論文

査読有り
2017年6月1日

Dynamic fracture of tantalum under extreme tensile stress

Science Advances
  • Bruno Albertazzi
  • Norimasa Ozaki
  • Vasily Zhakhovsky
  • Anatoly Faenov
  • Hideaki Habara
  • Marion Harmand
  • Nicholas Hartley
  • Denis Ilnitsky
  • Nail Inogamov
  • Yuichi Inubushi
  • Tetsuya Ishikawa
  • Tetsuo Katayama
  • Takahisa Koyama
  • Michel Koenig
  • Andrew Krygier
  • Takeshi Matsuoka
  • Satoshi Matsuyama
  • Emma McBride
  • Kirill Petrovich Migdal
  • Guillaume Morard
  • Haruhiko Ohashi
  • Takuo Okuchi
  • Tatiana Pikuz
  • Narangoo Purevjav
  • Osami Sakata
  • Yasuhisa Sano
  • Tomoko Sato
  • Toshimori Sekine
  • Yusuke Seto
  • Kenjiro Takahashi
  • Kazuo Tanaka
  • Yoshinori Tange
  • Tadashi Togashi
  • Kensuke Tono
  • Yuhei Umeda
  • Tommaso Vinci
  • Makina Yabashi
  • Toshinori Yabuuchi
  • Kazuto Yamauchi
  • Hirokatsu Yumoto
  • Ryosuke Kodama
  • 全て表示

3
6
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1126/sciadv.1602705
出版者・発行元
American Association for the Advancement of Science

The understanding of fracture phenomena of a material at extremely high strain rates is a key issue for a wide variety of scientific research ranging from applied science and technological developments to fundamental science such as laser-matter interaction and geology. Despite its interest, its study relies on a fine multiscale description, in between the atomic scale and macroscopic processes, so far only achievable by large-scale atomic simulations. Direct ultrafast real-time monitoring of dynamic fracture (spallation) at the atomic lattice scale with picosecond time resolution was beyond the reach of experimental techniques. We show that the coupling between a high-power optical laser pump pulse and a femtosecond x-ray probe pulse generated by an x-ray free electron laser allows detection of the lattice dynamics in a tantalum foil at an ultrahigh strain rate of e ~2 × 108 to 3.5 × 108 s−1. A maximal density drop of 8 to 10%, associated with the onset of spallation at a spall strength of ~17 GPa, was directly measured using x-ray diffraction. The experimental results of density evolution agree well with large-scale atomistic simulations of shock wave propagation and fracture of the sample. Our experimental technique opens a new pathway to the investigation of ultrahigh strain-rate phenomena in materials at the atomic scale, including high-speed crack dynamics and stress-induced solid-solid phase transitions.

リンク情報
DOI
https://doi.org/10.1126/sciadv.1602705
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/28630909
Scopus
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85033801127&origin=inward 本文へのリンクあり
Scopus Citedby
https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85033801127&origin=inward
ID情報
  • DOI : 10.1126/sciadv.1602705
  • ISSN : 2375-2548
  • eISSN : 2375-2548
  • ORCIDのPut Code : 77915435
  • PubMed ID : 28630909
  • SCOPUS ID : 85033801127

エクスポート
BibTeX RIS