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Abstract

This study aims to analyze the relationship between a macroscopic fundamental diagram (MFD),
which relates vehicle accumulation with throughput at the network level, and the spatial distribu-
tion of congestion (congestion pattern) in a general network with one-to-many origin-destination
demands. In particular, we clarify the causes of a decreasing branch of MFDs and the influ-
ence of local signal controls on the (global) network throughput. For this aim, we present a new
inverse problem of the dynamic user equilibrium assignment by using a periodic boundary condi-
tion, and an analytical formula of the network throughput for a fixed accumulation is derived by
solving it. This enables us to incorporate the effects of network configurations and route choice
behaviors into the analysis of the network throughput. By conducting a sensitivity analysis of
this formula, we identify the types of congestion patterns that cause the decrease in the network
throughput and examine a network signal control for improving network performance.

Keywords: network throughput, Macroscopic Fundamental Diagram, network exit function,
dynamic user equilibrium, equilibrium paradox, network signal control

1. Introduction

Network-level relationships among traffic variables were introduced by Godfrey (1969) and
their static properties (averages over long times) have been examined by several studies (e.g.,
Herman and Prigogine, 1979; Ardekani and Herman, 1987; Mahmassani et al., 1987). To pre-
dict the network performance dynamically, Daganzo (2007) later reintroduced a Macroscopic
Fundamental Diagram (MFD) showing a steady-state functional relationship between vehicle
accumulation (or average network density) and network throughput (or average network flow)
within certain networks. Geroliminis and Daganzo (2008) then demonstrated that a well-defined
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Figure 1: Framework of this study

MFD, which is reproducible and invariant when the demand changes, exists within a field ex-
periment in downtown Yokohama, Japan. Although the MFD has been considered useful for
establishing robust network-wide traffic control, the microscopic mechanisms behind the macro-
scopic behaviors of an MFD are not completely understood.

With regard to this issue, several studies have shown that the spatial distribution of congestion
(hereon referred to as a “congestion pattern”) in a network is one of the key factors in defining
the shape of an MFD. Geroliminis and Sun (2011b) observed a well-defined MFD when the vari-
ance of link density was the same for different time periods with the same network density. For
networks where users choose their routes randomly, Mazloumian et al. (2010) and Daganzo et al.
(2011) showed that traffic congestion tends to distribute unevenly, which leads to a decrease in
the network throughput. Because such an uneven congestion pattern may be induced by route
choices, heterogeneous local capacities and controls, Leclercq and Geroliminis (2013) analyzed
the effect of route choices on an MFD by combining an analytical approximation method of
the MFD (Daganzo and Geroliminis, 2008) with equilibrium route choice models. However,
their analysis was restrictive, i.e., they only considered a parallel route network. The relation-
ship between a decrease in the network throughput and congestion patterns in general networks
associated with route choice behaviors, local control and network topology is largely unknown.

The purpose of this study is to analyze the relationship between an MFD and the congestion
patterns in a general network with one-to-many origin-destination demands. Of particular inter-
ests are the causes of a decreasing branches of MFDs and the influences of network signal control
on MFDs. To achieve this purpose, we present a new inverse problem of the dynamic user equi-
librium assignment using a periodic boundary condition (see Figure 1). The proposed problem is
formulated as a system of linear equations; by solving this, we can derive an analytical formula
for the network throughput that includes the effect of route choice. Thus, through congestion
patterns, we can incorporate the effects of network configurations and route choice behaviors
into the analysis of the network throughput. By conducting a sensitivity analysis of this formula,
we identify the types of congestion patterns that cause a decreasing in network throughput, and
further examine a signal control that could improve network performance.

The remainder of this paper is organized as follows. In section 2, we describe the dynamic
user equilibrium assignment and its analytical solution for a given congestion pattern. Section
3 derives an analytical formula of the network throughput for a given congestion pattern and a
fixed vehicle accumulation (i.e., steady-state condition). We also show that the network through-
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put under a dynamic condition can be approximated by a similar formula under the steady-state.
By sensitivity analyses of the proposed formula, Section 4 identifies the conditions for the de-
crease in the network throughput and for the occurrence of a capacity increasing paradox. Based
on these conditions, we further explore a signal control policy for improving the network perfor-
mance. Section 5 shows numerical examples for testing the present theory. Section 6 concludes
the paper.

2. Preliminaries: Dynamic user equilibrium and its analytical solution

2.1. Network and notation
Consider a general networkG[N ,L,W] with one-to-many origin-destination (OD) demands

consisting of the set of nodesN , the set of links L and the set of OD pairsW. The elements of
these sets are indicated by i ∈ N , (i, j) ∈ L and (o, d) ∈W, respectively. A node-link incidence
matrix A∗ (N × L matrix) represents the structure of the network. We also define a reduced
incidence matrix A by eliminating an arbitrary row of A∗. We call the node corresponding to
the elimination reference node. As in Akamatsu (2001), we select the unique origin node as the
reference node. In addition, we define a matrix A−, which is obtained by replacing all the +1
elements of A with zero; similarly, A+ is a matrix obtained by letting all the −1 elements of A
be zero.

We assume that the time-dependent demand for each OD pair is exogenous. Specifically, the
cumulative flow departing from the origin o by time t and arriving at destination d is denoted by
Qod(t). For a link model in our dynamic assignment, we employ the First-In-First-Out (FIFO)
principle and the point queue concept. It is assumed that each link (i, j) comprises a free-flow
section with a constant travel time mij and a bottleneck section with a constant capacity µi j.
Then, the link travel time for a user entering the link at time t is given by

cij(t) = mij +
xij(t +mij)
µi j

, where xij(t) = Aij(t −mij) −Dij(t), (2.1)

xij(t) is the amount of traffic in the queue at time t, Aij(t) and Dij(t) are the cumulative inflow
and outflow for the link by time t, respectively. If Aij(t) and Dij(t) are differentiable the inflow
and outflow rates are expressed as

λi j(t) ≡
dAij(t)

dt
, fi j(t) ≡

dDij(t)
dt
. (2.2)

2.2. Decomposed formulation of dynamic user equilibrium assignment
The dynamic user equilibrium (DUE) is defined as the state, in which no user can reduce

his/her travel time by changing his/her route (see Smith, 1993; Heydecker and Addison, 1996).
The equilibrium concept along with the FIFO principle of the link model implies that users who
depart from the origin at the same time have the same arrival time at any nodes, and that the
order of departure from the origin must be kept at any nodes on the way to their destinations
(Kuwahara and Akamatsu, 1993). Using this property, the DUE assignment with one-to-many
pairs can be decomposed with respect to the departure time s from the origin.
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For the decomposed DUE assignment, two variables are introduced: τi(s) is the earliest
arrival time at node i for a user who departs from the origin at time s, and yij(s) is the link
flow rate with respect to the origin departure time s:

yij(s) ≡
dAij(τi(s))

ds
= λi j(τi(s)) · τ̇i(s), (2.3)

where τ̇i(s) ≡ dτi(s)/ds. Then, the equilibrium for every origin departure time s can be expressed
with the following three conditions (for derivation, see Akamatsu, 2001). The first is the link
travel time function:

cij(s) =
∫ s

0 ċi j(s) ds + cij(0) ∀(i, j) ∈ L, ∀s (2.4)

where ċi j(s) =


yij(s)/µi j − τ̇i(s) if xij(τi(s) +mij) > 0

0 if xij(τi(s) +mij) = 0
(2.5)

where ċi j(s) ≡ dcij(τi(s))/ds. The second is the flow conservation condition at each node:

∑
i∈I(k) yik(s) −∑

j∈O(k) ykj(s) − Q̇ok(s) = 0 ∀k ∈ N \ {o}, ∀s, (2.6)

where I(k) [O(k)] is the set of upstream [downstream] nodes of links arriving at [leaving] the
node k, and Q̇ok(s) ≡ dQok(s)/ds. The final condition is the user’s route choice condition:


yij(s)

{
cij(s) + τi(s) − τ j(s)

}
= 0

cij(s) + τi(s) − τ j(s) ≥ 0, yij(s) ≥ 0
∀(i, j) ∈ L, ∀s. (2.7)

For later convenience, we also show the vector-matrix form of the formulation. That is,

m ≤ c(s) ⊥ (ċ(s) −M−1y(s) −AT
+τ̇(s)) ≥ 0 ∀s (2.8)

Ay(s) = −Q̇(s) ∀s (2.9)

0 ≤ y(s) ⊥ (c(s) +ATτ(s)) ≥ 0 ∀s (2.10)

where M is the L × L diagonal matrix of the link capacities {µi j}; m, c(s), and y(s) are L-
dimensional column vectors with elements mij, cij(s), and yij(s), respectively; τ(s) and τ̇(s) are
the N−1-dimensional column vector with elements1 τi(s) and τ̇i(s), respectively; Q̇(s) is the
column vector with elements Q̇od(s).

The important characteristic of this DUE formulation is that treating the complicated nested
structure between link and route travel times in a network is not required, unlike the standard
DUE formulation with respect to the absolute time t (for a detailed discussion on this issue, see
Akamatsu et al., 2015). Consequently, the conditions (2.6) and (2.7) are almost the same as those
of the static traffic assignment with an additive cost function. This property enables us to analyze
the theoretical properties of the DUE assignment in a mathematically tractable way, as shown in
this study (for other examples, see Akamatsu and Kuwahara, 1999; Akamatsu et al., 2015).

1Note that τo(s) = s and τ̇o(s) = 1 by definition.
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Figure 2: Example of constructing reduced network

2.3. Equilibrium solution for saturated networks
The DUE assignment is formulated as a variational inequality problem and cannot be ana-

lytically solved in general. However, there is a case that an analytical solution can be obtained.
In particular, we consider saturated networks which satisfy the following two conditions: (i) all
links in a network have positive inflows (yij(s) > 0), and (ii) all links have queues (xij(τi(s)) > 0).
In a saturated network, the decomposed DUE assignment is reduced to a system of linear equa-
tions, and thus an analytical solution can be obtained (Akamatsu and Heydecker, 2003b).

More specifically, the complementarity conditions (2.8) and (2.10) are reduced to the follow-
ing equality conditions because all links in the network have positive flows and queues:

ċ(s) −M−1y(s) −AT
+τ̇(s) = 0, (2.11)

c(s) +ATτ(s) = 0. (2.12)

By taking the derivative of the second equation with respect to s and substituting it into the first
equation, we have

y(s) = −(MAT
−) τ̇(s). (2.13)

Further, substituting this equation into the flow conservation (2.9), we obtain

(AMAT
−) τ̇(s) = Q̇(s). (2.14)

From this equation, we can see that the DUE solution τ̇(s) is uniquely determined if the rank
of the matrix AMAT

− is N−1. As shown by Akamatsu (2000), for networks with one-to-many
OD demands, the rank must be N−1 if we eliminate the origin as the reference node. Therefore,
we can obtain the equilibrium solution analytically: τ̇(s) = (AMAT

−)−1Q̇(s). Note that the
equilibrium link flows y(s) are determined by substituting this equation into Eq.(2.13).

The concept of saturated network can be applied to any non-saturated network by reducing
the network to a saturated one, where links with no queue are appropriately removed: (a) unify-
ing the initial and terminal nodes of each unsaturated link on the non-saturated network into a
single node; (b) removing links with no flow (see Figure 2). This saturated network is called a
reduced network. As proved in Akamatsu and Heydecker (2003a) (see also Appendix A), the
solution τ̇(s) defined on a reduced network is also governed by Eq.(2.14) in which (AMAT

−) and
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Q̇(s) are also defined on the reduced network; the DUE solution is uniquely determined (but the
equilibrium link flows for unsaturated links may not be unique).

Henceforth, we consider both non-saturated and saturated networks. When a network is
non-saturated, we consider the corresponding reduced network to obtain the analytical solution
of the DUE assignment. Meanwhile, when a network is saturated, the corresponding reduced
network is exactly the same as the original saturated network. Thus, all the variables used in
this manuscript must be considered as variables defined on reduced networks. Note that loops
could arise in a reduced network, even if its original non-saturated network contains no loops2.
If there is a link whose terminal node is the origin, the outflow information from its initial node
disappears by eliminating the row of A∗ corresponding to the origin node. This implies that
the flow conservation at the initial node of this link does not hold. To resolve this problem, we
need to regard this outflow as an OD demand-like flow. Let δ be the column vector, whose i-th
element is the link capacity µio, if the link (i, o) exists in the reduced network (zero otherwise).
Then, Eq.(2.14) for the reduced network is modified as follows.

(AMAT
−) τ̇(s) = Q̇(s) + δ. (2.15)

3. Analytical formulas of network throughput

In this section, we present the connection between a congestion pattern on a network (i.e., re-
duced network structure) and macroscopic traffic flow at a network level (i.e., network through-
put). The basis of this theory is constructing an inverse problem of the DUE assignment by
employing a periodic boundary condition. By solving this inverse problem, we can obtain an
analytical formula of a steady-state network throughput (i.e., the sum of possible OD flows) that
is consistent with a given congestion pattern and the route choice principle.

This analytical formula describes the network throughput for the situation where a fixed
number of drivers circulate in the network indefinitely (or demands and traffic conditions change
slowly with time), and can be interpreted as a steady-state relationship between vehicle accumu-
lation and network throughput (or trip completion rate) within an underlying network (called a
Network Exit Function (NEF) or outflow-MFD in the literature, e.g., Daganzo, 2007). Further-
more, the idea of giving the congestion pattern is motivated by the empirical finding indicating
that a (reproducible) spatial distribution of congestion is a key component defining the shape of
an MFD (or NEF) (see Geroliminis and Sun, 2011b). In brief, we here show a way to connect
the conventional theory of traffic assignment to MFD theory via congestion patterns.

In Section 3.1, we formulate the inverse problem. We then present the analytical formula of
the network throughput under the steady-state condition in Section 3.2. In Section 3.3, we derive
the network throughput approximately by relaxing the assumption of a fixed vehicle accumula-
tion and further investigate the effect of accumulation dynamics on the network throughput.

Note that we analyze the NEF throughout the paper instead of the relationship between ac-
cumulation and production (sometimes called a production MFD). This is because the former
represents the network performance directly but the latter does not. Although the production
(i.e., the total distance travelled per unit time in the network) can be a good proxy of the network
throughput under a certain condition3, this is not always the case for, especially inhomogeneous

2For saturated networks, no loops arise in the DUE flow patterns (see Akamatsu and Heydecker, 2003b).
3When the average trip length is the same for all ODs, the production-MFD is proportional to the NEF (Daganzo,

2007).
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networks. An analysis of the relation between production and network throughput can be found,
for example, in Yildirimoglu and Geroliminis (2014) and Leclercq et al. (2015).

3.1. Inverse problem
We first express macroscopic traffic variables, which are the cumulative network inflow Ad(t)

and outflow Dd(t) for each destination d, with the variables used in the DUE formulation.

Ad(t) = Qod(t), Dd(t) = Qod(t − C∗d(t)) ∀d ∈ Nd, (3.1)

where C∗d(t) is the equilibrium OD travel time for users arriving at destination d at time t andNd
is the set of destinations. By using these variables, the vehicle accumulation for each destination
nd(t) is expressed as nd(t) = Ad(t)−Dd(t). If these variables are differentiable, then the dynamics
of vehicle accumulation are given by

dnd(τd(s))
dt

= λd(τd(s)) − fd(τd(s)) ∀d ∈ Nd, (3.2)

where λd(τd(s)) ≡
dAd(τd(s))

dt
=

dQod(τd(s))
dt

(3.3)

fd(τd(s)) ≡
dDd(τd(s))

dt
=

dQod(τd(s) − (τd(s) − s))/ds
dτd(s)/ds

=
Q̇od(s)
τ̇d(s)

. (3.4)

Following, an inverse problem is constructed for a given congestion pattern. The congestion
pattern is expressed by the reduced network; thus, the inputs in this problem are (i) the reduced
node-link incidence matrix A (i.e., the topology of the reduced network) and (ii) the link capacity
matrix M (i.e., the capacity pattern of the reduced network). For the topology of the reduced
network, we assume that the origin and each destination are not unified into a single node in a
reduced network. This assumption is introduced in order to exclude the situation in which a user
can reach his/her destination with a free flow route travel time. This is because, in that case, the
network throughput is mainly determined by the OD demands and not by the congestion patterns.
In this sense, our DUE approach is suitable for analyzing the congested (or critical) regime of
MFD but not the free flow regime.

As in the standard inverse problem of traffic assignments, the proposed inverse problem re-
quires an additional condition to determine the network throughput uniquely4. We thus introduce
a periodic boundary condition, which was employed in the previous studies (e.g., Daganzo and
Geroliminis, 2008), for obtaining a steady-state network throughput for a fixed vehicle accumu-
lation. This condition for each destination is expressed by

dnd(τd(s))
dt

= 0 ⇔
dQod(τd(s))

dt
=

Q̇od(s)
τ̇d(s)

∀d ∈ Nd. (3.5)

We further assume that the input values change slowly compared with the system’s relaxation
time5, which implies

dQod(τd(s))
dt

= Q̇od(s) ∀d ∈ Nd. (3.6)

4The standard inverse problem of traffic assignments requires a criterion such as error minimization and entropy
maximization.
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By combining Eq.(3.5) and Eq.(3.6), we obtain the additional condition for the problem.

τ̇d(s) = 1 ∀d ∈ Nd. (3.7)

Let f ≡ { fi}i∈N be the N−1-dimensional column vector whose i-th element represents the
network throughput for OD pair (o, i), if node i is the destination in the reduced network (zero
otherwise). Finally, the proposed inverse problem is formulated as (here we omit the time index
s because the steady-state is considered)


f + δ = (AMAT

−) τ̇
τ̇ = [ τ̇i | τ̇d ]T = [ τ̇i | 1 ]T , (3.8)

where τ̇i and τ̇d are sub-vectors of τ̇ with respect to the transient node setNi and the destination
node set Nd, respectively (i.e., N = {o} ∪ Ni ∪ Nd). The first equation represents the DUE
condition (2.15), wherein the OD demand vector Q̇(s) is replaced by the vector f. The second
equation represents the condition (3.7). To see this problem more precisely, we also divide f, δ,
A and A− into two blocks corresponding toNi andNd, respectively:

f =
[

fi | fd

]T
, δ =

[
δi | δd

]T
, A =

[
Ai | Ad

]T
, A− =

[
Ai− | Ad−

]T
,

where fi is always 0 by definition. Rewriting (3.8) with these partitioned variables, we have


δi

fd + δd


 =




Ai

Ad


 M

[
AT

i− AT
d−

] 
τ̇i

1


 =




AiMAT
i− AiMAT

d−
AdMAT

i− AdMAT
d−






τ̇i

1


 . (3.9)

For notational brevity, we further define V ≡ AMAT
− and

V =



Vii Vid

Vdi Vdd


 ≡




AiMAT
i− AiMAT

d−
AdMAT

i− AdMAT
d−


 .

3.2. Network throughput under steady-state
By solving the inverse problem (3.9), we have the following proposition for the network

throughput, F.

Proposition 1. For a given congestion pattern (A,M) and a fixed vehicle accumulation, the
steady-state network throughput of a one-to-many network is given by the following formula:

F ≡ 1Tfd = 1TVdd1 − 1T[Vdi(Vii)−1(Vid1 − δi) + δd]. (3.10)

Proof. The equation (3.9) implies

δi = Viiτ̇i +Vid1, (3.11)
fd + δd = Vdiτ̇i +Vdd1. (3.12)

Because the matrix Vii is invertible (Akamatsu and Heydecker, 2003a), Eq.(3.11) can be solved:

τ̇i = −(Vii)−1[Vid1 − δi]. (3.13)

By substituting (3.13) into (3.12) and summing the elements of vector fd, we obtain the Eq.(3.10).
!

5The relaxation time is comparable with the travel time across the network (Daganzo, 2007).
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Figure 3: A example of network with single origin and three destinations

From the analytical formula (3.10), we see that the network throughput is determined by the
topology (i.e., the relation of connection between saturated links) and capacity pattern of the
reduced network and the locations of origin/destination nodes in the network6. To explore the
formula (3.10) in more detail, let us look into its element form. If [V]kl is the (k, l) element of V,
then

[V]kl =



∑
j∈I(k) µ jk if k = l
−µkl if k ! l and (k, l) ∈ L
0 otherwise

. (3.14)

Thus Eq.(3.10) can be written as:

F =
∑

d∈Nd

[∑
k∈{I(d)∩{Ni∪{o}}} µkd −

∑
k∈{O(d)∩{Ni∪{o}}} µdkτ̇k

]
(3.15)

The first term of this equation represents the sum of the capacities of links incoming from non-
destination nodes to destination nodes. The second term represents the sum of outflows7 from
destination nodes to non-destination nodes (i.e., the sum of flows passing through the destina-
tions). Thus, the formula (3.10) expresses the flow conservation at the destination nodes 8. Note,
however, that the formula describes not only the “local” conservation law but also the “global”
phenomena such as route choice effects through the DUE solution τ̇k in the second term9.

Example. Consider the reduced network shown in Figure 3. Node o is the origin and nodes
{b, c, d} are destinations. The capacity of link e (e = 1, . . . , 8) is given by µe. The matrices and

6The first two information can be obtained from the topology of the original network and the flow of each link (that
is also required for drawing MFDs). Although the last is an OD related information, this is static and may be reasonably
assumed, for example, based on the OD census in practice.

7Under the DUE state, the link flow yij(s) should satisfy the following relationship: yij(s) = µi jτ̇ j(s) (i.e., the element
form of Eq.(2.13)).

8We can obtain a “value” of the network throughput from flow conservation at the single origin under the steady-state.
However, the destination-based formulation (3.10) is required for analyzing the decreasing mechanisms of the throughput
(i.e., the interactions between users with different destinations), as we will discuss in Section 4.

9For single OD networks, where no loops occur in reduced networks such as parallel networks (e.g., Leclercq and
Geroliminis, 2013), the network throughput is determined only by the first term (local condition), which implies that the
network structure and/or route choice may not significantly affect the network throughput.
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vectors in the formula (3.10) are given by

Vdd =




µ3 + µ4 0 −µ7

0 µ5 + µ8 0
0 −µ8 µ7



, Vdi =




0
0
−µ6



, Vii =

[
µ1 + µ6

]
,

Vid =
[
−µ4 −µ5 0

]
, δi =



µ2

0


 ,δd =




0
0


 .

By substituting these into (3.10), we derive the network throughput:

F = µ3 + µ4 + µ5 − µ6τ̇d where τ̇d =
µ2 + µ4 + µ5

µ1 + µ6
.

From this equation, we see that the network throughput is affected not only by the links connected
with the destinations but also by the links which are not connected with the destinations such as
link 1 and link 2.

Note that, the proposed formula also holds when there are queue spillbacks. What we should
do is only to replace the capacities of the links affected by the spillbacks by the reduced capacities
(or actual link flows). This is because the traffic flow pattern of the point queue model with
variable or time-dependent link capacities is same with that in a physical queue situation (or
model) when the variable capacities coincide with the reduced ones. Furthermore, we can capture
the dynamics of the congestion through the change of the congestion pattern (A,M), although
each congestion pattern is assumed to be under the steady-state. Specifically, the dynamics is
described as the change in the queuing state (queued or not) of the links and the resulting reduced
network (see Figure 8, for example). The network throughput varies because of changes in the
topology and the capacity pattern of the reduced network (A,M).

Before concluding this subsection, we mention the relation to the existing analytical method
based on the variational theory (VT) (e.g., Daganzo and Geroliminis, 2008; Leclercq and Geroli-
minis, 2013; Laval and Castrillón, 2015). The proposed analytical method is consistent with it
in the sense that both the methods analyze the network flow for a fixed number of vehicles in
circulation. They, however, have different merits (and limitations). Thanks to a simple corridor
network setting and homogeneous density assumption within it (i.e., the possible network states
are limited), the VT-based method can evaluate the entire MFD (i.e., the flow for the entire range
of the density) based on only a few parameters that represent the static average network char-
acteristics (e.g., the link fundamental diagram and signal setting). This is useful for identifying
an ideal MFD under the evenly distributed congestion and/or examining the effect of changes
in average network characteristics on it. On the other hand, thanks to the explicit consideration
of congestion patterns, our method can incorporate the spatially uneven congestion distribution,
which is key to the characterization of a real world MFD (or NEF), into the determination of the
network throughput. For example, we may analyze a hysteresis loop by applying the proposed
method to different congestion patterns for the same vehicle accumulation (see Fig.3 in Geroli-
minis and Sun, 2011a, for example). However, since the possible network states are enormous, it
is difficult to estimate the entire MFD only from the static network characteristics. Nevertheless,
once the congestion pattern is assumed to be given, the proposed method can analyze the effect
of local traffic changes on the global network throughput (see Sections 4.1–4.3) and this leads to
developing a local control for improving the overall network performance (see Section 4.4).
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3.3. Network throughput under dynamic condition
In the analysis above, we assumed that the congestion pattern is under the steady-state where

a fixed number of vehicles circulate in the network. In this subsection, we relax this assumption,
i.e., we consider the congestion pattern under a dynamic condition where vehicle accumulation
and the OD demands could change over time. We then approximately derive an analytical for-
mula of the network throughput under the dynamic condition. The comparison between the for-
mulas under the steady-state and dynamic conditions demonstrates that the steady-state analysis
would be valid for dynamic conditions even though some differences arise.

Suppose that the congestion pattern (A,M) is observed during a time interval [t, t + ∆t].
Then, we define the time average of Q̇od(s) and τ̇d(s) during the origin departure time interval
[s, s + ∆s], which satisfies τd(s) = t and τd(s + ∆s) = t + ∆t for each destination d, as follows:

Q̇od ≡
1
∆s

∫ s+∆s

s
Q̇od(s) ds, τ̇d ≡

1
∆s

∫ s+∆s

s
τ̇d(s) ds.

where the latter variable represents that the growth rate of the (equilibrium) OD travel time10:

τ̇d = 1 +
C∗d(τd(s + ∆s)) − C∗d(τd(s))

(s + ∆s) − s
=
∆t
∆s
. (3.16)

Their column vectors are denoted by Q̇d and τ̇d, respectively. For these variables, we make the
following assumption.

Assumption 1. The DUE condition (2.15) holds approximately:

V


τ̇i

τ̇d


 ≈




δi

Q̇d + δd


 . (3.17)

where τ̇i with element τ̇i corresponding to the time average of τ̇i(s).

This assumption states that the DUE relationship between Q̇d(s) and τ̇d(s) holds approx-
imately in terms of their average values. The reason why Eq.(3.17) is an approximation, in
general, is that the origin departure duration [s, s + ∆s] corresponding to the destination arrival
duration [t, t + ∆t] is different for the different destinations (i.e., the OD travel times are dif-
ferent). However, the condition (3.17) becomes almost exact, if the changes in Q̇d(s) and τ̇d(s)
during [t, t + ∆t] are small because the DUE condition (2.15) is linear11.

Let f d ≡ 1
∆t

∫ t+∆t
t fd(τd(s))dt be the average network throughput for destination d and fd be

its column vector. Then, we have the following proposition:

Proposition 2. Suppose that a congestion pattern (A,M) and τ̇d are given. Then, the average
network throughput of a one-to-many network is approximately given by the following formula:

F ≡ 1Tfd = 1TT−1Vddτ̇d − 1TT−1[Vdi(Vii)−1(Vidτ̇d − δi) + δd] (3.18)

where T is the diagonal matrix, whose diagonal elements are the vector τ̇d.

10Note that C∗d(τd(s)) = τd(s) − s and C∗d(τd(s + ∆s)) = τd(s + ∆s) − (s + ∆s).
11The condition (3.17) exactly holds if the equilibrium travel times for different destinations are the same.
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Proof. From Eq.(3.17), we have the following relation:

Q̇d ≈ Vddτ̇d − [Vdi(Vii)−1(Vidτ̇d − δi) + δd]. (3.19)

Meanwhile, the average network throughput (i.e., average outflow) for each destination can be
expressed by

f d =
Dd(t + ∆t) −Dd(t)

∆t
=

Qod(s + ∆s) −Qod(s)
∆t

=
1
∆s

∫ s+∆s
s Q̇od(s) ds

1
∆s

∫ s+∆s
s τ̇d(s) ds

=
Q̇od

τ̇d

⇒ fd = T−1Q̇d. (3.20)

By substituting Eq.(3.19) into Eq.(3.20) and summing the elements of vector fd, we obtain
Eq.(3.18). !

The element form of Eq.(3.18) is given by

F =
∑

d∈Nd

[∑
k∈I(d) µkd −

∑
k∈O(d) µdk(τ̇k/τ̇d)

]
where τ̇i = −(Vii)−1[Vidτ̇d − δi]. (3.21)

From this equation, we see that the formula under the dynamic condition also expresses the flow
conservation at the destinations, i.e., the essential structure that the congestion pattern character-
izes the network throughput is the same for both formulas. Indeed, the formula (3.18) equals to
the steady-state formula (3.10) if τ̇d = 1.

Note that the formula (3.18) requires τ̇d as the input instead of the periodic boundary con-
dition for deriving the steady-state formula (3.10). To examine their differences in detail, we
subtract Eq.(3.21) from Eq.(3.15):

F − F =
∑

d∈Nd

∑
k∈O(d) µdk(τ̇k/τ̇d − τ̇k/τ̇d) (3.22)

where τ̇d = 1. From this equation, we see that the difference of the network throughputs un-
der the steady-state and the dynamic conditions is caused by the difference of outflows from
destination nodes. Furthermore, although we cannot identify whether Eq.(3.22) is positive or
negative exactly, an estimate is identified as follows. From Eq.(2.3) and Eq.(2.13), we see that
τ̇k/τ̇d (or τ̇k/τ̇d) represents the proportion of the (average) inflow rate to the capacity of the link
(d, k). Hence, the value of τ̇k/τ̇d is greater than one, when the queue on the link is increasing;
this may be the case if vehicle accumulation in the network (in particular, at downstream of the
destinations) is increasing. Conversely, τ̇k/τ̇d should be one, on an average, because the vehicle
accumulation is fixed. Therefore, we can say that the network throughput under the dynamic
condition tends to be lower [larger] compared with the steady-state network throughput when
the vehicle accumulation is increasing [decreasing].

4. Sensitivity analysis and its applications

In this section, we investigate the mechanisms underlying the decrease in the network through-
put through sensitivity analysis of the formula derived in the previous section. Specifically, we
derive the sensitivity coefficient of the network throughput with respect to the change in a link
capacity on a reduced network in Section 4.1. Then, in Section 4.2, we identify the necessary
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and sufficient conditions for the decrease in network throughput by the decrease in a certain link
capacity (due to queue spillbacks). Here, we also clarify the respective mechanisms. With the
same method, in Section 4.3, we identify the conditions for the occurrence of a capacity increas-
ing paradox that improving the capacity of a certain link on a network leads to a decrease in the
network throughput. Finally, in Section 4.4, we explore a network signal control for improving
the network performance based on the mechanisms of macroscopic flow behaviors clarified in
Sections 4.2 and 4.3.

Note that we use the steady-state formula (3.10) throughout this section because it is simple
and exact, and the essential structure is same with the dynamic one as we have discussed.

4.1. Sensitivity coefficient
In the derivation of the sensitivity coefficient of the formula (3.10) below, M(µ) denotes the

diagonal matrix, whose diagonal elements are link capacity vectors µ ≡ [. . . , µkl, . . . ], and V(µ)
denotes the matrix AM(µ)AT

−; we also parameterized other variables by µ, i.e., F(µ), fd(µ), τ̇(µ)
and δ(µ).

Let us compare the two network throughputs F(µ) and F(µ′) for two capacity patterns µ and
µ′ ≡ µ + ∆µ. By considering Eq.(3.11) for two capacity patterns and taking the difference
between them, we have

τ̇i(µ′) − τ̇i(µ) = −(Vii(µ))−1[Vii(∆µ)τ̇i(µ′) +Vid(∆µ)1 − δi(∆µ)]. (4.1)

where we used the fact that V(µ) and δ(µ) are linear in µ: V(µ′) = V(µ) + V(∆µ), δ(µ′) =
δ(µ) + δ(∆µ). In the same way, from Eq.(3.12), we have

fd(µ′) − fd(µ) = Vdd(∆µ)1 − δd(∆µ) +Vdi(∆µ)τ̇i(µ′) +Vdi(µ)[τ̇i(µ′) − τ̇i(µ)] (4.2)

By substituting Eq.(4.1) into Eq.(4.2), we obtain (we omit µ here)

fd(µ′) − fd =Vdd(∆µ)1 − δd(∆µ) +Vdi(∆µ)τ̇i(µ′)

−Vdi(Vii)−1[Vii(∆µ)τ̇i(µ′) +Vid(∆µ)1 − δi(∆µ)]. (4.3)

Finally, consider the case where ∆µ = [0, . . . , 0,∆µkl, 0, . . . , 0]. Multiplying Eq.(4.3) with 1T

from both sides, dividing both sides of Eq.(4.3) by ∆µkl, and taking the limit as ∆µkl → 0, we
obtain the sensitivity coefficient:

∂F
∂µkl

=1T
{
∂Vdd(∆µ)
∂µkl

1 − ∂δd(∆µ)
∂µkl

+
∂Vdi(∆µ)
∂µkl

τ̇i

−Vdi(Vii)−1
[
∂Vii(∆µ)
∂µkl

τ̇i +
∂Vid(∆µ)
∂µkl

1 − ∂δi(∆µ)
∂µkl

] }
(4.4)

where
∂Vab(∆µ)
∂µkl

≡ lim
∆µkl→0

AaM(∆µ)AT
b−

∆µkl
= AaIklAT

b−, a, b ∈ {i, d}

∂δa(∆µ)
∂µkl

≡ lim
∆µkl→0

δa(∆µ)
∆µkl

=


ek if l = o
0 otherwise

, a ∈ {i, d},

Ikl is the L × L matrix, whose diagonal element corresponding to link (k, l) is one and all other el-
ements are zero; ek is the (|Ni| or |Nd| dimensional) unit vector, whose the element corresponding
to node k is one.
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The first term of Eq.(4.4) is the sensitivity coefficient of the first term of the formula (3.10),
and the other terms are the sensitivity coefficients of the second term of the formula. Note that
we can obtain a simple expression of the sensitivity coefficient (4.4) by recalling the structure of
the matrix V = AMAT

−, i.e., each link capacity µkl is included in at most two elements of the
matrix V as an incoming and/or outgoing link (see also Eq.(3.14)). Thus, Eq.(4.4) has at most
two nonzero terms depending on the types of initial and terminal nodes of link (k, l):

∂F
∂µkl
=



1T(AdIklAT
d−)1 if k, l ∈ Nd or k = o ∧ l ∈ Nd

−1Tek if k ∈ Nd ∧ l = o
1TVdi(Vii)−1ek if k ∈ Ni ∧ l = o
−1TVdi(Vii)−1(AiIklAT

i−)τ̇i if k = o ∧ l ∈ Ni or k, l ∈ Ni

1T(AdIklAT
d−)1 − 1TVdi(Vii)−1(AiIklAT

d−)1 if k ∈ Ni ∧ l ∈ Nd

1T(AdIklAT
i−)τ̇i − 1TVdi(Vii)−1(AiIklAT

i−)τ̇i if k ∈ Nd ∧ l ∈ Ni

(4.5)

where the logical operation “∧” means “and.” Note that the sensitivity coefficient (4.5) (and
(4.4)) can be calculated easily by matrix operations, although it still looks complicated. The
inputs required for calculating the sensitivity coefficient are the same with those for the formula
(3.10), i.e., the topology and capacity pattern of the reduced network and the locations of ori-
gin/destination nodes in the network.

4.2. Network throughput decreasing conditions and their mechanisms
We can now identify the conditions for the decrease in the “global” network throughput due

to the decrease in a “local” link capacity (i.e., ∂F/∂µkl > 0). Using the sensitivity coefficient
(4.5), we make the following proposition:

Proposition 3. Suppose the capacity of link (k, l) in a one-to-many reduced network decreases.
Then, the steady-state network throughput decreases, if and only if one of the following condi-
tions is satisfied.

(i) node k is the origin and node l is a destination.
(ii) node k is the origin and node l is a transient node; there exists a route on the reduced

network from the origin to node l so that the route passes through at least one destination.
(iii) both nodes k and l are transient nodes; the following condition is satisfied.

∑
i∈Ni

∑
d∈{I(i)∩Nd}µdi[v−1

il − v−1
ik ]τ̇l > 0. (4.6)

(iv) node k is transient node and node l is a destination; the following condition is satisfied.

1 −∑
i∈Ni

∑
d∈{I(i)∩Nd}µdiv−1

ik > 0. (4.7)

where v−1
kl represents the (k, l) element of the matrix (Vii)−1.

Proof. See Appendix B. !

The four conditions in this proposition are different with respect to which terms of the for-
mula (3.10) change when the underlying link capacity changes. Following, we show the relation-
ship between the types of the underlying link and the changes in the formula through illustrated
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examples shown in the left column of Figure 4. Each example shows one of the minimal re-
duced networks that satisfy Proposition 3, when the link capacity (red arrows) decreases due to
a queue spillback12. The corresponding (original) non-saturated networks are also shown in the
right column of Figure 4, illustrating the physical mechanism under each condition.

A capacity decrease in the link that satisfies Proposition 3-(i) leads to a decrease in the first
term of the formula (3.10), and thus a decrease in inflow to a destination. In Figures 4(a) and (b),
link (o, d) is the corresponding link. Suppose the queue on link (d, i) spillovers to link (o, d) and
its capacity decreases. Then, the queue, which is caused by users with more downstream desti-
nation d′, is blocking the flow exiting to destination d; then, the network throughput decreases.
This phenomenon is almost obvious and may likely occur on congested urban networks, where
destinations are close to each other.

Proposition 3-(ii) describes a more complex phenomenon. The capacity decrease in the un-
derlying link leads to the increase in the second term of the formula (3.10), which means the
increase in flows passing through a destination. In this case, two types of routes exist on the re-
duced network (see Figure 4(c)) from the origin to the transient node l: one is a route that passes
through at least one destination, and the other is a route that does not pass through any desti-
nation; the underlying link (o, l) is on the latter route. The reduced network may look strange,
but the corresponding non-saturated network (see Figure 4(d)) describes an intuitive and com-
mon situation. Suppose the queue on link (l, d) spillovers to link (o, l) and its capacity decreases.
Then, the queue spillback alters the route choice pattern, increasing the sum of flows on the
routes that pass through destination d, because the flow on the route that does not pass through
d decreases. However, the capacity of link (l′, d′) does not change, which means the through-
put from destination d′ does not change. In contrast, users with different destinations d and d′
compete with each other for the constant capacities of link (o, d) and (l, d), respectively, which
implies that the change in route choice pattern mentioned above decreases the capacity share
for users with destination d. Thus, the decrease in the flow exiting to destination d leads to the
decrease in the network throughput. This can be interpreted as the phenomenon, where a road
that bypasses the congested area does not work well due to congestion.

Proposition 3-(iii) is similar to Proposition 3-(ii) in the sense that the capacity decrease in the
underlying link leads to the increase in the second term of the formula (3.10), and it describes
almost the same phenomenon. Suppose the queue on (l, d′) in Figure 4(f) spillovers to link
(k′, l), and its capacity decreases. Then, as in the second case, the flow exiting to destination d′
decreases. In contrast, the flow exiting to destination d increase because the flows on the routes
that pass through destination d decrease. The RHS of Eq.(4.6) represents the total change in
the throughputs for destinations d and d′; it is negative if Eq.(4.6) is satisfied, i.e., the network
throughput decreases.

Proposition 3-(iv) describes the combination of the above two phenomena. Specifically, a
capacity decrease in the underlying link leads to a decreases in both the first and second terms
of the formula (3.10). Suppose the queue on (d, k′) in Figure 4(h) spillovers to link (k, d) and
its capacity decreases. The queue spillback alters the route choice pattern and indirectly de-
creases the flow on the route that passes through destination d as well as is directly blocking the
flow that exits to destination d. The condition (4.7) states that the latter effect is dominant, i.e.,
the throughput from destination d and the network throughput decrease. This reflects a situa-

12Note that the proposition states a general condition for the decrease in the network throughput due to the decrease in
a link capacity; thus various factors may cause the decrease in a link capacity (e.g., capacity drops, traffic accidents).
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Figure 4: Minimal reduced networks (left column) and their corresponding non-saturated networks (right column) for
Proposition 3
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tion where a bypass road works relatively well but is not fully utilized because it may not be a
convenient route.

In summary, Proposition 3 shows that the interactions between users with different destina-
tions are the main causes for a decrease in the network throughput due to queue spillbacks. This
insight on the mechanisms of the macroscopic traffic flow behaviors is not completely new. For
example, our result is consistent with the discussion presented by Daganzo (2007), who sug-
gested that the blocking and increasing of through traffic of congested destinations should be
avoided using a certain strategy (i.e., AB strategy for cities) to maximize the network through-
put. However, the present analysis describes the “local-global relationships” in a more concrete
form (for general networks with one-to-many demands). This could be useful for developing a
local control policy based on (stable) congestion patterns to avoid the decrease in the network
throughput or improve it. The subsequent two subsections explore this possibility.

4.3. Capacity increasing paradox
This subsection identifies a capacity increasing paradox such as Braess (1968) and Smith

(1978), which is the basis of a traffic control shown in the next subsection. We here refer to
the situation as a “paradox” if an increase [decrease] in the capacity of a certain link leads to a
decrease [increase] in the network throughput (i.e., ∂F/∂µkl < 0).

As in the previous subsection, we have the following proposition:

Proposition 4. Suppose the capacity of link (k, l) on a one-to-many reduced network increases.
Then, the capacity increasing paradox occurs if and only if one of the following conditions is
satisfied.

(i) node k is a destination and node l is the origin.
(ii) node k is a transient node and node l is the origin; there exists a route on the reduced

network from the origin to node k so that the route passes through at least one destination.
(iii) both nodes k and l are transient nodes; the following condition is satisfied.

∑
i∈Ni

∑
d∈{I(i)∩Nd}µdi[v−1

il − v−1
ik ]τ̇l < 0. (4.8)

(iv) node k is a destination and node l is a transient node; the following condition is satisfied.
∑

i∈Ni

∑
d∈{I(i)∩Nd}µdiv−1

il − 1 < 0 (4.9)

Proof. See Appendix B. !

Minimal reduced networks and their corresponding non-saturated networks for some cases
are shown in Figure 5. Although four different conditions are identified in Proposition 4, their
meanings are almost the same in the sense that only the second term of the formula (3.10)
changes. The increase in the capacity of the underlying link (blue arrow in each figure) in-
creases the through traffic of a congested destination on the reduced network; then, the network
throughput decreases (the paradox occurs). However, two types of interactions can be found:
the interaction between users with different routes for the same destination and the interaction
between users with different destinations as we mentioned in the previous subsection.

Proposition 4-(i) describes the former interaction (Figure 5(a)). In this network, the capac-
ity increase in the underlying link increases the “through traffic” of the unique destination (a
self-destruction occurs), which interestingly shows the situation known as Braess’ paradox: the
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Figure 5: Minimal reduced networks (left column) and their corresponding non-saturated networks (right column) for
Proposition 4

improvement of link (d′, o′) in Figure 5(b) cannot increase the throughput from link (o′, d) but
reduces that from link (d′, d). Note that this type of interaction may not be sufficiently important
to mitigate the decrease in the network throughput due to queue spillbacks because the latter
interaction is essential.

The other three cases describe the interaction between users with different destinations. For
Proposition 4-(ii), the improvement of link (k, o) in Figure 5(c) (or link (k, o′) in Figure 5(d))
decreases the flow exiting to destination d. Proposition 4-(iii) is the opposite situation of Propo-
sition 3-(iii), which was examined by Akamatsu (2000); Akamatsu and Heydecker (2003a,b) ex-
tensively13. Proposition 4-(iv) can be illustrated by Figure 4(f): the improvement of link (d′, l′)
decreases the flows exiting to destination d′ due to the increase in the passing flow through des-
tination d′ as in Proposition 3-(iii); simultaneously, the flow exiting to destination d increases
because the flows on route {(o, d), (d, k), (k, k′), (k′, l), (l, l′)} decreases with the decrease in the
flow on link (l, l′); the network throughput decreases because the former effect is dominant (i.e.,
Eq.(4.9) is satisfied).

From the paradox, we can easily see that degrading (or restricting the outflow of) a certain
link can improve the network performance. Note however that the links that should be controlled
changes dynamically depending on the evolution of congestion pattern. In this sense, the condi-
tions in Proposition 4 suggest dynamic traffic control logics. However, it may be usually difficult
to control a single link independently, particularly in urban networks. For example, the decrease
in the capacity of a link increases the capacity of other links for a merge situation. Thus, as a
more realistic control policy, the next subsection develops a signal control policy based on the
mechanisms of macroscopic flow behaviors clarified so far.

13They obtain the similar condition, although they do not consider the steady-state and the throughput (to measure the
efficiency of networks).
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Table 1: Sensitivities when the green split of link (i, k) increases and the merge node is a transient node (k ∈ Ni)

No. upstream nodes dF causes of sensitivity additional condition
1 i = o ∧ j ∈ Ni ≥ 0 second term –
2 i = o ∧ j ∈ Nd > 0 second term –

3 i, j ∈ Ni ≥ 0 second term
There is no route from the origin to node i

so that it passes through a destination.
4 i ∈ Ni ∧ j ∈ Nd ≥ 0 second term –
5 i, j ∈ Nd 0 second term –

4.4. Network signal control
To simplify the exposition, here, we consider a simpler situation that each node in the original

network has at most two incoming links and no loop exists in reduced networks. For a signal
control policy, we also assume that the green splits for incoming links at a merge node (in the
original network) are controlled by a signal control policy and the policy is activated when both
incoming links are saturated. We then examine the following sensitivity:

dF =
∂F
∂µik

dµik +
∂F
∂µ jk

dµ jk =

(
sik
∂F
∂µik
− sjk

∂F
∂µ jk

)
dgik, (4.10)

where sik and gik are the saturation flow rate and the green split for link (i, k), respectively, and
we use the facts: µik = sikgik and dgik = −dgjk. The sensitivities for all combinations of link
types are summarized in Table 1 (k ∈ Ni) and Table 2 (k ∈ Nd). We omit the proof of these
tables because it is a straightforward calculation by the same way as in Appendix B. In Tables
1 and 2, “dF” shows the sensitivity when the green split of link (i, k) increases. The indicated
“causes of sensitivity” refer to changing terms of the formula (3.10). The “additional condition”
describes a sufficient condition to obtain the sign of dF.

The result can be understood intuitively by combining Proposition 3 and Proposition 4. Be-
cause the only second term of the formula (3.10) changes when the merge node is a transient
node (Table 1), the basic strategy is to decrease the through traffic of congested destinations.
That is,

Strategy for transient nodes: increase the green split of the link whose initial node
on the reduced network is the origin node (i.e., Proposition 3-(ii)) or decrease the
green split of the link whose initial node on the reduced network is a destination
node (i.e., Proposition 4-(iv)).

Note that, sensitivity becomes zero when there are no routes from the origin to nodes i, j passing
through destinations (i.e., the second term of the formula (3.10) is zero) or there are no routes
from the origin to both nodes i, j that do not pass through any destination (i.e., the changes in
through traffic of congested destinations are cancelled out each other).

For the case that the merging node is a destination (Table 2), the strategy is simplified because
there is no link that leads to the paradox (only the cases for Proposition 3-(i) and (iv) occur). That
is,

Strategy for destination nodes: increase the green split of the link whose initial node
on the reduced network is not a destination node14.

14If both the initial and terminal nodes of a link are destinations, the sensitivity coefficient is zero (see Appendix B).
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Table 2: Sensitivities when the green split of link (i, k) increases and the merge node is a destination node (k ∈ Nd)

No. upstream nodes dF causes of sensitivity additional condition
1 i = o ∧ j ∈ Ni > 0 first & second terms sik − sjk > 0.
2 i = o ∧ j ∈ Nd > 0 first term –
3 i, j ∈ Ni > 0 first & second terms sik − sjk > 0
4 i ∈ Ni ∧ j ∈ Nd ≥ 0 first & second terms –
5 i, j ∈ Nd 0 first term –

However, in the case that the initial nodes of both incoming links are not destination nodes, it is
sufficient to increase the green split of the link that has the larger saturation flow rate.

The interesting feature of the proposed signal control policy is that it determines the adjust-
ment directions of green splits from only information on the types of upstream nodes of the
merge node on the reduced network (and saturation flow rates for some cases). Thus, it can be
regarded as a local and distributed signal control policy. Meanwhile, we have to determine a
step size (how much green split we should change for the direction of the proposed policy). To
do this without global information and also to smooth the evolution of the congestion pattern,
we here set a sufficiently small step size (i.e., change the green split gradually) as in Smith et al.
(2015). This is consistent with the sensitivity analysis, where the congestion pattern is assumed
to be fixed, i.e., the control direction is valid for the congestion pattern in the near future.

A few remarks are in order. First, the strategy for the same merge node on the original
network is not static (or pre-determined) because its node type and/or its upstream node types
on reduced networks change depending on the congestion patterns. Second, in principle, the
proposed policy cannot eliminate the decrease in the network throughput caused by blocking
exiting flows to destinations due to queue spillbacks. Furthermore, there is a possibility that
the queue spillbacks become worse with the proposed policy as discussed by Daganzo (1998).
Therefore, to avoid such problems due to queue spillbacks, it is better to turn off the strategy
when the queue length of each link exceeds a pre-determined threshold. Alternatively, it would
be also useful to combine it with an MFD-based perimeter control (e.g., Daganzo, 2007; Yoshii
et al., 2010; Keyvan-Ekbatani et al., 2012; Haddad and Shraiber, 2014) that maintains the vehicle
accumulation at an optimal level and may prevent the occurrence of queue spillbacks.

Conversely, from the viewpoint of MFD-based perimeter control, such a hybrid control can
be viewed as a hierarchical control that enhances a pure macroscopic (or upper-level) control
by incorporating the local (or lower-level) control to improve the (global) network throughput.
More specifically, under spatially uneven congestion patterns, (single region) perimeter controls
can be inefficient15; however, we may expect that the hybrid control works better, because the
proposed control intends to increase the throughputs of congested destinations and the resulting
congestion distribution may become more even16.

15For this issue, the perimeter controls for heterogeneous multi-region networks have been explored (see Haddad and
Geroliminis, 2012; Aboudolas and Geroliminis, 2013; Keyvan-Ekbatani et al., 2015; Kouvelas et al., 2017, for examples
and references therein).

16Appropriate route guidance strategies might lead to the similar result (e.g., Knoop et al., 2012; Mahmassani et al.,
2013; Yildirimoglu et al., 2015).
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5. Numerical examples

In this section, we test the proposed method for a more general condition in which the con-
gestion pattern vary over time through numerical experiments. In section 5.1, we present the
comparison of the simulated and analytical network throughputs and the validation of the de-
creasing mechanisms of the network throughput clarified in Section 4.2. In sections 5.2 and 5.3,
we investigate the effectiveness of the signal control policy developed in Section 4.4.

5.1. Example 1: Behaviors of network throughput
We considered a one-to-many network comprising of an arterial road and two bypasses, as

shown in Figure 6, to demonstrate clearly the correspondence between the theory and numerical
examples. Node o is the origin, and nodes {d1, d2, d3, d4} are destinations. In addition, nodes
{k, l,n, p, d1, d3} are signal-controlled junctions: the green splits of links incoming to these nodes
are controlled (the sum of green splits assumed to be 1 at each junction). Each link has a bot-
tleneck section with a bottleneck capacity. The saturation flows of links on bypasses are greater
than on arterial roads. Note that bottleneck capacity of links incoming to the junction is the
product of a green split and saturation flow rate. We assume that all the green splits are 0.5 for
the case with no signal control. The link settings are summarized in Table 3. The total OD flow
rate (the departure flow rate at origin) is given by

∑
d∈Nd

dQod(t)/dt =



1 t < 180,
1 + 1

720 (t − 180) 180 ≤ t < 1980,
3.5 1980 ≤ t < 3780,
3.5 − 1

720 (t − 3780) 3780 ≤ t < 5580,
1 5580 ≤ t < 5760.

We set the ratio of users for destinations as: d1 : d2 : d3 : d4 = 1 : 1 : 2 : 3. The average network
throughputs and vehicle accumulations under the DUE state are calculated for every time slot
(we assume 3 min here) until the vehicle accumulation decreases; the congestion patterns are
also identified from the averaged link flows.

We compute the DUE state by the algorithm proposed by Iryo (2011) (slightly revised by
Satsukawa and Wada, 2017). This algorithm assigns the users to their shortest routes, in the order
of departure from the single origin. With the FIFO property of the link model, this implies that
users departing later (following users) cannot overtake those departing earlier (leading users).
By combining this relationship with the causality (Carey et al., 2003) of the dynamic traffic flow,
it is guaranteed that the route choices of the following users do not affect the travel times of the
shortest routes of the leading users; all users choose the ex-post shortest routes. Consequently, an
exact equilibrium solution is obtained without heuristics. Within the algorithm, we can employ
any appropriate traffic flow model that satisfies FIFO and causality, including physical queue
models. Among these, we employ the simplified car following model of Newell (2002).

The results for the no-signal control case are shown in Figures 7 and 8. Figure 7 shows
the simulated and analytical NEFs17. We obtained analytical NEFs for both the dynamic and
steady conditions by applying the analytical formulas (3.10) and (3.18) to the congestion patterns

17Simulated NEF shows zero network throughput around 100 [veh] because the state occurs immediately after the
caluclation starts, and the vehicles do not reach their destinations by this time.
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Figure 7: Simulated and analytical NEFs

Table 3: Physical condition of links in the one-to-many network (FFTT: Free Flow Travel Time, BC: Bottleneck Capacity,
SF: Saturation Flow)

Link FFTT
[sec]

BN
[veh/sec]

SF
[veh/sec]

Link FFTT
[sec]

BN
[veh/sec]

SF
[veh/sec]

(o, i) 143.88 6 6 (i, k) 71.94 3 6
(i, j) 28.78 2.53 4 (k,n) 21.58 1.5 3
( j, d1) 28.78 0.83 1.67 (n, p) 50.36 0.93 1.87
(d1, d3) 28.78 0.5 1 (l, k) 28.78 0.5 1
(d3, p) 28.78 0.55 1.1 (l, d1) 21.58 0.5 1
( j, l) 28.78 4 4 (m, d2) 14.39 0.67 1.0
(l,m) 14.39 4 4 (d2,n) 14.39 0.33 0.67
(m, d3) 28.78 0.92 1.83 (p, d4) 57.56 1 2.5

obtained in the experiment. Note that we did not calculate the analytical NEFs when the origin
and destination nodes are unified into a single node in a reduced network. Figure 8 shows the
congestion patterns that correspond to the range of P1–P4 in Figure 7. The red arrow represents
the link whose capacity decreases because of queue spillback.

From Figure 7, we see that the analytical NEF for the dynamic condition agrees well with the
simulated NEF. In contrast, the analytical network throughputs for the steady-state tend to over-
estimate the simulated ones during P1–P3, although the behaviors of both network throughputs
are consistent. This is because the queues on the links between destinations increase with vehicle
accumulation. However, during P4, in which the queue spillback reached link (o, i), the queues
between destinations do not change significantly; thus, the analytical network throughputs for the
steady condition also agree well with the simulated ones. This is consistent with the discussion
in Section 3.3.

Next, we validate the decreasing mechanisms identified in Section 4.2. From Figure 8, we can
see that the network throughput first decreases due to the change of users route choice pattern
during P2 (i.e., increase in the flows on the route, represented by the green block arrow, that
passes through destinations). It further decreases by blocking flows exiting to destinations during
P3. To investigate these phenomena in detail, let us calculate the sensitivities. During P2, the
sensitivity of the network throughput due to the decrease in the capacity of link (o′, p) is as
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Figure 8: Congestion patterns. Black arrow: saturated link; red arrow: link whose capacity decreases due to queue
spillback. Each reduced node is denoted by a subscript on the left upper side of the node when two or more nodes are
unified (e.g., node {o, i, k,n} during P1 is denoted by o′).

follows (Proposition 3-(ii)):

(∂F/∂µo′p) · dµo′p = ((µd3pµpd4 )/(µd3p + µo′p)2) · dµo′p = 0.25 · −0.43 2 −0.1.

Similarly, the sensitivity respect to the decrease in the capacity of link (d3, p) is as follows (Propo-
sition 4-(iv)):

(∂F/∂µd3p) · dµd3p = (−(µo′pµpd4 )/(µd3p + µo′p)2) · dµd3p = −0.42 · −0.05 2 0.02.

As a result, the network throughput decreases because the sensitivity is negative as a total. During
P3, the decrease in the flows to destinations is caused by the decrease in the capacities of two
links due to queue spillbacks: links ( j′,m′) and ( j′, d1). In this case, the sensitivity coefficients
of these links are 1 (i.e., only the direct effect of Proposition 3-(iv) works); thus, the sensitivity
respect to the decrease in the capacity of these links is negative. During P4 (i.e., more than
2,000[veh]), the NEF exhibits flat parts because the destinations {d1, d2, d3} have already been
influenced by the queue spillback. In this situation, the network throughput cannot decrease
further while the vehicle accumulation can increase on the link (o, i).

5.2. Example 2: Performance of network signal controls
We next investigate the effectiveness of the proposed network signal control. Specifically, we

compare the proposed policy with the existing network signal control policies (see Smith, 2015,
for a review). In particular, we consider the policy P0 (Smith, 1979a,b, 1980) and a “general-
ization” of the equisaturation policy (Webster, 1958). The policy P0 determines the green splits
to equalize pressures for all the approaches, where a pressure is defined as (saturation flow rate)
× (queuing delay) for a point queuing quasi-dynamic traffic assignment model (Smith, 1987,
2015). On the other hand, the natural generalization of the equisaturation policy under oversat-
urated conditions determines the green splits to equalize the queuing delays for all approaches
(Smith, 1987; Mounce, 2009). More specifically, suppose the congestion and the queuing delay
patterns are given, the adjustment directions of the green splits for the policies are expressed as

[Policy P0] more pressured link has more green split, (5.1)
[Equisaturation] more delayed link has more green split. (5.2)
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Figure 9: Network exit functions and cumulative network throughputs for high demand case

In the experiment, the policy P0 [equisaturation policy] gradually adjusts (step size is 0.05)
current green splits according to (5.1) [(5.2)] every 3 min when both incoming links are con-
gested. Similarly, the proposed policy adjusts green splits according to the strategies for transient
and destination nodes. Note that the green split of each link g is constrained by 0.3 ≤ g ≤ 0.7.
To confirm the robustness of the policies, we consider two demand levels: a demand level, with
the same level as that Section 5.1 (hereafter referred to as high demand level) and a medium level
with peak of 3.1[veh/sec].

Figure 9(a) shows the NEF for high demand level. The policy P0 and the proposed policy are
observed to achieve higher network throughputs than those under no signal control for most of the
accumulation levels. Besides, there are different characteristics among policies in the congested
regime. Specifically, the network throughput under policy P0 and the proposed policy decreases
almost monotonously with increase in vehicle accumulation. In contrast, such a monotonicity
is not observed under the equisaturation policy. This is because the allocation of green splits
and users’ route choice patterns under the equisaturation policy oscillate with the increase in
vehicle accumulation, even though we gradually adjusted the green splits. This result may imply
that the policy P0 and the proposed policy are consistent with user’s route choice; however the
equisaturation policy is not.

Figure 9(b) shows cumulative network throughputs under different signal policies. In this
figure, the cumulative curves of policy P0 and the proposed policy are overlapped. It is clear
that all the signal control policies, especially the policy P0 and the proposed policy, improve
the network performance. The cumulative network throughput until 4, 000 [sec] (the time when
vehicle accumulation decreases under no signal control) under policy P0 and the proposed policy
is about 5.8% higher than that under no signal control. The cumulative network throughput under
the equisaturation policy is about 5.0% higher. Moreover, the total time spent by users until 4000
[sec] is improved by about 7.4% under policy P0 and the proposed policy and by about 4.6%
under equisaturation policy.

Figure 10 shows the NEFs and the cumulative network throughputs for the medium demand
level. The figure shows similar results for the high demand level. However, the differences in the
NEFs among the signal control policies and the degree of improvements by the policies become
small: the improvements of the cumulative network throughputs and total time spent are about
2.8% and 3.4% under policy P0 and the proposed policy, and those under the equisaturation
policy are about 0.5% and 1.2%. This is because the network becomes less congested.
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Figure 10: Network exit functions and cumulative network throughputs for medium demand case
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Figure 11: Medium-size network

5.3. Example 3: Combining with a perimeter control
We finally investigate a hybrid control policy of combining the proposed network control

with an MFD-based perimeter control. As mentioned in Section 4.4, this is considered as a
policy that compliments the proposed control policy so as to prevent the queue spillbacks and
from blocking exiting flows to destinations. In the experiment, we considered a medium-size
(two-way) network (204 noes, 758 links, 21 destinations) shown in Figure 11 and implemented
the simplest “bang-bang” perimeter control by Daganzo (2007) that restricts inflows to the target
area (specified by a red-shaded rectangle) so that the vehicle accumulation does not exceed a
predetermined threshold.

The detailed experimental setup is as follows. Node o is the origin, and other circles in the
figure are destinations. All links have the same length of 100 [m] and each link has a section with
a bottleneck as in Section 5.1; the saturation flow rates of links where are far from the origin are
set smaller than those of links near the origin so that the interactions among destinations due to
queue spillbacks occur. A single peaked total OD flow rate is given as in Section 5.1; the ratio
of users for destinations, which indicated by “D” in the network, is set double to users for other
destinations. Note that we calculate the average network throughputs and vehicle accumulations
for every 6 min here until the vehicle accumulation decreases.

Figure 12(a) shows the simulated and analytical NEFs for the no-control case. It demonstrates
that the (dynamic) analytical NEF agrees well with the simulated NEF also for the medium-
size network. In this scenario, the network throughput decreases more significantly than that of
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Figure 12: Network exit functions for the medium size network

Section 5.1 because more destinations affected by queue spillbacks.
Figure 12(b) shows the NEFs under the perimeter control and proposed network control

(no control case is also presented for comparison). The threshold value of the accumulation
for the perimeter control was set 500 [veh] to maintain the free-flow (near capacity) state; the
proposed control was implemented only inside the target area of the perimeter control. From this
figure, we see that both the perimeter and proposed controls work effectively but in a different
way. Specifically, the perimeter control prevents the network performance from degrading by
avoiding the blocking of destinations; the proposed control improve the network performance
by reducing the through traffic of congested destinations, but the effect disappears due to queue
spillbacks for high accumulation (i.e., more than 1000 [veh]). Note that the improvement of the
network performance is obtained even for low vehicle accumulation (i.e., 200 – 500 [veh]), which
means that the proposed control is activated (i.e., both incoming links for some destinations are
congested) before the occurrence of queue spillbacks.

Figure 12(c) shows the NEF under the hybrid control (and the pure perimeter control). As ex-
pected, its shape reflects the above-mentioned complementary features of the perimeter and pro-
posed controls. Figures 13(a) and 13(b) show cumulative network throughputs until 15,120 [sec]
(the time when vehicle accumulation decreases under no control case). The network throughputs
under the perimeter control, proposed control and hybrid control are about 6.3%, 2.2% and 8.1%
higher than no control case, respectively. The total time spent by users is significantly improved
by about 20.5% (perimeter), 15.8% (proposed) and 32.3% (hybrid). Hence, in this particular sce-
nario, we see that the effect of the hybrid control policy is almost the sum of individual controls.

6. Concluding remarks

In this study, we considered the relationship between an MFD and the congestion patterns in
a general network with one-to-many OD demands. We first derived a network throughput analyt-
ically by solving an inverse problem of DUE assignment for a fixed vehicle accumulation. This
enabled us to incorporate the effects of network configuration and route choice behaviors into
the analysis of the network throughput. We then conducted sensitivity analysis of the formula
and clarified the following: (1) the mechanisms underlying the decrease in network throughput;
(2) the condition for occurrence of the capacity increasing paradox; (3) local and distributed sig-
nal control strategy for improving the network throughput. Finally, we validated the proposed
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Figure 13: Cumulative network throughputs for the medium size network

method and examined the effectiveness of signal control policies (including a hybrid one com-
bining with a perimeter control) through numerical examples.

This study shows that the interactions between users with different destinations are the main
causes for a decrease in network throughput. This implies that the same decreasing mecha-
nisms may not work in a network with many-to-one OD demands. In fact, Satsukawa and Wada
(2015) showed the simple examples that the network throughputs for many-to-one networks do
not decrease because of queue spillbacks. Also, we can analyze such a property and the differ-
ence between the network performances with one-to-many/many-to-one OD demands through
the proposed sensitivity analysis. For many-to-many OD demands, the present decreasing mech-
anisms should work, but the investigation of analytical properties of the network throughput is
not trivial because the analysis of DUE itself is difficult. However, we may expect to extend our
analysis to many-to-many networks because the present method does not need to treat a complex
variational inequality problem for the DUE explicitly (i.e., congestion pattern is given).

We investigated signal control policies for a certain type of network, but their properties
could depend on the network structure. Thus, a systematic numerical experiment should be
conducted for different types of networks. The stability analysis of congestion patterns is also
important to be implemented for controls. Moreover, the present theory implicitly assumes a
stable relationship between an MFD and a congestion pattern. However, the empirical studies
on this issue are limited because most focused only on the aggregated index (e.g., the variance
of link density). Thus, exploring such a relationship is an important topic for future studies (see
Wang et al., 2016, for a recent attempt).

Appendix A. The DUE solution on a reduced network

By following the proof in Akamatsu and Heydecker (2003a), we will show that Eq.(2.14)
holds for the variables and matrices defined on any reduced network (here we use subscript R to
indicate these explicitly). That is,

(ARMRAT
R−) τ̇R(s) = Q̇R(s). (A.1)

Let LQ and LF be the set of saturated links and set of non-saturated links with positive
flows of the original networks, respectively. We also divide y, c, M and A into two blocks
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corresponding to LQ and LF:

y =
[

yQ | yF
]T
, c =

[
cQ | cF

]T
, M =




MR 0
0 MF


 , A =

[
AQ | AF

]
.

where MR =MQ. Then Eqs.(2.8)–(2.10) reduce to


ċQ(s) −M−1
R yQ(s) −AT

Q+τ̇(s) = 0
ċF(s) = 0

∀s (A.2)

AQyQ(s) +AFyF(s) = −Q̇(s) ∀s (A.3)


cQ(s) +AT
Qτ(s) = 0

cF(s) +AT
Fτ(s) = 0

∀s. (A.4)

By taking the derivative of the third equation with respect to s and substituting it into the first
equation, we have


yQ(s) = −(MRAT

Q−)τ̇(s)
AT

F τ̇(s) = 0
(A.5)

The second equation indicates that τ̇i(s) and τ̇ j(s) are identical if link (i, j) is non-saturated, which
is the evidence that the procedure (a) of constructing a reduced network is valid. This also implies
that τ̇(s) can be recovered from that of the corresponding reduced network, τ̇R(s), as follows.

τ̇(s) = RTτ̇R(s) (A.6)

where an (|N| - |LF|)× |N| matrix R whose the element in the i-th row and j-th column is 1 if
node i on the reduced network corresponds to node j on the original network, 0 otherwise. The
similar identities hold for other matrices: (i) RQ̇(s) = Q̇R(s); (ii) RAQ = AR; (iii) RAF = 0.
Further note that [RTR] and [RRT] are invertible, and thus we have (i’) Q̇(s) = [RTR]−1RTQ̇R(s)
and (ii’) AQ = [RTR]−1RTAR.

By substituting Eq.(A.5) into Eq.(A.3) and multiplying it with [RTR] from both sides,

[RTR]
{
(AQMRAT

Q−)τ̇(s) −AFyF(s)
}
= [RTR]Q̇(s)

is obtained. This is true because [RTR] is a one-to-one mapping from |N| dimensional Euclid
space to itself. By using the above identity (iii), this reduces to

[RTR]
{
(AQMRAT

Q−)τ̇(s)
}
= [RTR]Q̇(s) (A.7)

The LHS of this equation can be rewritten as

[RTR]
{
(AQMRAT

Q−)τ̇(s)
}
= [RTR]

{
[RTR]−1RTAR

}
MRAT

Q−
{
RTτ̇R(s)

}

= RTARMRAT
R−τ̇R(s) (A.8)

where we use the relationships (ii’), (ii) and Eq.(A.6). We thus finally have

RTARMRAT
R−τ̇R(s) = RTQ̇R(s), (A.9)

which implies that Eq.(A.1) holds true. Note that if there is a link whose terminal node is the
origin, Eq.(A.1) needs to be modified as we discussed in Subsection 2.3.
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Appendix B. Proofs of Proposition 3 and Proposition 4

By the calculation of the matrix elements, the sensitivity coefficient (4.5) is reduced to the
following equation:

∂F
∂µkl
=



0 if k, l ∈ Nd [Case 1]
1 if k = o ∧ l ∈ Nd [Case 2]
−1 if k ∈ Nd ∧ l = o [Case 3]∑

i∈Ni

∑
d∈{I(i)∩Nd} µdiv−1

il τ̇l if k = o ∧ l ∈ Ni [Case 4]
−∑

i∈Ni

∑
d∈{I(i)∩Nd} µdiv−1

ik if k ∈ Ni ∧ l = o [Case 5]∑
i∈Ni

∑
d∈{I(i)∩Nd} µdi[v−1

il − v−1
ik ]τ̇l if k, l ∈ Ni [Case 6]

1 −∑
i∈Ni

∑
d∈{I(i)∩Nd} µdiv−1

ik if k ∈ Ni ∧ l ∈ Nd [Case 7]
[
∑

i∈Ni

∑
d∈{I(i)∩Nd} µdiv−1

il − 1]τ̇l if k ∈ Nd ∧ l ∈ Ni [Case 8]

. (B.1)

where v−1
kl represents (k, l) element of the matrix (Vii)−1, and we use the fact that the (m,n)

element of the matrix AaIklAT
b− (a, b ∈ {i, d}) is given by

[AaIklAT
b−]mn =



1 if {a = b ∧ l ∈ Na} ∧ {m = n = l}
−1 if {k ∈ Na ∧ l ∈ Nb} ∧ {m = k ∧ n = l}
0 otherwise

a, b ∈ {i, d}. (B.2)

Let us examine whether the sensitivity coefficient (B.1) for each link type is positive (i.e.,
Proposition 3) or negative (i.e., Proposition 4). The first three cases are obvious: nothing occurs
in Case 1 because the changes in the throughputs of different destinations by changes in the
link capacity are cancelled out each other; Case 2 corresponds to Proposition 3-(i); and Case 3
corresponds to Proposition 4-(i).

The sensitivity coefficients in Cases 4 and 5 are nonzero if there exists a route on the reduced
network from the origin to node l or k that passes through at least one destination (i.e., the second
term of the formula (3.10) is nonzero). Furthermore, because the matrix (Vii)−1 is a non-negative
matrix (see Appendix C) and τ̇l is positive, the sensitivity coefficient is positive in Case 4, which
corresponds to Proposition 3-(ii). Similarly, in Case 5, the sensitivity coefficient is negative,
which is corresponding to Proposition 4-(ii).

In Case 6, the sensitivity coefficient could be either positive or negative, which is depen-
dent of the congestion pattern (i.e., the topology and capacity pattern of the reduced network),
corresponding to Proposition 3-(iii) or Proposition 4-(iii), respectively.

In Case 7, the sensitivity coefficient could become either positive or negative in general.
However, if we consider the situation in which the reduced network has no loops, we can prove
that the sensitivity coefficient must be non-negative. This means that Case 7 cannot be a nec-
essary condition for the occurrence of the paradox. Thus, we can conclude that this case corre-
sponds to Proposition 3-(iv).

For the proof, we use the following formula of the element of the matrix V−1, which is
applicable to saturated networks (or reduced networks with no loops).

Lemma 5. (Eq.(25) in Akamatsu and Heydecker, 2003b) The (i, k) element of the matrix V−1
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Figure B.14: An example of virtual network

for a one-to-many saturated network, which is denoted by [V−1]ik, is given by

[V−1]ik =
1

∑
j∈I(i) µ ji

∑

r∈R̂(i,k)

∏

(a,b)∈r

µab∑
a′∈I(b) µa′b

(B.3)

where R̂(i, k) is the set of directed routes from node k to node i.

This formula cannot be applied directly to the element of (Vii)−1 because the matrices V and
Vii are different. However, let us consider a virtual one-to-many reduced network comprising
only transient nodes (see Figure B.14): (a) the initial nodes of incoming links to transient nodes
from non-transient nodes (i.e., the origin or destination nodes) are unified into one dummy origin;
(b) the capacities of outgoing links to destination nodes from transient nodes are regarded as OD
demands. Then, the matrices Vii play the same role as V for the virtual reduced network. Thus,
we can use formula (B.3) in terms of directed routes that pass through only transient nodes (we
denote the set of these routes by R(i, k)).

By substituting the formula into the sensitivity coefficient in Case 7, we have

∂F
∂µkl
= 1 −

∑

i∈Ni

∑

d∈{I(i)∩Nd}

pid

∑

r∈R(i,k)

∏

(a,b)∈r

pba

 where pba ≡
µab∑

a′∈I(l) µa′b
. (B.4)

Now let us prove that Eq. (B.4) is non-negative. As shown by Akamatsu and Heydecker
(2003b),

∑
r∈R(i,k)

∏
(a,b)∈rpab in Eq. (B.4) can be interpreted as the probability Pki from node

k to node i when vehicles move subject to the Markov chain rule on a reverse network, which
is obtained by reversing the direction of all links in the reduced network, with the transition
probability from node b to node a defined as pba. Using this concept, Eq. (B.4) can be written as

∂F
∂µkl
= 1 −

∑

i∈Ni

∑

d∈{I(i)∩Nd}
{pid · Pki} = 1 −

∑

d∈Nd

Pkd. (B.5)

Because there is no loop in the reduced network, the probability from node k to the dummy origin
node on the virtual network must be one: Pko+

∑
d∈Nd

Pkd = 1, which implies that
∑

d∈Nd
Pkd ≤ 1.

Thus, Eq. (B.5) is always non-negative if the reduced network has no loops.
Similarly, the sensitivity coefficient for Case 8 becomes non-positive when the reduced net-

work has no loops, which implies that Case 8 cannot be a necessary condition for decreasing
in the network throughput. Thus, we can conclude that this case corresponds to Proposition
4-(iv). !
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Appendix C. Properties of the matrix Vii

We prove that matrix (Vii)−1 is a non-negative matrix. For evidence, we use the following
property of a non-negative matrix: the inverse of any non-singular M-matrix is a non-negative
matrix. An M-matrix is a Z-matrix with eigenvalues whose real parts are positive, and a Z-
matrix is a matrix whose non-diagonal elements are less than or equal to zero. Here, matrix
Vii is always a non-singular matrix because it plays the same role as matrix V for a virtual
one-to-many network comprising only transient nodes, and matrix V for the reduced network is
invertible (see Akamatsu and Heydecker, 2003a). In addition, it is obvious that matrix Vii is a
Z-matrix from Eq. (3.14).

Thus, it is sufficient to prove that the eigenvalues of matrix Vii are always positive. In order
to do this, we use the Gershgorin circle theorem (e.g., Horn and Johnson, 1990). From this the-
orem, we see that all the eigenvalues of matrix Vii are positive or zero, if the following inequality
is satisfied for each column i: vii −

∑
j!i|vji| ≥ 0, where vji is element ( j, i) of matrix Vii. The

non-diagonal elements in the i-th column of matrix Vii represent the capacities of links incoming
to transient node i from other “transient” nodes, and the diagonal element represents the sum of
the capacities of links incoming to node i from other nodes. Because the sum of the capacities
of links incoming to transient node i should be greater than or equal to that of links incoming
from only transient nodes, the diagonal element is always greater than or equal to the sum of
the non-diagonal elements for each column. Moreover, matrix Vii does not have zero eigenvalue
because it is a non-singular matrix. Thus, we can conclude that all eigenvalues of matrix Vii are
always positive and matrix (Vii)−1 is a non-negative matrix. !
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