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Abstract—Automated classification for musical genres and
composers is an artificial intelligence research challenge insofar
as music lacks a rigidly defined structure and may result in
varied interpretations by individuals. This research collected
acoustic features from a sizable musical database to create
an image dataset for formulating a classification model. Each
image was constructed by combining pitch, temporal index
length, and additional incorporated features of velocity, onset,
duration, and a combination of the three. Incorporated features
underwent Sigmoid scaling, creating a novel visual-based music
representation. A deep learning framework, fast.ai, was used as
the primary classification instrument for generated images. The
results were that using velocity solely as an incorporated feature
provides optimal performance, with an F1-score of 0.85 using the
ResNet34 model. These findings offer preliminary insight into
composer classification for heightening understanding of music
composer signature characterizations.

Index Terms—Music, Data Representation, Composer, Deep
Learning, Artificial Intelligence

I. INTRODUCTION

Traditionally, music theory professionals were known to
be the only experts capable of identifying composers and
genres from pieces of music. Gaining an understanding and
interpretation of music is complicated, and can also be con-
sidered subjective for individual theorists. In recent decades,
prospering artificial intelligence technology has begun to play
significant roles in coping with these tasks, especially through
classifying music into various categories. This is because
music classification also serves as a foundation of other music-
related applications, such as music recommendation [1] and
generation systems [2], in order to construct more robust and
advanced approaches.
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Previous work in the area of music representation and
classification usually involved mostly the signal domain, which
is coherent with the music’s end-product in the form of sig-
nals. For instance, signal processing-based and/or time series-
based techniques utilizing one-dimensional temporal features
are primarily applied to this kind of problem. Spectrogram-
based analysis, on the other hand, creates a two-dimensional
representation of musical signals to an extent that some of
the original features are clearly presented. Dieleman and
Schrauwen compared the performance of using spectrogram-
based musical data against using audio forms as inputs for
training convolutional neural networks for music tagging.
While spectrograms gave slightly better tagging performance,
the raw audio provided the ability to extract more detailed
characteristics of music including frequency decomposition
[3]. However, only a few studies view and present music
in different aspects. The symbolic representation of music
encoded within the MIDI format is one of the interesting ways.
It is suggested that employing the symbolic representation
of music is preferable due to its independence from the
external environment noise [4]. The study of the symbolical
music by Jain et. al. reports a 70% accuracy on six-composer
classification using datasets prepared by transforming musical
features into grayscale image [5]. Several studies in music
classification have been carried out on different datasets, for
example, [6], [7] and [8].

In this study, the concept of visual-based representation of
symbolic musical data is introduced. We sampled music pieces
from a large classical music dataset called the MAESTRO
dataset [8]. Acoustic features were turned into grayscale
and multi-channel red-green-blue (RGB) images to derive a
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representation of music, with information retained on two-
dimensional maps of features. Then, composer classification
performance was used as an evaluation measure for such
representations. The rest of this paper is organized as follows.
Section II describes the method, including the dataset, data
representation, composer classification models, and training
and test data partitioning. Section III presents and discusses
the experimental results. Section IV concludes the study and
directions for future work.

II. METHOD
A. MAESTRO Dataset

The maestro-v3.0.0 [8] dataset with Musical Instrument
Digital Interface (MIDI) file format was utilized to conduct
this study. The dataset consists of 198.7 hours of 1276 piano
pieces from 60 different virtuosic composers of classical mu-
sic. The fine alignment method was applied to align recorded
notes and acoustic audio with a precision of approximately 3
ms. A MIDI file describes the acoustic features of each music
note, including pitch, velocity, onset, and duration. Where
pitch is the frequency of the note, velocity is the rate of
pressing a key on the piano, onset is the starting time for
a note, and duration is the length of time between adjacent
pitches.

B. Visual-based Representation of Music

The acoustic features provided in the MIDI file of the
MAESTRO dataset contain detailed information on each note,
which can then be converted into numerical values using the
pretty_midi tool [9]. These acoustic features, including
pitch and velocity, are extracted as the primary input features
for the classification of composers [10]. A music note is
visually represented on an image at a specified feature channel
where a pixel intensity indicates its value for velocity, onset,
or duration. Each feature channel is arranged in the shape
of (T, P), where T is the temporal index representing the
ordinal timestamp of the note in a music piece, and P is the
value for pitch ranging from 0 to 127. For image generation,
the temporal index and pitch of a note were plotted on an
image’s horizontal and vertical axes, respectively. The original
values, x, of velocity, onset, or duration were normalized
using the sigmoid function as described in Equation (1). This
contributed to the uniqueness of this work as the sigmoid
function optimizes the dynamic range of the pixel intensity
limited to a value between O and 1.

1
Cl4e®

In the experiment, the grayscale single channel images
were constructed from a single feature of velocity, onset,
and duration, which are framed in a shape of P x T, with
T varying from 200-600 timestamps. These three features
were also combined to create multi-channel RGB images. For
example, the first, second, and third rows of Fig. 1 illustrate the
velocity, duration, and onset frame of a 400 temporal index
MIDI segment from a music piece, respectively. While the

S(x) D

Velocity

Duration

Onset

Three musical features

Fig. 1. Visual-based representation for musical data: Listed from top to bottom
- The grayscale image generated with a single feature of velocity, duration, and
onset, and the color image generated with the combination of all three features
represented as the RGB channel intensity of each note with the vertical and
horizontal axes representing the pitch and temporal index, respectively.

color image in the fourth row comprises three feature channels
with the same pitch value.

C. Composer Classification Models

The models and pipelines for music composer classification
have experimented with varied parameters using a 5-fold
cross-validation scheme. The deep learning framework used
for training and prediction is described below. The model
compiler parameters, i.e., type of deep learning model and
learning rate, were optimized. Each experimental parameter
related to the input data, such as the length of the temporal
index and types of acoustic features, is elaborated in II-D.

FastAl is a PyTorch-based deep learning library that fa-
cilitates not only a state-of-the-art deep learning approach,
which can be utilized swiftly and easily but also the APIs
for customizing and engineering a deep learning model in low-
level to bestow the experienced users with sufficient flexibility
[11]. One of the most iconic attributes of FastAl, is the
learning rate finder, which suggests the optimal value for the
learning rate parameter following a sample training epoch,
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making the hyper-parameter tuning simpler than ever before.
There are many previous studies describing the role of FastAl
for deep learning tasks, especially for image classification, for
example, plant leaf disease recognition and classification [12].

In this study, pre-trained deep learning models, such as
residual neural network (ResNet) [13] and EfficientNet [14],
are utilized as the base for our models, which identifies the
composer corresponding to the input images generated from
the acoustic features of music pieces. Our model utilized
the cross-entropy loss function with the Adam optimization
algorithm. For each training epoch, the input was fed into the
model as a batch of 16 instances. Lastly, the initial learning
rate was computed for each experiment utilizing the 1r_find
function implemented in the FastAl framework.

D. Training and Test Data

This work classifies the virtuosic composers of the MAE-
STRO dataset based on acoustic features in Table I, which
are transformed into the image representation of the musical
data. Using the method described in II-B, the deep learning
approaches were expected to be a tool for extracting patterns
characterized by the image dataset.

TABLE I
EXPLANATION OF ACOUSTIC FEATURES
Acoustic features Explanation
Velocity How hard a piano key is struck
Onset The beginning point of a note
Duration How long a note is played

Originally, the MAESTRO dataset included 60 composers
with 1,276 pieces of music. We only included the composer
who had written more than 100 pieces for classification labels
to prevent the issue of each composer having insufficient
samples for model training and testing. With this condition,
the input dataset is prepared, giving us five composers with a
total of 809 pieces of music, which are divided into 70:30 for
training:test sets yielding 566 and 243 pieces, respectively.
Furthermore, we also extended our experiments to 14 com-
poser classifications by filtering out the composer with less
than 25 music pieces provided in this dataset, leaving us with
1,160 music pieces in total. Afterwards, these 1,160 pieces
were split into training and test sets at 70:30.

After that, each piece from the training and test sets was
divided into segments with the same temporal index length and
generated an image array of size defined by temporal index
length. For the five-composer experiment, the training and test
sets contain 7,379 and 3,244 images produced from music
segments of length 400 temporal indexes per image. There
was no overlapping part in the music segments. In addition, the
classification performance was investigated among the altered
temporal index lengths of 200, 400, and 600, producing the
image size variation.

In order to ensure the validity of the overall model perfor-
mance, we split the music pieces of each composer into the
training set and the test set first, then perform the segmentation
of music pieces afterwards. The merit of our procedure is to

prevent contamination between training and test data. Since
there should exist some correlation among segments from the
same music piece, which could make the model overly opti-
mistic if trained and tested on randomly partitioned segments.

III. RESULT AND DISCUSSION

In this work, composer classification was performed on
the visual-based musical data representation. Input data and
classification models constituted of adjustable parameters are
discussed in this section, including the based pre-trained
model, length of the temporal index, and acoustic features
used in the visual-based music data representation. The initial
learning rate is dynamically calculated for each experiment by
the built-in 1r_£ind function provided by FastAl. The soft-
max activation function was used in the output layer with the
Adam optimizer. The Fl-score of classification performance
on each parameter was investigated as shown in Table II. For
the five-composer classification, the optimal model in terms
of prediction performance and the computational cost was the
ResNet34, with a temporal index length of 400 and the velocity
as the pixel’s grayscale, achieving a classification accuracy
of 0.85. The experimental results are shown as the confusion
matrix in Fig. 2. In this section, all experimental results are
discussed.

TABLE I
CLASSIFICATION PERFORMANCE OF MODELS CONSTRUCTED BY
VARIOUS FEATURES

#composer models features  length  Fl-score
5 EfficientNet B7  Velocity 400 0.87
5 ResNet34 Velocity 200 0.85
5 ResNet34 Velocity 400 0.85
5 ResNet34 Velocity 600 0.82
5 ResNet34 onset 400 0.78
5 ResNet34 duration 400 0.78
5 ResNet34 RGB 400 0.72
14 ResNet34 Velocity 400 0.68

A. Deep Learning Models

The experimenting models in this study consist of two
deep learning models, including ResNet34 and EfficientNet-
B7, which serve as a base for our models utilizing the transfer
learning technique. From Table II, the Fl-score for five-
composer classification suggests that the velocity is the most
efficient feature where EfficientNet-B7 performs slightly better
than ResNet34. However, the training session of EfficientNet-
B7 is seven times the period required to train ResNet34,
given the same training dataset. Therefore, the following
experiments conducted in this paper were primarily based on
ResNet34 since it provided almost the same F1-score but was
significantly less computationally expensive.
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B. Temporal Index Lengths

This part investigates the effects of temporal index lengths
on the classification of images generated from acoustic fea-
tures. This idea of segmenting a music piece was previously
presented by Q. Kong et al., achieving an accuracy of about
0.65 from 30-second clip-wised classification [10]. In our
work, the length of the temporal index was varied from 200
to 600 in order to create the datasets from different sizes
of image-represented music segments. The based pre-trained
model and acoustic features were set to be ResNet34 and
velocity, respectively. Overall, the index length did not sig-
nificantly affect the Fl-score in these measures. As indicated
by Table II, the Fl-score of the models are 0.85, 0.85, and
0.82 for the training dataset of the temporal index, equal to
200, 400, and 600, respectively.

C. Acoustic Features

In this section, Fl-score evaluated metrics were the per-
formance indicator of composer classification computed from
the 3,244 images of the test dataset. According to Kong et.
al., the combination between pitch, velocity, and onset frame
was used, achieving the composer classification accuracy of
about 0.65 [10]. For our work, the acoustic features used
for image generation instead consisted of the velocity, onset,
and duration of each pitch. Moreover, these three acoustic
features were combined, resulting in the three-channel RGB
color image dataset that was then utilized as another dataset
for our experiment. Each of these four image datasets was
employed to train and fine-tune a deep learning model, in this
case, the ResNet34, which achieved the F1-score of 0.85, 0.78,
0.78, and 0.72 as a result of the velocity, onset, duration, and
combined features, respectively. As exemplified by the imple-
mentation, the acoustic feature that gave the highest F1-score
was the velocity on its own. This phenomenon is logically
sound in the musical aspect since the vertical dimension of
the image already provides the pitch information, which is
one of the essential acoustic features, and the horizontal axis
supplies another vital information, which is the arrangement of
note and their duration. Therefore, in the view of the pianists,
the only thing left to perform this piece is the dynamic, in
this case, the velocity. To further elaborate, each piano sheet
consists of three predominant groups of notations, including
pitch-related notation, time-related notation, and style-related
notation [15]. In terms of pitch-related representation such as
staff, clef, sharp, and flat, the MIDI integer encoded pitch
can entail the combination of this information, and we portray
them onto the vertical dimension of the generated image. As
for time-related notation, namely notes and rests, the insight
of each note duration and rest duration can be depicted by
the horizontal dimension of the image data. Lastly, the style-
related notation, which is dynamic and accent, can be directly
represented by solely one quantity in MIDI, namely the
velocity. Following this rationale, it is undoubtedly reasonable
to achieve a higher Fl-score when only the velocity feature
is utilized for encoding the image yielding the style-related
that fulfills all three clusters of music notation. In contrast,

the onset and duration of notes cannot convey such detail,
worsening the matter; they impart solely the redundant insight
that can already be obtained from the arrangement of notes
on the image representation. Regarding the combination of
three acoustic features, the classification performance using
the generated RGB image unexpectedly did not catch up to
using the grayscale velocity values on its own. The redundancy
of the data from onset and duration may likely confuse the
classification model and hence lessen the capability of the
model. Note that using the sigmoid function to normalize the
pixel intensity overcomes the effect of extreme value appearing
in an acoustic feature when the conventional MinMaxScaler
normalization is applied. This normalization enhances the
quality of images in terms of the distinction of pixel intensity
so as to improve the classification performance.

D. Extended Multi-class Classification

Besides adjusting the based pre-trained model, temporal
index length, and acoustic features, we also investigated the ef-
fect of extending the number of classes from 5 composers to 14
composers. As demonstrated in Table II, the F1-Score for 14
composers classification dropped drastically compared to the
five-composer classification with the same model parameters
(using velocity for grayscale intensity, temporal index length
of 400, and ResNet34 as a based pre-trained model). To justify
the phenomenon, this inferior result may occur due to a higher
degree of imbalance in the dataset and insufficiency of data.
For the dataset constructed for the 14-composer classification,
the number of music composed by a composer ranges from 26
to 201 musical pieces. In contrast, the individual composers in
the 5-composer classification have at least 100 musical pieces.

E. Interpretation of Results

The confusion matrix obtained from the results of five-
composer classification using ResNet34 as a based pre-trained
model, a velocity-based acoustic feature with a temporal index
length of 400, is presented in Fig 2. As depicted in the
confusion matrix, notable misclassification arises between the
renowned name Ludwig Van Beethoven and Franz Schubert.
In this case, our model classifies Beethoven’s compositions
incorrectly as the work of Schubert a noticeable number of
times. The possible underlying reason for such a phenomenon
stemmed from the fact that both Beethoven and Schubert
dwelled not only in the same city of origin but also shared
overlapping time frames. Furthermore, as stated in [16], [17],
the admiration and reverence of Schubert toward Beethoven’s
compositions such as the Fifth Symphony and the C major
Mass had a remarkable influence on several compositions of
his own, for example, the B flat major Sonata, Op. 36 and the
Grand Duo in C major, Op. 140. Therefore, it seems logically
sound that one may misclassify these music compositions and
so as the computational models. In summary, the above dis-
cussion demonstrated the efficiency of our model in capturing
the important features and patterns of each specific composer
underlying their music pieces.
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Fig. 2. Confusion matrix of the five-composer classification performance
using the ResNet34 model, experimented on velocity incorporated images
with temporal index length of 400 in the training and test datasets. Chopin,
Schubert, Beethoven, Bach, and Liszt are among the composers included in
the model evaluation, yielding 7,379 and 3,244 segments for training and
testing, respectively.

IV. CONCLUSION AND FUTURE WORK

The experiments in this study reveal the potential of acoustic
features extracted from music pieces to be represented visually
as images. In this work, we separated the experiment into three
major parts, including the investigation of the performance of
deep learning models based on ResNet34 and EfficientNet-
B7, the evaluation of classification performance concerning
the influence of temporal index length, and the assessment
of composer classification on the grayscale images formed
by different acoustic features, i.e., velocity, onset, duration,
and the RGB color images created by the combination of
the three features. Our model and extraction method yielded
the highest Fl-score of 0.87 by utilizing EfficientNet-B7 and
0.85 by using ResNet34, with the velocity as the only feature
contributing to the pixel intensity of the generated images and
the temporal index length of 400. In addition, when scaling
the pixel intensity representing the musical features on an
image dataset, the sigmoid normalization method gave rise to a
superior classification performance compared to conventional
normalization. For future work, the procured information
might apply to a broader genre of music as well as the music
era classification. Furthermore, the extracted musical features
and their representation may also be studied to understand
the musical composers’ signatures toward a unique music
generation technique.
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