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Abstract
This paper proposes a novel countermeasure framework to
detect spoofing attacks to reduce the vulnerability of auto-
matic speaker verification (ASV) systems. Recently, ASV sys-
tems have reached equivalent performances equivalent to those
of other biometric modalities. However, spoofing techniques
against these systems have also progressed drastically. Exper-
imentation using advanced speech synthesis and voice conver-
sion techniques has showed unacceptable false acceptance rates
and several new countermeasure algorithms have been explored
to detect spoofing materials accurately. However, the counter-
measures proposed so far are based on the acoustic differences
between natural speech signals and artificial speech signals, ex-
pected to become gradually smaller in the near future. In this
paper, we focus on voice liveness detection, which aims to vali-
date whether the presented speech signals originated from a live
human. We use the phenomenon of pop noise, which is a dis-
tortion that happens when human breath reaches a microphone,
as liveness evidence. This paper proposes pop noise detection
algorithms and shows through an experimental study that they
can be used to discriminate live voice signals from artificial ones
generated by means of speech synthesis techniques.
Index Terms: automatic speaker verification, voice liveness de-
tection, anti-spoofing, countermeasure, pop noise

1. Introduction
It is well known that biometric authentication has an important
role in reliable management systems nowadays [1, 2]. Auto-
matic speaker verification (ASV) is also an easy-to-use biomet-
ric authentication system using only speakers’ voice samples.
Recently, the performance of the ASV techniques has been im-
proved as a result of e.g. i-Vector [3, 4] or PLDA (probabilistic
linear discriminant analysis) [5] developments, and there are a
lot of reports regarding state-of-the-art schemes that show po-
tential to support mass-market adoption. Meanwhile, speech
synthesis [6, 7] and speech transformation [8], which are tech-
nologies to generate natural-sounding artificial speech with the
targeted speaker’s voice from a given text or an inputted speech
waveform uttered by someone else, have progressed. They are
also active and important research topics in speech informa-
tion processing because the technologies may help individuals
with vocal or communicative disabilities for instance. However,
such technologies can be used to falsify profiles or identities
and perform spoofing attacks against ASV systems, represent-
ing a serious challenge to the successful operation of these sys-
tems [9–11]. Research on the definition and development of
countermeasures for the detection of spoofing attacks already

exists [12–15]. Conventionally, attacks of three different na-
tures are considered: replay, speech synthesis, and voice con-
version. Countermeasure strategies are mainly based on com-
paring acoustic features of artificial signals with those of natu-
ral ones [16–18]. Spectral, F0 and modulation-related features
are among the features used to compute the countermeasures.
However, we expect the acoustic differences between artificial
and natural speech to gradually become smaller and eventually
marginal in the near future.

Looking at other biometrics fields, we see that face, finger-
print, and even iris recognition systems also suffer from spoof-
ing attacks, and researchers have continued to develop several
countermeasures to overcome this problem [19–21]. One of the
most effective countermeasures in other biometrics fields is to
use a “liveness detection” framework that ensures that the per-
son attempting authentication is alive. For image processing
fields, it has been reported that liveness detection frameworks
have reduced vulnerability significantly [22–24]. We can use
the same concept for the ASV system and propose a counter-
measure algorithm based on voice liveness detection (VLD),
so we can detect spoofing materials more robustly. An impor-
tant question is how we ensure the liveness of presented speech
signals to validate whether the presented signals are originated
from a live human or not. For this purpose, in this paper we
focus on pop noise detection. Since pop noise is a common dis-
tortion in speech occurring when human breath reaches a mi-
crophone and is poorly reproduced by loudspeakers [25, 26],
it seems reasonable to consider it as natural evidence of live-
ness at the input of an authentication system. A measure that
takes into account the presence of pop noise phenomena might
therefore represent therefore a good basis to discriminate be-
tween live or played speech (via loudspeakers). This paper pro-
poses two VLD detection strategies to reduce the vulnerability
of ASV systems. To evaluate the effectiveness of the proposed
VLD frameworks, we have recorded some speech on a small
database including voice samples with pop noise. An experi-
mental evaluation was carried out to explore the performance
of the proposed techniques, showing, as it will be furthermore
reported, significant benefits when incorporating them as VLD
modules within the ASV process.

The outline of this paper is as follows. In section 2, the
framework of the voice liveness detection is showed, and pop
noise extraction algorithms are illustrated in section 3. Section 4
describes design of database that includes pop noise. Section 5
and section 6 presents the experimental results and conclusions.
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Figure 1: Overview of automatic speaker verification system
including VLD module

2. Voice liveness detection for speaker
verification system

2.1. Attack to speaker verification systems

The potential for ASV to be spoofed is well recognized and
there is growing interest in assessing the vulnerabilities of ASV
systems and developing countermeasures [9, 10]. The counter-
measures target three main types of spoofing attacks: replay,
speech synthesis, and voice conversion. Each type of attack is
defined as follows:

• Replay: replay of pre-recorded utterances of the target
speaker.

• Speech synthesis: automatic generation of synthesized
speech signals of the targeted speaker based on any input
text.

• Voice conversion: conversion of attacker’s natural voice
towards that of the targeted speaker.

Several countermeasures against each type of spoofing attack
have been reported. We can simply use text-prompted ASVs
and change prompts every time to protect against replay attacks
[27, 28]. However, no methods have reached a fundamental so-
lution against the spoofing attacks using speech synthesis and
voice conversion. Considering the actual procedures for spoof-
ing attacks, all spoofing attacks have to play spoofing speech via
loudspeakers. In other words, if we can distinguish speech pro-
duced by a live human from speech played via loudspeakers, we
can protect against all types of spoofing attacks including even
attacks using unknown voice conversion and speech synthesis
methods.

2.2. Framework of voice liveness detection

Figure 1 shows a diagram of an automatic speaker verification
system including the VLD module. The VLD module aims to
reject all speech signals that do not include liveness evidence
regardless of spoofing type. Speaker verification is conducted
as usual in a subsequent module. Although this figure illus-
trates a sequential combination of VLD and ASV modules, it is
also possible to carry out the VLD and ASV modules simulta-
neously.

What is the liveness evidence included in a speech wave-
form? The VLD needs to detect and capture characteristics in-
cluded only in speech produced by a live human. The human
voice can be briefly described as a result of acoustic shaping in
the vocal tract of the airflow produced following the interaction
between various elements such as lungs, vocal chords, and lips.
Then, to record the sound, the resulting airflow is transformed

Figure 2: Spectrogram comparison of recording using (top) or
not using pop filter (bottom). Significant differences can be seen
at low frequency at locations perceived to have pop noise.

to an acoustical signal when it is captured via a microphone. As
a consequence of spontaneous strong breathing the convolution
process between the airflow and the vocal cavities may result in
a sort of perceived plosive burst, commonly know as pop noise,
which can be captured via a microphone. On the other hand,
the acoustic conditions change when this same sound is played
via loudspeakers, commonly resulting in a poor reproduction
of pop noise phenomena. Thus, by detecting pop noise events,
we may be able to distinguish live human voices from playback
sound via loudspeakers.

3. Voice liveness detection algorithms
To capture the phenomenon of pop noise as liveness evidence,
this paper proposes two VLD detection strategies to reduce the
vulnerability of ASV systems.

3.1. Low-frequency-based single channel detection

Pop noise in single channel signals are found in speech wave-
forms as sudden irregular modulations of strong energy within
varying durations typically ranging between 20 and 100 msec.
This phenomenon appears as high energy regions at very low
frequency compared to when using a pop noise filter, as shown
in Figure 2. This gives us a clue to define a simple strategy for
detection.

More precisely, we firstly define the measure LFnrg(k) as
the average of the Fourier transform (FT) bins within the inter-
val [0, LFmax]. The frequency precision should be high enough
to explore a very low-band with more than a single FT bin. Ac-
cordingly, an analysis window of size N , corresponding to a
precision of 10Hz in the FT and LFmax = 40Hz was found
as a sufficient choices. Note that LFmax might be set below ex-
pected pitch values in order to not consider energy contributions
from harmonic content. Following, LFnrg(k) was computed
over frames of size N with a hop-size of M = N/8 and pop
noise events Ploc(i) were identified as the maxima of LFnrg(k)
with values larger than three times its standard-deviation, keep-
ing a minimum distance of D = 1.5N between candidates.

The boundaries are estimated by approximation in the
neighborhood of each Ploc(i) according to two conditions:
firstly, a drop in LFnrg(k) of LFdr = 0.35 times the value at
Ploc(i). Then, the boundaries are extended if the absolute value
of the derivative of LFnrg(k) is higher than LFddr = 0.35
times its value at Ploc(i). With these conditions we aim to as-
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Figure 3: Example of pop noise detection based on single chan-
nel method. Time-domain signals (top), average low-band en-
ergy (middle), its derivate (bottom), and the detected pop noise
boundaries (red dotted).
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Figure 4: Recording process in two channel method

sert a minimum/maximum energy variation (velocity) once it
is ensured: similarly, there will be a relative increment/drop in
the pop noise energy. An example can be seen in Figure 3,
which shows the waveform of the recording version (top). It
also shows the computed LFnrg(k) for the waveform with pop
noise (middle) and its derivate (bottom). The detected bound-
aries are denoted by the red dotted intervals.

Although the configuration of the processing parameters
should be manually verified for significant pop noised cases,
the suggested parameters, empirically found, showed sufficient
performance on samples of several speakers of our database.

3.2. Subtraction-based pop noise detection with two chan-
nels

The pop noise detection algorithm using a single channel mi-
crophone is focused on low-frequency energy. To capture the
whole frequency components of the pop noise, another pop
noise detection algorithm is proposed here.

In the second algorithm, two microphones are used and
only one of them has a pop filter as shown in Figure 4. Let
Fx(b, w) and Fp(b, w) be the short-time Fourier transforms
(STFT) of the filtered speech and non-filtered speech respec-
tively, where b and w stand for the indices of time frame and an-
gular frequency. In the two channel method, assuming that only
Fp(b, w) includes pop noise, it is estimated by subtracting the
ordinary speech component from Fp(b, w) by using Fx(b, w)
as follows.

D(b, ω) = Fp(b, ω)− C(ω)Fx(b, ω), (1)

where C(ω) represents a compensation filter between the fre-
quency characteristics of the two channels. An estimate of
C(ω) to minimize

∑
b,ω |D(b, ω)|2 can be represented as fol-

lows.

C(ω) =

∑
b Fp(b, w)Fx(b, w)∗∑

b |Fx(b, w)|2 , (2)

where ∗ denotes complex conjugate.

4. Design of database
Since the proposed framework focuses on speech signals that
include pop noise, a database of speech signals that includes
pop noise is required. Recently, the NIST SRE database [29]
has been used globally for the evaluation sets of ASV sys-
tems. However, the database provides conversational telephone
speech and it contains no pop noise, so the proposed frame-
work could not evaluate the conventional databases. Therefore,
a new database including pop noise signals is required to be
constructed. It is well know that some kinds of microphones
are very sensitive to breath noise [30, 31]. However, there is
no preliminary information about pop noise recording and mi-
crophone types to be used. Then, we have used three types of
microphones as below:

• Microphone with a voice recorder (VOICE) (SONEY
ECM-DM5P)

• Compatible microphone with camcorder (CAM) (SONY
ECM-XYST1M)

• Microphone with a headset (HEADSET) (SHURE
SM10A-CN)

Two microphones of each type are used where one has a pop
filter and the other does not (Fig. 4). That is, we designed a six-
channel microphone system (Fig. 5). The characteristics of the
microphones are as follows. The VOICE microphone is most
sensitive to pop noise, and even when using a pop filter, pop
noise is often obtained. There is a clear difference between the
waveforms of the CAM microphone with a pop filter and those
without any pop filter when compared to those of the VOICE
microphones. The waveforms of the HEADSET microphones
are almost the same with a pop filter and without any pop filter;
nevertheless, the HEADSET microphones were set closest to
the speaker’s mouth. The speech signals were sampled at a 48
kHz with a 16 bit rate.

We have recorded a total of 17 female speakers of Japanese.
Each speaker reads out 100 sentences in total. Half of the sen-
tences are know to all the speakers and the other half are ran-
domly selected from Japanese News paper Article Sentences
(JNAS) [32], and each speaker uses a different set of randomly
selected sentences. The 50 common sentences are chosen based
on phonetic coverage. We also pre-selected relatively short sen-
tences from the JNAS corpus before the random selection of the
rest of the 50 sentences.

5. Evaluation experiments
5.1. Experimental conditions

Thirty utterances per speaker recorded with the three micro-
phones (without using the pop filter) were randomly selected to
be used as test data of live speech. The spoofing materials used
in our experiments were generated using the statistical paramet-
ric speech synthesis framework described in [6]. Through this
system it is possible to reproduce a speaker’s voice using only
few minutes of his recorded speech [33] thanks to its speaker
adaptation techniques based on structural variational Bayesian
linear regression [34]. Fifty sentences recorded with the headset
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Figure 5: Six microphones are used simultaneously for record-
ing speech data with and without pop filters. Distance from and
position in relation to speaker’s mouth for each microphone are
fixed roughly.

microphone were used as fixed adaptation data of each speaker.
A pop filter was used since this is commonly considered in
the recording conditions for clean speech. Then, spoofing data
was artificially generated by setting up the synthesizer for each
target speaker with the corresponding data. The recorded ut-
terances correspond to the randomly selected ones aforemen-
tioned. The spoofing materials were played with a loudspeaker
(BOSE 111AD) facing the video camera and condenser micro-
phones.

Finally, a standard GMM-UBM-based speaker verification
method [35] was setup as ASV system. Note that in this
work we investigate the effectiveness of the VLD module rather
than focusing on the state-of-the-art of ASV techniques. The
speaker-dependent models of individual speakers in the ASV
system were build using the fifty fixed and twenty randomly
selected sentences recorded with the headset microphone us-
ing a pop filter. The number of mixtures was set to 2048, and
the UBM was trained with about 23000 utterances from JNAS
database [32], the standard database for automatic speech and
speaker recognition systems in Japan. For STFT analysis it was
considered a Hamming window of size 4096 and a hope-size of
2048 points.

5.2. Experimental results

Table 1 shows the equal error rate (EER) of the VLD meth-
ods with the test date with a single channel algorithm and two
channels algorithms. For each algorithm, the EER is calculated
when the percentage of misclassified live voice (false positive
rate) is equal to the percentage of misclassified artificial voice
(false negative rate). First, looking at the results of the single
channel algorithm (assuming that the phenomenon of pop noise
can be identified at low frequency), we were able to signifi-
cantly capture human liveness information, especially via the
voice recorder and headset microphones. Besides this micro-
phone dependency the results let us claim effectiveness of this
VLD strategy to reduce the vulnerability of ASV systems. Note
that the two channel method also shows an interesting perfor-
mance when using a headset microphone. Although these re-
sults denote principally the usefulness of very low-frequency
energy content as indicator of pop-noise events both strategies
show capacity for liveness detection and should be evaluated
within the ASV framework.

Accordingly, a VLD module was incorporated to the ASV
system, as shown in Figure 1, and a second evaluation was car-

Table 1: EERs of VLD algorithms with some microphones

Microphone Single ch. Two ch.
VOICE 4.73% 29.11%
CAM 36.06% 45.52%

HEADSET 3.95% 5.88%

Table 2: EERs of the ASV system with test data which includes
Spoofing Attacks data (w/ SA) or not (w/o SA). And the EERs
of the VLD+ASV system.

VLD+ASV
microphone w/o SA w/ SA single ch. two ch.

VOICE 5.49% 5.53% 5.48% 5.49%
CAM 4.69% 6.61% 5.23% 5.30%

HEADSET 4.28% 6.61% 4.45% 4.28%

ried out accordingly. Table 2 illustrates the resulting EERs of
the ASV system with or without pop noise, and the EER of the
VLD+ASV system.

Firstly, note that the degradations of the performance suf-
fered by the ASV system as a consequence of the spoofed data.
Denoting the HEADSET and CAM microphones larger ones.
We suggest that this distinctive sensitivity to the spoofing data
may come from the fact that the spoofed data was obtained by
enrollment speech recorded with HEADSET microphone. Be-
sides this, it can be seen that the VLD+ASV system clearly re-
duces the vulnerability to the spoofing attacks. These results let
us claim a promising effectiveness of the proposed techniques
against spoofing attacks.

6. Conclusion
In this paper, novel VLD algorithms are proposed to reduce the
vulnerability of ASV systems against playback spoofing attacks
by detecting liveness information according to features informa-
tive of the presence of pop noise. This liveness information al-
low us to detect whether input speech was generated directly by
a human being or reproduced by a device at the moment when it
is captured for verification. The proposed algorithms focuses on
identifying pop noises naturally appearing in the voice, which
were found to be significantly reduced by some microphones
after being reproduced through loudspeakers. One algorithm
based on a single microphone was proposed to capture the dis-
tortion at low frequency as pop noise. Another algorithm based
on two microphones was proposed to capture the pop noises by
comparing the filtered channel with the non-filtered channel. To
evaluate our proposed algorithms, a database that contains the
pop noises was constructed. From the experimental results, we
showed that the proposed algorithms could significantly iden-
tify pop noises events, and hence, to be effective to discriminate
live voice signals from artificial ones. Our future work includes
trials using a larger database and to study further improvement
of the VLD algorithms. The use of waveform concatenation-
based synthesis and voice conversion to generate waveforms
including pop noise elements should be also considered.

7. Acknowledgements
This work was supported in part by Grant-in-Aid for Young Scien-
tists (Start-up), 25880026, and Grant-in-Aid for scientific Research (B),
26280066.

242



8. References
[1] A. Jain, P. Flynn, and A. Ross, “Handbook of biometrics,” 2007.

[2] N. Poh and J. Korczak, “Hybrid biometric person authentication
using face and voice features,” in Audio- and Video-Based Bio-
metric Person Authentication, ser. Lecture Notes in Computer Sci-
ence, J. Bigun and F. Smeraldi, Eds. Springer Berlin Heidelberg,
2001, vol. 2091, pp. 348–353.

[3] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouel-
let, “Front-end factor analysis for speaker verification,” Audio,
Speech, and Language Processing, IEEE Transactions on, vol. 19,
no. 4, pp. 788–798, May 2011.

[4] “NIST i-vector Challenge 2014,”
http://www.nist.gov/itl/iad/mig/ivec.cfm.

[5] S. Prince and J. Elder, “Probabilistic linear discriminant analysis
for inferences about identity,” in Computer Vision, 2007. ICCV
2007. IEEE 11th International Conference on, Oct 2007, pp. 1–8.

[6] H. Zen, K. Tokuda, and A. W. Black, “Statistical parametric
speech synthesis,” Speech Communication, vol. 51, no. 11, pp.
1039 – 1064, 2009.

[7] A. Hunt and A. Black, “Unit selection in a concatenative speech
synthesis system using a large speech database,” in Acoustics,
Speech, and Signal Processing, 1996. ICASSP-96. Conference
Proceedings., 1996 IEEE International Conference on, vol. 1,
May 1996, pp. 373–376 vol. 1.

[8] Y. Stylianou, “Voice transformation: A survey,” in Acoustics,
Speech and Signal Processing, 2009. ICASSP 2009. IEEE Inter-
national Conference on, April 2009, pp. 3585–3588.

[9] N. Evans, T. Kinnunen, and J. Yamagishi, “Spoofing and coun-
termeasures for automatic speaker verification,” in Interspeech,
2013, pp. 925–929.

[10] N. W. D. Evans, T. Kinnunen, J. Yamagishi, Z. Wu, F. Alegre, and
P. De Leon, Speaker recognition anti-spoofing. Book Chapter in
”Handbook of Biometric Anti-spoofing”, Springer, S. Marcel, S.
Li and M. Nixon, Eds., 2014, June 2014.

[11] N. K. Ratha, J. H. Connell, and R. M. Bolle, “Enhancing secu-
rity and privacy in biometrics-based authentication systems,” IBM
Systems Journal, vol. 40, no. 3, pp. 614–634, 2001.

[12] L.-W. Chen, W. Guo, and L.-R. Dai, “Speaker verification against
synthetic speech,” in Chinese Spoken Language Processing (ISC-
SLP), 2010 7th International Symposium on, Nov 2010, pp. 309–
312.

[13] Z.-Z. Wu, C. E. Siong, and H. Li, “Detecting converted speech and
natural speech for anti-spoofing attack in speaker recognition.” in
INTERSPEECH, 2012.

[14] M. Faundez-Zanuy, M. Hagmller, and G. Kubin, “Speaker
verification security improvement by means of speech
watermarking,” Speech Communication, vol. 48, no. 12, pp.
1608 – 1619, 2006, {NOLISP} 2005. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167639306000653

[15] M. Nematollahi, S. Al-Haddad, S. Doraisamy, and M. Ranjbari,
“Digital speech watermarking for anti-spoofing attack in speaker
recognition,” in Region 10 Symposium, 2014 IEEE, April 2014,
pp. 476–479.

[16] A. Sizov, E. Khoury, T. Kinnunen, Z. Wu, and S. Marcel, “Joint
speaker verification and antispoofing in the i -vector space,” In-
formation Forensics and Security, IEEE Transactions on, vol. 10,
no. 4, pp. 821–832, April 2015.

[17] R. McClanahan, B. Stewart, and P. De Leon, “Performance of i-
vector speaker verification and the detection of synthetic speech,”
in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE
International Conference on, May 2014, pp. 3779–3783.

[18] J. Gaka, M. Grzywacz, and R. Samborski, “Playback attack detec-
tion for text-dependent speaker verification over telephone chan-
nels,” Speech Communication, vol. 67, no. 0, pp. 143 – 153, 2015.

[19] I. Chingovska, A. Anjos, and S. Marcel, “On the effectiveness of
local binary patterns in face anti-spoofing,” in Biometrics Special
Interest Group (BIOSIG), 2012 BIOSIG - Proceedings of the In-
ternational Conference of the, Sept 2012, pp. 1–7.

[20] D. Yambay, J. Doyle, K. Bowyer, A. Czajka, and S. Schuckers,
“Livdet-iris 2013 - iris liveness detection competition 2013,” in
Biometrics (IJCB), 2014 IEEE International Joint Conference on,
Sept 2014, pp. 1–8.

[21] N. Evans, S. Li, S. Marcel, and A. Ross, “Guest editorial special
issue on biometric spoofing and countermeasures,” Information
Forensics and Security, IEEE Transactions on, vol. 10, no. 4, pp.
699–702, April 2015.

[22] B. Toth, “Liveness detection: Iris,” in Encyclopedia of Biometrics,
S. Li and A. Jain, Eds. Springer US, 2009, pp. 931–938.

[23] S. Schuckers, “Liveness detection: Fingerprint,” in Encyclopedia
of Biometrics, S. Li and A. Jain, Eds. Springer US, 2009, pp.
924–931.

[24] X. Tan, Y. Li, J. Liu, and L. Jiang, “Face liveness detection from a
single image with sparse low rank bilinear discriminative model,”
in Computer Vision ECCV 2010, ser. Lecture Notes in Com-
puter Science, K. Daniilidis, P. Maragos, and N. Paragios, Eds.
Springer Berlin Heidelberg, 2010, vol. 6316, pp. 504–517.

[25] G. Elko, J. Meyer, S. Backer, and J. Peissig, “Electronic pop pro-
tection for microphones,” in Applications of Signal Processing to
Audio and Acoustics, 2007 IEEE Workshop on, Oct 2007, pp. 46–
49.

[26] Y. Hsu, “Spectrum analysis of base-line-popping noise in mr
heads,” Magnetics, IEEE Transactions on, vol. 31, no. 6, pp.
2636–2638, Nov 1995.

[27] T. Matsui and S. Furui, “Concatenated phoneme models for text-
variable speaker recognition,” in Acoustics, Speech, and Signal
Processing, 1993. ICASSP-93., 1993 IEEE International Confer-
ence on, vol. 2, April 1993, pp. 391–394 vol.2.

[28] D. Delacretaz and J. Hennebert, “Text-prompted speaker verifi-
cation experiments with phoneme specific mlps,” in Acoustics,
Speech and Signal Processing, 1998. Proceedings of the 1998
IEEE International Conference on, vol. 2, May 1998, pp. 777–
780 vol.2.

[29] “NIST Speaker Recognition Evaluation (SRE),”
http://www.itl.nist.gov/iad/mig/tests/spk/.

[30] Y. Nishida, T. Hori, T. Suehiro, and S. Hirai, “Monitoring of
breath sound under daily environment by ceiling dome micro-
phone,” in Systems, Man, and Cybernetics, 2000 IEEE Interna-
tional Conference on, vol. 3, 2000, pp. 1822–1829 vol.3.

[31] K. Naraharisetti, “Enhancement of breathing signal using delay-
less subband adaptive filter with hpf,” in Signal Processing and
Information Technology (ISSPIT), 2010 IEEE International Sym-
posium on, Dec 2010, pp. 177–181.

[32] K. Ito, M. Yamamoto, K. Takeda, T. Takezawa, T. Matsuoka,
T. Kobayashi, K. Shikano, and S. Itahashi, “Jnas: Japanese speech
corpus for large vocabulary continuous speech recognition re-
search,” the Acoustical Society of Japan (E), vol. 20, no. 3, pp.
199–206, 1999.

[33] J. Yamagishi and T. Kobayashi, “Average-voice-based speech
synthesis using hsmm-based speaker adaptation and adaptive
training,” IEICE TRANSACTIONS on Information and Systems,
vol. 90, no. 2, pp. 533–543, 2007.

[34] S. Watanabe, A. Nakamura, and B.-H. Juang, “Structural bayesian
linear regression for hidden markov models,” Journal of Signal
Processing Systems, vol. 74, no. 3, pp. 341–358, 2014.

[35] D. Reynolds, T. Quatieri, and R. Dunn, “Speaker verificaion us-
ing adapted gaussian mixture models,” Degital Signal Orocess,
vol. 10, no. 1, pp. 19–41, 2000.

243


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by Junichi Yamagishi
	----------

