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Abstract

This paper presents a transparent approach to the analysis of dynamic user equilibrium and clar-
ifies the properties of a departure-time choice equilibrium of a corridor problem where discrete
multiple bottlenecks exist along a freeway. The basis of our approach is the transformation of the
formulation of equilibrium conditions in a conventional “Eulerian coordinate system” into one in
a “Lagrangian-like coordinate system.” This enables us to evaluate dynamic travel times easily,
and to achieve a deep understanding of the mathematical structure of the problem, in particular,
about the properties of the demand and supply (queuing) sub-models, relations with dynamic
system optimal assignment, and differences between the morning and evening rush problems.
Building on these foundations, we establish rigorous results on the existence and uniqueness of
equilibria.

Keywords: corridor problem, departure time choice equilibrium, complementarity problem,
existence and uniqueness of equilibrium

1. Introduction

Traffic congestion during morning and evening peak periods causes serious economic losses
in most large cities. The Vickrey (1969) bottleneck model was proposed to understand and
characterize this problem. It describes commuters’ departure-time choice equilibrium at a single
bottleneck and has been extensively studied by many researchers (e.g., Hendrickson and Kocur,
1981; Smith, 1984; Daganzo, 1985). The model has been applied to many problems because
of its simplicity and clarity. For example, it has been used to evaluate traffic policies (e.g.,
Arnott et al., 1993a; Daganzo and Garcia, 2000; Akamatsu et al., 2006).
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If there is more than one bottleneck, there are two streams of research for analyzing user
equilibria. The first uses a straightforward generalization of Vickrey’s model, whereas the second
considers the dynamic user equilibrium (DUE) on a general network.

In the former stream of research, Kuwahara (1990) and Arnott et al. (1993b) analyzed an
user equilibrium in two-tandem bottleneck networks, and Lago and Daganzo (2007) studied a
similar problem where there are spillover and merging effects. These generalizations can provide
valuable insights into the distribution of congestion among commuters with different origins.
However, it is almost impossible to obtain an equilibrium in more general cases where a larger
number of bottlenecks exist in a freeway corridor because this stream of studies has only used
an analytical approach. Indeed, Arnott and DePalma (2011) studied a variant of the general
problem, the so-called corridor problem, but they could not provide a complete equilibrium
solution.

The latter stream of research applies a more computational approach. Although various math-
ematical formulations of DUE have been proposed (see, Szeto and Wong, 2011), they are con-
siderably complex ways to analyze properties of an equilibrium because they must handle the
complicated nested structure between link and path travel times in a network. Consequently,
many issues remain regarding DUE properties, such as their existence, uniqueness, and stabil-
ity (Iryo, 2013). Moreover, there is no algorithm that ensures convergence to a DUE solution,
although many algorithms have been proposed. This is because most algorithms require mono-

tonicity of the problem to guarantee convergence. However, this property does not hold for DUE
problems, as we shall see later.

This paper presents a transparent approach for analyzing DUE and clarifies the properties
of a departure-time choice equilibrium for a corridor problem where discrete multiple bottle-
necks exist along a freeway. The basis of our approach is the transformation of the equilibrium
conditions from a conventional “Eulerian coordinate system” into a “Lagrangian-like coordi-

nate system.” This is valuable for the morning rush (many-to-one travel demand) problem and
the reverse problem in the evening (one-to-many travel demand problem). We can use this ap-
proach to easily evaluate the travel times without the abovementioned complication. We can then
achieve deep insights into the mathematical structure of the problem, in terns of the properties
of the demand and supply (queuing) sub-models, the relationships with dynamic system optimal
assignment, and the differences between the morning and evening rush problems. Building on
these foundations, we establish rigorous results on the existence and uniqueness of equilibria.

The remainder of this paper is organized as follows. In Section 2, we describe the dynamic
user equilibrium for the corridor problem in an Eulerian coordinate system and discusses why it
is difficult to analyze the problem in this form. Section 3 contains our reformulation of the equi-
librium conditions in a Lagrangian-like coordinate system. To develop an understanding of the
mathematical properties of the problem, we present a preliminary analysis for the deterministic
demand case in Section 4. In Section 5, we examine the existence and uniqueness of equilib-
ria. Section 6 provides numerical examples of the equilibrium flow patterns. Finally, Section 7
concludes the paper.

2. The corridor problem

2.1. Assumptions

Consider a freeway corridor consisting of N on-ramps (origin nodes) and a single off-ramp
(destination node). These nodes are numbered sequentially from destination node 0 to the most
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distant on-ramp node N, as shown in Fig.1. We assume that there is a single bottleneck i with
a finite capacity µi in a segment between each pair (i − 1, i) of adjacent ramps. Therefore,
there are N bottlenecks in the network numbered sequentially (1, 2, . . . ,N) from downstream
to upstream. At each bottleneck, a queue can form when the inflow rate exceeds the capacity.
The queue evolution and the associated queuing delay are assumed to be represented by a point
queue model (described in 2.2). The distance between each pair (i − 1, i) of adjacent bottlenecks
measured by the free flow travel time is given by ci.

From each on-ramp i (i = 1, . . . ,N), Qi commuters in residential location i (i = 1, . . . ,N)
enter the network and reach their destination during the morning rush-hour T ∈ [0,T]. We
assume that the travel demands {Qi} are given constants. Each commuter chooses the departure
time of her/his trip from home (on-ramp) to workplace (destination) so as to minimize her/his
disutility. This disutility includes travel time, queuing delay at bottlenecks, and a “schedule delay
cost” that is associated with deviation from the wished arrival time to the destination. We assume
that all commuters are homogeneous, such that they have the same desirable arrival time (work
start time) tw at the workplace, the same value of time, and the same penalty function for the
schedule delay. However, for the arrival/departure-time choice principle, we employ a random
utility model that describes the heterogeneity of users. The main problem considered in this
paper is, under the assumptions mentioned above, to characterize a dynamic user equilibrium
distribution of arrivals at the destination where no commuter could reduce her/his disutility by
changing arrival times.

2.2. Arrival/departure time choice equilibrium

Under the assumptions above, we formulate a model that describes the equilibrium in the
corridor network. At equilibrium, the following three conditions should hold.

(a) Queuing conditions at each bottleneck

We describe the queuing congestion at each bottleneck in the network using a point queue
model, where a queue is assumed to form vertically at the entrance of each bottleneck. The model
can be represented by the following three conditions. First, the state equation for the number of
users queuing at each bottleneck is

Ei(t) = Ai(t) −Di(t), ∀t ∈ T , ∀i ∈ N (2.1a)

where Ai(t) [Di(t)] denotes the cumulative number of users who arrive at [depart from] bottleneck
i by time t, Ei(t) is the number of users queuing (existing) in bottleneck i at time t, and N ≡
{1, . . . ,N}. Because a queue has no physical length in the point queue model, Ei(t) is the vertical
distance between the cumulative arrival curve {Ai(t) : t ∈ T} and the cumulative departure curve

N N-1
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2 1
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µ1

x1(t)λ1(t)
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x2(t)λ2(t)

µN
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Figure 1: The corridor network with N on-ramps and N bottlenecks
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{Di(t) : t ∈ T} at time t. Furthermore, the state equation can be represented using the arrival
flow rate λi(t) and the departure (exit) rate xi(t) at each bottleneck. That is,

ei(t) ≡ Ėi(t) = λi(t) − xi(t), (2.1b)

where the “dot” denotes the derivative with respect to time t (e.g., Ȧi(t) ≡ dAi(t)/dt), and λi(t)
and xi(t) are defined as λi(t) ≡ Ȧi(t) ≥ 0 and xi(t) ≡ Ḋi(t) ≥ 0, respectively.

The second condition is the exit flow model, which is the most characteristic of the point
queue model. The departure flow rate from the bottleneck i at time t is

xi(t) =















µi if Ei(t) > 0

min .[λi(t), µi] if Ei(t) = 0
∀t ∈ T , ∀i ∈ N (2.2)

where µi denotes the capacity of bottleneck i, which is a given constant for each bottleneck.
The final condition concerns the relationship between the state variables and the queuing

delay (the time taken to pass through the bottleneck). In the point queue model, the queuing delay
di(t) at bottleneck i for a user arriving at the bottleneck at time t is the horizontal distance between
the cumulative arrival curve {Ai(t) : t ∈ T} and the cumulative departure curve {Di(t) : t ∈ T}.
That is,

di(t) = Ei(t)/µi ∀t ∈ T , ∀i ∈ N . (2.3a)

Because the number of users queuing in the bottleneck Ei(t) satisfies (2.1) and (2.2), the queuing
delay (2.3a) can also be written equivalently as

ḋi(t) =















(λi(t)/µi) − 1 if di(t) > 0

max .[0, (λi(t)/µi) − 1] if di(t) = 0
. (2.3b)

This implies that the queuing delay in the point queue model should satisfy















ḋi(t) = (λi(t)/µi) − 1 if di(t) > 0

ḋi(t) ≥ (λi(t)/µi) − 1 if di(t) = 0
,

⇔ 0 ≤ di(t) ⊥ ḋi(t) − [(λi(t)/µi) − 1] ≥ 0. (2.3c)

In this paper, we employ the complementarity condition (2.3c)1 instead of (2.3b) as the queuing
delay model. This is because it has an advantage over (2.3b) in terms of the time discretization
of the model, and its essential features are consistent with the original point queue model. Note
that a natural time-discretization scheme for (2.3c) is given by

0 ≤ di(t + ∆t) ⊥ (di(t + ∆t) − di(t)) − ((λi(t + ∆t)/µi) − 1)∆t ≥ 0, (2.3d)

⇔ di(t + ∆t) = max .[0, di(t) + ((λi(t + ∆t)/µi) − 1)∆t], (2.3e)

where λi(t+∆t) ≡ (Ai(t+∆t)−Ai(t))/dt. It is clear that the discretization scheme above has the
advantage that it always predicts a non-negative queuing delay, whereas a naı̈ve discretization

1The model (2.3c) deviates from the model (2.3b) in the case that di(t) = 0. However, the model (2.3c) guarantees a
non-negativity of the queuing delay and produces a physically meaningful queue dynamics (for the detailed discussions,
see Ban et al., 2012).
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scheme for (2.3b) could result in a negative queuing delays (for the detailed discussion, see
Akamatsu, 2001; Ban et al., 2012).

As a final comment on the point queue model, note that the point queue model (i.e., the condi-
tions (2.1), (2.2) and (2.3)) implies the First-In-First-Out (FIFO) and flow propagation conditions
at each bottleneck. That is,

Ai(t) = Di(t + di(t)) ∀t ∈ T , ∀i ∈ N (2.4a)

⇔ λi(t)/xi(t + di(t)) = 1 + ḋi(t) ≥ 0. (2.4b)

It also follows that the queuing conditions (2.1) and (2.2) combined with the FIFO condition
(2.4) imply the queuing delay (2.3).

(b) Flow conservations in the network

The dynamic traffic flows in the network should satisfy the following two conservation con-
ditions. The first one is that the origin-destination (OD) travel demands for each origin must be
assigned to each time point in the interval T ∈ [0,T]. That is, the time-dependent OD demand
should satisfy

Q̂i(T) = Qi ∀i ∈ N (2.5a)

where Qi is the number of users who wish to travel from origin i to the destination (i.e., the
total OD demand of origin i to the destination), which is a given constant for each OD pair, and
Q̂i(t) denotes the cumulative number of users who depart from origin node i and arrive at the
bottleneck i by time t. This can be equivalently written as

∫ T

0
q̂i(t)dt = Qi (2.5b)

where q̂i(t) is the arrival rate of the users with origin i at bottleneck i at time t, that is, q̂i(t) =
dQ̂i(t)/dt.

The second condition is that the inflow and outflow at each bottleneck at each time point
must be equal. That is,

Di+1(t − ci+1) + Q̂i(t) = Ai(t), Q̂N(t) = AN(t) ∀t ∈ T , i = 1, . . . ,N − 1 (2.6a)

⇔ xi+1(t − ci+1) + q̂i(t) = λi(t), q̂N(t) = λN(t), (2.6b)

where ci is the free-flow travel time from bottleneck i to bottleneck i−1, which is a given constant.

(c) Equilibrium conditions for arrival/departure-time choice

In accordance with random utility theory, each user’s disutility is expressed as v̂i(t) + ε̂i(t),
where ε̂i(t) denotes the disutility representing the users’ idiosyncratic choices for arrival/departure
times, with the distribution of ε̂i(t) is assumed to be continuous; and v̂i(t) denotes the generalized
travel cost defined as the sum of the “schedule cost” and the travel time to the destination. The
schedule cost for a user is the cost (penalty) caused by the difference between the user’s desired
arrival time tw and the actual arrival time t. The desired arrival time tw is assumed to be the same
for all users. The schedule cost (in the unit of travel time) is represented by the function p(t),
where t is the destination arrival time. This function is common to all users, and is assumed to
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Figure 2: Travel time πi(t) from each bottleneck/origin to the destination

be convex and continuous, following previous studies on the departure time choice equilibrium
(e.g., Smith, 1984; Daganzo, 1985; Kuwahara, 1990).

At equilibrium, no one can improve her/his own disutility by changing her/his trip schedule
unilaterally. Letπi(t) be the travel time from each bottleneck to the destination, for a user arriving
at bottleneck i at time t. It follows from the definition that the user’s arrival time at the destination
is t+πi(t), and the schedule cost for the user is p(t+πi(t)). Therefore, the equilibrium condition
can be expressed as

q̂i(t) = QiP̂i(t) t ∈ T , ∀i ∈ N (2.7a)

P̂i(t) ≡ Pr[v̂i(t) + ε̂i(t) ≤ v̂i(t
′) + ε̂i(t

′) ∀t′ ! t ∈ T ] (2.7b)

v̂i(t) ≡ p(t + πi(t)) + πi(t) (2.7c)

where P̂i(t) is the fraction of users arriving at bottleneck i at time t.
Note that the equilibrium concept employed in this paper is not the “reactive user equilib-

rium” but the “predictive user equilibrium.” That is, travel time πi(t) is defined as the time that
a user arriving at bottleneck i at time t actually experiences during the course of a trip to the
destination, which can be defined by the following recursive equations (see Fig.2):

πi(ti) − πi−1(ti−1) = di(ti) + ci, π0(t) = 0 ∀t ∈ T , ∀i ∈ N (2.8a)

ti−1 − ti = di(ti) + ci ∀i ∈ N . (2.8b)

2.3. Difficulties of analyzing the problem in an Eulerian coordinate system

The recursive equation (2.8a) for the travel time πi(t) has a complicated nested structure with
respect to time (i.e., (2.8) is a system of recursive equations for πi(t) with time delays that are
state-dependent and time-varying). This causes extreme difficulties in analyzing the properties
of the equilibrium conditions. Indeed, even if we are just evaluatingπi(t), we must evaluate every
arrival time {tj, j = 1, . . . , i − 1} at the downstream bottlenecks for a user arriving at bottleneck
i at time t using the recursive equation (2.8b). This, in turn, requires to evaluate all the queuing
delays {dj(tj), j = 1, . . . , i − 1}, which are time-varying and dependent on other state variables.
Thus, it is almost impossible to derive theoretical properties of the equilibria defined by travel
time function {πi(t)} with such troublesome issues2.

2Recently, Han et al. (2013) proved the existence of the simultaneous route-and-departure choice dynamic user equi-
librium within an Eulerian coordinate system. However, their approach may not provide more insights on the equilibrium
like those presented in Section 4 because of the complicated nested structure between link and path travel times.
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One of the reasons for this difficulty is that the problem is formulated in an “Eulerian coor-
dinate system.” The Eulerian system is not suitable for dealing with the travel time that a user
actually experiences during the course of a trip. To explicitly represent such travel time we must
trace the time-space path of each user in the network. To handle such travel time in a simpler and
more transparent manner, it is rather natural to employ a “Lagrangian-like coordinate system,”
in which we can easily trace the time-space paths of users. Thus, in the subsequent section, we
reformulate the equilibrium condition into a Lagrangian-like coordinate system.

3. Reformulation in a Lagrangian coordinate system

In this section, we describe the reformulation of the equilibrium conditions for the corridor
problem into a Lagrangian-like coordinate system. This formulation is better suited to both the
morning-rush problem presented in the previous section and the reverse problem (the evening-
rush). After reformulating the morning-rush problem, we briefly describe the evening-rush prob-
lem by demonstrating their differences.

3.1. Many-to-one travel demand (morning-rush) problem

The equilibrium concept along with the FIFO discipline of the bottleneck model defined
in Section 2.2 implies that users who arrive at the destination at the same time have the same
arrival time at any bottleneck on the way to their destination, and that the order of arrival at
the destination must be kept at any bottleneck from origins (for the detailed discussions on this
property, see Kuwahara, 1990; Kuwahara and Akamatsu, 1993; Akamatsu and Kuwahara, 1999;
Akamatsu, 2001). Using this property, we can define the equilibrium arrival time τi(s) at bot-

tleneck i for a user arriving at the destination at time s, and an object period S ∈ [S, S] for the
destination arrival time s that is sufficiently long for all demands to be served in S. Letting wi(s)
be the queuing delay at bottleneck i for this user, τ(s) and w(s) should satisfy

τi(s) = τi−1(s) − (wi(s) + ci) ∀s ∈ S, ∀i ∈ N . (3.1a)

It follows from this and the boundary condition τ0(s) = s ∀s ∈ S (note that τ0(s) is the time of
arrival at the destination) that τi(s) can be written as an explicit function of s and w(s), that is,

τi(s) = s −
∑i

j=1(wj(s) + cj) ∀s ∈ S, ∀i ∈ N . (3.1b)

Similarly, we define σi(s) as the departure time from bottleneck i for a user arriving at the
destination at time s, which obviously satisfies (see Fig. 3)

σi(s) = τi(s) + wi(s) = τi−1(s) − ci. (3.2)

In addition to {τ(s),w(s) : s ∈ S} and {σ(s) : s ∈ S}, which represent the time-space paths of
users, it is convenient to define the arrival flow rate yi(s) at bottleneck i for a user arriving at the
destination at time s as

yi(s) ≡ dAi(τi(s))/ds = λi(τi(s)) · ∆τi(s), (3.3)

where ∆ denotes the derivative operation with respect to the destination-arrival time, s (e.g.,
∆τi(s) ≡ dτi(s)/ds).

Based on these variables labeled by the destination-arrival-time s (instead of the time t in
the Eulerian coordinate system), we can reformulate the equilibrium using the following three
conditions.
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Figure 3: Arrival/departure time at bottlenecks for a user arriving at the destination at time s

(a) Queuing conditions at each bottleneck

For users arriving at the destination at time s, the queuing delay wi(s) at bottleneck i is

wi(s) = di(τi(s)), ∀s ∈ S ∀i ∈ N , (3.4a)

which implies

∆wi(s) = ḋi(τi(s)) · ∆τi(s). (3.4b)

Substituting in the queuing delay (complementarity) condition (2.3c) into this, we have














∆wi(s) = (yi(s)/µi) − ∆τi(s) if wi(s) > 0

∆wi(s) ≥ (yi(s)/µi) − ∆τi(s) if wi(s) = 0
. (3.5)

As shown in Section 2.2, the point queue model defined in (2.1) – (2.3) always satisfies the
FIFO conditions (2.4) at each bottleneck. Similarly, the queuing delay condition (3.5) combined
with the definitional equations (3.1) and (3.2) implies the FIFO condition. We can confirm this
as follows. For users arriving at bottleneck i at time t = τi(s), the FIFO condition can be written
as

Ai(τi(s)) = Di(σi(s)), ∀s ∈ S, ∀i ∈ N (3.6a)

or yi(s) = xi(σi(s)) · ∆σi(s). (3.6b)

Recalling the definitions (3.1) and (3.2) of τ(s) and σ(s), we have that ∆τ(s) and ∆σ(s) are

∆σi(s) = ∆τi(s) + ∆wi(s),

∆τi(s) = ∆τi−1(s) − ∆wi(s), ∆τ0(s) = 1. (3.7)

Substituting these into (3.6b), we have yi(s) = xi(τi(s) + wi(s)) · ∆τi−1(s), which reduces to














yi(s) = µi∆τi−1(s) if wi(s) > 0

yi(s) ≤ µi∆τi−1(s) if wi(s) = 0
(3.8a)

or















yi(s) = µi∆σi(s) if wi(s) > 0

yi(s) ≤ µi∆σi(s) if wi(s) = 0
. (3.8b)

It is clear that the queuing delay condition (3.5) combined with (3.7) implies the FIFO condition
(3.8), and that the FIFO condition (3.8) combined with (3.7) implies the queuing delay condi-
tion (3.5). Thus, (3.5) and (3.8) are mutually interchangeable when formulating the equilibrium
condition.
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(b) Flow conservations in the network

The flow conservation (2.5) for each OD pair in Section 2.2 can be represented as

Qi(S) = Q̂i(τi(S)) = Qi ∀i ∈ N (3.9a)

where Qi(s) is the cumulative number of users who depart from origin node i and arrive at the
destination by time s, which implies Q̂i(τi(s)) = Qi(s). Letting qi(s) be the arrival flow rate at the
destination defined by

qi(s) = ∆Q̂i(τi(s)) = q̂i(τi(s)) · ∆τi(s),

(3.9a) can be equivalently represented as

Qi =
∫ S

S
qi(s)ds ∀i ∈ N . (3.9b)

The flow conservation (2.6) for each bottleneck can also be rewritten in terms of the destination
arrival time s. Substituting (3.1), (3.2), and the FIFO condition (3.6a) into the conservation
equation (2.6a) at t = τi(s) yields

Ai+1(τi+1(s)) +Qi(s) = Ai(τi(s)), QN(s) = AN(τN(s)) ∀s ∈ S, i = 1, . . . ,N − 1
(3.10a)

which is equivalent to

qi(s) = yi(s) − yi+1(s), qN(s) = yN(s) ∀s ∈ S, i = 1, . . . ,N − 1.
(3.10b)

(c) Equilibrium conditions for arrival/departure-time choice

For a user with origin i who arrives at the destination at time s, the schedule cost is given by
p(s), and the travel time is s − τi(s). Therefore, the equilibrium condition can be expressed as

qi(s) = QiPi(s) s ∈ S, ∀i ∈ N (3.11a)

Pi(s) ≡ Pr[vi(s) + ε̃i(s) ≤ vi(s
′) + ε̃i(s

′) ∀s′ ! s ∈ S] (3.11b)

vi(s) ≡ p(s) + (s − τi(s)) (3.11c)

where ε̃i(s) denotes the disutility representing the users’ idiosyncratic taste for arrival times, and
Pi(s) is the fraction of users with origin i who arrive at the destination at time s. No assumption
of a specific functional form of Pi(s) is needed in our proof of uniqueness for the DUE. However,
we use the logit choice function to derive a sufficient condition for the existence of the DUE and
for the numerical examples in the later sections. That is,

Pi(s) ≡ exp(−θvi(s))/
∫ S

S
exp(−θvi(s))ds (3.12)

where θ is the inverse of the variance of the idiosyncratic tastes, which implies that the assump-
tion of the ε̃i(s) are i.i.d. Gumbel distributions. As θ → +∞ (i.e., ε̃i(s) → 0), the logit type
demand condition reduces to that of the homogeneous user (or deterministic demand) case,















p(s) + (s − τi(s)) = ρi if qi(s) > 0

p(s) + (s − τi(s)) ≥ ρi if qi(s) = 0
∀s ∈ S, ∀i ∈ N (3.13)

where ρi denotes the equilibrium disutility for a user with origin i.
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3.2. One-to-many travel demand (evening-rush) problem

In the evening-rush problem, the corridor network defined in Section 2.1 is used by com-
muters in reverse. That is, there are N off-ramps (destination nodes) and a single on-ramp
(origin node). These nodes are numbered sequentially from origin node 0 to the most distant
off-ramp node N. Qi commuters in residential location i depart from the origin during evening
rush hour, and exit from the network at off-ramp i (i.e., one-to-many travel demand). Each com-
muter chooses the departure time of her trip from the workplace (origin) to home (destination)
so as to minimize her disutility. The only difference in the assumptions of two problems is that,
in the evening-rush, commuters are assumed to experience a schedule delay cost associated with
deviation from wished departure time from the origin à la de Palma and Lindsey (2002). Un-
der these assumptions, the one-to-many travel demand (evening-rush) problem describes a DUE
distribution of departures from the origin such that no commuter could reduce her disutility by
changing her departure time.

Now, let us formulate the equilibrium conditions for the one-to-many model in a Lagrangian-
like coordinate system. In a similar manner to the many-to-one model, we can define the equi-
librium arrival time σi(s) at destination i for a user departing from the origin at time s. In this
network topology, this is also equal to the departure time from bottleneck i for the user. The

period S ≡ [S, S] of the origin departure time s is sufficiently long so that all demands can be
served in S. Letting wi(s) be the queuing delay at bottleneck i for this user, we see that σ(s) and
w(s) should satisfy (see Fig.4)

σi(s) = σi−1(s) + (wi(s) + ci) ∀s ∈ S, ∀i ∈ N . (3.14a)

It follows from this and the boundary condition σ0(s) ≡ s (i.e., σ0(s) is defined as the departure
time from the origin) that σi(s) can be written as an explicit function of s and w(s):

σi(s) = s +
∑i

j=1(wj(s) + cj) ∀s ∈ S, ∀i ∈ N . (3.14b)

The arrival time τi(s) at bottleneck i for a user departing from the origin at time s also satisfies

τi(s) = σi(s) − wi(s) = σi−1(s) + ci.

We also define yi(s) as the arrival flow rate at bottleneck i for a user departing from the origin at
time s and qi(s) as the departure flow rate from the origin at time s.

We can now reformulate the equilibrium for the one-to-many model using these variables
labeled by the origin-departure-time s. This formulation can be obtained by slightly modifying
the equilibrium conditions for the many-to-one model, although the definitions (i.e., reference
time) of the variables of the two models are different. Specifically, the queuing condition has
exactly the same form as (3.8b). Additionally, for the flow conservations in the network, the
condition for each OD pair and the condition at each bottleneck have exactly the same forms as
(3.9b) and (3.10b), respectively. For the departure-time choice, we can obtain the equilibrium
condition for the one-to-many model by replacing the travel time (s − τi(s)) in (3.11) and (3.13)
by (σi(s) − s).

4. Preliminary analysis

This section presents a preliminary analysis for the deterministic demand (homogeneous
users) case. Although it is a particular case of the general demand condition, the analysis for
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sσ1(s)

w1(s) c1

σi (s)

wi(s) ci

σi-1(s)

Depart from bottleneck i
Arrive at bottleneck i

Depart from the origin

wi-1(s) ci-1

τi (s) τi-1(s) τ1(s)

Depart from bottleneck i-1
Arrive at bottleneck i-1

Figure 4: Arrival/departure time at bottlenecks for a user departing from the origin at time s

this case gives several new insights for understanding the mathematical structure of the problem
and the properties of the basic components of the underlying problem (i.e., the queuing and the
demand models).

4.1. Equivalent linear complementarity problems

In contrast to the previous section, we begin with analyzing the One-to-Many model (DUE-
E), and show that the model can be cast into a standard linear complementarity problem. We
then apply a similar analysis to the Many-to-One model (DUE-M), which reveals that DUE-M
has a slightly more complicated structure than DUE-E.

The equilibrium problem [DUE-E] for the One-to-Many model with homogeneous users con-
sists of five conditions (i.e., (3.14), (3.8b), (3.9b), (3.10b), and (3.13)) and associated unknowns
{w(s) = [w1(s), . . . ,wN(s)]T, τ(s) = [τ1(s), . . . , τN(s)]T,q(s) = [q1(s), . . . , qN(s)]T, y(s) = [y1(s), . . . , yN(s)]T :
s ∈ S} and ρ = [ρ1, . . . , ρN]T. However, they are somewhat redundant. Note that the flow con-
servation holds as an equality between y(s) and q(s), i.e.,

Ny(s) = −q(s).

Here, N denotes the reduced link-node incidence matrix for the corridor network, in which a row
corresponding to the destination node is deleted, and is invertible. That is,

N =



































−1 1
. . .

. . .

−1 1

−1



































⇔ N−1
= −



































1 · · · · · · 1

1 · · · 1
. . .

...

1



































= −LT,

where L is a lower triangular matrix with all non-zero entries equal to 1. This implies that N is
an M-matrix, and hence, y(s) can be uniquely determined from q(s):

y(s) = −N−1q(s) = LTq(s). (4.1)

Note that the non-negativity condition y(s) ≥ 0 is “automatically” satisfied if q(s) ≥ 0. Hence,
by substituting (4.1) into (3.8b), we can eliminate y(s) from the problem [DUE-E]. Similarly,
the travel time σ̂(s) ≡ σ(s) − s for each OD pair and the queuing delay w(s) at each bottleneck
always satisfy

−NTσ̂(s) = w(s) + c (4.2)
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where σ(s) = [σ1(s), . . . , σN(s)]T, 1 = [1, . . . , 1]T, s = s1, and c = [c1, . . . , cN]T. Because −NT

is an M-matrix, σ̂(s) can be uniquely determined from w(s):

σ̂(s) = −(NT)−1(w(s) + c) = L(w(s) + c), (4.3)

where the non-negativity condition σ̂ ≥ 0 is satisfied if w(s) + c ≥ 0. It follows that changes in
the departure time from each bottleneck ∆σ(s) can be represented by ∆w(s). That is,

∆σ(s) = 1 − (NT)−1
∆w(s) = 1 + L∆w(s) (4.4)

where ∆σ(s) = [∆σ1(s), . . . ,∆σN(s)]T and ∆w(s) = [∆w1(s), . . . ,∆wN(s)]T.
Thus, we can obtain a more concise expression for the problem [DUE-E] by eliminating these

redundant variables {y(s), σ(s)}. This, together with the observation that [DUE-E] only consists
of linear equations and linear complementarity conditions for the homogeneous users case, leads
to the following proposition:

Proposition 4.1. The arrival/departure-time choice equilibrium problem [DUE-E] for the corri-

dor network is equivalent to the following linear complementarity problem (LCP): Find {q(s),w(s) :
s ∈ S} and ρ such that

0 ≤ q(s) ⊥ p(s)1 + L(c +w(s)) − ρ ≥ 0, ∀s ∈ S (4.5a)

0 ≤ w(s) ⊥ C∆σ(s) − LTq(s) ≥ 0, ∀s ∈ S (4.5b)

0 ≤ ρ ⊥
∫ S

S
q(s)ds −Q ≥ 0 (4.5c)

where ∆σ(s) ≡ 1 + L∆w(s), σ(s) ≡ L(w(s) + c) + s, C ∈ RN×N is a diagonal matrix whose i-th
diagonal element designates the capacity µi of bottleneck i, and Q = [Q1, . . . ,QN]T.

Proof. It is obvious that [DUE-E] implies the LCP above. Hence, it is sufficient for us to prove
that the LCP implies [DUE-E]. The proof is by contradiction. Suppose, on the contrary, that there
is a flow pattern {qj(s)} that satisfies the complementarity condition (4.5c) but does not satisfy
the equality (3.9b) for some j. That is,

ρ j · (
∫ S

S
qj(s)ds −Qj) = 0, ρ j ≥ 0, and

∫ S

S
qj(s)ds −Qj > 0.

It then follows that ρ j = 0 and qj(s) > 0 for this j and some s because Qj > 0. For these
particular s and j with positive flow qj(s) > 0, the equilibrium condition (4.5a) reduces to p(s) +

[L(w(s)+ c)] j = 0. However, [L(w(s)+ c)] j =
∑ j

i=1
(wi(s)+ ci) > 0 because c > 0 and w(s) ≥ 0.

This contradicts the assumption that p(s) ≥ 0. QED.

In what follows, we restrict ourselves to the cases in which the arrival time at the destination
s is discretized. That is, the underlying time period s is divided into a finite number of intervals,
K, labeled s ∈ S ≡ {1, 2, . . . ,K}, which have a finite duration δs. We use this restriction because
rigorous discussion of existence and uniqueness issues for continuous time models would lead us
into unnecessary mathematical complications, and such digression would obscure the essential
structure of the model.
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In accordance with the discretization of s, the time-dependent variables {q(s) : s ∈ S},
{w(s) : s ∈ S}, and {∆w(s) : s ∈ S}, and the schedule delay function {p(s) : s ∈ S} are
represented as finite dimensional column vectors:

q ≡ [q(s)]K
s=1 ∈ R

NK, w ≡ [w(s)]K
s=1 ∈ R

NK, ∆w ≡ [∆w(s)]K
s=1 ∈ R

NK, and p ≡ [p(s)1]K
s=1 ∈ R

NK.

Here, ∆w(k) ∈ RN should be defined as the backward-difference:

∆w(s) ≡ w(s) −w(s − 1) for s = 1, . . . ,K, and ∆w(0) ≡ 0,

because the discretized formulation of the queuing condition (4.5b) should correspond to the
discretization scheme (2.3d) of the point queue model in Section 2. Note that the variable ∆w ∈
RNK defined above can be represented by ∆w ≡ [∆K ⊗ I]w, where ⊗ denotes the Kronecker
product, I is the N by N identity matrix, and ∆K is the K by K matrix representing the first order
backward difference operator:

∆K =



































1

−1 1
. . .

. . .

−1 1



































.

In this discrete time setting, the Proposition 4.1 immediately implies the following result.

Proposition 4.2A. (One-to-Many model) The DUE problem for the One-to-Many model in the
discretized time periodS can be represented as a standard finite dimensional linear complemen-

tarity problem:

[DUE-E-LCP] Find X ≡ [q,w, ρ]T such that 0 ≤ X ⊥ F(X) ≡MX + b ≥ 0,

where M ∈ R(2K+1)N×(2K+1)N and b ∈ R(2K+1)N are defined as

M ≡























IK ⊗ L −1K ⊗ I

−IK ⊗ LT ∆K ⊗ CL

1T
K ⊗ I























, b ≡























p + 1K ⊗ Lc

1K ⊗ C1

−Q























, (4.6)

and IK ≡ diag[1, . . . , 1] ∈ RK×K, 1K ≡ [1, . . . , 1]T ∈ RK, and Q ≡ [Q1/δs, . . . ,QN/δs]T.

We then proceed to the analysis of the Many-to-One model, in which the reduced incidence
matrix N and its inverse are given by

N =



































1 −1
. . .

. . .

1 −1

1



































⇔ N−1
=



































1 · · · · · · 1

1 · · · 1
. . .

...

1



































= LT.

In exactly the same manner as the One-to-Many model, we can eliminate y(s) from the problem
[DUE-M] using

y(s) = N−1q(s) = LTq(s).
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Similarly, the travel time τ̂(s) ≡ s − τ(s) for each OD pair and the queuing delay w(s) at each
bottleneck always satisfy

NTτ̂(s) = w(s) + c,

where τ(s) = [τ1(s), . . . , τN(s)]T. Because NT is an M-matrix, τ̂(s) can be uniquely determined
from w(s):

τ̂(s) = (NT)−1(w(s) + c) = L(w(s) + c),

where the non-negativity condition τ̂(s) ≥ 0 is satisfied if w(s) + c ≥ 0. It follows that changes
to the departure time from each bottleneck ∆σ(s) can also be represented by ∆w(s). That is,

∆σ(s) ≡ ∆τ(s) + ∆w(s) = 1 − ∆τ̂(s) + ∆w(s) = 1 + [I − L]∆w(s)

where∆τ(s) = [∆τ1(s), . . . ,∆τN(s)]T. Thus, by eliminating these redundant variables {y(s), τ(s)},
we can represent the equilibrium conditions for the Many-to-One model as a linear complemen-
tarity problem that has exactly the same form as in Proposition 4.1. Similarly, in the discrete
time setting, we obtain the linear complementarity problem:

[DUE-M(B)-LCP] Find X ≡ [q,w, ρ]T such that 0 ≤ X ⊥ F(X) ≡MX + b ≥ 0,

where M ∈ R(2K+1)N×(2K+1)N and b ∈ R(2K+1)N are defined as

M ≡























IK ⊗ L −1K ⊗ I

−IK ⊗ LT ∆K ⊗ C[I − L]

1T
K ⊗ I























, b ≡























p + 1K ⊗ Lc

1K ⊗ C1

−Q























. (4.7)

Although this LCP is a natural and concise expression of the DUE for the Many-to-One
model, some caution is needed. For the queuing model to be self-consistent, the cumulative ar-
rival curve at each bottleneck should not be backward-bending. In our formulation, this condition
is expressed as ∆τi(s) ≥ 0 ∀i ∈ N , ∀s ∈ S, which trivially holds for the [DUE-E-LCP] of the
One-to-Many model. Indeed, this is true because the queuing condition in the LCP ensures that
∆σ(s) ≥ C−1LTq(s) ≥ 0 always hold, and ∆τ is given from the origin to destinations as

∆σ0(s) ≡ ∆τ1(s) ≡ 1, ∆σi(s) ≡ ∆τi+1(s) ≡ 1 + (∆w1(s) + · · · + ∆wi(s)) for i = 1, . . . ,N.

The queuing condition of [DUE-M(B)-LCP], however, does not ensure ∆τN(s) ≥ 0 for the most
upstream bottleneck. This is because ∆τ is defined from the destination to origins in a “back-

ward” manner (i.e, the direction opposite to the direction of travel). That is,

∆σ1(s) ≡ ∆τ0(s) = 1, ∆σi(s) ≡ ∆τi−1(s) ≡ 1 − (∆w1(s) + · · · + ∆wi(s)) for i = 2, . . . ,N.

Since the complementarity queuing condition of [DUE-M(B)-LCP] ensures ∆σ(s) ≥ 0, the con-
dition ∆τi(s) ≥ 0 holds for i = 0, 1, . . . ,N − 1, but the condition for ∆τN(s) is missing. Thus,
for the complete description of the problem, we should add a “consistency condition” to [DUE-
M(B)-LCP]:

∆τN(s) = 1 − (∆w1(s) + · · · + ∆wN(s)), and ∆τN(s) ≥ 0. (4.8)
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As an alternative to the “backward type” formulation in which information on ∆τN(s) is
missing from the complementarity queuing condition, we can also consider another (“forward
type”) type of formulation. The new formulation first represents the arrival time τi(s) at each
bottleneck from the most upstream bottleneck to the destination in a forward direction,

τi(s) = τN(s) + (wN(s) + · · · + wi+1(s)) for i = 0, 1, . . . ,N − 1.

This implies

∆σi(s) ≡ ∆τi−1(s) = ∆τN(s) + (∆wN(s) + · · · + ∆wi(s)) ∀i ∈ N .

Substituting this into the queuing condition (4.5b), we can derive a forward type representa-
tion of the queuing model that explicitly includes ∆τN(s).

0 ≤ w(s) ⊥ C[∆τN(s)1 + LT
∆w(s)] − LTq(s) ≥ 0.

Finally, we must have τ0(s) = s and τN(s) ≥ 0 for this formulation to be consistent with the
definition of the destination arrival time based variables. This reduces to

∆τN(s) + (∆wN(s) + · · · + ∆w1(s)) = 1, and ∆τN(s) ≥ 0. (4.9)

The following proposition summarizes the above discussion:

Proposition 4.2B. (Many-to-One model) The DUE problem for the Many-to-One model in

the discretized time period S can be represented as the following two types of complementarity

problems:

a) Backward type: [DUE-M(B)-LCP] and the consistency condition (4.8).

b) Forward type: [DUE-M(F)-MCP] and the consistency condition ∆τN ≥ 0

[DUE-M(F)-MCP] Find X ≡ [q,w, ρ]T and ∆τN such that

0 ≤ X ⊥ F(X) ≡MX + b ≥ 0, and ∆τN + (∆wN + · · · + ∆w1) = 1

where M ∈ R(2K+1)N×(2K+1)N and b ∈ R(2K+1)N are defined as

M ≡























IK ⊗ L −1K ⊗ I

−IK ⊗ LT ∆K ⊗ CLT

1T
K ⊗ I























, b ≡























p + 1K ⊗ Lc

∆τ̂N

−Q























, (4.10)

and ∆τ̂N ≡ [C∆τ̂N(1)1, . . . ,C∆τ̂N(K)1]T ∈ RNK.

4.2. Connections with dynamic system optimal assignment

In the equivalent LCPs in Propositions 4.2A and 4.2B, the matrix M has a skew-symmetric
structure. Based on this property, we can convert the DUE problem into a variational inequality
problem with only cost variables (w(s), ρ).

Proposition 4.3. The problem [DUE-M(B)-LCP] is equivalent to the following variational in-

equality problem (VIP):

[DUE-VIP] Find (w∗(s), ρ∗) ∈ Ω such that
∑K

s=1(w(s) −w∗(s)) · ∆σ∗(s) − (ρ − ρ∗) ·Q ≥ 0 ∀(w(s), ρ) ∈ Ω

where ∆σ∗(s) ≡ 1 + [I − L]∆w∗(s),

Ω ≡ {(w(s), ρ) ≥ 0 : p(s)1 + L(w(s) + c) − ρ ≥ 0 ∀s ∈ S}.
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It is clear from the Proposition 4.3 that the above variational inequality problem can be associated
with linear programming (LP) problems:

Corollary 4.3. If the value of {∆σ∗(s) : s ∈ S} at equilibrium is known in advance, the problem

[DUE-VIP] reduces to the following parametric linear programming problem [DUE-PLP-D]:

min
(w,ρ)≥0

.FPLP−D ≡
∑K

s=1w(s) · C∆σ∗(s) − ρ ·Q subject to p(s)1 + L(w(s) + c) − ρ ≥ 0 ∀s ∈ S

and its dual problem [DUE-PLP-P] is given by

min
q≥0
.FPLP−P ≡

∑K
s=1(p(s)1 + Lc) · q(s)

subject to C∆σ∗(s) − LTq(s) ≥ 0 ∀s ∈ S, and
∑K

s=1q(s) −Q = 0.

A few remarks are in order. First, for the special case of N = 1 (i.e., a network with a single
bottleneck) for the Many-to-One model, the equivalent variational inequality problem in Proposi-
tion 4.3 always reduces to the LP in Corollary 4.3 without any assumptions on ∆σ∗. Specifically,
the vector ∆σ∗ for this case reduces to ∆σ1(s) ≡ dτ0(s)/ds, and ∆σ1(s) ≡ 1 always holds because
σ1(s) ≡ τ0(s) ≡ s, by definition. It follows that the equilibrium solution of the problem [DUE]
for N = 1 is obtained by simply solving the LP with unknowns {w1(s)} and ρ1. This result is
consistent with the finding of Iryo and Yoshii (2007). Second, note that [DUE-PLP-P] can be
interpreted as a particular type of dynamic system optimal assignment. The OD flow pattern
{q(s)} is controlled so as to minimize the total disutility of the commuters in the network, which
consists of the total schedule delay p(s)1 · q(s) and the total free flow travel time Lc · q(s). The
constraints are the physical conditions that dynamic flows in the corridor network should satisfy.
The second constraint is the conservation of the OD demand. The first constraint concerns the
traffic capacity, and prevents the queues build up at each bottleneck. We can interpret this as
the inflow rate LTq(s) = y(s) is always less than C∆σ∗(s), so the capacity is given by C∆σ∗(s)
rather than the actual capacity C1. Finally, the solution {q(s)} of the problem [DUE-PLP-P] is
not necessarily unique and can be a convex set, which implies that the equilibrium OD flow pat-
tern for the DUE problem with the deterministic demand model (i.e., the solutions of the LCPs in
Propositions 4.2A and 4.2B) is not necessarily unique, even if the equilibrium cost pattern {w(s)}
is unique.

4.3. Properties of the queuing models

For the One-to-Many model, the queuing sub-model is given by

0 ≤ w(s) ⊥ C∆σ(s) − LTq(s) ≥ 0 ∀s ∈ S

where ∆σ(s) ≡ 1 + L∆w(s). This can be interpreted as an implicit functional relationship w(q)
from q to w. More specifically, suppose that an OD flow pattern q ∈ RNK is given. Then, the
corresponding queuing delay pattern w ∈ RNK is given as the solution of the following LCP:

[PQ-E] 0 ≤ w ⊥ [∆K ⊗ CL]w + b ≥ 0, where b ≡ 1K ⊗ C1 − [IK ⊗ LT]q.

By inspecting this LCP, we see that the function w(q) has the following useful property.

Proposition 4.4A. (One-to-Many queuing model) For a given OD flow vector q ∈ RNK, the

solution w ∈ RNK (i.e., the queuing delays) of the problems [PQ-E] is uniquely determined.

Furthermore, the solution w(q) is Lipschitz continuous with respect to changes in q.
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Proof. It is well known in the theory of linear complementarity problems that if M is a P-matrix
then the LCP 0 ≤ X⊥MX+b ≥ 0 has a unique solution, and the solution is Lipschitz continuous
with respect to changes in b (Mangasarian and Shiau, 1987). Therefore, it suffices for us to prove
that M ≡ [∆K⊗CL] is a P-matrix. Note that M is a lower triangular matrix, in which all diagonal
entries {µi} are positive. This implies that all the eigenvalues of M and its principal submatrices
are positive, and hence, M is a P-matrix. QED.

Similarly, we can analyze the properties of the queuing condition for the Many-to-One model,
which has two types of formulation (i.e., backward and forward). For each formulation,∆σ(s) is
defined as

Backward type: ∆σ(s) ≡ 1 + [I − L]∆w(s)

Forward type: ∆σ(s) ≡ ∆τN(s)1 + LT
∆w(s).

Thus, in the backward type formulation, the queuing delay pattern w for a given OD flow pattern
q is the solution to the following LCP:

[PQ-M(B)] 0 ≤ w ⊥ [∆K ⊗ C[I − L]]w + b ≥ 0, where b ≡ 1K ⊗ C1 − [IK ⊗ LT]q.

For the forward type formulation, suppose that an OD flow pattern q and a parameter vector∆τN

for the consistency condition are given. Then, the corresponding queuing delay pattern w is the
solution to the following LCP:

[PQ-M(F)] 0 ≤ w ⊥ [∆K ⊗ CLT]w + b ≥ 0, where b ≡ ∆τ̂N − [IK ⊗ LT]q.

From these LCP representations, we have the following proposition concerning the properties of
the Many-to-One queuing model.

Proposition 4.4B. (Many-to-One queuing model) For a given OD flow vector q ∈ RNK and

a parameter vector ∆τN ∈ R
K for the consistency condition of the forward-type formulation, the

solution w ∈ RNK (i.e., the queuing delays) of the problem [PQ-M(F)] is uniquely determined,

whereas the solution to the problem [PQ-M(B)] is not necessarily unique. Furthermore, the

solution w ∈ RNK to the problem [PQ-M(F)] is Lipschitz continuous with respect to changes in

q and ∆τN.

Proof. As in the proof of Proposition 4.4A, it suffices to show that the LCP mapping M for
[PQ-M(F)] is a P-matrix, and that it is not for [PQ-M(B)]. For the problem [PQ-M(F)], M ≡
[∆K ⊗ CLT] is a block lower triangular matrix in which each diagonal block CLT is an upper
triangular matrix with positive diagonal entries {µi}. This implies that all the eigenvalues of M
and its principal submatrices are positive, and hence, that M is a P-matrix. For the problem
[PQ-M(B)], M ≡ [∆K⊗C[I−L]] is a lower triangular matrix with diagonal entries equal to zero,
which implies that all the eigenvalues of M are zero, and hence, that M is a P0-matrix but is not
a P-matrix. QED.

A few remarks are in order here. First, Propositions 4.4A and 4.4B state some positive as-
pects (uniqueness and Lipschitz continuity) of the function w(q), but they do not imply stronger
properties such as monotonicity (that has been the abused assumption in the dynamic traffic
assignment literature). Indeed, the function w(q) derived from the queuing model is not gen-
erally monotone. Second, these propositions show that the Many-to-One model is not exactly
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the reverse of the One-to-Many model. Indeed, the One-to-Many model always yields a unique
cost pattern w(q) for a given flow pattern q, but the Many-to-One model cannot give such a
tight relationship between q and w. Although the forward type formulation [PQ-M(F)] admits a
unique solution, it requires information on not only the flow pattern q but also ∆τN for the most
upstream bottleneck.

4.4. Non-monotonicity of the LCP mapping

Propositions 4.4A and 4.4B reveal that the matrices ∆K ⊗ CL and ∆K ⊗ CLT for the queu-
ing sub-model are P-matrices, so it is reasonable to expect that the matrices M for the overall
equilibrium conditions [DUE-E-LCP] or [DUE-M-LCP] also have such a useful property. The
following proposition, however, reveals that this conjecture is not true.

Proposition 4.5. Each mapping F(X) ≡ MX + b of the LCPs, [DUE-E-LCP] and [DUE-M-

LCP], in Propositions 4.2A and 4.2B is not monotone. Furthermore,

a) the One-to-Many model: F(X) is not a P-function in general,

b) the Many-to-One model: F(X) is not a P0-function.

Proof. If F(X) is monotone, then it implies that F(X) is a P-function (but the converse is not true).
Hence, it is sufficient to show a counter example for the matrix M being P-matrix (or P0-matrix).
For this, we show analytically that some of the principal minors of M can be negative even in a
small sized problem of N = K = 3.
a) the One-to-Many model: for α = {5, 7, 12, 14, 16}, det(M(α)) = (2µ1 − µ2)µ2 < 0 if µ2 >
2µ1

b) the Many-to-One model:

(Backward type) for α = {3, 4, 8, 12, 14, 18, 21}, det(M(α)) = −µ2
2 < 0

(Forward type) for α = {2, 4, 9, 12, 14, 18, 21}, det(M(α)) = −µ2
2 < 0

where α ⊆ S ≡ {1, . . . ,K} denotes an index set of the matrix M, α is the complement of α, and
M(α) = [Mij] denotes a principal submatrix of M in which i ∈ α and j ∈ α. QED.

The above proposition implies that it is very difficult to prove the uniqueness of the equilibria
of [DUE-E] or [DUE-M] for the homogeneous user case. One reason for this difficulty seems to
lie in the demand condition, in which q is not a smooth function of w but is just an upper hemi-
continuous correspondence (recall that [DUE-PLP-P] in Corollary 4.3 does not necessarily have
a unique solution). To obtain sharper results, we will examine the uniqueness of the equilibria
for a generalized case of heterogeneous users, which we describe in the next section.

5. Existence and uniqueness

5.1. Existence

To establish the existence of equilibria for the problem [DUE], we characterize the equilib-
rium as a fixed point problem consisting of the demand-side and supply-side conditions discussed
in the previous sections. The demand side condition for the problem [DUE] can be generally rep-
resented for both cases of the deterministic demand (or homogeneous users) and the stochastic
demand (or heterogeneous users) as follows.

q = D(w) (5.1)

18



where D(w) is the set of time-dependent OD flow patterns that can be generated from the depar-
ture time choice model when the queuing delay pattern is w. Specifically, the demand function
D : Y → X is defined in (3.11) for the heterogeneous users case, and is defined in the comple-
mentarity condition (3.13) for the homogeneous users case. X denotes the set of feasible OD
flow patterns generated from a total OD demand Q, which is defined as X ≡ {q :

∑K
s=1q(s) =

Q, and q ≥ 0}. The set X is non-empty, compact and convex for finite Q. Y is the set of queuing
delay patterns w determined from the supply side (queuing) condition mentioned below.

The supply side condition and the equilibrium of the problem [DUE] should be described
separately for the One-to-Many model and the Many-to-One model because the two models
have subtle differences (as discussed in the previous section).

(A) One-to-Many model

For the One-to-Many model, the supply side condition can be generally expressed as

w =W(q). (5.2)

As shown in Proposition 4.4A, the function W : X → Y is defined as the solution of the linear
complementarity problems [PQ-E] for a given OD flow pattern q is given. It is a many-to-one
mapping and is Lipschitz continuous with respect to changes in q. This, combined with the
boundedness and convexity of the set X implies that Y is a non-empty, compact set. Combining
(5.1) and (5.2), the equilibrium flow pattern q∗ of [DUE-E] for the One-to-Many model can be
defined as the solution of the following fixed point problem:

q∗ = D(W(q∗)) ∈ X (5.3)

and the equilibrium queuing delay patterns w∗ are given by W(q∗).
By applying Kakutani’s fixed point theorem (Kakutani, 1941), we have the following exis-

tence result:

Theorem 5.1A. For the One-to-Many DUE model, the equilibrium (q∗,w∗) defined in (5.3)
exists for both cases of heterogeneous users and homogeneous users.

Proof. The mapping D(w) is (a) upper hemi-continuous (for the proof, see for example, Daganzo,
1983; Mas-Colell et al., 1995) for the homogeneous users case, and (b) continuous for the het-
erogeneous users case. It sends every w into a closed and convex set in X. Because the mapping
W(q) is Lipschitz continuous, the composition D(W(q)) of D(w) and W(q) shares the prop-
erties D(w) for all q for which W(q) is Lipschitz continuous. Thus, (5.3) defines an upper
hemi-continuous mappings within X that is non-empty, compact and convex set. Then, Kaku-
tani’s fixed point theorem guarantees the existence of q∗. QED.

(B) Many-to-One model

For the Many-to-One model, we can similarly define the supply side condition as

w =W(q,∆τN) (5.4)

where we employ the forward type formulation (or the LCP [PQ-M(F)]) discussed in 4.3, and
∆τN should satisfy (4.9), which can be written as

∆τN = L(w) ≡ 1 −
∑N

i=1∆wi. (5.5)
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Thus, the equilibrium for the Many-to-One model can be defined as the following fixed point
problem with respect to q̂ = [q,∆τN]:

q̂∗ = [D(W(q̂∗)),L(W(q̂∗))] ∈ X̂ (5.6)

and the equilibrium queuing delay pattern w∗ is given by W(q̂∗), where X̂ = X × T, and T
denotes the feasible set of ∆τN, which is defined as T = {∆τN : 0 ≤ ∆τN ≤ 1β} for some finite
constant β.

The assumption that the set T is bounded from above (i.e., ∆τN ≤ 1β) is always satisfied for
the queuing model (and finite Q) in this paper.

Proposition 5.1. For a finite OD demand pattern Q and a positive capacity pattern µ ! 0, the

upper bound of ∆τN is at most 1 +
∑N

i=1

∑i
j=NQj/µi.

Proof. From the definition of the queuing model, we have

∆τi(s) = ∆τi−1(s) − ∆wi(s) and − ∆wi(s) = wi(s − 1) − wi(s) ≤ wi(s − 1) ≤
∑i

j=NQj/µi

This implies∆τi(s) ≤ ∆τi−1(s)+
∑i

j=NQj/µi for i = N, . . . , 1. “Solving” the recursive inequalities
in backward direction from i = N to 1, we obtain

∆τN(s) ≤ ∆τN−1(s) +QN/µN ≤ ∆τN−2(s) +QN/µN +
∑N−1

j=N Qj/µN−1

≤ · · · ≤ ∆τ0(s) +
∑N

i=1

∑i
j=NQj/µi = 1 +

∑N
i=1

∑i
j=NQj/µi ≤ β ∀s ∈ S. QED.

For the lower bound of the set T (or the consistency condition∆τN ≥ 0), we require the following
assumption regarding the schedule delay function.

Assumption 5.1B. There exists an appropriately defined schedule delay function p(s) for which

the equilibrium of (5.6) always satisfies ∆τN(s) ≥ 0 ∀s ∈ S.

Although it is difficult to give a necessary and sufficient condition for this assumption to be
true in the problem with general demand functions, we can provide a sufficient condition for
some typical demand functions.

Proposition 5.2. Suppose that the schedule delay function p(s) satisfies the following condition

for (a) deterministic demand function case: ∆p(s) ≥ −1 ∀s ∈ S, (5.7a)

for (b) logit demand function case: ∆p(s) ≥ −1 + (1/θ) ∀s ∈ S. (5.7b)

Then, Assumption 5.1B always holds at equilibrium.

Proof. The logit demand model always yields an interior solution with respect to q, so the
equilibrium condition for users with origin N can be written as

(s − τN(s)) + p(s) + (1/θ) ln qN(s) − ρN = 0. ∀s ∈ S

This implies that

∆τN(s) = 1 + ∆p(s) + ε(s) ∀s ∈ S (5.8)
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where ε(s) ≡
1

θ
ln

(

qN(s)

qN(s − 1)

)

=
1

θ
ln

(

1 +
∆qN(s)

qN(s − 1)

)

≈
1

θ

∆qN(s)

qN(s − 1)
=

1

θ

(

qN(s)

qN(s − 1)
− 1

)

> −
1

θ
.

Taking the limit as θ→ +∞ of (5.8), we can also obtain∆τN(s) = 1+∆p(s) for the deterministic
demand case. Thus, the condition (5.7) implies ∆τN(s) ≥ 0. QED.

Based on the fixed point problem (5.6), we can obtain the following existence result for the
Many-to-One model:

Theorem 5.1B. For the Many-to-One DUE model, if Assumption 5.1B holds, the equilibrium

(q̂∗,w∗) defined in (5.6) exists for both cases of heterogeneous users and homogeneous users.

Proof. The proof is almost the same as that of the One-to-Many model. The difference is that
W(q) is replaced with W(q̂), and the mapping L(W(q̂)) is introduced. The mapping W(q̂)
is Lipschitz continuous with respect to q̂ because ∆τN and q are linear terms constituting the
constant vector b of the LCP [PQ-M(F)] (see Propositon4.4B). Using this, and because L(w) is
a linear mapping of w, we find that the composition mapping L(W(q̂)) is Lipschitz continuous
with respect to q̂. It also follows that (D(W(q̂)),L(W(q̂))) is a mapping from X̂ to X̂ itself,
because Proposition 5.1 and Assumption 5.1B imply that L(W(q̂)) sends every q̂ into the closed
and convex set T. Thus, (5.6) defines an upper hemi-continuous mapping within X̂ that is non-
empty, compact and convex set. Then, Kakutani’s fixed point theorem guarantees the existence
of q̂∗. QED.

The following remarks conclude this subsection. First, condition (5.7a) in the Many-to-One
model is consistent with the sufficient condition for the existence of equilibria in Vickrey’s bot-
tleneck model (Smith, 1984). This condition limits the decreasing rate of schedule cost function
and prevents the cumulative arrival curve at the most upstream bottleneck from being backward-
bending. Second, for the One-to-Many model, we do not need a similar condition on the schedule
cost to guarantee the existence of equilibria. The reason for this difference in the two models can
be clearly understood from structures of queuing models discussed in Section 4.3. It is also
consistent with the finding of de Palma and Lindsey (2002) for a single bottleneck.

5.2. Uniqueness

As shown in the previous section, it is difficult to prove the uniqueness of the solution of
[DUE] for the homogeneous users case because the equivalent LCPs do not have monotonicity or
P-property. In this subsection, we examine the uniqueness of the equilibria for the heterogeneous
users case. Specifically, we assume that the demand condition is given by (3.11), which is based
on the random utility theory. Note that we do not impose any particular type of functional form
(such as logit or probit) for the choice function in the analysis below.

For the convenience of exposition, we slightly change the notation in this subsection: qi ∈ R
K

and wi ∈ R
K (i = 1, . . . ,N) are column vectors with elements qi(s) and wi(s) (s = 1, . . . ,K),

respectively; q ∈ RNK and w ∈ RNK denote column vectors with block elements qi and wi

(i = 1, . . . ,N), respectively.

(A) One-to-Many model

The demand-side condition for the heterogeneous users defined in (3.11) is represented as
qi = QiPi(vi(w)), where vi(w) is a vector (for i th origin) with elements vi(s) ≡

∑i
j=1(wj(s) +

cj) + p(s) (s = 1, . . . ,K), Pi : RNK → RK is a column vector [Pi(1), . . . ,Pi(K)]T of the choice
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probability function Pi(s) : RNK → R, which is defined in (3.11b). This can be written as the
following complementarity condition:

0 ≤ q ⊥ q −QP(w) ≥ 0 (5.9)

where P : RNK → RNK is a column vector [P1, . . . ,PN]T, and Q ≡ diag[Q1IK, . . . ,QNIK] ∈
RNK×NK. The supply-side (queuing) condition for the One-to-Many model can be written as

0 ≤ w ⊥ [CL ⊗ ∆K]w + C1 ⊗ 1K − [LT ⊗ IK]q ≥ 0. (5.10)

Thus, we can put the demand-supply equilibrium condition in a single nonlinear complementarity
problem (NCP).

Proposition 5.3A. (One-to-Many model) The problem [DUE-E] for the One-to-Many model

with heterogeneous users is equivalent to the following NCP, and has a solution.

[DUE-E-NCP]: Find X ≡ [q,w]T ∈ R2NK such that

0 ≤ X ⊥ G(X) ≡













I ⊗ IK 0

−LT ⊗ IK CL ⊗ ∆K

























q

w













+













−QP(w)

C1 ⊗ 1K













≥ 0. (5.11)

We prove the uniqueness of the solution of [DUE-E-NCP] by using the following lemma,
which is based on the Poincare-Hopf’s index theorem and the theory of complementarity prob-
lems.

Lemma 5.1. (Mas-Colell, 1979; Kolstad and Mathiesen, 1987; Simsek et al., 2007): For a non-

linear complementarity problem:

Find x such that 0 ≤ x ⊥ F(x) ≥ 0 (5.12)

where F : RN
+ → R

N is continuously differentiable, define N by N = {1, . . . ,N}, B(x) = {i ∈
N |xi > 0}, JB(F, x) to the principal sub matrix of the Jacobian matrix of F corresponding to
the indices of B(x), and det(JB(F, x)) its determinant. If B(x) = ∅, then define det(JB(F, x)) =
1. Suppose a solution to the problem (5.12) exists, and at each solution x∗i to the NCP that

strict complementarity condition holds, (i.e., x∗i = 0 implies Fi(x∗) > 0). Then (1) if we have

det(JB(F, x)) > 0 for all solutions to the NCP then there is precisely one solution; and conversely,

(2) If there is only one solution to the NCP then det(JB(F, x)) ≥ 0.

In order to apply this lemma to [DUE-E-NCP], we first need the Jacobian matrix of G(X). A
straightforward calculation leads to the following lemma:

Lemma 5.2A. The Jacobian matrix ∇G(X) of G(X) in [DUE-E-NCP] is given by

∇G(X) =













I ⊗ IK −H(L ⊗ IK)

−LT ⊗ IK CL ⊗ ∆K













(5.13)

where H ≡ diag[Q1H1, . . . ,QNHN], Hi ≡ [hi(s, t)] is the Jacobian matrix of the choice prob-

ability function Pi(vi(w)) where the (s, t) element is hi(s, t) ≡ ∂Pi(s)/∂vi(t), (s = 1, . . . ,K; t =
1, . . . ,K).
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In examining the properties of ∇G(X), the following lemmas are useful.

Lemma 5.3(1). The Jacobi matrix Hi(vi(w)) is negative semi-definite ∀vi ∈ R
K and is negative

definite on the tangent space TX of {Pi : 1TPi = 1,Pi ≥ 0}.

Proof. See for example, Sandholm (2010, Chap.6, pp.213).

Lemma 5.3(2). The matrices L and ∆K are positive definite, and their eigenvalues are all equal

to +1.

Proof. xTLx =
∑N

i=1xi
∑N

j=1xj = (1/2)
(

∑N
j=1xj

)2
+ (1/2)

∑N
j=1x2

j > 0 ∀x ∈ RN
! 0

xT∆Kx =
∑K

k=1(xk − xk−1)xk = (1/2)
∑K

k=1(xk − xk−1)2 > 0 ∀x ∈ RK
! 0.

Because both of L and ∆K are lower triangular matrices with all the diagonal entries being 1,
their eigenvalues also all equal to 1. QED.

Now, we can examine the positivity of the determinant of ∇G(X).

Lemma 5.4A. det(∇G(X)) = det(A −H), where A ≡ (LT)−1C ⊗ ∆K.

Proof. det(∇G(X)) = det(CL ⊗ ∆K − (LT ⊗ IK)H(L ⊗ IK))

= det(LT ⊗ IK) · det([LT ⊗ IK]−1[CL ⊗ ∆K][L ⊗ IK]−1 −H) · det(L ⊗ IK)

= det(LT ⊗ IK) · det((LT)−1C ⊗ ∆K −H) · det(L ⊗ IK).

It follows from Lemma 5.3(2) that det(LT ⊗ IK) = det(L ⊗ IK) = +1, and hence,

det(∇G(X)) = det((LT)−1C ⊗ ∆K −H) = det(A −H). QED.

Lemma 5.5A. The determinant of ∇G(X) is positive for all X ≥ 0.

Proof. Since the matrix A −H is a block upper triangular matrix, in which each diagonal block
is µi∆K − QiHi, the determinant of A − H is given by

∏N
i=1 det(µi∆K − QiHi). Note here that

each of the matrix µi∆K − QiHi ∀i ∈ N is positive definite because ∆K is positive definite
(Lemma 5.3(2)), and Hi ∀i ∈ N are negative semi-definite (Lemma 5.3 (1)), which implies that
λk(µi∆K −QiHi) > 0 ∀k, i , where λk(M) denotes k th eigenvalue of a matrix M. Thus,

∇G(X) =
∏N

i=1 det(µi∆K −QiHi) =
∏N

i=1

∏K
k=1λk(µi∆K −QiHi) > 0. QED. (5.14)

By extending the above analysis to the case of Jacobian matrices at equilibrium points, we
obtain the uniqueness result for the One-to-Many model.

Theorem 5.2A. For the One-to-Many DUE model with heterogeneous users, the equilibrium

defined in (5.11) is unique.

Proof. See Appendix A.
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(B) Many-to-One model

The demand condition of the Many-to-One model can be represented in the same manner
with that of the One-to-Many model, but the supply-side condition of the Many-to-One model is
slightly different (see the discussions in Section 4), and it is given by

0 ≤ w ⊥ [CLT ⊗ ∆K]w + C1 ⊗ ∆τN − [LT ⊗ IK]q ≥ 0 (5.15a)

∆τN + (∆wN + · · · + ∆w1) = 1K and ∆τN ≥ 0. (5.15b)

Thus, if we impose Assumption 5.1B so that the consistency condition ∆τN ≥ 0 is “automati-
cally” satisfied at equilibrium, the problem [DUE-M] for the Many-to-One model with hetero-
geneous users is equivalent to the following mixed complementarity problem (MCP):

[DUE-M-MCP]: Find X ≡ [q,w]T ∈ R2NK and ∆τN such that

0 ≤ X ⊥ GS(q,w) −GD(w) +Gτ(∆τN) ≥ 0, (5.16a)

∆τN + (∆wN + · · · + ∆w1) = 1K, (5.16b)

where GS ≡













I ⊗ IK 0

−LT ⊗ IK CLT ⊗ ∆K

























q

w













, GD ≡













QP(w)

0













, Gτ ≡













0

C1 ⊗ ∆τN













.

To prove the uniqueness by using Lemma 5.1, it is convenient to convert the problem into a
standard NCP. For this purpose, we convert the consistency condition (5.15b) into the following
pair of complementarity conditions:

0 ≤ x ⊥ 1K − (z + ∆Kw1 + · · · + ∆KwN) ≥ 0 and 0 ≤ z ⊥ g(x, z) ≥ 0 (5.17)

where z ≡ ∆τN, g(x, z) = [g(x(1), z(1)), . . . , g(x(K), z(K))]T, and g : R2
+ → R is a continuous

and smooth function of x and z that satisfies

∂g/∂x > 0 ∀x ≥ 0, ∂g/∂z > 0 ∀z ≥ 0, argx .{g(x, z) = 0} > 0, ∀z ≥ 0, argz .{g(x, z) = 0} > 0,∀x ≥ 0.

A simple example of such a function is g(x, z) ≡ f1(z) − f2(x), where f1(z) ≡ ln(z + 1), f2(x) ≡
(1/x). These properties of g imply that (x, z) > 0 as well as the equality condition (∆Kw1 + · · ·+
∆KwN) + z = 1K are always maintained in the complementarity system (5.17). Thus, we have
the following equivalent NCP for the Many-to-One model.

Proposition 5.3B. (Many-to-One model) If Assumption 5.1B holds, the problem [DUE-M] for

the Many-to-One model with heterogeneous users is equivalent to the following standard NCP,

and has a solution.

[DUE-M-NCP]: Find X ≡ [q,w]T ∈ R2NK and Y ≡ [x, z]T ∈ R2K such that

0 ≤













X

Y













⊥ G(X,Y) ≡













GS(q,w) −GD(w) +G12Y

G21X +G2(Y)













≥ 0 (5.18)

where G2(Y) ≡













1K − z

g(x, z)













: R2K → R2K, G12 ≡













0 0

0 C1 ⊗ IK













∈ R2NK×2K,

G21 ≡













0 1K ⊗ ∆K

0 0













∈ R2K×2NK.
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Note that if Assumption 5.1B does not hold, there is a possibility that the solution to the comple-
mentarity condition (5.17) cannot be satisfied, which implies that the solution to [DUE-M-NCP]
does not exist even if the solution to [DUE-M-MCP] exists.

The positivity of the determinant of the Jacobian of the problem [DUE-M-NCP] can be ex-
amined by the similar manner to that in the One-to-Many model.

Lemma 5.2B. The Jacobian matrix ∇G(X,Y) of G(X,Y) in [DUE-M-NCP] is given by

∇G =













G11 G12

G21 G22













, where G11 ≡













I ⊗ IK −H(L ⊗ IK)

−LT ⊗ IK CLT ⊗ ∆K













, G22 ≡













0 −IK

∇xg ∇zg













.

Lemma 5.4B. det(∇G(X,Y)) = det(Â −H) = det(B11) · det(B22)

where Â −H ≡













B11 B12

0 B22













, B11 ≡ diag[µi+1∆K −QiHi]
N−1
i=1 , (5.19)

B22 ≡























µN∆K −QNHN 0 µNIK

−∆K

0 G22























.

Lemma 5.5B. The determinant of ∇G(X,Y) is positive for all (X,Y) ≥ 0 if an arbitrary pair of
element (qN(s),wN(s)) of (qN,wN) is fixed (or deleted from the unknown variables).

Proof. Because det(∇G(X,Y)) = det(Â−H) = det(B11) ·det(B22), we show that det(B11) > 0
and det(B22) > 0 in turn. The matrix B11 is a block upper triangular matrix, in which each
diagonal block is a positive definite matrix µi+1∆K − QiHi. Hence, det(B11) reduces to the
products of eigenvalues λk(µi+1∆K −QiHi) > 0 ∀k, i:

det(B11) =
∏N−1

i=1 det(µi+1∆K −QiHi) =
∏N−1

i=1

∏K
k=1λk(µi+1∆K −QiHi) > 0.

As for the matrix B22, a simple calculation yields

det(B22) = gx · det(−QNHN)

where gx ≡
∏

∂g(x, z)/∂x|x=xi(s),z=zi(s) > 0 ∀(x, z) ≥ 0. Since the demand side Jacobian HN is
negative definite on the tangent space TX (see Lemma 5.3 (2)), deleting a single row and column
of HN guarantees that det(B22) = gx · det(−QNHN) > 0. QED.

Comparing these lemmas and those for the One-to-Many model, we see first that the main
difference is concerning the equilibrium conditions for the most upstream bottleneck. Specifi-
cally, the submatrix B22 of the Jacobian ∇G(X,Y) stems from the equilibrium condition for the
most upstream (N th) bottleneck/Origin, which corresponds to the last (N th) diagonal block,
µN∆K − QNHN, of the matrix A − H in the One-to-Many model. Second, the determinant
of the matrix B22 for the Many-to-One model reduces to the determinant of the demand side
matrix −QNHN only, while the determinant of µN∆K − QNHN for the One-to-Many model is
decided from two terms stemming from the supply-side condition (µN∆K) and the demand-side
condition (−QNHN). This reflects the fact that the equilibrium condition of the Many-to-One
model is lacking in the queuing condition for the most upstream bottleneck. This fact together
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Figure 5: An equilibrium flow pattern for the Many-to-One model with the desired arrival time tw = 40 (first row:
aggregate cumulative curves; second-fourth rows: disaggregate cumulative curves for each origin).

with the positive semi-definiteness of −HN (i.e., its rank is K − 1) also leads to the indetermi-
nacy of the (qN,wN), and the requirement of deleting a single pair of elements (qN(s),wN(s))
from (qN,wN) in Lemma 5.5B; in the One-to-Many model, the possible indeterminacy from the
semi-definiteness of HN is recovered by the positive definiteness of the supply-side term µN∆K.
Finally, the possible indeterminacy of the (qN,wN) in the Many-to-One model may not be a se-
rious problem in practice because it can be easily avoided by taking the assignment time period
S long enough, and setting, say, qN(1) = wN(1) = 0; furthermore, it cannot occur if there is at
least a single time period s at which the most upstream bottleneck is not active (i.e., wN(s) = 0)
at equilibrium, which may be often the case.

Now, we are in a position to state the uniqueness theorem for the Many-to-One model.

Theorem 5.2B. For the Many-to-One DUE model with heterogeneous users, suppose that As-

sumption 5.1B holds. Then the equilibrium (q∗,w∗) defined in (5.18) is unique, if an arbitrary

pair of element (qN(s),wN(s)) of (qN,wN) is fixed (or deleted from the unknown variables).

Proof. The difference between the Jacobians of the One-to-Many model and the Many-to-One
model is just the block-submatrix B22 discussed above. Since this submatrix cannot be affected
by the operations deleting the rows and columns of the Jacobian matrix corresponding to B(x) =
{i ∈ N |xi > 0} in Lemma 5.1 (recall that (x, z) cannot be zero from the definition of the function
g), the proof is almost the same as that of Theorem 5.1A, and omitted here.

6. Numerical Examples

This section presents numerical examples of an equilibrium flow pattern for each model by
solving the problems [DUE-E-NCP] and [DUE-M-MCP]. For the computation of the equilib-
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First row:        Aggregate cumulative curves 
Second row:   Cumulative curves for users with destination 1 
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Figure 6: An equilibrium flow pattern for the One-to-Many model with the desired departure time tw = 20 (first row:
aggregate cumulative curves; second-fourth rows: disaggregate cumulative curves for each destination).

rium, we use the ReSNA (Regularized Smoothing Newton Algorithm) 3 that was originally de-
veloped for solving the second-order cone complementarity problems (SOCCP) (Hayashi et al.,
2005). Because the SOCCP involves the NCP as a subclass, ReSNA is also applicable to NCP in
a direct manner. In Hayashi (2015), the global convergence of the algorithm is proved under the
(Cartesian) P0 assumption, which is a natural extension of P0 assumption for NCP or MCP (a
weaker condition than monotonicity)4. Although our problems may not be P0, our experiments
have successfully obtained equilibrium solutions in most cases when the logit parameter θ is not
so high.

We considered a corridor network with the number of bottlenecks N = 3 and employed a
piecewise linear schedule delay function with early [late] penalty parameter 0.5 and late [early]
penalty parameter 2.0 for the Many-to-One model [One-to-Many model]. We used the logit
choice function (i.e., the discrete time version of (3.12)) with the parameterθ = 60. The free flow
travel times, capacities of bottlenecks, and total demands were give by c = 0, µ = [30, 20, 10]T,
and Q = [100, 200, 300]T, respectively. The number of assignment intervals was 60, which was
sufficiently long for all the demands to be served in assignment period S.

The results for these numerical examples are shown in Figs.5 and Fig.6. These figures illus-
trate the aggregate (first rows) and disaggregate cumulative curves (second-fourth rows). Each
disaggregate curve represents the origin-specific (or destination-specific) cumulative number of
users at each bottleneck. The aggregate curve at each bottleneck is the sum of the disaggre-
gate curves at the same bottleneck. The red and blue lines represent the cumulative arrival and

3Website of ReSNA: http://www.plan.civil.tohoku.ac.jp/opt/hayashi/ReSNA/.
4In Hayashi et al. (2005), the quadratic convergence of the algorithm is also proved under monotonicity assumption.
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departure curves, respectively. The vertical lines in the figures for bottleneck 1 represent the
desired arrival [departure] time at the destination [origin], which is common to all users in the
Many-to-One [One-to-Many] model.

From these figures, it is clear that equilibrium flow patterns for the two models have different
characteristics even though the situations are only the reverse of each other. Specifically, for
the Many-to-One model, the disaggregate arrival and departure patterns among different origins
are very different, but the patterns for the One-to-Many model are not significantly different for
different destinations. This seems to be related to the difference between two models discussed
in Section 4.3. Future work should investigate this in detail, along with other characteristics of
the equilibrium flow patterns.

7. Concluding remarks

This paper considered a departure-time choice equilibrium for a corridor problem where dis-
crete multiple bottlenecks exist along a freeway. We first transformed the equilibrium conditions
for Many-to-One and One-to-Many models from the conventional Eulerian coordinate system to
a Lagrangian-like coordinate system. This approach allowed us to achieve a deep understand-
ing of the mathematical structure of the problem. Specifically, we analyzed the equilibrium for
the homogeneous users case and revealed the following properties: (1) the supply (queuing)
sub-model of the Many-to-One model has a slightly more complicated structure than that of the
One-to-Many model, although the demand sub-models of both models have same structure; (2)
the mappings of the equivalent linear complementarity problems of both models are not mono-
tone in general, which implies that the uniqueness of the equilibria is not necessarily guaranteed
for the homogeneous users case. We then examined the existence and uniqueness of equilibria
for heterogeneous users case and obtained the following results: (3) equilibria exist in both mod-
els for the case of homogeneous users and heterogeneous users case, but the Many-to-One model
requires an assumption on the schedule penalty function; (4) the equilibria in both of the models
for the case of the heterogeneous users are unique. Finally, we gave numerical examples of the
equilibrium flow pattern of each model.

Although we focused on the theoretical properties of equilibria for the corridor problem due
to space limitations, a systematic numerical experiment is required to characterize the equilib-
rium flow and cost patterns. The algorithm used in Section 6 does not give guaranteed conver-
gence, but our uniqueness result supports the case for proceeding with such a numerical experi-
ment because we should, at most, find one equilibrium solution. Such an experiment is currently
being conducted by the authors, and the outcome will be reported in the near future.

Appendix A. Proof of Theorem 5.2A

We prove the uniqueness of the solution of [DUE-E-NCP] by using Lemma 5.1. Since the
equilibrium q∗ of [DUE-E-NCP] is always an interior solution, it is sufficient for us to consider
the set of time periods during which equilibrium queuing delay w∗ is positive. For this, we first
define a subset Si of the index set S ≡ {1, . . . ,K} by Si(wi) = {s ∈ S |wi(s) > 0}(i = 1, . . . ,N),
and the associated matrix I(Si(wi),S) ∈ RKi×K that is a submatrix of IK consisting of the set of
rows with indices in Si(wi), where Ki ≡ |Si|. Let B(w) be the union of {Si(wi) : i = 1, . . . ,N},
B(w) =

⋃N
i=1Si(wi), its associated matrix B(w) be

B(w) ≡ diag[I(S1(w1),S), . . . , I(SN(wN),S)] ∈ Rm×n, where m ≡
∑N

i=1Ki, n ≡ NK,
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and JB(G(q∗,w∗)) be the principal submatrix of the Jacobian of G(q∗,w∗) corresponding to the
indices of B(w). We also use the following abbreviation of the notation for the simplicity of
exposition:

I(i, ∗) ≡ I(Si(wi),S), I(∗, i) ≡ I(i, ∗) = I(S,Si(wi)),

I(i, j) ≡ I(Si(wi),S) I(S,S j(w j)) ≡ I(i, ∗) I(∗, j).

Under this setting, the Jacobian matrix JB(G(q∗,w∗)) can be written as

JB(G(q∗,w∗)) ≡













IK
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,

where A22 = B(CL ⊗ ∆K)BT, A21A12 = B(LT ⊗ IK)H(L ⊗ IK)BT . Hence, det(JB) is given by

det(JB) = det(A11) det(A22 −A21A−1
11 A12) = det(A22 −A21A12)

= det(B(CL ⊗ ∆K)BT − B(LT ⊗ IK)H(L ⊗ IK)BT)

≡ det(J(S)
B − J(D)

B )

where J(S)
B ≡ B(CL⊗∆K)BT, and J(D)

B ≡ B(LT⊗IK)H(L⊗IK)BT. In order to simplify the demand-

side matrix J(D)
B , we first represent the principal submatrix of the Jacobian H(w∗) corresponding

to Si(wi) as Ĥi ≡ I(i, ∗)HiI(∗, i) (i = 1, . . . ,N). Then the matrix J(D)
B can be written as

J(D)
B ≡ B(LT ⊗ IK)H(L ⊗ IK)BT

= L̂TSHSTL̂ = L̂TĤL̂,

where L̂T is a block upper triangular matrix in which (i, j) block is I(i, j) and S ≡ diag[I(1, ∗), . . . , I(N, ∗)].
We used the identity I(i, i)I(i, ∗) = I(i, ∗), I(i, i)I(i, j) = I(i, j), and I(i, j)I( j, ∗) = I(i, ∗) if Si ⊆ S j.

Note here that the inverse of the block upper triangular matrix L̂T can be given as an block upper
triangular (and double diagonal) matrix in which each diagonal block is I(i, i) and (i, j) block is
−I(i, j) if j = i+ 1, zero otherwise, because I(i, j− 1)I( j− 1, j) = I(i, j)I( j, j) (i < j) always hold.

By using this, we can diagonalized the matrix J(D)
B as follows:

(L̂T)−1J(D)
B L̂−1

= SHST
= Ĥ,

which implies that det(J(S)
B − J(D)

B ) is simplified as

det(J(S)
B − J(D)

B ) = det(L̂T[(L̂T)−1(J(D)
B − J(S)

B )L̂−1]L̂)

= det(L̂T) det((L̂T)−1J(S)
B L̂−1 − Ĥ) det(L̂)

= det((L̂T)−1J(S)
B L̂−1 − Ĥ).

Here the last equality follows from the fact det(L̂) = det(L̂T) = +1 because L̂T is a block upper
triangular matrix with all diagonal entries equal to +1. Corresponding to this diagonalization, we

29



needs to calculate (L̂T)−1J(S)
B L̂−1 to evaluate det(J(S)

B − J(D)
B ). By defining ∆(i, j) ≡ I(i, ∗)∆KI(∗, j),

we see that the supply-side matrix J(S)
B ≡ B(CL⊗∆K)BT reduces to a block lower triangular matrix

whose (i, j) block is µi∆(i, j). Then, a straightforward calculation reveals that (L̂T)−1J(S)
B L̂−1 − Ĥ

is also a block lower triangular matrix in which each diagonal block is µi∆(i, i). Therefore, each

diagonal block of (L̂T)−1J(S)
B L̂−1 − Ĥ is µi∆(i, i) −QiĤi = I(i, ∗)(µi∆K −QiHi)I(∗, i), and hence,

det(J(S)
B − J(D)

B ) is given by the products of det(I(i, ∗)(µi∆K − Hi)I(∗, i)). Note here that each of
the matrix I(i, ∗)(µi∆K − QiHi)I(∗, i) is positive definite for any choice of the set Si because ∆K

is positive definite (Lemma 5.3(2)), and Hi (i = 1, . . . ,N) are negative semi-definite (Lemma
5.3 (1)), and these properties are inherited to their principal submatrices. This implies that all
the eigenvalues of I(i, ∗)(µi∆K − Hi)I(∗, i) are positive. Thus, we can conclude that for B(w)
corresponding to all solutions of [DUE-E-NCP],

det(JB(G(q∗,w∗))) = det(J(S)
B − J(D)

B ) =
∏N

i=1 det(I(i, ∗)(µi∆K −QiHi)I(∗, i)) > 0,

and Lemma 5.1 guarantees that the solution is unique. QED.
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