
TRANSENTCUT — TRANSFORMER BASED THAI SENTENCE
SEGMENTATION

A PREPRINT

Sumeth Yuenyong
Faculty of Engineering

Mahidol University
Thailand

sumeth.yue@mahidol.edu

Virach Sornlertlamvanich
Asia AI Institute, Faculty of Data Science

Musashino University
Japan,

Faculty of Engineering
Thammasat University

Thailand
virach@musashino-u.ac.jp

August 17, 2021

ABSTRACT

We propose TranSentCut, a sentence segmentation model for Thai based on the transformer architec-
ture. Sentence segmentation for Thai is a problem because there is no end of sentence marker like in
other languages. Existing methods make use of POS tags, which is not easy to label and must be done
for every word in the data. This limits the the applicability and performance of sentence segmentation
on open-domain text, because the only high-quality Thai corpus that has sentence boundary and POS
labels was constructed mostly from academic articles. Our approach only use raw text for training
and the only labelling required is to separate each sentence into its own line in a text file. This makes
new datasets much easier to construct. Comparison with existing methods show that our proposed
model is competitive with the most recent state-of-the-art, and improved significantly over existing
publicly available libraries when applied to out-of-domain input texts.

Keywords Sentence Segmentation · Natural Language Processing · Thai Language

1 Introduction

The sentence unit is an important information to process a language text as an initial unit. Many tasks in Natural
Language Processing (NLP) such as information extraction [1] rely on being able to extract complete sentences
accurately. For most languages extracting sentences from text is a trivial task due to the use of end of sentence marker.
Even languages that do not have space between words such as Chinese or Japanese use end of sentence marker. However,
Thai does not use any sentence marker, but instead put a space between the end of one sentence and the start of the next
one. This makes sentence segmentation in Thai very ambiguous, as the space character is used for many other purposes:
separating items in a list, separating clauses in the same sentences (Thai does not use comma to separate clauses), and
separating ordinal number from the unit such as "1 person", for example.

The Thai NLP community has tackled the sentence segmentation problem over the years. In the early 2000’s there were
[2, 3] that used part-of-speech (POS) tags [4] by forming bi/tri-gram of the POS tags leading up to a space or on both
sides of a space as features, which were then used to train a machine learning model whose job was to classify a space
as nsb (non-sentence boundary) or sb (sentence boundary). More recently [5, 6] incorporated conditional random field
(CRF), a technique invented for sequence labelling [7]. Using CRF allowed one to model the probabilistic transition
between the current POS tag and the next one. This recursion then enabled the context (POS tags on either side) of a
space in question to extend further than a few words on both sides. CRF also allowed for the possibility of inserting
explicit rules, such as "do not break the sentence between a number and a unit", into the model by defining these rules

https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0000-0000-0000

arXiv Template A PREPRINT

as feature functions. The most popular Thai NLP library PyThaiNLP1 uses CRF as the default engine for sentence
segmentation. In [5] the authors proposed solving both POS tagging and sentence segmentation as the same problem by
considering the space character as just a normal character that can be assigned the <SB> or <NSB> POS tags. They
also used Factorial CRF [8] which models the connection between different layers in a multi-layered CRF chain in
addition to the temporal connections found in standard (linear-chain) CRF. In [6] the authors focused on improving
the performance of word and sentence segmentation where compound words are involved. Compound words can be
incorrectly POS tagged, causing problems for any models that use POS tags. They addressed this problem by proposing
a word merging dictionary through which compound words can be separated into their individual parts and tagged
correctly.

In recent years, due to the success of Deep Learning [9], many researchers proposed improvements over existing
methods by applying deep learning models. In [10] the authors proposed adding n-gram embedding, an idea made
possible by word2vec [11], to the Bidirectional LSTM-CRF model [12], and incorporating attention mechanism [13] in
order to model the long term dependency for words far away from the space under consideration.

While the performance of the latest Thai sentence segmentation algorithms are already outstanding, every one of them
rely on training data with POS tags. The ORCHID corpus [14, 15] is an excellent Thai text corpus that have labels both
for POS tags as well as word/sentence boundaries. However, constructing such as corpus was very time-consuming and
required special expertise. ORCHID uses a system of over 20 different POS tags, as such, labeling text in such system
is a difficult task in itself. Moreover, every single word in the corpus must be labelled, not just the sentence boundaries.
This is a disadvantage because ORCHID consists of mostly technical/academic articles, where the language is very
specific. Any model trained on it will face out-of-domain inputs when applied to open-domain texts, and not being able
to easily construct new training data for other domains of text, due the difficulty in labelling, limits the applicability of
any sentence segmentation methods "in the wild".

In order to overcome this limitation and inspired by the recent success of the transformer architecture [13] in NLP, in
this paper we proposed a Thai sentence segmentation method based on a derivative of BERT [16] called RoBERTa [17].
The idea is simple: the model receives a pair of sequences as input. Sequence A is everything to the left of a space to be
decided as sb/nsb, and similarity sequence B is everything to the right, up to the maximum length of the model (512
tokens), or a lower prescribed limit, or the beginning/end of a paragraph. The sequences are in raw text without the
need for any word tokenization. POS tags are also not needed. The task of the model is binary classification between
sb/nsb, which is repeated for each space character is the text. We release our code on Github2. Additionally the trained
model is on Huggingface Model Hub3. In Section 2, we describe our proposed method for sentence segmentation of the
Thai text. We discuss on the experiment results in Section 3 by evaluating against the existing approaches, and show the
results of the class weight adjustment for precise evaluation and fine-tuning of the context length. Finally, we come up
with the Section of conclusion and some samples of the sentence segmentation.

2 Proposed Method

Transformers models are usually “pretrained" in a self-supervised manner on a large text corpus and then finetuned for a
specific problem. The pretraining task is usually a language modelling task, where the model is asked to predict the next
word for the GPT [18] family of models, or to predict the masked words in what is called the masked language model
(MLM, Figure 4) task for the BERT family. Additionally the pretraining task may include some sort of sentence-level
task such as predicting whether sentence B should follow sentence A, called the next sentence prediction in BERT. This
is not ideal for Thai since we are trying to solve sentence segmentation in the first place. However the RoBERTa model
uses only the MLM task and no sentence-level task for pretraining, making it ideal for use with Thai. Recently a model
called WangchanBERTa was released by [19], pretrained on ≈ 70 GB of text, the largest publicly available pretrained
transformer model for Thai. We finetuned WangchanBERTa in this work.

We parsed the ORCHID corpus, which is given in XML file, into a text file which has the following structure: each line
is a complete sentence, and paragraphs/documents are separated by one blank line. We did not consider the pairs of last
sentence in paragraph i and the first sentence in paragraph i+ 1. That is, we assume that the model will only work on
one paragraph at a time. Paragraphs segmentation is a trivial matter with the newline character.

We implemented the training of the model in Pytorch [20] and the Huggingface library [21]. The released pretrained
WangchanBERTa model is available on the Huggingface Model Hub4. An input training example to the model looks

1https://github.com/PyThaiNLP/pythainlp
2Link to be updated.
3Link to be updated.
4https://huggingface.co/airesearch

2

arXiv Template A PREPRINT

Figure 1: An example of text presented to the model, the cyan hi-lighted (darker) part is sequence A and the yellow
hi-lighted (lighter) part is sequence B. Note that there is a space between the cyan part and the yellow part. This space
is an nsb (non-sentence boundary). The visible dot between the cyan part and the yellow part is from MS word, not the
text itself.

Figure 2: The same paragraph as in the previous figure but now the space under consideration is a different one. The
sequences A and B with respect to this space is hi-lighted using the same color code as in the previous figure. This
space is an sb (sentence boundary).

like the following: <s>sequenceA</s>sequenceB</s>, where <s> and </s> are special token used by the model. <s>
denote the beginning of input and </s> acts as both the separator between two sequences and to denote the end of
input. As an example of the input that the model sees, see Figure 1 and 2, where the paragraph was taken from a Thai
Wikipedia article about the Hubble Space Telescope. Figure 3 illustrate the input to the TranSentCut model. Each space
character in the input string yields one input to the model.

It can be seen from Figures 1 and 2 that using a transformer model with a maximum input length of 512 tokens allows
for the context to become very long, spanning an entire paragraph. One could argue that it can even be too long, a word
very far away from the space under consideration probably does not influence whether it’s sb or nsb. As will be shown
in the ablation study, above a certain length making the context longer does not help. However, the optimal context
length is still well over 100 tokens long, demonstrating that deciding between sb/nsb does benefit from having longer
context information. This is a strong argument for the use of the transformer architecture.

3 Experiments

Going through the entire ORCHID corpus in a manner described in the previous section, there were 79137 examples of
nsb spaces and 13384 examples of sb space. The imbalance is by the nature of the problem. In the ablation study we

3

arXiv Template A PREPRINT

Figure 3: Illustration of how we apply the transformer model to solve sentence segmentation. Transformer model can
accept one or two sequences as an input. The two-sequences input is used for the tasks such as next sentence prediction
or questions answering, and can be applied to sentence segmentation.

Figure 4: Illustration of the MLM task. The tokens "<mask>" are hidden from the model during pretraining, the model
job is to predict them from a set of all possible tokens in the vocabulary.

show the results of different ways of dealing with the imbalance. Here we state the best result which was obtained using
the following set of hyper-parameters:

1. context length = 256 tokens

2. number of epochs = 20

3. seed = 12345

4. batch size = 64

5. weight decay = 9.51207e-5

6. learning rate = 4.05813e-5

7. class weight strategy 2 (see Section 3.2.1)

The weight decay and learning rate were taken from hyper-parameter optimization on a another Thai text classification
problem using the same model architecture. The same seed was used for both spliting the data into train/test, shuffling
the data and initializing the model, insuring that the training is perfectly repeatable given the same hyper-parameters.
Comparison between our results with the numbers stated in crfcut5 (the sentence segmentation engine for PyThaiNLP)
for ORCHID, we have the result in Table 1. The prefix I and E denote “inside sentence" and “end of sentence"
respectively, corresponding to our notation of nsb and sb, respectively. The metric space-correct (sc) is just the overall
classification accuracy, which is given by sc = (#correct sb+#correct nsb)/(total # of space tokens). These metrics were

5https://github.com/vistec-AI/crfcut

4

arXiv Template A PREPRINT

Table 1: Comparison between TranSentCut and crfcut on ORCHID data
I-precision I-recall I-fscore E-precision E-recall E-fscore space-correct

crfcut 0.9800 0.9900 0.9900 0.8500 0.7100 0.7700 0.8700
TranSentCut 0.9855 0.9726 0.9790 0.8484 0.9145 0.8802 0.9643

introduced in [2]. While we did not achieve higher number for every single metric, we made large gains on E-recall,
E-fscore and space-correct, while maintaining within around 2% of the other metrics. Taking the macro average of
I-fscore and E-fscore, we got 0.9296 vs. 0.8800 for crfcut. And comparing our results with the ORCHID part of Table 3
in [10], the most recent and similar to this work, their macro average fscore as reported was 0.9250.

3.1 Performance on Out of Domain Data

In order to test the performance of sentence segmentation on out-of-domain data, we constructed a small test set
consisting of paragraphs from news articles. We choose only recent articles to make sure that they were not part of
the training data of any model. The articles were about Covid-19 and the 2021 Olympics, so it is certain that they did
not not exist in, are were similar to ORCHID in any way. When constructing the test set, if we were not sure about
where to place a sb, we translated the paragraph in Google Translate and put the sb in the same place as in the English
translation. This helps ensure consistency in constructing the test data. Figures 5 and 6 compare an excerpt of this new
test data vs. an excerpt from ORCHID. It can be seen that, at least for the purpose of sentence segmentation, the data
for our model which does not require POS tags is much easier to label than having to label POS tag for each word.

In total, our new test data consists of 104 sentences, with 782 nsb and 84 sb spaces. The number of sb spaces is less
than the number of sentences because we look at only one paragraph at a time. Running our trained model on this data,
we got macro average fscore of 0.6903, while crfcut and thai-segmentor6 got 0.6271 and 0.6283 respectively. These are
the only two methods that we can actually run our own comparison against, since they are the only ones with openly
available libraries. The results demonstrate that our model can generalize better to out-of-domain input. Examples of
segmentation results are given in appendix A. Table 2 shows the classification performance of crfcut, thai-segmentor
and TranSentCut on our new test dataset.

Figure 5: One paragraph excerpt from the new sentence segmentation test data that we constructed. Each sentence is
one line, note the line numbers on the left margin. Paragraphs are separated by a blank line (line 4).

3.2 Ablation Study

3.2.1 Balanced Data vs. Class Weights

Like most machine learning problems, sentence segmentation suffers from imbalance data. There are many nsb than
there are sb in any piece of text. The article [22] outlines different approaches to deal with imbalance data, such as class
weight, undersampling, using ensembles, and one-class classification. Since nb vs. nsb is not highly imbalanced (the
class ratio is only about 6:1), we investigated two approaches in this study: making the data balanced by discarding
examples from the majority class until the data is balanced. This is the undersampling approach. The other approach
was adding class weights to the loss function during training, which is the the class weight approach.

6https://pypi.org/project/thai-segmenter/

5

arXiv Template A PREPRINT

Figure 6: The first paragraph and the first two sentences of ORCHID. Note that every word has a POS tag.

Table 2: The classification performance of crfcut, thai-segmentor, and TranSentCut on the new, out-of-domain test
dataset.

precision recall fscore support

crfcut
sb 0.2727 0.5357 0.3614 84
nsb 0.9444 0.8465 0.8928 782
macro average 0.6085 0.6911 0.6271

thai-segmentor
sb 0.3400 0.3148 0.3269 84
nsb 0.9260 0.9335 0.9297 782
macro average 0.6330 0.6241 0.6283

TranSentCut
sb 0.3362 0.9285 0.4937 84
nsb 0.9905 0.8031 0.8870 782
macro average 0.6634 0.8658 0.6903

In the undersampling approach, we put all the examples of the nsb class in a list, shuffled that list (after the seed had
been set, so each run got exactly the same data), and then keeping only the first n elements of the list, where n is the
number of sb examples. This was done before the usual train/test split, so both the training and test data were balanced.
The model was then trained with the standard cross-entropy loss.

For the class weight approach, we investigated three strategies for assigning the class weights. To illustrate them, note
that class nsb has 79,137 examples and class sb has 13,384 examples. Strategy 0 (the naive strategy) was to simply
assign the majority class a weight of 1, and the weight of the minority class was the ratio between the two classes. That
is, class sb (minority) gets a weight of 79137/13384 = 5.9128, while class nsb (majority) gets a weight of 1. Strategy 1
was to use the scikit-learn [23] library’s compute_class_weight function7, which assign class weights according to the
following formula for each class i

wi =
n_samples

n_classes × count(i)
where count is the function that counts the number of examples of class i. Using this formula, the weights for nsb and
sb classes were as follows

wnsb =
92521

2× 79137
= 0.5845

and
wsb =

92521

2× 13384
= 3.456

Finally, strategy 2 was to ensure that the maximum weight is 1, and to assign the smaller weight to preserve the
class ratio. In this strategy, class sb (minority) gets the weight value of 1, while class nsb (majority) get the weight
of 0.1691. Another way to think about strategy 2, is that it’s simply a normalized version of strategy 0, as in

7https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html

6

arXiv Template A PREPRINT

[1, 5.9128]/5.9128 = [0.1691, 1]. Note that the ratio between the two weights remains the same, the main difference
from the strategy 0 is that the maximum weight is 1, ensuring that the magnitude of the loss function is not amplified.
This strategy can be extended to number of classes ≥ 3 by assigning the smallest class a weight of 1, give each of the
other classes weight according to its ratio to the smallest class, then dividing all the weights by the largest weight.

For this round of experiments, we trained the model on ORCHID using the same configuration as reported in the
beginning of section 3. As is common practice in training deep neural networks, an early stopping policy was enforced.
If the model did not improve on the validation fscore after 5 consecutive validation rounds, the training was stopped.
Validation was performed every 200 iterations. Figure 7 shows the validation macro average fscore curve for the
balanced case, and the difference class weight strategies. While the figure suggest that balanced training is the best, we
evaluate the trained models on the out-of-domain test data and show that this was not the case. The result is shown in
Table 3. It can be seen that while balanced training seems to have the best performance on the ORCHID data, it was
not able to adapt to out-of-domain data as well as class weight training strategy 1 and 2. This is because the actual
data distribution when the model is deployed is imbalanced, and having been exposed to a distribution with the same
characteristic during training helps the model to better adapt.

0 1000 2000 3000 4000 5000
steps

0.2

0.4

0.6

0.8

fs
co

re

Validation Macro Average fscore

balanced
strategy0
strategy1
strategy2

0 1000 2000 3000 4000 5000
steps

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

fs
co

re

Validation Macro Average fscore

balanced
strategy0
strategy1
strategy2

Figure 7: The macro average fscore validation curve for balanced data training, and the three class weight strategies.
The right panel is the zoomed in version of the left panel. Validation was performed every 200 iterations, not including
the beginning of training, so the curves do not start from 0 on the x-axis. The curve for strategy 0 shows that training
was not very successful and was terminated early by the early stopping policy. Note that the "did not improve anymore"
portion of the curves was not recorded by the training loop. Had it been included, the bottom curve would not look like
it was still going up. The curve for balanced training seems to be the best, but it did not perform very well when the
trained model was applied to out-of-domain test data.

Table 3: Classification performance comparison on the out-of-domain data between balanced training and different
class weight strategies. Note that the performance of the balanced training did not beat crfcut and thai-segmentor from
table 2 and that naive (strategy 0) class weighting performed very poorly. Our strategy 2 was able to beat strategy 1
from the scikit-learn library.

precision recall fscore support

balance
sb 0.2606 0.9524 0.4092 84
nsb 0.9928 0.7097 0.8277 782
macro average 0.6267 0.8310 0.6185

strategy 0
sb 0.1005 0.2619 0.1452 84
nsb 0.9042 0.7481 0.8188 782
macro average 0.5023 0.5050 0.4820

strategy 1
sb 0.3290 0.9048 0.4825 84
nsb 0.9874 0.8018 0.8850 782
macro average 0.6582 0.8533 0.6838

strategy 2
sb 0.3362 0.9285 0.4937 84
nsb 0.9905 0.8031 0.8870 782
macro average 0.6634 0.8658 0.6903

7

arXiv Template A PREPRINT

0 1000 2000 3000 4000 5000 6000
steps

0.70

0.75

0.80

0.85

0.90

0.95

1.00

fs
co

re

Validation Macro Average fscore

context=32
context=64
context=96
context=128
context=256
context=504

Figure 8: The validation fscore of different context lengths. Models with length-32 and length-64 performed better than
both length-96 and length-128. However, length-256 and length-504 were both clearly better than all the lower length
ones. There was very slight difference between length-256 (fscore=0.9296) and length-504 (fscore=0.9268). Overall,
length-256 was the best context length.

3.2.2 The Effect of Context Length and Batch Size

In this section, we studied the effects of context length and the batch size. We used the exact same data split as in the
previous section. All parameters were kept fixed as the ones in the beginning of Section 3, except for the one that was
being tested.

The context length plays a key role in the performance of the model. If the length is too short, the model might not
have enough information to make a good decision. On the other hand if the context is too long, the extra tokens that
do not help are basically noise that the model must learn to assign low attention weights to. Even if the model can do
this, having a context length that is too long means a bigger model that takes longer for both training and inference.
Therefore it is important to find the right context length. For this purpose, we compared different context lengths: 32,
64, 96, 128, 256, and 5048. The other parameters of the model were fixed as the same as those in strategy 2 in the
previous section. Figure 8 shows the result of this experiment. The best context length was 256.

For the batch size, we tested batch sizes of 16, 32, and 64. Batch size of 64 was the maximum batch size possible
for the context length of 256 and for the GPU that we have. It can be seen in Figure 9 that batch sizes of 32 and 64
performed about the same, with 64 being slightly better. The batch size of 16 was too low and was stopped very early.
This confirms that one should use the largest batch size possible without exceeding the GPU memory.

4 Conclusion

We presented a new sentence segmentation model for Thai. The main advantage of our models compared to existing
methods is that the training data does not need to be POS tagged, allowing new datasets to be constructed easily without
needing special expertise. The model performance is competitive. Comparison with existing libraries shows that
our model has higher macro average fscore of about 0.04 and 0.06 on ORCHID corpus and on out-of-domain texts,
respectively. Comparing with the most recent research that also uses the transformer architecture. We got approximately
the same fscore as reported in the paper, but without needing POS tags for training. We release the code on Github and
the trained model on the Huggingface Model Hub.

References
[1] Jim Cowie and Wendy Lehnert. Information extraction. Communications of the ACM, 39(1):80–91, 1996.

8The maximum length of the model is 512, but some tokens must be reserved for the special tokens, so we took the next lower
multiple of 8.

8

arXiv Template A PREPRINT

0 1000 2000 3000 4000 5000
steps

0.70

0.75

0.80

0.85

0.90

0.95

1.00

fs
co

re

Validation Macro Average fscore
bsz=16
bsz=32
bsz=64

Figure 9: The validation fscore of different batch sizes. The best batch size was 64.

[2] Pradit Mittrapiyanuruk and Virach Sornlertlamvanich. The automatic Thai sentence extraction. In Proceedings of
the fourth symposium on Natural Language Processing, pages 23–28. Citeseer, 2000.

[3] Paisarn Charoenpornsawat and Virach Sornlertlamvanich. Automatic sentence break disambiguation for Thai. In
International Conference on Computer Processing of Oriental Languages (ICCPOL), volume 33, pages 231–235,
2001.

[4] Atro Voutilainen. Part-of-speech tagging. The Oxford handbook of computational linguistics, pages 219–232,
2003.

[5] Nina Zhou, Aiti Aw, Nattadaporn Lertcheva, and Xuancong Wang. A word labeling approach to Thai sentence
boundary detection and pos tagging. In Proceedings of COLING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages 319–327, 2016.

[6] Rungsiman Nararatwong, Natthawut Kertkeidkachorn, Nagul Cooharojananone, and Hitoshi Okada. Improving
Thai word and sentence segmentation using linguistic knowledge. IEICE TRANSACTIONS on Information and
Systems, 101(12):3218–3225, 2018.

[7] John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. 2001.

[8] Tsu-yu Wu, Chia-chun Lian, and Jane Yung-jen Hsu. Joint recognition of multiple concurrent activities using
factorial conditional random fields. In Proc. 22nd Conf. on Artificial Intelligence (AAAI-2007), 2007.

[9] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015.

[10] Chanatip Saetia, Ekapol Chuangsuwanich, Tawunrat Chalothorn, and Peerapon Vateekul. Semi-supervised Thai
sentence segmentation using local and distant word representations. arXiv preprint arXiv:1908.01294, 2019.

[11] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781, 2013.

[12] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional LSTM-CRF models for sequence tagging. CoRR,
abs/1508.01991, 2015.

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems, pages
5998–6008, 2017.

[14] Thatsanee Charoenporn, Virach Sornlertlamvanich, and Hitoshi Isahara. Building a large Thai text corpus-part-of-
speech tagged corpus: Orchid. In Proc. Natural Language Processing Pacific Rim Symposium, pages 509–512.
Citeseer, 1997.

[15] Virach Sornlertlamvanich, Thatsanee Charoenporn, and Hitoshi Isahara. Orchid: Thai part-of-speech tagged
corpus. National Electronics and Computer Technology Center Technical Report, pages 5–19, 1997.

9

arXiv Template A PREPRINT

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidirectional
transformers for language understanding. CoRR, abs/1810.04805, 2018.

[17] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettle-
moyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining approach. CoRR, abs/1907.11692,
2019.

[18] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam
McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR,
abs/2005.14165, 2020.

[19] Lalita Lowphansirikul, Charin Polpanumas, Nawat Jantrakulchai, and Sarana Nutanong. Wangchanberta: Pretrain-
ing transformer-based Thai language models. CoRR, abs/2101.09635, 2021.

[20] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
Pytorch: An imperative style, high-performance deep learning library. CoRR, abs/1912.01703, 2019.

[21] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac,
Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s transformers: State-of-the-art natural
language processing. CoRR, abs/1910.03771, 2019.

[22] Nitesh V Chawla, Nathalie Japkowicz, and Aleksander Kotcz. Special issue on learning from imbalanced data
sets. ACM SIGKDD explorations newsletter, 6(1):1–6, 2004.

[23] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python.
the Journal of machine Learning research, 12:2825–2830, 2011.

Appendix A

In this section we show the result of sentence segmentation on out-of-domain data. The input to the model are entire
paragraphs as one long string. The output for each paragraph is a list of string, where each string is one sentence. The
following url are the sources of the paragraphs.

Figure A1-A2: https://th.wikipedia.org/wiki/%E0%B9%82%E0%B8%AD%E0%B8%A5%E0%B8%B4%E0%B8%A1%
E0%B8%9B%E0%B8%B4%E0%B8%81%E0%B8%A4%E0%B8%94%E0%B8%B9%E0%B8%A3%E0%B9%89%E0%B8%AD%E0%B8%
99_2020)

Figure A3: https://www.khaosod.co.th/sports/news_6545105

Figure A4: https://www.khaosod.co.th/special-stories/news_6546164

Figure A5: https://www.voathai.com/a/us-covid19-delta-
variant-fauci-mask-cdc-directives-republican-governors/5986866.html

10

https://th.wikipedia.org/wiki/%E0%B9%82%E0%B8%AD%E0%B8%A5%E0%B8%B4%E0%B8%A1%E0%B8%9B%E0%B8%B4%E0%B8%81%E0%B8%A4%E0%B8%94%E0%B8%B9%E0%B8%A3%E0%B9%89%E0%B8%AD%E0%B8%99_2020
https://th.wikipedia.org/wiki/%E0%B9%82%E0%B8%AD%E0%B8%A5%E0%B8%B4%E0%B8%A1%E0%B8%9B%E0%B8%B4%E0%B8%81%E0%B8%A4%E0%B8%94%E0%B8%B9%E0%B8%A3%E0%B9%89%E0%B8%AD%E0%B8%99_2020
https://th.wikipedia.org/wiki/%E0%B9%82%E0%B8%AD%E0%B8%A5%E0%B8%B4%E0%B8%A1%E0%B8%9B%E0%B8%B4%E0%B8%81%E0%B8%A4%E0%B8%94%E0%B8%B9%E0%B8%A3%E0%B9%89%E0%B8%AD%E0%B8%99_2020
https://www.khaosod.co.th/sports/news_6545105
https://www.khaosod.co.th/special-stories/news_6546164
https://www.voathai.com/a/us-covid19-delta-
variant-fauci-mask-cdc-directives-republican-governors/5986866.html

arXiv Template A PREPRINT

Figure A1: Segmentation example one. ()

Figure A2: Segmentation example two.

11

arXiv Template A PREPRINT

Figure A3: Segmentation example three.

12

arXiv Template A PREPRINT

Figure A4: Segmentation example four.

13

arXiv Template A PREPRINT

Figure A5: Segmentation example five.

14

arXiv Template A PREPRINT

Appendix B

Here we provide the English translation for the examples/captions we used in the paper. The translations were chosen
to be as literal as possible to preserve the structure of the Thai sentence(s).

Figure 1 and 2

The Hubble Space Telescope is a space telescope that was launched into low Earth orbit in 1990 by the Discovery Space
Shuttle. The Hubble telescope is named after astronomer Edwin Hubble. It was not the first space telescope, but is
one of the most important scientific instruments in the history of Astronomy that had led to many discoveries. The
Hubble Space Telescope is a cooperation between NASA and the European Space Agency. It is one of NASA’s Great
Observatories, along with the Compton Gamma Ray Observatory, the Chandra X-ray Observatory, and the Spitzer
Space Telescope.

In Figure 1, the yellow part is "The Hubble Space Telescope" in the beginning of the paragraph. In Figure 2, the
yellow part is "The Hubble Space Telescope is a space telescope that was launched into low Earth orbit in 1990 by the
Discovery Space Shuttle. The Hubble telescope is named after astronomer Edwin Hubble."

Note that this translation is different from the English Wikipedia of the same article.

Figure 3

On the left panel, sequence A is "On" and sequence B is "this pass January 1st".

On the right panel, sequence A is "...causing the price to have gone up." and sequence B is "Investors should study the
information....".

Figure 5

The paragraph reads: "Tokyo was honored to host the Olympic Games on September 7, 2013 at the 123rd session of the
International Olympic Committee in Buenos Aires. Argentina This is the third time Tokyo has been granted the right to
host the Olympics. For the first time in 1940 it was granted the right to host the first Asian Summer Olympics. and
Sapporo for the Winter Olympics. But has withdrawn from the competition due to the war between China and Japan.
This time, Tokyo is the fifth city (and the first city in Asia) to host more than one Summer Olympics. Tokyo has also
been honored to host the 2020 Summer Paralympic Games for athletes with disabilities."

15

	Introduction
	Proposed Method
	Experiments
	Performance on Out of Domain Data
	Ablation Study
	Balanced Data vs. Class Weights
	The Effect of Context Length and Batch Size

	Conclusion

