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We study the transition graph of generic Hamiltonian surface flows, whose vertices are
the topological equivalence classes of generic Hamiltonian surface flows and whose edges
are the generic transitions. Using the transition graph, we can describe time evaluations
of generic Hamiltonian surface flows (e.g., fluid phenomena) as walks on the graph. We
propose a method for constructing the complete transition graph of all generic Hamilto-
nian flows. In fact, we construct two complete transition graphs of Hamiltonian surface
flows having three and four genus elements. Moreover, we demonstrate that a lower
bound on the transition distance between two Hamiltonian surface flows with any num-
ber of genus elements can be calculated by solving an integer programming problem

using vector representations of Hamiltonian surface flows.
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1. Introduction

The topological properties of Hamiltonian flows on compact surfaces have been stud-
ied by several authors. For instance, such flows with finitely many singular points
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have been topologically classified on an unbounded plane [2], on a sphere [5], on a
torus [8], and on closed surfaces [4]. It is known that various kinds of fluid phenom-
ena are modeled as incompressible fluids and that incompressible flows on spheres
are Hamiltonian (cf. [6]). Structural stability is important from a dynamical system’s
point of view because the set of structurally stable Hamiltonian flows on a bounded
or unbounded domain is open dense [6, 11]. In other words, any Hamiltonian surface
flow can be approximated by such Hamiltonian surface flows, and the topological
equivalence class of these flows is preserved under small perturbations. Structural
stability is also important from an application point of view, because Hamiltonian
flows observed in experiments and numerical calculations are structurally stable
at almost every moment in time. Moreover, structurally stable Hamiltonian flows
on bounded and unbounded domains are classified topologically [6, 11]. In other
words, any structurally stable Hamiltonian flow on an unbounded (respectively, a
bounded) domain can be constructed from a uniform flow (see Fig. 1) on the plane
U(0) (respectively, a pointwise periodic flow (see Fig. 1) on the annulus D(1)) by
iteratively applying five operations, each of which creates a genus element. By oper-
ation, we mean one of several specific types of orbit structure replacement, as we
will see later in Figs. 8 and 12.

Therefore, a word of operations is the set of structurally stable Hamiltonian
flows generated by those operations. Generic transitions of such structurally stable
Hamiltonian flows have also been characterized [10]. Such generic transitions form
a graph, called a transition graph, whose vertices are topological equivalence classes
of structurally stable Hamiltonian flows and whose edges are generic transitions.

In this paper, we algorithmically construct transition graphs for words of the
same length, where an edge between two words exists if a Hamiltonian flow gen-
erated by one of the words can be transitioned to a Hamiltonian flow generated
by the other word. The properties of the graphs and of the words can be analyzed
using graph theory, formal language theory, and tools in those fields. This abstrac-
tion helps non-experts access the analysis of fluid dynamics. Using the transition
graph, we can completely describe the time evaluations of generic Hamiltonian
surface flows (e.g., fluid phenomena on multi-connected domains) as walks on the
graph. The visualization provided by the graph is helpful when reasoning about fluid
dynamics, as, for example, during the process of debugging simulation software.

Fig. 1. Left: uniform flow; middle and right: pointwise periodic flows on D(1).
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A lower bound on the transition distance between a pair of Hamiltonian surface
flows with any genus elements can be calculated by solving an integer program-
ming problem by vector representations, which are reduced representations of word
representations of Hamiltonian surface flows. The vector representations of Hamil-
tonian surface flows with a transition distance are suitable for big data analysis.

This paper consists of six sections. In Sec. 2, we review the notation for dynam-
ical systems and the framework of topological flow data analysis. In particular,
several facts about representations of two-dimensional (2D) Hamiltonian flows and
transition graphs are presented in a self-contained manner with prerequisites. In
Sec. 3, vector representations of 2D Hamiltonian flows are introduced, and the nec-
essary conditions for transitions among structurally stable Hamiltonian flows are
stated. In Sec. 4, a list of all transition rules is given, and the complete transi-
tion graphs of lengths two, three, and four are presented. In Sec. 5, we explain a
method for analyzing the transition distances of diagrams. In Sec. 6, we provide a
supplementary explanation.

2. Preliminaries

2.1. Notation for dynamical systems

We recall some basic notation. Good references for most of what we describe are
[6, 1].

In this paper, a domain is a connected surface with or without boundary con-
tained in a 2D sphere or a plane. A boundary component is a connected component
of the boundary ∂S. A flow on a domain is a continuous R-action on the domain.
In other words, a continuous mapping v:R × S → S on a domain S is a flow if
v(t, ·):S → S is a homeomorphism with v(t, v(s, x)) = v(t + s, x) for any s, t ∈ R

such that v(0, ·) is identical to it. For a point x in S, let O(x) := {v(t, x) | t ∈ R},
called the orbit of x. A point x is singular if its orbit consists of one point, that
is, if x = v(t, x) for any t ∈ R. An orbit is singular if it consists of a singular
point. A non-singular orbit of a flow is a separatrix if it starts or ends at a singular
point. A singular point p of a flow v generated by a C1-vector field X is non-
degenerate if its determinant of the Hesse matrix (∂Xi/∂xj(p)) is non-zero (i.e., if
∂X1/∂x1(p)·∂X2/∂x2(p)−∂X1/∂x2(p)·∂X2/∂x1(p) �= 0). A non-degenerate singu-
lar point of v is a center if its eigenvalues of the Hesse matrix are purely imaginary,
as in the two rightmost depictions in Fig. 2.

Fig. 2. Non-degenerate singular points: From left to right: two ∂-saddles, a saddle, and two centers.
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A non-degenerate singular point of v outside of the boundary is a saddle if its
eigenvalues of the Hesse matrix consist of a positive number, and a negative number
as in the depiction in the middle of Fig. 2. A non-degenerate singular point of v

on the boundary is a ∂-saddlea if its eigenvalues of the Hesse matrix consist of a
positive number and a negative number, as in the two leftmost depictions in Fig. 2.
A saddle connection diagram is the union of the saddles, ∂-saddles, and separatrices.
A saddle connection is a connected component of the saddle connection diagram.
Note that the saddle connection diagram in the unbounded case is also called the
ss-saddle connection diagram in [11]. A separatrix is self-connected if either it starts
and ends at the same saddle or it connects two ∂-saddles on the same boundary
component (see Fig. 3). Thus, a separatrix is non-self-connected if it connects two
saddles, two distinct ∂-saddles, or a saddle and a ∂-saddle.

A point x is periodic if there is a positive number T > 0 such that x = v(T, x)
and x �= v(t, x) for any t ∈ (0, T ). Recall that a vector field X1 on a domain S1

and a vector field X2 on a domain S2 are topologically equivalent if there is a
homeomorphism h:S1 → S2 such that the image of an orbit of X1 is an orbit of X2

and h preserves the orientation of the orbits. Similarly, a flow v1 on a domain S1 and
a flow v2 on a domain S2 are topologically equivalent if there is a homeomorphism
h:S1 → S2 such that the image of an orbit of v1 is an orbit of v2 and h preserves
the orientation of the orbits.

2.2. Notation for Hamiltonian flows

A Cr (r ≥ 1) vector field X on a domain S is Hamiltonian if there is a Cr+1 function
H : S → R such that X(p) = (∂H/∂x2,−∂H/∂x1) for any point p ∈ S, where
(x1, x2) is a local coordinate system of p. The definition of Hamiltonian vector field
implies that the flow generated by a Hamiltonian vector field is incompressible. By
Hamiltonian flow, we mean a flow generated by a Hamiltonian vector field. We say
that a Hamiltonian flow is a Hamiltonian flow on a bounded domain if the domain is

Fig. 3. (Color online) Left: self-connected separatrices (in blue); right: non-self-connected separa-
trices (in red).

a“∂-saddle” is pronounced “boundary-saddle”.
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Fig. 4. A 1-source–sink.

compact. Notice that for the flow v on R
2 generated by a vector field (1,0), which is

a uniform flow, the point ∞ at infinity corresponds to a 1-source–sink (i.e., dipole)
(Fig. 4) with respect to the extended flow of v on the one-point compactification
R

2 ∪ {∞}.
Therefore, we say that a Hamiltonian flow v on an unbounded domain S ⊆ R

2

is a Hamiltonian flow with a 1-source–sink at infinity if the domain is the resulting
surface by removing finitely many open disks from R

2 such that the point ∞ at
infinity corresponds to a 1-source–sink with respect to the extended flow of v on
the one-point compactification S ∪ {∞}. For a natural number n, let D(n) be the
resulting compact domain of a closed disk formed by removing n pairwise disjoint
open disks, and U(n) the resulting domain of R

2 formed by removing n pairwise
disjoint open disks. Denote by Hbd(n) the set of Hamiltonian flows on D(n), and
by Hubd(n) the set of Hamiltonian flows with a 1-source–sink at infinity on U(n).
A Cr (r ≥ 1) Hamiltonian vector field on D(n) (respectively, U(n)) is structurally
stable (in the set of Cr Hamiltonian vector fields on D(n) (respectively, U(n))) if it
is invariant under small C1-perturbations in the set of Cr Hamiltonian vector fields
on D(n) (respectively, U(n)) up to topological equivalence. A Hamiltonian flow
in Hbd(n) (respectively, Hubd(n)) is structurally stable (in Hbd(n) (respectively,
Hubd(n))) if it is generated by a structurally stable Hamiltonian vector field in the
set of Cr Hamiltonian vector fields on D(n) (respectively, U(n)).

By the definitions of the types of singular points of Hamiltonian flows, incom-
pressibility implies that a non-degenerate singular point must be either a saddle,
a ∂-saddle, or a center. Therefore, a non-degenerate singular point is a saddle if
and only if it has exactly four separatrices counted with multiplicity, and a non-
degenerate singular point is a ∂-saddle if and only if it has exactly three separatrices.
A non-singular orbit is an ss-orbit if it is not a separatrix but is unbounded. Note
that an ss-orbit starts from and goes to the point at infinity. A non-singular orbit
is an ss-separatrix if it is a separatrix and is unbounded. Note that an ss-orbit is
between the point at infinity and either a saddle or a ∂-saddle. A saddle connection
is self-connected if any separatrix in it either is self-connected or is an ss-separatrix.
By the definition of self-connected saddle connection, any self-connected saddle con-
nection is locally of the form shown in Fig. 5.
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a0 a2 b0 b0 b2 c

Fig. 5. List of the local structures of self-connected saddle connections. Boundaries are shaded for
readability.

A saddle connection is called type a0, a2, b0, b2, or c (shown from left to right
in the figure).

A genus element is either a center or a periodic orbit on a boundary.

2.3. Structural stability of Hamiltonian flows

The structural stability of Hamiltonian flows is generic and is topologically charac-
terized as follows (see [6, 11] for details).

Lemma 2.1 ([6, Theorem 2.3.8, p. 74; 11, Theorem 3.2]). Let H denote
either Hbd(n) or Hubd(n). The set of structurally stable Hamiltonian flows in H is
open dense in H. Moreover, the following statements are equivalent :

(1) A Hamiltonian flow in H is structurally stable in H.
(2) Each singular point is non-degenerate and each saddle connection is self-

connected (i.e., each separatrix either is self-connected or is an ss-separatrix).

By generic Hamiltonian flow, we mean, therefore, a structurally stable Hamil-
tonian flow. Morse theory states that any Hamiltonian flow with non-degenerate
singular points is determined by the saddle connection diagram, up to topological
equivalence. More precisely, the following statement holds.

Lemma 2.2 (cf. [6, Theorem 1.4.6, p. 42; 11, Remark after Theorem 3.2,
p. 10]). Any Hamiltonian flow in Hbd(n) or Hubd(n) is determined by the saddle
connection diagram, up to topological equivalence. Moreover, any connected compo-
nent of the complement of the union of the saddle connection diagrams is either
an annulus consisting of periodic orbits or a flow box consisting of ss-orbits (see
Fig. 6).

Lemma 2.2 means that the topological equivalence class of stable Hamiltonian
flows can be identified using the saddle connection diagram.

2.4. Generic transitions between structurally stable Hamiltonian

flows

A k-saddle is an isolated singular point outside of the boundary of a domain with
exactly 2k + 2 separatrices, counted with multiplicity for a non-negative integer k,
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Fig. 6. Left: an open annulus; right: A flow box.

0-saddle 1-saddle 2-saddle 3-saddle

0-∂-saddle

1/2-∂-saddle
1-∂-saddle

Fig. 7. Examples of multi-saddles.

as shown in Fig. 7. A ∂-k/2-saddle is an isolated singular point on the boundary of a
domain with exactly k+2 separatrices, counted with multiplicity for a non-negative
integer k, as shown in Fig. 7.

A multi-saddle is either a k-saddle or a ∂-k/2-saddle for some integer k. The
multi-saddle connection diagram of a Hamiltonian flow is the union of multi-saddles
and separatrices. It is known that each singular point of a Hamiltonian flow with
finitely many singular points on a bounded domain is either a topological center
or a multi-saddle because Hamiltonian flow on a compact surface is non-wandering
(i.e., each point is non-wandering) (see [3, Theorem 3]). Here, a topological center
is locally topologically equivalent to a center. In other words, a topological center
is a center up to local topological equivalence. A 0-saddle is called a fake saddle,
and a ∂-0-saddle is called a fake ∂-saddle. A multi-saddle is fake if it is either a fake
saddle or a fake ∂-saddle. Here, a point is non-wandering if for any neighborhood U

of the point and for any positive number N , there is a number t ∈ R with |t| > N

such that vt(U) ∩ U �= ∅.
A Hamiltonian flow with self-connected saddle connections is f-unstable if it has

just one fake multi-saddle and each singular point except for the fake multi-saddle
is non-degenerate. The “f ” in “f -unstable” stands for “fake.” With the same fixed
number of genus elements, any perturbation of an f -unstable Hamiltonian flow on
a bounded or unbounded domain implies the same structurally stable Hamiltonian
flow up to topological equivalence. In other words, a transition whose intermediate
flow is f -unstable is trivial under fixing of the same number of genus elements. In
addition, a Hamiltonian flow with self-connected saddle connections is t-unstable if
it has just one topological center, and each singular point except for the topological
center is non-degenerate. The “t” in “t -unstable” stands for “topological center”.
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With the same fixed number of genus elements, any perturbation of a t -unstable
Hamiltonian flow on a bounded or unbounded domain implies the same structurally
stable Hamiltonian flow up to topological equivalence. In other words, a transition
whose intermediate flow is t -unstable is trivial under fixing of the same number of
genus elements. We consider, therefore, the following condition for the non-existence
of fake multi-saddles and topological centers to omit trivial transitions:

(A1) There are neither fake multi-saddles nor topological centers.

This condition means that any singular point of a Hamiltonian flow with finitely
many singular points is a multi-saddle under these assumptions. A Hamiltonian
flow with non-degenerate singular points is h-unstable if it has exactly one non-
self-connected orbit in the saddle connection diagram. A Hamiltonian flow with
self-connected saddle connections is p-unstable if it has just one pinching point and
each singular point except for the pinching point is non-degenerate. The “h” in “h-
unstable” and the “p” in “p-unstable” stand for “heteroclinic” and “pinching”,
respectively. A generic transition between structurally stable Hamiltonian flows
with the same number of genus elements is either p-unstable or h-unstable. More
precisely, a characterization of generic transitions of Hamiltonian flows is described
as follows (see [10] for details).

Lemma 2.3 ([10, Proposition 3.1]). Let H(n) be either the set of flow in Hbd(n)
satisfying condition (A1) or the set of flows in Hubd(n) satisfying condition (A1).
Denote by Hstr(n) the set of structurally stable Hamiltonian flows in H(n). Then
the set of p-unstable or h-unstable Hamiltonian flows forms an open dense subset
of the difference H(n)−Hstr(n).

Note that the difference H(n) − Hstr(n) in this lemma is the set of non-
structurally–stable Hamiltonian flows, which are intermediate flows of non-trivial
transitions. Thus, a generic transition between structurally stable Hamiltonian flows
in H(n) is either p-unstable or h-unstable. We therefore define a transition graph
of structurally stable Hamiltonian flows as the graph whose vertices are topological
equivalence classes of structurally stable Hamiltonian flows and whose edges are
topological equivalence classes of p-unstable or h-unstable Hamiltonian flows.

2.5. Word representation for orbits

Physically, genus elements can be realized as centers, point vortices, or periodic
boundaries (i.e., periodic orbits on the boundary of the domain). As in [11], for the
sake of simplicity, we regard genus elements as periodic boundaries because periodic
orbits around a center or a point vortex are topologically indistinguishable from
those around a periodic boundary. Therefore, we assume that each genus element
is a periodic boundary. In other words, we make the following assumption (A2):

(A2) There are no centers.
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Assumption (A2) means that a non-degenerate singular point is either a saddle
or a ∂-saddle. By the definitions of the terms in (A1) and (A2), a Hamiltonian flow in
Hbd(n) orHubd(n) satisfies both (A1) and (A2) if and only if each singular point is a
non-fake multi-saddle. We useHbd,0(n) (respectively,Hubd,0(n)) to denote the set of
flows with finitely many singular points in Hbd(n) (respectively,Hubd(n)) satisfying
the assumptions for (A1) and (A2). Hereinafter, we assume that a Hamiltonian
flow belongs to Hbd,0(n) or Hubd,0(n). Thus, a Hamiltonian flow on a bounded
domain means a Hamiltonian flow in a bounded domain D(n) (for some n) whose
singular points are non-fake multi-saddles and centers, and a Hamiltonian flow on
an unbounded domain means a Hamiltonian flow with a 1-source–sink at infinity
in the punctured plane U(n) whose singular points are non-fake multi-saddles and
centers.

It is known that any structurally stable Hamiltonian flows on an unbounded
domain can be generated from a uniform flow (see Fig. 1) (i.e., a flow that is topo-
logically equivalent to the flow generated by a vector field (1, 0)) on the plane U(0)
by iteratively applying five operations, each of which replaces a saddle connection
diagram by adding one genus element: a0, a2, b0, b2, or c (see Fig. 8) [11].b Indeed,
operations a0, b0, and c (respectively, a2, b2) remove a point and insert a closed
annulus (respectively, circle) as a set. Similarly, any structurally stable Hamilto-
nian flow on a bounded domain can be generated from a pointwise periodic flow
(see Fig. 1) on the annulus D(1) by iteratively applying three operations, each of
which replaces a saddle connection diagram by adding one genus element: b0, b2,
or c.

Fig. 8. The five fundamental operations a0, a2, b0, b2, and c.

bFollowing the convention in formal language theory, we write the letters in lower case letters.
Moreover, to simplify words, we replace I (respectively, II) by a2 (respectively, a0) because I and
a2 (respectively, II and a0) are equivalent as local structures.
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T. Yokoyama & T. Yokoyama

To apply the five operations, we fix the outermost part. Indeed, the outermost
part of an unbounded domain is the point at infinity, and the outermost part of a
bounded domain is a boundary of an annulus. Recall the five operations a0, a2, b0,
b2, and c that each adds one genus element:

(a0) The operation a0 replaces an ss-orbit by a saddle with two ss-separatrices and
with a self-connected separatrix, as shown in the first depiction in Fig. 8.

(a2) The operation a2 replaces an ss-orbit by a boundary component that consists
of two ∂-saddles and two separatrices, as shown in the second depiction in
Fig. 8.

(b0) The operation b0 replaces a periodic orbit by a saddle with two self-connected
separatrices, as shown in the third depiction in Fig. 8.

(b2) The operation b2 replaces a periodic orbit by a boundary component with a
self-connected separatrix which consists of two ∂-saddles and two separatrices,
as shown in the fourth depiction in Fig. 8.

(c) The operation c replaces a separatrix contained in the boundary by two ∂-
saddles with four self-connected separatrices, as shown in the last depiction in
Fig. 8.

Therefore, each of the operations a0, a2, b0, b2, and c adds a new saddle connection
to the saddle connection diagram, and the operation c adds a self-connected sep-
aratrix between two ∂-saddles on the same boundary component. Each operation
increments the number of genus elements by one. For example, a2 adds a boundary
component on an ss-orbit, and c adds a self-connected separatrix on the bound-
ary component. Notice that operations are not always applicable; for instance, the
operation c cannot be applicable if a2 or b2 has not been applied before it. In other
words, each of the operations a0, a2, b0, b2, and c is a creation operation. On the
other hands, we can define the inverse operation a−1

0 (respectively, a−1
2 , b−1

0 , b−1
2 ,

c−1) of a0 (respectively, a2, b0, b2, c), which is an annihilation operation. Precisely,
the five operations a−1

0 , a−1
2 , b−1

0 , b−1
2 , and c−1 that each deletes one genus element:

(a−1
0 ) By the operation a−1

0 , a saddle with two ss-separatrices and with a self-
connected separatrix is replaced by an ss-orbit, along the opposite direction
of the arrow, as shown in the first depiction in Fig. 8.

(a−1
2 ) By the operation a−1

2 , a boundary component that consists of two ∂-saddles
and two separatrices is replaced by an ss-orbit, along the opposite direction
of the arrow, as shown in the second depiction in Fig. 8.

(b−1
0 ) By the operation b−1

0 , a saddle with two self-connected separatrices is replaced
by a periodic orbit, along the opposite direction of the arrow, as shown in
the third depiction in Fig. 8.

(b−1
2 ) By the operation b−1

2 , a boundary component with a self-connected separa-
trix which consists of two ∂-saddles and two separatrices is replaced by a
periodic orbit, along the opposite direction of the arrow, as shown in the
fourth depiction in Fig. 8.
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Complete transition diagrams of generic Hamiltonian flows with a few heteroclinic orbits

(c−1) By the operation c−1, two ∂-saddles with four self-connected separatrices
contained in the boundary is replaced by a separatrix, along the opposite
direction of the arrow, as shown in the last depiction in Fig. 8.

We say that a word for Hamiltonian flows is a sequence of the five operations
a0, a2, b0, b2, and c. The length of a word is the number of letters it contains.
For any positive integer n, each word of length n for Hamiltonian flows is a subset
of structurally stable Hamiltonian flows in Hbd,0(n) or Hubd,0(n). Indeed, a word
w1w2 · · ·wn for Hamiltonian flows is the set of structurally stable Hamiltonian flows
generated by applying operations w1, w2, . . . , wn in sequence. Therefore, a set of
words for Hamiltonian flows is a finite set partially ordered with respect to the
order of inclusion. We call that the maximal elements maximal words. In [11], as
operation I corresponds to a2 and operation II corresponds to a0, the commutativity
of a0 and a2 shown in [11, Table 1, Theorems 3.3–3.5] imply the following lemmas.
Here, we denote empty word ε by x0 and word xxi by xi (i ≥ 0), and we let
w(s, t, u) := (b0)s(b2)t(c)u.

Lemma 2.4. Each structurally stable Hamiltonian flow in Hbd,0(n) belongs to a
maximal word of the form:

w(nb0,1, nb2,1, nc,1) · · ·w(nb0,k−1, nb2,k−1, nc,k−1)w(nb0,k, nb2,k, 0)

for some k ∈ Z≥1, nb0,i, nb2,i ∈ Z≥0(1 ≤ i ≤ k) and nc,i ∈ Z≥1(1 ≤ i ≤ k − 1) such
that n− 1 =

∑k−1
i=1 (nb0,i + nb2,i + nc,i) + nb0,k + nb2,k.

For instance, there are several maximal words for structurally stable Hamiltonian
flows in bounded domains, as shown in Fig. 9. It should be noted that the maximal
word is characterized by a regular expression (b∗0b∗2c+)∗b∗0b∗2. (cf. the definition of
the class of regular expressions in [7].)

Lemma 2.5. Each structurally stable Hamiltonian flow in Hubd,0(n) belongs to a
maximal word of the form:

(a2)na2 (a0)na0 w(nb0,1, nb2,1, nc,1) · · ·w(nb0,k−1, nb2,k−1, nc,k−1)w(nb0,k, nb2,k, 0)

b0 b2cb0b2b0 b2

b0b0 b0b0 b0b0 b0b0 b0b0 b0b0

b0b2 b0b2 b2c

b2b2

Fig. 9. Complete list of the structurally stable Hamiltonian flows on bounded domains with max-
imal words which are of length one or two.
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a0 a2

a a00 a a00 a a00

a2a0 a2a0 a2a2a2c

a0b0 a0b0 a0b2

Fig. 10. Complete list of the structurally stable Hamiltonian flows on unbounded domains with
maximal words which are of length one or two.

for some k ∈ Z≥1, na2 , na0 , nb0,i, nb2,i ∈ Z≥0 (1 ≤ i ≤ k), and nc,i ∈ Z≥1 (1 ≤ i ≤
k − 1) such that n = na2 + na0 +

∑k−1
i=1 (nb0,i + nb2,i + nc,i) + nb0,k + nb2,k.

For instance, there are several maximal words for structurally stable Hamiltonian
flows in unbounded domains, as shown in Fig. 10. It should be noted that the
maximal word is characterized by a regular expression a∗

2a
∗
0(b∗0b∗2c+)∗b∗0b∗2.

Recall that an a0 (respectively, a2, c) structure is innermost if it is as shown in
the first and second depictions (respectively, third depiction, fourth depiction) in
Fig. 11.

It is necessary to represent each structurally stable Hamiltonian flow as a unique
maximal word to facilitate the computational analysis of such flows. Therefore,
we introduce Algorithms 1 and 2, which are variations of the algorithm in [9];
here, I and II are replaced with a2 and a0, respectively, and the auxiliary common
procedure Delete is factored out.

Notice that there are several options of algorithms to use for computing the
same function. Moreover, if the algorithm is changed, then so is the assignment
of a structurally stable Hamiltonian flow to a maximal word in general. Although
Algorithms 1 and 2 return words that are maximal but that generally differ from
those returned by the algorithm in [9], these algorithms assign a structurally stable
Hamiltonian flow to a unique maximal word such that the differences in the maximal

Fig. 11. List of the innermost orbit structures. From left to right: two innermost a0 structures, an
innermost a2 structure, and an innermost c structure.
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Complete transition diagrams of generic Hamiltonian flows with a few heteroclinic orbits

Algorithm 1. Construct a maximal word of the flow generated by the saddle
connection diagram on a bounded domain (a0 and a2 are not contained).
Input: D: a saddle connection diagram on a bounded domain.
Output: w: a maximal word of the flow generated by D.
1: procedure Algorithm1(D)
2: w ← [ ]
3: while D has a b2, b0, or c structure do
4: Delete([b2, b0, c], D, w)

5: return w

Algorithm 2. Construct a maximal word of the flow generated by the saddle
connection diagram on an unbounded domain (a0 and a2 may be contained).
Input: D: a saddle connection diagram on an unbounded domain.
Output: w: a maximal word of the flow generated by D.
1: procedure Algorithm2(D)
2: w ← Algorithm1(D)
3: Delete([a2, a0], D, w)
4: return w

words by the original algorithms and the new algorithms are in the positions of b2

letters. The difference between the two new algorithms is their domains: Algorithm 1
does not accept trees containing a0 and a2, but Algorithm 2 does. Algorithm 2 is
more general than Algorithm 1; if we let f1 and f2 be the functions computed by
Algorithms 1 and 2, respectively, we have f1 ⊂ f2.

Recall that the saddle connection diagram is the union of saddles, ∂-saddles, and
separatrices. The set difference is well defined on the saddle connection diagram D

by the following procedure. The auxiliary procedure Delete(xs , D, w) iteratively
deletes the deletable structures corresponding to the operations xs one by one from
the beginning and adds each corresponding operation to the front of a list w. Recall
that structure a0 is a homoclinic saddle connection with two ss-separatrices (as
shown in Fig. 5(a0)) and structure a2 is two separatrices on a boundary with two
ss-separatrices (as shown in Fig. 5(a2)). Structures a0 and a2 are always deletable
if they do not contain other structures within them. Structure b0 is a bounded
homoclinic saddle connection (as shown in Fig. 5(b0)), and structure c is two ∂-
saddles with a separatrix between them on a boundary (as shown in Fig. 5(c)).
Structures b0 and c are deletable if they are innermost, as shown in Fig. 11. When
structure c is deleted, it can be seen that two ∂-saddles have been merged and then
the resulting fake ∂-saddle has been deleted. The deletion of structure c is the inverse
of operation c. Structure b2 (see Fig. 5(b2)) is deletable if it has a boundary with
just two ∂-saddles connected by a separatrix. Ignoring orbits outside of the saddle
connection diagram, the deletions of saddles, ∂-saddles, self-connected saddles, and
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self-connected ∂-saddles are the inverses of operations a0, a2, b0, and c, respectively
(cf. Fig. 8).

Algorithm 1 takes the saddle connection diagram on a bounded domain D and
returns one of its maximal words. The word w is represented by a list of the five
fundamental operations a0, a2, b0, b2, and c shown in Fig. 8. At line 2, w is initialized
as an empty list [ ], meaning that it is an empty word.

The call Delete([x1, x2, . . . , xn], D, w) deletes as many of the structures of
x1, x2, . . . , xn as possible from D sequentially from the beginning. Sometimes, a
structure xi cannot be taken from the saddle connection diagram D even if the
structure xi remains. For example, if the structure is b2 containing a boundary with
more than two ∂-saddles connected by a separatrix, we cannot immediately delete
structure b2.

Here, the parameters are passed by reference. Hence, when procedure call
Delete(xs , D, w) is executed in Algorithms 1 and 2, the change made to D (respec-
tively, w) in line 4 (respectively, 5) in the body of Algorithm 3 affects the actual
argument D (respectively, w) that is passed.

By b0 structure, we mean a saddle with two self-connected separatrices in the
saddle connection diagram, as shown in the third depiction in Fig. 8. By b2 structure,
we mean a boundary component with a self-connected separatrix that consists of two
∂-saddles and two separatrices in the saddle connection diagram, as shown in the
fourth depiction in Fig. 8. By c structure, we mean a circle in the saddle connection
diagram that is a union of two ∂-saddles and two self-connected separatrices between
them, as shown in the last depiction in Fig. 8.

A single call Delete([b2, b0, c], D, w) might not delete all b2, b0, and c structures.
It is not possible to delete all of the single structures in a single saddle connection
diagram in the case in which there is no deletable structure, that is, when b0 or
c contains other structures within it and b2 has more than a c structure on its
boundary. In Algorithm 1, Delete([b2, b0, c], D, w) is called as long as D has a b2,
b0, or c structure. This iteration deletes as many b2 structures as possible. Then, any
remaining b2 structure in the resulting saddle connection diagram will have more
than a c structure on its boundary. Hence, in order to delete this b2 structure, we

Algorithm 3. Delete the structure corresponding to one element of xs in the saddle
connection diagram, and construct a maximal word.
Input: xs: a list of operations; D: the saddle connection diagram; w: a word to be

made maximal.
1: procedure Delete(xs , D, w)
2: for x ∈ xs do
3: while D has a deletable x structure do
4: delete its saddle connection from D

5: w ← x · w
6: end for
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Complete transition diagrams of generic Hamiltonian flows with a few heteroclinic orbits

first need to previously delete the c structure because the inverse operation deleting
the b0 structure does not create any b2 structures. Note that this deletion order
results in the maximal word.

Algorithms 1 and 2 are determinate, meaning that the same input saddle con-
nection diagrams always produce the same maximal words. This means that the
semantics of these algorithms are functions. However, they are not deterministic
because the same deletable structure may appear in more than one place at times.
Therefore, we have the following well-definedness.

Lemma 2.6 (Determination of Algorithms 1 and 2). Algorithm 1 computes
a function, and Algorithm 2 computes a function.

In procedure Delete, each iteration of the “for” loop (lines 2–6) sets x to be
an element in xs from the beginning to the end. The inner “while” loop deletes
as many x structures as possible. Because the number of elements in xs and the
number of x structures in D are finite, procedure Delete(xs , D, w) is terminating
for any xs and D. This implies the following statement.

Lemma 2.7 (Termination of Delete). For any list of operations xs, any saddle
connection diagram D, and any word w, the procedure call Delete(xs , D, w) is
terminating.

This lemma leads to a statement regarding the guarantee of the termination of
Algorithms 1 and 2.

Lemma 2.8 (Termination of Algorithm1 and Algorithm2). For any saddle
connection diagram D on a bounded domain, the procedure call Algorithm1(D)
is terminating. For any saddle connection diagram D on an unbounded domain, the
procedure call Algorithm2(D) is terminating.

The proofs for the termination of these algorithms are trivial but tedious, and
we simply mention their outline. For any inputs, Algorithm 1 is terminating because
each iteration of its “while” loop decrements the number of b2, b0, and c structures in
D, and Delete is terminating. For any inputs, Algorithm 2 is terminating because
Algorithm 1 is terminating and Delete is terminating. Algorithms 1 and 2 return
one of the maximal words for any input. In other words, we have the following
correctness.

Lemma 2.9 (Correctness of Algorithm1 and Algorithm2). For any saddle
connection diagram D on a bounded domain, the procedure call Algorithm1(D)
returns a unique maximal word. For any saddle connection diagram D on an
unbounded domain, the procedure call Algorithm2(D) returns a unique maximal
word.

Proof. As is mentioned above, after deleting as many b2 structures as possi-
ble because the inverse operation deleting the b0 structure does not create any
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b2 structures, we first need to delete the c structure. This implies that Algo-

rithm1(D) (respectively, Algorithm2(D)) makes a word in the standard form
given in Lemma 2.4 (respectively, Lemma 2.5).

In summary, we can characterize the two algorithms by the following lemmas.
Denote by Hbd,str(n) the set of structurally stable Hamiltonian flows in Hbd(n),
and by Hubd,str(n) the set of structurally stable Hamiltonian flows in Hubd(n). The
algorithms previously given imply the following statements.

Lemma 2.10. There is a recursive injective function from the set of topological
equivalence classes of Hbd,str(n) to the set of maximal words consisting of the three
operations b0, b2, and c.

Lemma 2.11. There is a recursive injective function from the set of topological
equivalence classes of Hubd,str(n) to the set of maximal words consisting of the five
operations a0, a2, b0, b2, and c.

2.6. Transitions of structurally stable Hamiltonian flows

To facilitate reasoning and the analysis of the algorithms, we list all generic transi-
tions among structurally stable Hamiltonian flows.

For a word w = w1w2 · · ·wn and a non-negative integer k ≤ n, we say that
wi1wi2 · · ·wik

is a subword of w if 1 ≤ i1 < i2 < · · · < ik ≤ n. As mentioned after
Lemma 2.3, all generic transitions between structurally stable Hamiltonian flows in
H(n) are either p-unstable or h-unstable.

Recall from [10] that there are 17 operations D0, D0,s, D2, D2,s, E0, E0,s, E2,
E2,s, Φ0, Φ0,s, Λ, Δ1, M1,i, M1,o, M1,s, Ψ(2), Ξ(2n − 1), Ξs(2n − 1), shown in
Fig. 12, the first 14 operations of which add one genus element, and the other 3
of which add more than one genus element, with the counts given in parentheses.
These operations are described as follows:

(D0, D0,s) The operation D0 (respectively, D0,s) adds both a saddle and
its self-connected separatrix to a self-connected separatrix of a
∂-saddle (respectively, non-self-connected separatrix).

(D2, D2,s) The operation D2 (respectively, D2,s) adds a boundary consist-
ing of two ∂-saddles and of two self-connected separatrices to
a self-connected separatrix of a ∂-saddle (respectively, non-self-
connected separatrix).

(E0, E0,s) The operation E0 (respectively, E0,s) adds both a saddle and
its self-connected separatrix to a self-connected separatrix of a
saddle on (respectively, outside of) the boundary of the set of
ss-orbits, as shown in Fig. 12.
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Complete transition diagrams of generic Hamiltonian flows with a few heteroclinic orbits

⇨

⇨

⇨

⇨

⇨

⇨

⇨

⇨

⇨ ⇨

⇨ ⇨

⇨ ⇨

⇨ ⇨

⇨

⇨

D0

D0,s

D2

E0 E0,s

Φ0Φ0,s

Δ1

M1,i

Ψ(2)

Ξ(2n − 1)Ξs(2n − 1)

D0,s

D2,s

D2,s

,
E2 E2,s,

Ψ(2)
s

M1,s
M1,o

⇨

Λ

Fig. 12. The 17 generic transition operations.

(E2, E2,s) The operation E2 (respectively, E2,s) adds a boundary consist-
ing of two ∂-saddles and of two self-connected separatrices to
a self-connected separatrix of a saddle on (respectively, outside
of) the boundary of the set of ss-orbits, as shown in Fig. 12.

(Φ0, Φ0,s) The operation Φ0 (respectively, Φ0,s) splits a saddle into two
saddles and two non-self-connected separatrices whose union
encloses a genus element, as shown in Fig. 12.

(Ψ(2)) The operation Ψ(2) adds two boundary components, two ∂-
saddles, and a saddle with three separatrices among them, as
shown in Fig. 12.

(Ξ(2n− 1),
Ξs(2n− 1))

The operations Ξ(2n− 1) and Ξs(2n− 1) add any positive odd
numbers 2n − 1 of boundary components and separatrices, as
shown in Fig. 12.

(Δ1) The operation Δ1 attaches a pinching with a separatrix from
and to it enclosing a boundary, as shown in Fig. 12.

(M1,i, M1,o,
M1,s)

The operations M1,i, M1,o, and M1,s add a separatrix to a
boundary one of whose end points is attached to a ∂-saddle,
as shown in Fig. 12.
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Because all local transition rules are illustrated in Fig. 12, by calculating all pos-
sible combinations of saddle connections, we can list all transitions among maximal
patterns of the same length as follows.

Lemma 2.12 ([10, Proposition 6.1]). An h-unstable Hamiltonian flow has
exactly one unstable saddle connection (as shown in Fig. 13) which is generated
by a subword in Table 1. A p-unstable Hamiltonian flow has exactly one unstable
saddle connection (as in Fig. 13) which is generated by a subword in Table 1.

This lemma says that the complete list of generic transitions among structurally
stable Hamiltonian flows is given in Fig. 13 up to mirror image and time-reversion
as a directed graph on the sphere.

Let H(n) be either the set of flows in Hbd(n) satisfying condition (A1) or the
set of flows in Hubd(n) satisfying condition (A1).

Recall that the set of p-unstable or h-unstable Hamiltonian flows forms an open
dense subset of the set of non-structurally–stable Hamiltonian flows. Let Hbd,1(n)
(respectively, Hubd,1(n)) denote the set of p-unstable or h-unstable Hamiltonian
flows on a bounded (respectively, an unbounded) domain. The structures D0, D0,s,
D2, D2,s, E0, E0,s, E2, E2,s, Φ0, Φ0,s, Λ, Δ1, M1,i, M1,o, M1,s, Ψ(2), Ξ(2n−1), and
Ξs(2n− 1) are deletable if they are innermost, as shown in Fig. 12. In Algorithm 1,
replacing “b0, b2, or c” by “b0, b2, c, D0, D0,s, D2, D2,s, E0, E0,s, E2, E2,s, Φ0, Φ0,s,
Λ, Δ1, M1,i, M1,o, M1,s, Ψ(2), Ξ(2n − 1), or Ξs(2n − 1)” and replacing [b2, b0, c]

Fig. 13. List of the generic transitions among structurally stable Hamiltonian flows.
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Complete transition diagrams of generic Hamiltonian flows with a few heteroclinic orbits

Table 1. List of subwords corresponding to p-unstable or h-unstable flows
which can be applied under the given preconditions and the postconditions
of subwords.

No. Transition rule Precondition Postcondition

1

b0E0 b0b0 Same as the precondition
b0Φ0 b0b0 Same as the precondition

b2D0 = b0E2 b0b2 Same as the precondition
b2D2 b2b2 Same as the precondition

b2Ψ(2) b0b2c, b2b0c, b2cb0 Same as the precondition
b2Ξ(2n − 1) ckb2c2n−2−k Same as the precondition

ccD0 cb0c, ccb0 Same as the precondition
ccD2 ccb2, cb2c Same as the precondition

ccΞ(2n − 1) ckb2c2n−k Same as the precondition

2

b2M1,i b0b2, b2b0 b2c
b2M1,o b0b2, b2b0 b2c
b2Δ1 b0b2, b2b0 b2c

ccM1,i cb0c, ccb0 ccc
cΔ1 cb0 cc
Δ1 b0 b2

3

a0D0,s a0a0 Same as the precondition
a0Φ0,s a0a0 Same as the precondition

a2D0,s = a0D2,s a2a0 Same as the precondition
a2D2,s a2a2 Same as the precondition
a2Ψ(2) a2a0c Same as the precondition

a2Ξs(2n − 1) a2a2c2n−2 Same as the precondition

4

a0E0,s a0a0 a0b0
a0E2,s a2a0 a0b2
a2cD0 a2a0c a2cb0
a2cD2 a2a2c a2cb2

a2cΨ(2) a2cb0c, a2ccb0 a2a0cc
a2cΞ(2n − 1) a2a2c2n−1 a2ckb2c2n−1−k

5

Λ a0 a2

a2cM1,i a2a0c a2cc
a2cM1,o a2cb0 a2cc
a2M1,s a2a0 a2c
a2Δ1 a2a0 a2c
Λc a0b2 a2c

by [b0, b2, c, D0, D0,s, D2, D2,s, E0, E0,s, E2, E2,s, Φ0, Φ0,s, Λ, Δ1, M1,i, M1,o,
M1,s, Ψ(2), Ξ(2n − 1), Ξs(2n − 1)], summarizing previous lemmas, we obtain the
following statements.

Proposition 2.13. There is a recursive injective function from the set of topological
equivalence classes of Hbd,1(n) to the set of maximal words consisting of the three
operations b0, b2, and c except for one operation D0, D2, E0, E2, Φ0, Λ, Δ1, M1,i,

M1,o, Ψ(2), or Ξ(2n− 1).

Proposition 2.14. There is a recursive injective functions from the set of topolog-
ical equivalence classes of Hubd,1(n) to the set of maximal words consisting of the
five operations a0, a2, b0, b2, and c except for D0, D0,s, D2, D2,s, E0, E0,s, E2,

E2,s, Φ0, Φ0,s, Λ, Δ1, M1,i, M1,o, M1,s, Ψ(2), Ξ(2n− 1), or Ξs(2n− 1).
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(a)

(b)

(c)

(d)

(e)

a2cc

a2cc

a2cc

a2cc

a2cc

⇨
⇨

⇨

⇨

(1)
(2)

(3)

(4)

(5)

a2a0ccb0

a2cccb0

a2a0ccb0

a2M1,sccb0

a2cM1,icb0

Fig. 14. Left: a maximal word a2cc is a set of the five Hamiltonian flows (a)–(e); right: three
Hamiltonian flows (1), (3), (5) and the two intermediate Hamiltonian flows (2), (4).

These propositions are not explicitly stated but are implicitly given in [10]. We
have the following example. Applying a2 once and c twice to a uniform flow, we
obtain the five flows in Fig. 14(a)–14(e).

Namely, the word a2cc, which is a sequence of operations, is a set of the five
flows. Stable Hamiltonian flows are changed by large perturbations. Fig. 14(1)–
(5) shows examples of transitions of structurally stable Hamiltonian flows (1), (3),
(5) via unstable ones (2), (4). There is just one direct transition from (1) to (3),
which must go through (2). Using word representation, we can easily check whether
transitions of flows by a numerical simulation are not incorrect from a topological
point of view. For instance, the transition of flows from (1) to (2) via a single
unstable flow may occur because the word a2a0ccb0 of (1) can be transformed to
the word a2cccb0 of (3) by a single transition rule.

2.7. Creations and annihilations of structurally stable

Hamiltonian flows

In Sec. 2.6, we deal with transitions without creations and annihilations of struc-
turally stable Hamiltonian flows. However, creations and annihilations do appear in
time evaluations of Hamiltonian flows. The application of (creation) operation x to
a word w adds the letter x to word w. For a creation operation x, application of the
annihilation operation denoted by x−1 removes the letter x from word w. Creation
and annihilation operations are applicable only under certain conditions.
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Complete transition diagrams of generic Hamiltonian flows with a few heteroclinic orbits

Data analysis of time evaluations has been widely studied for its applications in
engineering and medical science. Topological data analysis (TDA) is rapidly spread-
ing as a new method for investigations in such areas. For example, to compare
certain materials, a typical TDA method measures distances. Similarly, with topo-
logical flow data analysis, measuring topological distances between flows seems to
be an effective tool for comparing fluid phenomena. For this reason, in the following
section we will define topological distance for topological equivalence classes. There
are two conflicting requirements on this measure: precision and efficiency. Because
of the trade-off, it is important to define several meaningful distances with different
levels of scaling precision that can be processed with different levels of efficiency.

3. Vector Representation for Topological Flow

For some applications, we may require a smaller data representation that is
smaller than word representation because the computational resources are limited
or because information is required for the analysis. The natural number of genus
elements nall is a more abstract representation, in which case creation and annihi-
lation of genus elements are represented by increments and decrements of one. The
distance between two non-negative integer representations is the difference between
the two non-negative integers. Obviously, creation is always possible, whereas anni-
hilation is possible only when nall ≥ 1.

The vectors of the counts of a0, a2, b0, b2, and c, i.e., (na0 , na2 , nb0 , nb2 , nc),
are another representation. Here, nx represents the number of x operations. The
vector representation is a refinement of the single natural number representation
in the sense that nall = na0 + na2 + nb0 + nb2 + nc. The sum of all of the vector
elements of the vectors must be greater than or equal to one. Vector representation
is useful when the number of genus elements frequently changes. In the vectors of
size one, the count of a0, a2, b0, or b2 is one, but the count of c must be zero.
The creation or annihilation of a genus corresponds to an increment or decrement,
respectively, of an element in the vector, respectively. We list all forbidden creations
and annihilations.

Proposition 3.1. Let n(v) := (na0 , na2 , nb0 , nb2 , nc) ∈ (Z≥0)5 be a non-zero vector
of the counts of operations a0, a2, b0, b2, and c. Denote by ≤ the product partial
order on (Z≥0 � {∞})5. Creation is possible in any case except the following:

(c1) When na2 = nb2 = 0 (i.e., n(v) ≤ (∞, 0,∞, 0,∞)), operation c is not applica-
ble.

(c2) When na0 = na2 = 0 (i.e., n(v) ≤ (0, 0,∞,∞,∞)), neither operation a0 nor
operation a2 is applicable.

(c3) When na0 = nc = 0 and na2 �= 0 (i.e., (0, 1, 0, 0, 0) ≤ n(v) ≤ (0,∞,∞,∞, 0)),
neither operation b0 nor operation b2 is applicable.
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Annihilation is possible in any case except the following:

(a1) When nc > 0, na2 = 1, and nb2 = 0 (i.e., (0, 1, 0, 0, 1) ≤ n(v) ≤
(∞, 1,∞, 0,∞)), the annihilation operation a−1

2 is not applicable.
(a2) When nc > 0, na2 = 0, and nb2 = 1 (i.e., (0, 0, 0, 1, 1) ≤ n(v) ≤

(∞, 0,∞, 1,∞)), the annihilation operation b−1
2 is not applicable.

(a3) When nb0 > 0, na0 = 1, and nc = 0 (i.e., (1, 0, 1, 0, 0) ≤ n(v) ≤
(1,∞,∞,∞, 0)), the annihilation operation a−1

0 is not applicable.
(a4) When nb2 > 0, na0 = 1, and nc = 0 (i.e., (1, 0, 0, 1, 0) ≤ n(v) ≤

(1,∞,∞,∞, 0)), the annihilation operation a−1
0 is not applicable.

(a5) When na2 > 0, nb0 > 0, na0 = 0, and nc = 1 (i.e., (0, 1, 1, 0, 1) ≤ n(v) ≤
(0,∞,∞,∞, 1)), the annihilation operation c−1 is not applicable.

(a6) When na2 > 0, nb2 > 0, na0 = 0, and nc = 1 (i.e., (0, 1, 0, 1, 1) ≤ n(v) ≤
(0,∞,∞,∞, 1)), the annihilation operation c−1 is not applicable.

Proof. Notice that all creations are listed in Fig. 8 and that each creation is denoted
by a0, a2, b0, b2, or c. Because the existence of inner boundaries is required to apply
operation c, the exception for case (c1) follows. Operations a0 and a2 can be applied
to unbounded orbits, and so the exception for case (c2) follows. Operations b0 and
b2 can be applied to bounded orbits, and so the exception for case (c3) follows.
Because operation c must be applied to a boundary, the exceptions for cases (a1)
and (a2) follow. Operations b0 and b2 must be applied to bounded domains, and so
the exceptions for cases (a3)–(a6) follow.

We can naively define the distance between two vector representations as the
sum of all of the elements of the difference between the two vectors. However, this
naive distance is not a lower bound on the graph geodesic distance (i.e., the path
length) on the transition graph of the flows, and so in Sec. 5 we will define a
distance more adapted to the transition operation.

4. Transition Diagrams

For any generic Hamiltonian flow with a few heteroclinic orbits, we list all generic
transitions of Hamiltonian flows and construct a complete transition graph to auto-
matically check the correctness as demonstrated in Sec. 2.5.

A subword of a given word is the given word with zero or more letters left out.
In other words, a word P = vp1vp2 · · · vpk

is a subword of a word V = v1v2 · · · vn

if 1 ≤ p1 < p2 < · · · < pk ≤ n. We consider the following word search problem:
given a pair of maximal words P and W , to determine whether P is a subword of
W . We call the maximal word P for a word search problem a pattern. Patterns are
compared by the inclusion of the sets of all maximal words that the patterns have as
a subword. A pattern P is called maximal if there is no pattern that is greater than
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Complete transition diagrams of generic Hamiltonian flows with a few heteroclinic orbits

(a) Length one.

a0a0 a0b0

a0E0,s

a0D0,s/a0Φ0,s

a2a0

a0b2 a2c

a2Δ1

a2M1,s

a0E2,s

a2D0,s/a0D2,s

Λc

a2a2 a2D2,s

b0b0 b0E0/b0Ψ0

b2b2 b2D2

b2b0

b2c

b0b2

b2Δ1

b0E2/b2D0

b0E2/b2D0

b2M1,ob2M1,i

b2M1,ob2M1,ib2Δ1

b0E2/b2D0

cb0 cc
cΔ1

(b) Length two.

a2a0c a2cb0

a2cc

a2cD0

a2cM1,i

a2Ψ(2)

a2cM1,0

a2a2c a2cb2
a2cD2

b0b2c

b2b0c

b2cb0

b2Ψ(2)

b2Ψ(2)

b2Ψ(2)

b2Ψ(2)

b2Ψ(2)

b2Ψ(2)

ccb0 ccc

cb0c

ccD2

ccD0

ccM1,i

ccD0

ccD0

ccb2 cb2c

ccD2 ccD2

ccD2

(c) Length three.

(d) Length four.

Fig. 15. Complete transition graphs for all Hamiltonian surface flow maximal patterns of each
fixed length (1–4).
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(e) Length 2n − 1 (n = 1, 2, . . . and
k = 0, 1, . . . , 2n − 1).

(f) Length 2n (n = 1, 2, . . .).

a2a2c
2n−1

a2c
kb2c

2n−1−k (k = 0, 1, . . . , 2n − 1)

a2cΞ(2n − 1)

ckb2c
2n−k (k = 1, 2, . . . , 2n)

ccΞ(2n − 1)

(g) Length 2n + 1 (n = 1, 2, . . .).

Fig. 16. Complete transition graphs for all Hamiltonian surface flow maximal patterns of each
variable length.

P . Figures 15 and 16 show the essential transition graphs for maximal patterns of
the same length.

Proposition 4.1. The complete transition graphs for maximal patterns of the same
length are shown in Figs. 15 and 16.

Proof. All local transition rules are illustrated in Fig. 12, and the list of all tran-
sitions among maximal patterns of the same length are illustrated in Fig. 13 and
described in Table 1. Therefore, we can easily check that the transition graphs
shown in Figs. 15 and 16 are complete.

Each edge is associated with the name of a transition operation. A relation
V →X W is a transition from a maximal word that has V as a subword to another
maximal word that has W as a subword by the operation X . A relation V →X W

holds if and only if there is an edge with the operation X between the patterns P and
Q, where the pattern P = vp1vp2 · · · vpk

is a subword of the word V = v1v2 · · · vn,
the pattern Q = wq1wq2 · · ·wqk

is a subword of the word W = w1w2 · · ·wn, and
the maximal word of the word which is obtained by replacing vpi in V with wqi for
i = 1, 2, . . . , k is W . For example, we have a2a0a0 →a0E2,s

a0a0b2 because replacing
a2a0 with a0b2 in a2a0a0 becomes a0b2a0, and its maximal word is a0a0b2.

We define a transition graph of maximal words of the same length of structurally
stable Hamiltonian flows as the graph whose vertices are maximal words and whose
edges connect maximal words if there are transitions between them by operations.
Notice that the list of transitions among structurally stable Hamiltonian flows with
maximal words of the same length is finite, and so the transition graph can be
algorithmically computed. In particular, when for readability we omit loops and
edges between maximal patterns having the same vector representations, we obtain
complete transition graphs for all maximal words of length three (Fig. 17) and
length four (Figs. 18 and 19).
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Complete transition diagrams of generic Hamiltonian flows with a few heteroclinic orbits
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Fig. 17. Complete transition graph of Hamiltonian surface flows of maximal word length three.
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Fig. 18. First half of complete transition graph of Hamiltonian surface flows of maximal word
length four.
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Complete transition diagrams of generic Hamiltonian flows with a few heteroclinic orbits
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Fig. 19. Second half of complete transition graph of Hamiltonian surface flows of maximal word
length four.
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Now, we give an example of an analysis that uses a transition graph. In the right
half of Fig. 14, the word of (1) (respectively, (5)) is a2a0ccb0, and the word of (3)
is a2cccb0. Using the transition graph of structurally stable Hamiltonian flows and
comparing the tree structures of the flows, we can estimate the unique intermediate
Hamiltonian flow (2) (respectively, (4)) of (1) and (3) (respectively, (3) and (5))
under an assumption that the transition occurs along the shortest path on the
transition graph. In particular, disregarding the common letter c, we can find the
edge from (1) to (3) (respectively, from (3) to (5)) in the transition graph of length
four in Figs. 18 and 19.

5. Analysis Using Transition Diagrams

Let the L1 distance divided by two (L1/2 distance, in short) d1(v, w) of two vectors
v = (n1, n2, n3, n4, n5) and w = (m1, m2, m3, m4, m5) be the sum

∑5
i=1 |ni−mi|/2,

and let the transition distance of two vectors be the minimum number of applica-
tions of transition rules that will transform one to the other.

By reducing word representations to vector representations, Table 2 can be
obtained from Table 1. Table 2 lists all the transition rules among maximal patterns
of the same length that change at least one operation. To apply a transition rule
to a given vector v, each element of v must be greater than or equal to the one
in the corresponding precondition. When applying a transition rule, we subtract
the diff vector from the elements of the given vector. Then, the postcondition must
be satisfied. An overline in a diff vector represents a negative sign. For example, 1
means −1. Each transition rule can be applied inversely; for this, the precondition
and the postcondition are swapped and the sign of each element of the diff vector
is flipped.

Let the weak transition distance between two vectors be the minimum number
of applications of vector transformations that will transform one to the other. We
denote the weak transition distance and the transition distance between two vectors
v1 and v2 by d2(v1, v2) and d3(v1, v2), respectively. For any v1 and v2, we have
d1(v1, v2) ≤ d2(v1, v2) ≤ d3(v1, v2).

Table 3 shows an example of a flow transition. Each row contains the maximal
word representation, its vector representation, the L1/2 distance from the original
flow a2a2a2, the weak transition distance from the original flow a2a2a2, and the
transition rule to be applied next. This example transition is highlighted in Fig. 20,
which shows part of the transition graph for maximal word length three. Whereas
the L1/2 distances to a2a2a0 and a2a2c are the same because only the last letter
has changed from the original word, the weak transition distance changes from one
to two because at least two transitions Λ and either Δ1 or M1,s are necessary for
the original flow to become the flow a2a2c. The non-negative integer representation
3 remains unchanged during the entire process, which is depicted as the first 5
pictures in Fig. 21.
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Complete transition diagrams of generic Hamiltonian flows with a few heteroclinic orbits
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Fig. 20. A connected part of a transition graph of Hamiltonian surface flows of maximal word
length three.
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a2 a2 a2 a2 a2 a0 a2 a2 c a2 a0 c a2 cc a2 b0 c

Fig. 21. Transition path of length three in Fig. 20.

Using the transition graph of Hamiltonian surface flows, the problem of find-
ing a lower bound on the topological transition distance can be reduced to an
integer programming problem. Therefore, problems of computational fluid dynam-
ics can be reduced to optimization problems. In particular, the relaxation of an
integer program for obtaining the transition distance between two vectors n(v) :=
(na0 , na2 , nb0 , nb2 , nc) ∈ (Z≥0)5 and n(v′) := (n′

a0
, n′

a2
, n′

b0
, n′

b2
, n′

c) ∈ (Z≥0)5 is as
follows:

min
7∑

i=1

xi

s.t. na0 − x1 + x2 + x3 − x4 = n′
a0

na2 − x2 − x3 − x5 = n′
a2

nb0 + x1 − x6 + x7 = n′
b0

nb2 + x3 + x5 + x6 = n′
b2

nc − x3 + x4 − x7 = n′
c.

Table 2. List of transition rules that can be applied under the preconditions and
the postconditions of vectors grouped by the vector differences (i ≥ 1).

No. Transition rule Precondition Diff Postcondition

1
a2cD0 ≥ (1, 1, 0, 0, 1) (1, 0, 1, 0, 0) ≥ (0, 1, 1, 0, 1)
a0E0,s ≥ (2, 0, 0, 0, 0) (1, 0, 1, 0, 0) ≥ (1, 0, 1, 0, 0)
a2cΨ(2) ≥ (1, 1, 0, 0, 2) (1, 0, 1, 0, 0) ≥ (0, 1, 1, 0, 2)

2 Λ ≥ (0, 1, 0, 0, 0) (1, 1, 0, 0, 0) ≥ (1, 0, 0, 0, 0)

3 Λc ≥ (0, 1, 0, 0, 1) (1, 1, 0, 1, 1) ≥ (1, 0, 0, 1, 0)

4 Δ1 ≥ (0, 0, 1, 0, 0) (0, 0, 1, 1, 0) ≥ (0, 0, 0, 1, 0)

5

b2M1,o ≥ (0, 0, 1, 1, 0) (1, 0, 0, 0, 1) ≥ (0, 0, 0, 1, 1)
a2cM1,i ≥ (1, 1, 0, 0, 1) (1, 0, 0, 0, 1) ≥ (0, 1, 0, 0, 2)
a2M1,s ≥ (1, 1, 0, 0, 0) (1, 0, 0, 0, 1) ≥ (0, 1, 0, 0, 1)
a2Δ1 ≥ (1, 1, 0, 0, 0) (1, 0, 0, 0, 1) ≥ (0, 1, 0, 0, 1)

6
a2cD2 ≥ (0, 2, 0, 0, 1) (0, 1, 0, 1, 0) ≥ (0, 1, 0, 1, 1)
a0E2,s ≥ (1, 1, 0, 0, 0) (0, 1, 0, 1, 0) ≥ (1, 0, 0, 1, 0)

a2cΞ(2i − 1) ≥ (0, 2, 0, 0, 2i − 1) (0, 1, 0, 1, 0) ≥ (0, 1, 0, 1, 2i − 1)

7

b2Δ1 ≥ (0, 0, 1, 1, 0) (0, 0, 1, 0, 1) ≥ (0, 0, 0, 1, 1)
cΔ1 ≥ (0, 0, 1, 0, 1) (0, 0, 1, 0, 1) ≥ (0, 0, 0, 0, 2)

a2cM1,o ≥ (0, 1, 1, 0, 1) (0, 0, 1, 0, 1) ≥ (0, 1, 0, 0, 2)
b2M1,i ≥ (0, 0, 1, 1, 0) (0, 0, 1, 0, 1) ≥ (0, 0, 0, 1, 1)
ccM1,i ≥ (0, 0, 1, 0, 2) (0, 0, 1, 0, 1) ≥ (0, 0, 0, 0, 3)
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Complete transition diagrams of generic Hamiltonian flows with a few heteroclinic orbits

Table 3. An example transition and the change of its measures. Here, Vec-
tor rep. (respectively, L1/2 dist., Weak trans. dist., Trans. rule) stands for
Vector representation (respectively, L1/2 distance, Weak transition distance,
Transition rule).

Maximal word Vector rep. L1/2 dist. Weak trans. dist. Trans. rule

a2a2a2 (0, 3, 0, 0, 0) 0 0 Λ
a2a2a0 (1, 2, 0, 0, 0) 1 1 Δ1

a2a2c (0, 2, 0, 0, 1) 1 2 E2,s

a2a0c (1, 1, 0, 0, 1) 2 3 M1,it
a2cc (0, 1, 0, 0, 2) 2 4

Here, xi is the number of applications of transition rule no. i, and the problem
is to minimize the total number of applications of transition rules.

The transition rule a0a0 → a0b0 is referred to by the name E0,s.

6. Conclusion

We have proposed a method for constructing complete transition graphs of generic
Hamiltonian flows with a few heteroclinic orbits. The transition among the vertices
in the graphs is a necessary condition for having structurally stable Hamiltonian
flow changes. The check is computationally lightweight.

To determine the usefulness of the proposed graphs, we plan to conduct exper-
iments using real orbit data and to estimate and improve the performance and
memory usage of the analysis by computer simulations. Our approach does not tar-
get orbits with higher numbers of heteroclinic orbits. More precisely, the transitions
in Fig. 16(a)–16(c) for n greater than one are not considered. The usefulness of the
study toward this end depends on how often the applications require analysis of
the transitions that are less likely to occur in practice. The existence of a transition
edge between vertices in our graphs does not necessarily mean that the transition
is possible for all pairs of orbits in both vertices; it only means that there is at least
one pair of orbits in both vertices that can undergo the transition. The classification
of transitions of generic Hamiltonian flows whose word length is greater than four
has been studied [10], and the analysis of these transitions is reserved for future
work.
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