that ‘there exists an embedding
f: X = ON’ie,3f e “ONVB,ye X(B<v— f(B) < f(7)).

Note that for a € OT(I1}), W(X)Na = W(XNa). Also KPw F a € Wg(X) =
aeW(X), and KPlF a e W(X) = a e Wx(X).

Definition 3.4 For X ¢ OT(I1}) and a € OT(I1}),

1. DX]:eVa(a< X - W(ECYX))Nat =X nNat).
A set X is said to be a distinguished set if D[X].



2. Dx[X] is a X-formula defined by

Dy[X] & Vala < X - W(EC*X))Nat Cc XNat C Ws(C*(X))Na™)
(6)

3. W:=U{X: Dg[X]}.

From KPw F a € Wg(X) = a € W(X) we see Dg[X] = D[X] for any X.

Let o € X for a 3-distinguished set X. Then W(C*(X))Nat = X Na'.
Hence X is a well order. Although |J{X : D[X]} might be a proper class, it
turns out that W is a set.

Proposition 3.5 Let X € L.
1.aeW(X) & Ls EacW(X).
2. a € Wn(X) & Ls E a e Wx(X).
3. Ds[X] < Lg = Dg[X].
4. Ds[X] ¢ D[X].
5. W={X € Lg: D[X]} and IX(X =W).

Proof. 3.5.1. Since o € W(X) is a II;-formula, it suffices to show o € W(X)
assuming Ls = o € W(X). We obtain Lg = (o € W(X) < a € Wx(X)) by
Ls = KP{. Hence o € Wx(X) and o € W(X).

3.5.2. Assume a € Wx(X). Since o € Wx(X) is a ¥;-formula, we obtain
Ls E a € Wx(X) by Lg <5, L. The other direction follows from the persistency
of Y;-formulas.

3.5.3 follows from Propositions 3.5.1 and 3.5.2.

3.5.4. From Wx(C¥(X)) C W(C*(X)) we see Dg[X] — D[X]. Assume D[X],
a<Xand € XNa'. Then f € W(C*X))Na' by D[X]. We obtain €
Ws(C*(X))Na™ by Ls = € W(C*(X)) — B € Wx(C*(X)) and Propositions
3.5.1 and 3.5.2.

3.5.5. By Proposition 3.5.4 we obtain | J{X € Ls : D[X|} C W. Let a € W.
This means a ¥;-formula 3X (o € X A Dx[X]) holds. We obtain Lg = 3X (a €
X ADx[X]) by Ls <5, L. By Propositions 3.5.3 and 3.5.4 we obtain o € | J{X €
Ls: Ls = Dy [X]} = U{X € Ls : Dx[X]} = |{X € Ls : D[X]}. Ap-separation
yields IX (X = W). O

Proposition 3.6 Let X € Lg be a distinguished set. Then a € X = Vf[a €
Co(X)].

Proposition 3.7 For any distinguished sets X andY in Lg, XNa=Y Na =
VB < ot {CA(X)NBT =CP(Y)N BT} holds

Proposition 3.8 For distinguished sets X and Y in Lg, a < X&a <Y =
XNat=YnNna™.



Proposition 3.9 W is the mazimal distinguished set, i.e., D[W)] and 3X(X =

Proof. First we show Vy € W(y € CY(W)). Let v € W, and pick a distin-
guished set X € Lg such that v € X by Proposition 3.5.5. Then v € C7(X) C
CY (W) by X C W.

Let a < W. Pick a distinguished set X € Lg such that a < X. We claim
that WNa™ = XNat. Let Y € Lg be a distinguished set and 8 € YNa™. Then
B eY NBt=XnNpAt by Proposition 3.8. The claim yields W(C*(W)) Na™ =
W(EC*(X))Nnat =XnNat™=Wna'. Hence D[W). O

From WNat = X Nat for a Y-distinguished set X, We see WNat =
XNnat Cc We(CH(X))Nat =Ws(C*(W))Na™. Hence Dg[W].
3.2 Sets C*(Ws) and G
Definition 3.10 G(V) :={a € OT(I1}) : a € C¥(Y) &C*(Y)Na C Y}.
Lemma 3.11 For D[X], X C G(X).

Lemma 3.12 Suppose D[Y] and o € G(Y) for Y € Ls. Let X = W(C*(Y)) N
at € Lg. Assume that the following condition (7) is fulfilled. Then o € X and
D[X].
V<S(YNnat <B&Bt <at - W(CP(Y))NBT CY) (7)

Proposition 3.13 Let D[X].

1. Let{a,5} C X witha+=a#f anda>0. Theny=a+ € X.

2. If{a, 8} C X, then p,(B) € X.
Proposition 3.14 1. 0 e W.

2. Let either 0 = 0 or o = @/}é(a) or o = ¢f(a). Assume o0 € W. Then
ot ew.

Proof. Each is seen from Lemma 3.12 as follows.

3.14.1. Wesee 0 € Y = W(C°(0)) N Q € Lg with Q = 0T and D[Y].

3.14.2. Let 0 € Y € Lg with D[Y]. We see ot € X = W(C® (Y))No™F € Lg
and D[X]. ]

Lemma 3.15 Suppose D[Y] with {0,Q} C Y € Ls, and forn € OT(I1})N(S+1)
negy) (8)

and
Vy<nyegly)=n~e€Y) (9)

Let X =W (C"(Y))Nnt. Thenn e X € Ls and D[X].



3.3 Mahlo universes

In this subsection we consider the maximal distinguished class W¥ inside a set
P € Ls as in [1]. Let ad denote a II; -sentence such that a transitive set z is
admissible iff (z; €) |= ad. Let Imtad :< VaIy(z € yAad?). Observe that Imtad
is a II; -sentence.

Definition 3.16 1. By a universe we mean either Lg or a transitive set
Q € Lg with w € Q. Universes are denoted by P, Q, ...

2. For a universe P and a set-theoretic sentence ¢, P |= ¢ & (P;€) = ¢.

3. A universe P is said to be a limit universe if Imtad® holds, i.e., P is a
limit of admissible sets. The class of limit universes is denoted by Lmtad.

Lemma 3.17 W(C*(X)) as well as D[X] are absolute for limit universes P.
Definition 3.18 For a universe P, let W := | J{X € P: D[X]}.
We see W = W!s from Proposition 3.5.5.

Lemma 3.19 Let P be a universe closed under finite unions, and o € OT(I1}).

1. There is a finite set K(a) C OT(I}) such that YY € PYy[K(a)NY =
K@) nWF = (acC'(WP) e acC(Y))].

2. There exists a distinguished set X € P such thatVY € P¥y[X C Y & D[Y] =
(aeC"WP) & acC(Y))).

Proposition 3.20 For each limit universe P, DWF| holds, and 3X € Lg(X =
WP) if P € Lg.

For a universal IT,-formula I, (a) (n > 0) uniformly on admissibles, let
P e M5(C) := P € Lmtad & Vb € P[P =1TI5(b) — 3Q € C N P(Q = IIx(b))].

Definition 3.21 Let v = ¢f(a) < S and p = A(y) < St be the ordinal in
Definition 2.17. Let O(y) = 0,(f) < ST, where o,(f) is the ordinal defined in
Definition 2.11 from the epsilon number .

Let O(Q2) =1, O(S) = ST and O(v) = 0 else.

10



Lemma 3.22 Let C be a 11}-class such that C C Lmtad. Suppose P € My(C),
a € GIWT) and O(a) € W(CS(WT)) Then there exists a universe Q € C such
that a € GIW?) and O(a) € W(C5(WY)).

Proof. Suppose P € M(C), o € GIWT) and O(a) € W(C5(WT)). First by
a € C*WF), O(a) € C5(W?F) and Lemma 3.19 pick a distinguished set X, € P
such that a € C%(Xy), O(a) € C3(Xy) and K(a) N WP C Xy. Then for any
universe Xy € Q € P, we obtain O(a) € W(CS(W®)) by W c WF.

Next writing C*(WT) Na € WT analytically we have

VB <alf e W)= 3y e P(D[Y]&B eY)]

By Lemma 3.19 we obtain 8 € CY(W?F) & 31X € P{D[X]|&K(B) nWF C
X & pB e C*(X)}. Hence for any 8 < a and any distinguished set X € P, there
arey € K(fB), Z € P and a distinguished set Y € P such that if y € Z & D[Z] —
v € X and B € C¥(X), then § € Y. By Lemma 3.17 D[X] is absolute for limit
universes. Hence the following ITs-predicate holds in the universe P € My (C):

VB < a¥X 3y € K(B)IZIV[{D[X]|& (v € Z&D[Z] — v € X) & B € C*(X)}
= (D[Y]&BEY)] (10)

Now pick a universe @Q € C N P with Xy € Q and @ = (10). Tracing the
above argument backwards in the limit universe @) we obtain C*(W®)Na C W%
and Xog € W9 = {X € Q : Q = D[X]} € P. Thus Lemma 3.19 yields
a € C*(WY). We obtain a € G(WY). 0

Proposition 3.23 Let v = /(o) € G(Y) and v < 7o = ¥Z(b) with b = po(7).
Then O(v) € C5(Y).

Proof. We have v € C7(Y) and C7(Y) N~y C Y. We obtain {¢,b} USCg+(f) C
C7(Y). We obtain SCs+(f,b) < u = A(y) by Definition 2.14. Es(SCs+(f,b)) C
C7(Y) follows from v < S. On the other hand we have SCg+(f,b) C Hp(7)
for b = po(y) by (5). This yields Es(SCs+(f,b)) C Hp(y) NS C . We ob-
tain Es(SCst (f,b)) € CY(Y)N~y C Y. Hence SCst(f,b) C C5(Y). From
SCs+ (f,b) C C3(Y) we see O(y) = 0,(f) € C5(Y) for v = vl (a) € G(Y). O

Definition 3.24 We define the class Ms(«) of a-recursively Mahlo universes
for S > a € OT(I1}) as follows:

P € My(a) < P € Lmtad & VB < a[O(B) € W(CS(WT)) = P € My(Ma(B))]
(11)
Ms(a) is a IIz-class.

Lemma 3.25 If S > n € GOWF), O(n) € W(CS(W?T)) and P € My(Ma(n))
with P € Lg, then n € WF.
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Proof. We show this by induction on €. Suppose, as IH, the lemma holds for
any Q € P. By Lemma 3.22 pick a Q € P such that Q € My(n), and for
Y =W e P, {0,Q} CY,O(n) € W(C3(Y)) and

negy) (8)

On the other the definition (11) yields Vy < n[O(y) € W(CS(W?)) = Q €
Ma(Ms(7))]. TH yields with ¥ = W@

vy <n(y € G(Y)&O(y) e W(CE(Y)) = v €Y)

On the other O(n) € W(C5(Y)) yields O(y) € W(C5(Y)) for G(Y) > v < n by
Proposition 3.23. Therefore

Vy<n(yegGlY)=~€Y) (9)

Therefore by Lemma 3.15 we conclude n € X and D[X] for X = W(C"(Y))nn™*.
X € P follows from Y € P € Lmtad. Consequently n € W¥. o

Lemma 3.26 V1 < S[O(n) € W(C5(W)) = Lg € Ma(M2(n))].

Proof. We show the lemma by induction on O(n) € W(C°(W)). Suppose
O(n) € W(C35(W)) and Lg |= TI5(b) for a b € Ls. We have to find a universe
Q € Lg such that b € Q, Q € Ma(n) and @ = IIx(b).
By the definition (11) Lg € My (n) is equivalent to Vv < n[O(y) € W(CS(W)) =

Lg € My(Ms(7))], where W = WTs by Proposition 3.5.5. We obtain v < 7 =
O(vy) < O(n). Thus IH yields Ls € M3(n). Let g be a primitive recursive func-
tion in the sense of set theory such that L € Ms(n) & P = 5(g(n)). Then
Ls = TI5(b) ATI3(g(n)). Since this is a IIs-formula which holds in a II3-reflecting
universe Lg, we conclude for some @ € Ls, Q = I(b) A Il3(g(n)) and hence
Q € Ms(n). We are done. O

Lemma 3.27 Vn < S[ne€ GW) & O(n) € W(CS(W)) = n e W].

Proof. Assume S > 1 € G(W) and O(n) € W(C*(W)). Lemma 3.26 yields
Ls € My(Msy(n)). From this we see Lg € M>(C) with C = My (Ma(n)) as
in the proof of Lemma 3.26 using Ilz-reflection of Lg once again. Then by
Lemma 3.22 pick a set P € Lg such that n € GOWT), O(n) € W(C3(WT)) and
P € C = My(Ms(n)). Lemma 3.25 yields n € WF c W. |

Definition 3.28 Let W; := W(C5(W)).

Proposition 3.29 1. C5" (W,)NSt = Wy NST and C5" (Wy)NS = CS(W)N
S=wWNS=WnSs.

2. SeW.

3. TIICS" W) Nw, (ST +1)] for each n < w.

12



Proof. 3.29.1 and 3.29.2. Since there is no regular ordinal> S, C5" (W, )NST =
WiNSt. We see CS(W)NS = WNS = Wi NS from gt (a) > S and W(W) = W.
Hence S € W;.

3.29.3. TI[CS" (W) N'ST] follows from C5" (Wy) NSt = W, N'ST. By meta-
induction on n < w, we see TI[CS" (W)) Nw, (ST 41)] using the Gentzen’s jump
set. o

Lemma 3.30 a € C5" (W) Nw, (ST + 1) &g+ (a) € OT(II) = s (a) € Wy
foreach n < w.

Proof. By Proposition 3.29.3 it suffices to show that Prg[CS (W), B] for
B(a) & [1s+(a) € OT(I1}) = s+ (a) € Wi]. Assume a € CS" (Wy). We ob-
tain ¢g+ (a) € CS(W) by Propositions 3.2.1 and 3.29.1.

Next we show 8 € CS(W) NH, (s (a)) = B € C3 (W) by induction on £3.
By Proposition 3.29 we may assume (3 = g+ (b). Then b € CS(W)NH,(Ys+ (a)),
and b € C5" (W1) by IH on lengths. Moreover b < a. Hence IH yields g €
Wi NSt c ST wy).

In particular we obtain CS(W) N g+ (a) C C57 (W) NST C Wy. Therefore
Us+(a) € W(CE(W)) = Wi O

3.4 Well-foundedness proof concluded
Definition 3.31 For irreducible functions f let
fedJ:e SCs(f) Cc W
For a € OT(I1}) and irreducible functions f, define:
Ala,f) =& Yo Wy NSTp(a) € OT(T) & O (a) € Wi = ¥f(a) € W],

MIH(a) ¢ VbeCS (W) nav¥f e JA®,f).
SIH(a, f) = Vg€ Jlg <}, f= A(a,g)]

Lemma 3.32 Assumea € C5 (W1)Nw, (ST+1), f € J, MIH(a), and SIH(a, f)
in Definition 3.31. Then

Ve € Wi NSl (a) € OT(I1) & O(W (a)) € Wi = 4l (a) € W.

Proof. This is seen as in [1,2] from Lemma 3.27. Let oy = ¢/ (a) € OT(I})

be such that O(a1) € Wy, a € CS+(W1), S>k e W; and f € J. By Lemma
3.27 it suffices to show a1 € G(W).

By Proposition 3.2.1 we have {x,a} U SCs+(f) C C**(W), and hence a; €
C*(W). It suffices to show the following claim.

VB, € C* (W) N Oél[ﬂl S W] (12)
Proof of (12) by induction on £8;. Assume f; € C** (W) Nay and let
LIH :& Vy € C*OW) Naq[by < €1 = v € W)].
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We show 1 € W. We may assume that 8; = 2(b) for some m,b, g such

that {m, b} USCs+(g) C C** (W) and a1 < 7w < S.
Case 1. b< a, f1 < k and {m, b} USCs+(g) C Ho(a1): Let B denote a set of
subterms of 31 defined recursively as follows. First {m, b} U SCg+(g) C B. Let
a1 <BeB. If B=NF Ym + -+, then {y; : i <m} C B. If B =nxr @70,
then {y,6} C B. If B =nyr 7T, then v € B. If 8 = ¢"(c) with ¢ > a1, then
{0,¢} USCs+(h) C B.

Then from {7,b} USCs+(g) C C** (W) we see inductively that B C C*(W).
Hence by LIH we obtain BNa; C W. Moreover if a; < 9" (c) € B, then ¢ < a.
We claim that

Vg€ B(B e (W) (13)

Proof of (13) by induction on 8. Let § € B. We can assume that oy <
B = ¥"(c) by LIH. Then by induction hypothesis we have {o,c} U SCgs+ (h) C
C5"(W1). On the other hand we have ¢ < a < w,(St +1). If 0 = S*, then
Lemma 3.30 yields § = ¢g+(c) € Wy. Let 0 < S. Then {0} U SCs+(h) C
ST W) NSt =W NST. Let oy < B =h(c) < P& (cp). Then SCs+(co) C B
and SCqs+(co) C Wy by induction hypothesis on lengths. Hence A(5) € W; for
the least epsilon number A(8) > max(SCs+(cp)). We obtain O(8) € Wy by
SCs+(h) U{A(B)} € W;y. MIH(a) yields 8 € W. Thus (13) is shown. O

In particular we obtain {m,b, A(81)} U SCs+(g) C C5" (W1). Moreover we
have b < a. Therefore once again MIH(a) yields 81 € W.
Case 2. b=a, m = £, SCs+(9) C Ha(an) and g <P, f: As in (13) we see that
SCs+(g) C Wy from Lemma 3.30 and MIH(a). SIH(a, f) yields 81 € W.
Case 3. a <band SCs+(f)U{k,a} ¢ Hp(S1): Asin asin [1,2] we see that there
exists a vy such that 8y <~v € WnNay. Then 81 € W follows from (; € C*t(W).
This completes a proof of (12) and of the lemma. O

Lemma 3.33 For ¢/(a) € OT(II}), if a € C5 (W) Nwa(ST + 1), {xk} U
SCs+ (f) c Wi NSt and O(vf(a)) € Wi, then ¥f(a) € W.

Proof. This is seen from Lemma 3.32 and Proposition 3.29.3. Note that if
B = (a) < ¢f(a) = a by g <}, f, then po(8) = po(a), A(B) = A(a) and
0O(B) < O(a) by Lemma 2.13. a
Lemma 3.34 For cach a € OT(II}), a € C5" (Wy).

Proof. This is seen by meta-induction on ¢ using Propositions 3.13 and 3.14,
and Lemmas 3.30 and 3.33. o

Proof of Theorem 1.2. For each v € OT(IT}) we obtain o € €S (W) by Lemma
3.34. Therefore by Proposition 3.29.1 we obtain for each n < w, ¥q(w, (ST +

1) € CSTW) NQ =WnNQ=W(C0) NQ, where W(CO(0)) = W(OT(II1L)).
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