論文

査読有り
2019年11月5日

First light demonstration of the integrated superconducting spectrometer

Nature Astronomy
  • Akira Endo
  • ,
  • Kenichi Karatsu
  • ,
  • Yoichi Tamura
  • ,
  • Tai Oshima
  • ,
  • Akio Taniguchi
  • ,
  • Tatsuya Takekoshi
  • ,
  • Shin’ichiro Asayama
  • ,
  • Tom J. L. C. Bakx
  • ,
  • Sjoerd Bosma
  • ,
  • Juan Bueno
  • ,
  • Kah Wuy Chin
  • ,
  • Yasunori Fujii
  • ,
  • Kazuyuki Fujita
  • ,
  • Robert Huiting
  • ,
  • Soh Ikarashi
  • ,
  • Tsuyoshi Ishida
  • ,
  • Shun Ishii
  • ,
  • Ryohei Kawabe
  • ,
  • Teun M. Klapwijk
  • ,
  • Kotaro Kohno
  • ,
  • Akira Kouchi
  • ,
  • Nuria Llombart
  • ,
  • Jun Maekawa
  • ,
  • Vignesh Murugesan
  • ,
  • Shunichi Nakatsubo
  • ,
  • Masato Naruse
  • ,
  • Kazushige Ohtawara
  • ,
  • Alejandro Pascual Laguna
  • ,
  • Junya Suzuki
  • ,
  • Koyo Suzuki
  • ,
  • David J. Thoen
  • ,
  • Takashi Tsukagoshi
  • ,
  • Tetsutaro Ueda
  • ,
  • Pieter J. de Visser
  • ,
  • Paul P. van der Werf
  • ,
  • Stephen J. C. Yates
  • ,
  • Yuki Yoshimura
  • ,
  • Ozan Yurduseven
  • ,
  • Jochem J. A. Baselmans

記述言語
掲載種別
研究論文(学術雑誌)
DOI
10.1038/s41550-019-0850-8
出版者・発行元
Springer Science and Business Media {LLC}

Ultra-wideband 3D imaging spectrometry in the millimeter-submillimeter
(mm-submm) band is an essential tool for uncovering the dust-enshrouded portion
of the cosmic history of star formation and galaxy evolution. However, it is
challenging to scale up conventional coherent heterodyne receivers or
free-space diffraction techniques to sufficient bandwidths ($\geq$1 octave) and
numbers of spatial pixels (>$10^2$). Here we present the design and first
astronomical spectra of an intrinsically scalable, integrated superconducting
spectrometer, which covers 332-377 GHz with a spectral resolution of $F/\Delta
F \sim 380$. It combines the multiplexing advantage of microwave kinetic
inductance detectors (MKIDs) with planar superconducting filters for dispersing
the signal in a single, small superconducting integrated circuit. We
demonstrate the two key applications for an instrument of this type: as an
efficient redshift machine, and as a fast multi-line spectral mapper of
extended areas. The line detection sensitivity is in excellent agreement with
the instrument design and laboratory performance, reaching the atmospheric
foreground photon noise limit on sky. The design can be scaled to bandwidths in
excess of an octave, spectral resolution up to a few thousand and frequencies
up to $\sim$1.1 THz. The miniature chip footprint of a few $\mathrm{cm^2}$
allows for compact multi-pixel spectral imagers, which would enable
spectroscopic direct imaging and large volume spectroscopic surveys that are
several orders of magnitude faster than what is currently possible.

リンク情報
DOI
https://doi.org/10.1038/s41550-019-0850-8
arXiv
http://arxiv.org/abs/arXiv:1906.10216
Arxiv Url
http://arxiv.org/abs/1906.10216v2
Arxiv Url
http://arxiv.org/pdf/1906.10216v2 本文へのリンクあり