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Akamatsu (2007a,b) proposed a new dynamic traffic congestion control scheme called
tradable network permits, and demonstrated its efficiency properties for general road net-
works. To implement tradable permit markets, this paper proposes a novel auction mech-
anism with capacity control. This mechanism employs an evolutionary approach to achieve
a dynamic system optimal allocation of network permits in a computationally efficient
manner. We prove that the proposed mechanism has the following desirable properties:
(i) truthful bidding is a dominant strategy for each user on each day and (ii) the permit allo-
cation pattern under the mechanism converges to a dynamic system optimal allocation
pattern.

� 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

Congestion pricing is considered an effective economic instrument for managing traffic congestion, and various types of
pricing schemes have been proposed since the pioneering work of Pigou (1920) (see Yang and Huang, 2005; Tsekeris and
Voß, 2009; de Palma and Lindsey, 2011, for comprehensive reviews and other references). Although these schemes work
effectively in ideal situations, almost all of them fail to take into consideration the important fact that asymmetric information
exists between road managers and road users. For instance, in standard congestion pricing, the road manager requires accu-
rate and detailed demand information (e.g., the desired arrival time and value of time) to calculate optimal toll levels, but it is
almost impossible for the manager to obtain such private information. This lack of information may distort toll levels and
inevitably result in economic losses.

As an alternative to price-based regulation such as congestion pricing, there is another economic instrument called trad-
able permits scheme, which is a generalization of quantity-based regulation.1 This scheme directly regulates traffic flows by
assigning priority-service permits to road users, which has great potential for not only reducing traffic congestion but also
resolving the asymmetric information problem. As an example of such a scheme, Akamatsu et al. (2006) and Akamatsu
(2007a,b) proposed a new dynamic traffic congestion control scheme called tradable network permits, which does not require
on in the
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detailed user information. This scheme consists of two parts: (a) the road manager issues a right (network permit) that allows
the permit holder to pass through a bottleneck during a prespecified time period and (b) a trading market is established for
network permits differentiated by prespecified time. Under this scheme, queuing congestion can be completely eliminated
for each bottleneck by issuing a number of network permits that is less than its capacity. For allocating the permits to users,
there are two representative schemes: the market selling scheme and the free distribution scheme. In the market selling scheme,
the road manager sells all the permits to users through the trading markets. In the free distribution scheme, the road manager
initially distributes all the permits to users for free according to methods that consider the equity among users. In this scheme,
the permits allocated for each user does not necessarily match one’s own desired permit. For that case, users can mutually trade
permits in the trading markets. With both schemes, the asymmetric information problem is resolved through the trading mar-
kets. Furthermore, Akamatsu et al. (2006) demonstrated that under both permit-allocating schemes the equilibrium achieves
the most efficient (i.e., Pareto optimal) resource allocation for a single bottleneck, and Akamatsu (2007a,b) extended this prop-
erty to general networks.2

Although the efficiency of the tradable network permits was established by assuming that a competitive equilibrium
can be achieved in the trading markets, no concrete trading mechanism that attains the equilibrium was demonstrated
in the above studies. In other words, trading processes were treated as a black-box. Thus, in order to implement tradable
network permits, it is necessary to establish a micro-mechanism for the trading markets. It should be noted that in terms
of efficiency of resource allocation, the above two permit-allocating schemes are essentially identical. Therefore, as the first
step in trading markets design, this paper focuses on the market selling scheme to achieve an efficient allocation as simply
as possible.3 In this regard, Wada and Akamatsu (2010) and Wada et al. (2010) designed an auction mechanism for a trading
market for a single bottleneck and showed the following: (i) the network permit allocation pattern achieved under the mech-
anism is efficient and (ii) the mechanism is strategy-proof, which means that a dominant strategy employed by each user is
truthful revelation of the value of permits. However, extending the auction mechanism to general networks is not a trivial
problem, because a naïve formulation of the problem leads to NP-hardness owing to the complex relationship between link
and path.

This paper proposes a novel auction mechanism to implement trading markets on general networks with multiple origin–
destination (OD) pairs. Assuming that each user makes a trip from an origin to a destination via a certain path and in a spe-
cific time period, we design an auction mechanism that enables each user to purchase a bundle of network permits corre-
sponding to a set of links on the user’s preferred path. We first briefly discuss how the Vickrey–Clarke–Groves (VCG)
mechanism, which is a benchmark mechanism in auction theory (e.g., Milgrom, 2004), cannot possibly be applied to the
trading markets because the combinatorial optimization problem of finding a network permits allocation pattern is NP-hard.
To avoid such computational infeasibility, we propose an auction mechanism that is readily implementable. This mechanism
employs an evolutionary approach that decomposes the combinatorial optimization problem into two phases, an auction
phase and a path capacity adjustment phase, which are repeated on a day-to-day basis. The path capacity is defined as
the number of bundles of permits for the path. In the former phase, the manager fixes each path capacity and sells the bun-
dles to users through an ascending auction. In the latter phase, the road manager adjusts each path capacity to an appropri-
ate level by exploiting bundle prices determined in the auction phase. We then prove that the proposed mechanism has the
following desirable properties: (i) truthful bidding is a dominant strategy for each user on each day and (ii) the permit allo-
cation pattern under the mechanism converges to an approximate dynamic system optimal allocation pattern in the sense
that the social surplus reaches its maximum value when the number of users is large. Finally, we show that the proposed
mechanism can be extended to obviate path enumeration by introducing a column generation procedure.

The rest of this paper is organized as follows: Section 2 discusses related work. Section 3 outlines the framework of the
tradable network permits scheme and describes assumptions used throughout the paper. Section 4 defines a dynamic system
optimal allocation of network permits and discusses the impossibility of applying the VCG mechanism to the trading mar-
kets due to NP-hardness. Section 5 presents ideas for a novel auction mechanism that is readily implementable for general
networks. Section 6 gives details of the proposed mechanism and clarifies its properties. Section 7 presents an extended
mechanism which obviates path enumeration by exploiting a column generation procedure. Section 8 demonstrates the con-
vergence properties of the proposed mechanism through a numerical example. Section 9 concludes the paper.
2. Related work

Our study is mainly concerned with dynamic traffic assignments (DTA), some types of transportation demand manage-
ment (TDM) schemes (i.e., dynamic congestion pricing schemes and tradable permits schemes), and combinatorial auctions.
The first two areas provide an analytical framework for modeling and managing traffic congestion in transportation net-
works, whereas the third area provides a foundation for constructing an auction mechanism to implement trading markets.
In particular, auctions for bundled items with network structure are relevant to our study.
2 We can also generalize the theory to include supply side conditions. Specifically, Wada and Akamatsu (2012) proposed a distributed signal control policy
based on the tradable network permits, which adjusts a green time proportion by exploiting permit prices.

3 To implement the free distribution scheme, it is necessary to design a micro-mechanism for a double auction market in which trading strategies of users are
more complex than those of one-sided auction.
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2.1. Dynamic traffic assignment models

Following the successful incorporation of queuing phenomena into transportation network analysis, considerable re-
search into DTA models has been conducted (e.g., Vickrey, 1969; Kuwahara and Akamatsu, 1993; Cascetta, 2001). For in-
stance, departure time choice models have been developed by Smith (1984a), Daganzo (1985), Newell (1987), and Iryo
and Yoshii (2007), while dynamic user equilibrium (DUE) models have been developed by Kuwahara and Akamatsu
(1993), Smith (1993), Heydecker and Addison (1996), Akamatsu (2001), and Iryo (2011) and many others (see Peeta and Zili-
askopoulos, 2001; Szeto and Wong, 2011, for comprehensive reviews). These studies analyzed the properties of user equi-
librium and discussed the effectiveness of dynamic congestion pricing as shown in the next subsection. However, few studies
have addressed the asymmetric information problem and the effectiveness of quantity-based regulation for eliminating
queues.
2.2. Dynamic congestion pricing schemes

Dynamic congestion pricing is a natural extension of static congestion pricing and is a benchmark TDM scheme to elim-
inate queuing congestion. Despite its importance, most studies have been limited to simple networks (e.g., a single bottle-
neck or parallel link) because analyzing DTA models for general networks is usually intractable (e.g., Arnott et al., 1990,
1993; Kuwahara, 2007; Doan et al., 2011). However, there have been some attempts to overcome this difficulty. For example,
Ziliaskopoulos (2000) and Nie (2011) studied dynamic marginal cost analyses for system optimal DTA problems with many-
to-one (or one-two many) OD pairs. Yang and Meng (1998) derived an optimal toll based on a time–space network for gen-
eral networks. Friesz et al. (2007) formulated a dynamic second-best toll pricing problem for general networks as mathemat-
ical programs with equilibrium constraints and developed a solution algorithm, but they did not address theoretical
questions (e.g., algorithm convergence). In effect, no study has established a theory of dynamic congestion pricing for general
networks in which queues arise. Furthermore, implementations of the above schemes unsurprisingly face the difficulty asso-
ciated with asymmetric information.

To address the asymmetric information problem, some studies have developed evolutionary (trial-and-error) implemen-
tation methods for congestion pricing in static settings (Sandholm, 2002, 2007; Yang et al., 2004; Han and Yang, 2009). These
methods set toll levels based on realized traffic flow patterns. The studies demonstrated that an appropriate adjustment pro-
cess of route choice (e.g., Smith, 1984b) converges to an equilibrium that minimizes the total transportation cost in the net-
work.4 This result relies on the fact that there is an equivalent optimization problem (or a Beckmann-type potential function)
for a static user equilibrium. However, the properties of static and dynamic congestion pricing differ because the mechanisms of
flow and queuing congestion are totally different. In addition, the DUE model cannot also be reduced to an optimization prob-
lem in general. Thus, it is not easy to generalize the methods to dynamic settings. Further, the methods need to set a discrim-
inatory toll to achieve an optimal state when users have heterogeneous costs (e.g., value of time), but information on such
heterogeneities cannot be gathered by these methods, which means that this approach is not a panacea for the problem even
in static settings.
2.3. Tradable permits schemes for managing traffic congestion

A tradable permits scheme that combines a quantity-based regulation with a market institution has been studied for
environmental protection (Montgomery, 1972; Tietenberg, 1980). The capabilities and applicability of this scheme have been
increasing, because the emergence of the Internet enables a new market to be established inexpensively. For managing traf-
fic congestion, a few researchers have studied such a scheme as an alternative to congestion pricing. Verhoef et al. (1997)
discussed the possibilities of using tradable permits in the various types of regulations for road transport externalities;
e.g., vehicle ownership permits, tradable parking permits, and tradable permits in the regulation of road usage. Teodorović
et al. (2008) proposed an auction-based congestion pricing, for which drivers wanting to enter a downtown area would have
to participate in a downtown time slot auction. Although it formulated the allocation problem for the time slots, their study
did not address how to set their prices, which is the core problem for auction mechanisms. Moreover, the existing studies
provide some useful insights into tradable permits schemes for managing traffic congestion, but none describes time-depen-
dent tradable permits for eliminating bottleneck congestion.

In addition, it is worth mentioning that the tradable travel credit scheme proposed by Yang and Wang (2011) is superfi-
cially similar to but fundamentally different from the tradable network permits scheme.5 Basically, under the tradable travel
credit scheme, the road manager initially distributes credits to all eligible travelers and predetermines a link-specific credit
charge. Credits are freely tradable among the credit holders in a credit market. Yang and Wang (2011) showed that, if the man-
ager can appropriately set the total number of credits and the link-specific credit charges, a desirable traffic flow pattern is
4 Unlike Sandholm (2002, 2007), Yang et al. (2004) and Han and Yang (2009) did not explicitly consider an adjustment process. Instead, they assumed that
user equilibrium traffic flow patterns are realized for any given temporal link toll pattern, which may imply that it takes time to obtain each equilibrium with
the adjustment process.

5 Similar schemes of the tradable travel credit were also discussed in Viegas (2001) and Verhoef et al. (1997).
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achieved. However, it is apparent that this scheme requires detailed demand information unlike the tradable network permits.6

Further, it is fair to say that this scheme is not a quantity-based regulation for managing congestion but rather a redistribution
scheme for income. Indeed, the main advantage of this scheme over the standard congestion pricing is the improvement in equi-
ty and social acceptability, not a direct reduction in traffic congestion.

2.4. Auction mechanisms for networked items

Since the pioneering work of Rassenti et al. (1982), who proposed airport time slot auctions, there has been a considerable
amount of work on combinatorial auctions (e.g., de Vries and Vohra, 2003; Cramton et al., 2006), which allow bids on com-
binations of items and thus enhance the economic efficiency when bidders have preferences for sets of items (e.g., spectrum
rights, airport time slots, railroad segments, and paths in networks). The most celebrated such auction is the VCG mechanism
(Vickrey, 1961; Clarke, 1971; Groves, 1973). This mechanism is strategy-proof and can achieve allocative efficiency. How-
ever, to maintain these properties, it requires the auctioneer to solve complex combinatorial optimization problems to deter-
mine the allocation and prices (Vickrey payments). Therefore, the VCG mechanism is computationally intractable in many
circumstances, including ours (see Section 4).

In this regard, several authors have clarified how such intractability can be avoided under certain restricted circum-
stances, in which combinations of items have network structures. Bikhchandani et al. (2002) demonstrated that the VCG out-
come can be computed by solving two linear programs in the case that a winner determination problem reduces to a
spanning tree problem or a shortest path problem.7 Nisan and Ronen (2001) derived the Vickrey payments for a shortest path
problem, and Hershberger and Suri (2001) developed an efficient algorithm to compute those payments. However, the auctions
cannot be implemented for trading markets because these are reverse auctions that cannot handle multiple buyers (i.e., users).

The studies on bandwidth auctions for communication networks are also related to our study in the sense that those also
focus on an allocation problem for a network capacity that is a limited resource (e.g., Koutsopoulos and Iosifidis, 2010). The
studies consider the case in which each bidder (e.g., provider) purchases a quantity of bandwidth over a path in a network.
Lazar and Semret (1999) proposed the progressive second price auction for allocating a divisible quantity of bandwidth over
a certain path. Dramitinos et al. (2007) proposed a multi-unit Dutch auction, which allocates an indivisible quantity of band-
width over a certain path. Both of these auction mechanisms can induce truth-telling. However, in contrast to the mecha-
nism that is proposed in this paper, neither takes into account the route choice problem of the bidders (i.e., each bidder
is interested in a single fixed path). From the above discussion, we conclude that there is no network auction mechanism
that enables us to assign network capacities (i.e., network permits) to multiple users who choose a route in a network,
and thus the proposed mechanism is a major contribution of this paper.

3. A system of tradable network permits for transportation networks

3.1. Networks

In this paper, we consider discrete-time dynamic traffic flows on a general network (i.e., a transportation network with
general topology). The network consists of a set N of nodes and a set A of directed links. The node set N includes a subset O of
origin nodes from which users start their trips, and a subset D of destination nodes at which users terminate their trips. A set
of origin–destination (OD) pairs is denoted by W. Each element of A (i.e., each link) is identified by a sequential natural num-
ber a.

The time interval [0, I] for which we assign the dynamic traffic flow is fixed. We assume that each OD pair’s potential
travel demand Qod in the time interval [0, I] is a given constant. The time interval [0, I] is discretized into small intervals
of length Dt: each time point is represented by t = mDt, where m = 0,1,2, . . . ,M. Each time interval [t, t + Dt] is denoted by
t 2 T and we call this interval time period t.

We also assume, without any loss of generality, that each link in a network consists of a free-flow segment and a single
bottleneck segment. The travel time to pass through the free-flow segment of link a is a constant ta. We then assume that
travel time ta is represented by a natural multiplier of Dt (i.e., an integer na satisfies ta = naDt). The bottleneck of each link
is represented by a point queue model with constant capacity la= vehicles/time interval Dt.

3.2. Road network manager and users

The model presented in this paper involves two types of agents: a road network manager and road network users. The
road manager aims to restrain traffic congestion in the network and maximize the social surplus. To achieve this, the man-
ager regulates the traffic flow rates entering each bottleneck in the network by using time-dependent network permits. The
precise definition and setup of the network permit system are described in Section 3.3.
6 Nie (2012) pointed out this fact in the context of comparison with tradable permits for emission control: ‘‘Suffice it to say here that the information that the
government would need to run a mobility credit market is as much as the information required to operate a conventional pricing scheme. Therefore, the mobility credit
market does not reduce the administrative burden of the government, unlike in the case of emission control.’’

7 Bikhchandani et al. (2002) also dealt with more general cases.
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Within the time interval [0, I], each atomic user i 2 N od (i.e., jN odj ¼ Q od) makes at most a single trip in the network from
an origin (e.g., residential zone) to a destination (e.g., the central business district). This means that all users do not neces-
sarily make trips, which corresponds to the conventional traffic assignments with elastic demand (see also Section 6.1). The
user chooses a destination arrival time period and a path between the origin and destination so as to maximize the utility.
Under the system of network permits, each user must purchase a bundle of permits corresponding to a set of links included
in the user’s chosen path. This implies that choosing a destination arrival time period and a path directly corresponds to pur-
chasing time-dependent network permits in the trading markets.

3.3. Network permits and trading markets

A time-dependent network permit is a right that allows the permit holder to pass through a prespecified bottleneck at a
prespecified time. In this paper, we assume that the manager can issue time-dependent network permits for all bottlenecks
(i.e., links) in the network. This implies that the traffic flow entering the link a at time period t consists only of users who
have a permit for link a at time period t and a user without this permit cannot pass through the link in this time period.

Throughout this paper, we assume that the number of permits issued for each link in each time period is equal to or less
than the bottleneck capacity of each link in the network. This means that queuing congestion never occurs in the network
under this permit-issuing scheme. This is clear from an explanation of the permits: the inflow rate of each link is equal to (or
less than) the number of permits issued, and so the inflow rate cannot exceed the capacity of the link, which implies that
queuing congestion can never occur at a link.

The permits issued for each link (bottleneck) are put on sale by the road manager. Each user who would like to use a path
must purchase a bundle of permits corresponding to the set of links included in the user’s preferred path. In the trading mar-
kets, the prices and the allocation of time-dependent permits are determined through an auction mechanism. The detailed
trading rules are given in Section 6.

It must be admitted that the procedures for trading network permits seem unrealistic at first glance, but implementation
of these would become feasible with futuristic vehicles in which an agent software is installed to manage driving, navigation
and safety. From this perspective, the mechanism proposed in this paper can be viewed as the protocol of a multi-agent sys-
tem in which the agent software executes the procedures for trading network permits on behalf of users.

3.4. Dynamic travel costs and user utility in general networks

The transportation cost for a single trip made by a network user consists of schedule cost and travel cost. The schedule
cost for user i is the cost due to the difference between the user’s desired arrival time period ti and the actual arrival time
period t. The schedule cost is represented by a function si(t, ti) of both destination arrival time and desired arrival time. The
travel cost is the monetary equivalent of the travel time for a trip from the origin to the destination. The travel times differ
among the paths. The travel time of a path between the OD pair is defined as the sum of travel times of the links included in
the path. Note that the travel time of each link a is a constant ta under the permit system, since there is no queuing. Hence,
the travel time Tr for path r 2 Rod between the OD pair is also constant:
Tr ¼
X
a2A

tada;rðo;dÞ; ð1Þ
where da,r(o, d) is a typical element of the path-link incidence matrix for the node pair (o, d); it is 1 if link a is on path r con-
necting the OD pair (o, d) and zero otherwise.

We suppose that each user has a private valuation vi,r(t) for each path r and each destination arrival time period t. This
valuation vi,r(t) represents a nonnegative value of trip between OD pair along path r in time period t. For example, to show a
correspondence with conventional traffic assignments, we can specify the valuation as
v i;rðtÞ � wi � siðt; tiÞ þ aiTrð Þ; ð2Þ
where wi is a parameter, which is interpreted as the trip utility (or willingness-to-pay) between the OD pair, and ai is a coef-
ficient that converts travel time into a monetary equivalent.

Each user is assumed to have a quasi-linear utility function (we use the term ‘‘payoff’’ interchangeably with ‘‘utility’’).
Specifically, each user’s utility ui,r(t) for path r in time period t is represented as the difference between the private valuation
and the permit purchase cost Pr(t) determined at auction:
ui;rðtÞ � v i;rðtÞ � PrðtÞ: ð3Þ
The permit purchase cost is the total payment for purchasing the bundle of link permits required for traveling along a
path and arriving at the destination in a certain time period.

4. Dynamic system optimal allocation of network permits

The objective of an auction mechanism, such as that designed in this paper, is to achieve a network permit allocation pat-
tern that maximizes a social surplus (i.e., dynamic system optimal allocation). The social surplus is defined as the sum of
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user’s valuations. This excludes user payments to the road manager to purchase permits, because these payments are simply
income transfers between the users and the road manager. Thus, we formulate an optimization problem [DSO] of providing
the dynamic system optimal allocation of network permits:
max
ðf;xÞ

SSðfÞ �
X

od2W

X
i2N od

X
t2T

X
r2Rod

v i;rðtÞfi;rðtÞ; ð4Þ

s:t:
X
t2T

X
r2Rod

fi;rðtÞ 6 1 8i 2 N od; 8od 2W; ð5ÞX
od2W

X
i2N od

xi;aðtÞ 6 la 8a 2 A; 8t 2 T; ð6Þ

xi;aðtÞ ¼
X
r2Rod

fi;rðt þ Ta;rÞda;rðo;dÞ 8a 2 A; 8t 2 T; 8i 2 N od 8od 2W; ð7Þ

f i;rðtÞ; xi;aðtÞ 2 f0; 1g 8a 2 A; 8r 2 Rod; 8t 2 T; 8i 2 N od; 8od 2W; ð8Þ
where fi,r(t) denotes the allocation of a bundle of permits to user i and xi,a(t) denotes the allocation of a network permit to
user i. Specifically, fi,r(t) is 1 if user i is allocated a bundle of permits for a set of links required to travel along path r and to
arrive at time period t and is zero otherwise. Hence, xi,a(t) is 1 if user i is allocated a network permit for link a in time period t
and is zero otherwise.

This is the combinatorial optimization problem of finding an efficient network permit allocation pattern (f⁄, x⁄), subject to
the physical constraints on flows representing the network performance. The first constraint (5) is the condition that each
user makes at most one trip in the interval [0, I]. The second constraint (6) is the capacity constraint on each link. The third
constraint (7) expresses the flow conservation between link flows and path flows for each user; that is, the link flow xi,a(t)
entering into link a at time period t is the sum of the flows on all paths going through that link and arriving at the destination
at time t + Ta,r. The travel time required for arriving at the destination from the upstream node k (of the link a) through path r
(containing link a) is given by:
Ta;r ¼
X
a02A

ta0da0 ;rðk;dÞ; ð9Þ
where da0 ;rðk;dÞ is a typical element of the path-link incidence matrix for node pair (k, d).
Although the road manager seeks to solve the problem [DSO] to achieve the system optimal permit allocation pattern,

solving the problem directly poses two major difficulties: (i) the objective function of the problem includes users’ private
valuations and (ii) the problem is NP-hard (i.e., no polynomial-time algorithm exists for it). The first difficulty comes from
the obvious fact that the manager cannot accurately obtain such private information. The second difficulty comes from the
fact that the problem [DSO] is an integer multicommodity flow problem.

One possible way to address these difficulties might be to apply conventional combinatorial auctions to this problem. For
example, the VCG mechanism can overcome the first difficulty, at least in principle, because it gives users an incentive (Vick-
rey payment) to report their valuations truthfully (i.e., strategy-proofness). However, the VCG mechanism cannot overcome
the second difficulty, because the problem [DSO] must be solved exactly to determine the optimal permit allocation and to
compute the Vickrey payments (i.e., a computationally infeasibility). One natural approach to handling the problem is to
seek a sub-optimal solution instead of the optimal solution. However, the VCG mechanism allowing non-optimal allocations
is not strategy-proof, as each user has an incentive to bid false valuations to increase the utility (Nisan and Ronen, 2007).
Therefore, it is difficult to apply the VCG mechanism directly to the trading markets.
5. Day-to-day auction mechanism: an auction mechanism with day-to-day capacity control

In this section, we propose a novel auction mechanism including a day-to-day capacity control, which is readily imple-
mentable for general networks. We call this mechanism the day-to-day auction mechanism. To avoid computational infeasi-
bility such as that in the case of the VCG mechanism, the proposed mechanism employs an evolutionary approach. Although
the evolutionary approach cannot be employed for the one-shot auctions that are typically treated in auction theory, it can
be utilized for a tradable network permits scheme in which the auction is opened to morning commuters each day.

Before describing the proposed mechanism, we introduce some modifications of the model. In the proposed mechanism,
we consider time-dependent permit allocation patterns and their day-to-day dynamics. We then denote the day by s 2 S.
Suppose that each user behaves myopically and makes one’s own choice so as to maximize the following utility defined
for each day s:
us
i;rðtÞ � v i;rðtÞ � Ps

rðtÞ: ð10Þ
This implies that the user considers only one’s own allocation of the bundles and payment on each day, so the user’s true
valuations are constant for all days.
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5.1. Reformulation of the DSO problem with path capacities and the Benders decomposition principle

The day-to-day auction mechanism is based on the idea of reformulating the problem [DSO] as a problem with non-indi-
vidual variables and decomposing it into two problems, a master problem and a sub-problem, based on then applying the
Benders decomposition principle (e.g., Benders, 1962; Lasdon, 1970). We then solve these problems on day-to-day basis. Fur-
ther, in order to achieve an efficient permit allocation with imperfect information about users, the mechanism also exploits
an auction mechanism for solving the sub-problem.

We let FrðtÞ;XaðtÞ 2 Zþ denote a non-individual path variable and a non-individual link variable, respectively. By using
these variables, the problem [DSO] with non-individual variables is formulated as
max
ðf;F;XÞ

SSðf;FÞ �
X

od2W

X
i2N od

X
t2T

X
r2Rod

v i;rðtÞfi;rðtÞ; ð11Þ

s:t:
X
t2T

X
r2Rod

fi;rðtÞ 6 1 8i 2 N od; 8od 2W; ð12ÞX
i2N od

fi;rðtÞ 6 FrðtÞ 8r 2 Rod; 8t 2 T; 8od 2W; ð13Þ

XaðtÞ 6 la 8a 2 A; 8t 2 T; ð14Þ
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Each non-individual path variable Fr(t) in Eq. (13) is interpreted as a path capacity that is the number of bundles of permits
sold for the path. Constraint (12) is the condition that each user makes at most one trip. Constraint (13) is the path capacity
constraint on each path. Constraints (14) and (15) are the conditions that the path capacity satisfies constraints stemming
from link capacities.

This problem includes two types of variables, individual variables f and non-individual variables (F, X), and naturally be-
comes a bi-level problem based on the Benders decomposition principle:
max
ðF;XÞ

X
od2W

X
i2N od

X
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X
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v i;rðtÞfi;rðFðtÞÞ;

s:t: Eqs: ð14Þ and ð15Þ; and FrðtÞ;XaðtÞ 2 Zþ; ð17Þ
where f(F) is an optimal solution of the following problem for a parameter F:
max
fP0

X
od2W

X
i2N od

X
t2T

X
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v i;rðtÞfi;rðtÞ;

s:t: Eqs: ð12Þ and ð13Þ: ð18Þ
The upper level problem (master problem) determines the optimal path capacity that maximizes the social surplus. The
lower level problem (sub-problem) determines the efficient allocation of bundles of permits under the condition that each
path capacity is fixed. Note that the sub-problem reduces to independent sub-problems in terms of OD pairs because path
capacities differ among OD pairs. Furthermore, the sub-problem (18) is the Hitchcock transportation problem and so a linear
relaxation of the sub-problem satisfies total unimodularity (e.g., Papadimitriou and Steiglitz, 1982). Thus, we can obtain an
integer solution by solving a linear relaxation of the sub-problem, because the path capacities are integer valued.

To demonstrate a clear relationship between the master problem and the sub-problem, we consider the following dual
problem of the sub-problem:
ZðFÞ � min
ðp;PÞP0

X
od2W

X
i2N od

pi þ
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X
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s:t: pi P v i;rðtÞ � PrðtÞ 8r 2 Rod;8t 2 T;8i 2 N od;8od 2W; ð20Þ
where (p, P) are Lagrange multipliers for constraints (12) and (13). As shown in Section 6.1, the multipliers are equal to the
user payoffs and competitive equilibrium bundle prices that are realized in an auction (we call these variables demand infor-
mation). From the duality theorem, the optimal value of the objective function (19) coincides with the optimal value of the
objective function (18); that is,
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where (p(F), P(F)) is an optimal solution of the dual problem (19) for a parameter F. Hence, (p(F), P(F)) is an extreme point of
the convex feasible region XSD that consists of the constraints (20) and nonnegative constraints. By using the function (21),
we can transform the master problem into the following problem:
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s:t: Eqs: ð14Þ and ð15Þ; and FrðtÞ; XaðtÞ 2 Zþ;
where V is the finite set of all extreme points of the convex feasible region XSD. From this formulation, we see that path
capacities are adjusted on the basis of the demand information. Moreover, this problem is equivalent to the following
problem:
max
hP0;F;XÞ

h; ð24Þ

s:t: Eqs: ð14Þ and ð15Þ; FrðtÞ;XaðtÞ 2 Zþ;
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Problem (24) is equivalent to the problem [DSO] (with non-individual variables) if all the extreme points are known.
However, it is difficult to obtain the extreme points in advance, because the number of extreme points is generally too large.
Hence, we consider a relaxation problem (24) that has a subset of the extreme points in V and produces an upper bound on
the optimal objective value of the problem [DSO]. This relaxed problem is called the restricted master problem [RMP]. We then
employ an iterative approach by adding an extreme point to the problem [RMP] to improve the upper bound. Note that an
extreme point is generated by solving the problem (19) for fixed path capacities F.

The procedure of the proposed mechanism corresponds to solving the above two problems, iteratively. One of the greatest
differences between the standard Benders decomposition and the proposed mechanism is whether or not coefficient param-
eters vi (i.e., truthful valuations of each user) are initially given. As mentioned in Section 4, the manager cannot observe such
private information. Nevertheless, the proposed mechanism can obtain the demand information by exploiting an auction
mechanism for solving the sub-problem.

5.2. Interpretation as auction mechanism with day-to-day capacity control

The day-to-day auction mechanism comprises an auction phase and a path capacity adjustment phase; the two phases are
repeated on a day-to-day basis (Fig. 1). In the auction phase corresponding to the sub-problem, the manager sells bundles of
permits to the users through an ascending auction under the condition that each capacity is fixed. In addition, the bundle
prices are determined during the ascending auction so as to maximize each user’s payoff. In the path capacity adjustment
phase corresponding to the restricted master problem, the manager adjusts each path capacity to an appropriate level by
considering the demand information that was determined in the previous auction phases. Hence, the procedure of the
day-to-day auction mechanism can be summarized as follows (more details of the mechanism and its properties can be
found in Section 6):

1. Initial setting. Set s = 1. Determine the initial path capacities F1. Start with a set of extreme points V1 = {;} and a conver-
gence threshold h1 =1.

2. Auction phase (Section 6.1). For fixed path capacities Fs, the manager sells bundles of permits through an ascending auc-
tion. The user payoffs and the bundle prices (ps, Ps) are also determined. If the social surplus SSs achieved in the ascending
auction is equal to or greater than the convergence threshold hs that is defined in Section 6.2, then stop. Otherwise go to
Step 3.

3. Path capacity adjustment phase (Section 6.2). Add an extreme point to the set; i.e., Vs+1 � {Vs [ (ps, Ps)}. Produce the path
capacities Fs+1 by solving the problem [RMP] and update the convergence threshold hs+1. Let s = s + 1. Go to Step 2.
Fig. 1. Procedure of the proposed mechanism.
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Note that stop in Step 2 means that optimal path capacities are obtained. Therefore, once the above procedure stops, the
manager no longer adjusts the path capacities and sells bundles through the auction with the same optimal path capacities
each day.

6. Details and properties of proposed mechanism

This section presents the details and properties of each phase of the day-to-day auction mechanism. Section 6.1 gives a
detailed explanation of the auction phase. Section 6.2 gives the detailed path capacity adjustment rule. Section 6.3 analyzes
the proposed overall mechanism combining two phases and proves that the day-to-day dynamics of the network allocation
pattern converges to the dynamic system optimal allocation when the number of users is large.

6.1. Auction phase

In the auction phase, the manager sells bundles of permits to the users through an ascending auction for fixed path capac-
ities. The procedure of this ascending auction corresponds to solving the sub-problem using a primal–dual algorithm. Thus,
we first analyze solutions of both the sub-problem and its dual.

6.1.1. Competitive equilibrium in tradable network permit markets
Let Fs be the path capacities as determined in the path capacity adjustment phase on day s � 1. Then, the sub-problem for

each OD pair is given by the following linear program:
SSs
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v i;rðtÞf s
i;rðtÞ; ð26Þ

s:t: Eqs: ð12Þ and ð13Þ:
The necessary and sufficient optimality conditions of the problem are given by the following Kuhn–Tucker conditions:
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Note that the allocation variables fs are integer because each sub-problem (26) satisfies total unimodularlity. The solution
(fs, ps, Ps) consists of a competitive equilibrium allocation, payoffs and prices, respectively. In the competitive equilibrium,
each user acquires the bundle of permits that maximizes one’s own utility (i.e., (27)) for the given set of competitive equi-
librium prices that satisfy the market clearing condition (28). Further, all users who acquire bundles have nonnegative pay-
offs (i.e., the user’s willingness-to-pay is greater than the price requires), which is consistent with conventional traffic
assignments with elastic demand.

The concept of competitive equilibrium for indivisible items is a natural extension of the classical economic concept for
divisible items. Here the necessary and sufficient condition for the existence of this competitive equilibrium is that the opti-
mal solution to the linear relaxation of the sub-problem is integer (Bikhchandani and Mamer, 1997). In addition, it has been
shown that the competitive equilibrium, if it exists, is efficient (Bikhchandani and Ostroy, 2002). This can be summarized as
follows:

Lemma 1. In the tradable network permit markets on day s, there always exists a competitive equilibrium that provides an
efficient network permit allocation pattern for a fixed path capacity.
Proof. See Bikhchandani and Mamer (1997) and Bikhchandani and Ostroy (2002). h

Note that the set of competitive equilibrium prices discussed above does not necessarily satisfy strategy-proofness. How-
ever, Leonard (1983) showed that minimal competitive equilibrium prices such that the payment for each user is equal to the
decrease in the value of the social surplus by adding the user to the auction are equivalent to Vickrey payments that produce
strategy-proofness. In addition, Leonard (1983) formulated the problem of finding the minimal competitive equilibrium
prices:
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This problem minimizes competitive equilibrium prices (or maximizes user payoffs) subject to the conditions that the
solution of this problem also solves the dual of the sub-problem.

From the above discussions, we find that the sub-problem can be solved through the VCG mechanism in a computation-
ally efficient manner: the allocation problem (26) is merely the transportation problem, and Vickrey payments are computed
by solving only one linear program (30). However, there remains the problem of complication of the bidding rule: users have
to report sealed bids giving their value of all bundles of permits. This bidding rule is also undesirable in terms of the privacy,
as users are required to reveal more of their private information than is necessary.

6.1.2. Ascending proxy auction
The proposed mechanism employs an ascending auction to resolve the problems of sealed bid auctions and to produce

outcomes (i.e., allocation and prices of bundles of permits) in an informationally efficient manner. More specifically, we em-
ploy the (exact) ascending auction proposed by Demange et al. (1986) (we call this the DGS auction). In this auction, users
report only the ‘‘names’’ of the bundles of permits in which they are interested. The procedure of the DGS auction corre-
sponds to solving the sub-problem using a primal–dual algorithm, which is described as follows (see also Bikhchandani
et al., 2002):

1. Initialization. Set Ps = 0 for all bundles.
2. Bidding phase. Each user reports the names of the bundles that maximize one’s own payoff under the current prices Ps; i.e.,

a demand set DiðPsÞ � arg maxr;t ½v i;rðtÞ � Ps
rðtÞ�. If each user can be allocated a bundle from the user’s demand set, then

stop because Ps are equilibrium prices. Otherwise go to Step 3.
3. Price adjustment phase. The manager chooses a minimal overdemanded set M(Ps) and raises the prices of the bundles in that

set (i.e., Ps
rðtÞ ¼ Ps

rðtÞ þ 1;8ðr; tÞ 2 MðPsÞ). Go to Step 2.

Here, an overdemanded set is a set of bundles for which the number of users demanding only bundles in that set exceeds
the number of bundles sold in the auction, and the minimal overdemanded set is an overdemanded set of bundles with no
proper overdemanded subset.

In the DGS auction, the prices of the bundles converge to the minimal competitive equilibrium prices if each user reports
the demand set truthfully (i.e., a myopic best response strategy) because the minimal overdemanded set is chosen in Step 3.
Hence, the outcome of the DGS auction is equal to the VCG outcome. Further, the truthful reporting of the demand set con-
stitutes a Nash equilibrium for each user in each Step 2.

In a practical implementation of the DGS algorithm, it is hard for each user to report the demand set in each bidding
phase; i.e., the transaction cost is too large. We therefore introduce a proxy agent system to support the bidding of users.
Proxy systems are popular and have been installed in many Internet auctions (e.g., eBay and Yahoo). Under such a system,
each user reports valuations to a proxy agent for some bundles that interest the user. Then, the proxy agent bids in the auc-
tion on the basis of the information received from the user. This system not only reduces the transaction cost of the bidding
phase, but also prevents strategic behaviors (e.g., a non-myopic best response strategy) in each bidding phase.

Let us now introduce the proxy agent system proposed by Parkes and Ungar (2000) into the DGS auction. Step 1 and Step
2 are then modified as follows:

10. Before starting the auction, each user reports information of valuations for some bundles to one’s own proxy agent. Set
Ps = 0 for all bundles.

20. Based on the information received and the current prices, each proxy agent submits each user demand set Di(Ps). If
each user can be allocated a bundle from one’s own demand set, then stop because the Ps are equilibrium prices.
Otherwise, go to Step 3.

In Step 20, the user needs to update information if the proxy agent does not have enough information to submit the de-
mand set. Since the proxy DGS auction restricts user strategies (in each bidding phase) to a myopic best response strategy, a
dominant strategy is truthful reporting of the valuations to the proxy agent. From what has been discussed above and Lem-
ma 1, we obtain the following proposition:

Proposition 1. The network permits allocation pattern achieved under the proxy DGS auction for implementing the tradable
network permit markets on day s is efficient, and the prices of bundles of permits converge to the minimal competitive equilibrium
prices. A dominant strategy for each user is truth reporting of the valuations of bundles to the proxy agent.
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Proof. See Demange et al. (1986) and Parkes and Ungar (2000). h
6.2. Path capacity adjustment phase

In the path capacity adjustment phase, the road manager first generates the demand information (i.e., payoffs and prices).
The prices Ps can be obtained directly in the auction phase for all OD pairs. The payoffs ps, however, are computed indirectly.
In the proxy DGS auction, since each user reports the user’s true valuations for interesting bundles to the proxy agent, the
manager can obtain the user’s winning valuation v�i;rðtÞ. Then, the manager calculates a total payoff Ps from the duality
theorem:
Ps �
X

od2W

X
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ps
i ¼
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X
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v�i;rðtÞ �
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od2W

X
t2T

X
r2Rod

Fs
rðtÞP

s
rðtÞ: ð32Þ
Note that the manager needs to know only the total payoff to adjust path capacities.
After generating the demand information, the manager considers all demand information for the current day and past

days, Vs+1 � {Vs [ (Ps, Ps)}, and adjusts each path capacity by solving the restricted master problem [RMP]. However, this
is computationally intensive because the problem [RMP] (i.e., the problem (24)) is a large integer programming (IP) problem
with one continuous variable. To avoid this, we solve the linear relaxation of the problem [RMP] and obtain an integer solu-
tion by rounding off the fractional solution. Such a strategy was suggested by McDaniel and Devine (1977) and has success-
fully used in various problems (e.g., Cordeau et al., 2000). This strategy is suitable for our situation because non-individual
variables (path capacities) in the problem [RMP] are control variables of the road manager and can be treated as continuous
variables, although the individual variables (allocation of network permits) cannot be treated as continuous. In addition, note
that the relaxation of integrality constraints does not affect the convex feasible region XSD of the dual sub-problem and that
an extreme point can be generated from any integer solution. Thus, the problem with continuous variables ð~F; ~XÞ that the
road manager needs to solve is given as
max
hP0; ð~Fsþ1 ;~Xsþ1ÞP0

h; ð33Þ
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The optimal objective value is an upper bound on the maximum social surplus SS⁄ of the problem [DSO], which is weaker
than the upper bound that is produced with the integer programming problem [RMP].

From the optimality conditions of the problem, a path capacity adjustment rule can be derived as
X
a2A

paðt � Ta;rÞda;rðo;dÞ ¼ PrðtÞ if eF sþ1
r ðtÞ > 0X

a2A

paðt � Ta;rÞda;rðo;dÞ P PrðtÞ if eF sþ1
r ðtÞ ¼ 0

8>><>>: 8r 2 Rod; 8t 2 T; 8od 2W; ð37Þ
where the P are the (convex combinations of) bundle prices that produce the weak upper bound (i.e., the constraint (34) is
bounded), and p is the Lagrange multiplier for the constraint (35). This Lagrange multiplier is interpreted as a permit price
for each link that satisfies the following (market clearing) condition:
eXsþ1

a ðtÞ ¼ la if paðtÞ > 0eXsþ1
a ðtÞ 6 la if paðtÞ ¼ 0

(
8a 2 A; 8t 2 T: ð38Þ
If the path capacity is positive in the path capacity adjustment rule (37), the bundle price estimated for the path by means
of link permit prices and is equal to the bundle price determined in the auction phase. For a path whose the estimated price
exceeds the realized price, the path capacity is zero. This means that no path capacities are allocated to the worthless paths.
The integer path capacities Fs+1 on day s + 1 can be obtained by rounding-off all continuous path capacities; i.e.,
Fsþ1

r ðtÞ ¼ beF sþ1
r ðtÞc.

6.2.1. Stabilizing strategy for the Benders decomposition
Although the problem (33) is easy to solve, there remains one issue relevant to the convergence rate of the Benders

decomposition; i.e., path capacities usually oscillate, which results in slow convergence (Magnanti and Wong, 1981). To
accelerate and stabilize the Benders decomposition, we add boxstep constraints (Marsten et al., 1975) to the above problem
(33):
 eF s

rðtÞ � � 6 eF sþ1
r ðtÞ 6 eF s

rðtÞ þ � 8r 2 Rod; 8t 2 T; 8od 2W; ð39Þ



Fig. 2. Relationship between the convergence threshold, the weak upper bound, the achieved social surplus, and the maximum social surplus.

K. Wada, T. Akamatsu / Transportation Research Part E 60 (2013) 94–112 105
where � is a boxstep parameter. At each step, the solution ~Fsþ1 to the master problem is constrained to lie within a box cen-
tered on the previous solution ~Fs and so the oscillation is dramatically reduced. Note that the problem including the boxstep
constraints does not necessarily produce an upper bound on the maximum social surplus SS⁄. Thus, we solve the problem
(33) to obtain the upper bound h.

6.3. Convergence of the day-to-day auction mechanism

We now establish the convergence result of the day-to-day auction mechanism on the basis of the Benders decomposition
technique. The standard Benders decomposition algorithm converges to an optimal solution when the strong upper bound
obtained by the problem [RMP] is equal to the optimal objective value of the sub-problem (i.e., the social surplus achieved in
the auction phase). However, the weak upper bound h obtained with the proposed mechanism will exceed the maximum
value of the social surplus SS⁄ even if all the extreme points are generated, and thus we cannot use h as the convergence
threshold.

To resolve this problem, we introduce a new convergence threshold h:
h � min
ðPs ;PsÞ2Vsþ1

�Ps þ
X
t2I

X
r2R

Fsþ1
r ðtÞP

s
rðtÞ; ð40Þ
and an update rule of the threshold is
hsþ1 ¼min hs; hf g: ð41Þ
The criterion based on h optimizes (i.e., minimizes) the objective function of the problem [RMP] only with respect to extreme
points (Ps, Ps) given at the integer path capacities Fs+1, which results in good convergence properties as shown in the proof of
the proposition below. The threshold h is equal to or less than the strong upper bound, since it does not maximize the objec-
tive function of the problem [RMP] with respect to the path capacities. Therefore, we conclude that the permit allocation
under the proposed mechanism converges to an approximate dynamic system optimal state when the achieved social sur-
plus SSsþ1ð¼

P
odSSsþ1

od Þ in the auction phase is equal to or greater than the convergence threshold hs+1.
Fig. 2 shows the relationship between the convergence threshold hs, the weak upper bound hs, the achieved social surplus

SSs, and the maximum social surplus SS⁄. The horizontal axis represents the social surplus (or its upper bound) and dotted
lines represent the ranges in which the variables can exist. The achieved social surplus SSs can exist in the range [0, SS⁄]. The
convergence threshold and the weak upper bound take minimum values h⁄ and h� when we have all the extreme points.

By using the convergence threshold hs, we obtain the social surplus in the range that is represented by the solid arrow in
Fig. 2. The ratio SSs/SS⁄ between the achieved social surplus and the maximum value of the social surplus is confined within
in the range
h�

SS�
6

SSs

SS�
6 1: ð42Þ
Assuming that the ratio between the total number of users Q ð¼
P

odjN odjÞ and the total link capacity
P

t

P
ala is held con-

stant, the range Eq. (42) converges to zero (i.e., the left-hand side of (42) converges to 1) when the number of users is suf-
ficiently large. This is because the effect of rounding off the continuous path capacities is negligible in that case. In addition, a
new extreme point is generated in each auction phase when the achieved social surplus does not satisfy the convergence
criterion, so the proposed mechanism can converge in a finite number of steps. Therefore, the following proposition holds.

Proposition 2. Assume that the ratio between the number of users and total link capacity is constant. Then, the day-to-day
auction mechanism converges in a finite number of steps, and the value of the social surplus achieved by the mechanism reaches its
maximum value when the number of users is large.
Proof. See Appendix A for the proof. h
7. An extended mechanism which obviates path enumeration

The day-to-day auction mechanism presented in the previous sections assumes that the road manager can enumerate all
the paths that users may choose. However, it is not necessarily evident how the manager should do so for large-scale net-
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works. To obviate path enumeration, we construct an extended mechanism by introducing a path generation phase into the
day-to-day auction mechanism. This consists of applying a column generation procedure to the system optimal allocation
problem [DSO]. In the extended mechanism, users generate paths successively, and hence path enumeration is obviated
for the manager.

A column generation for a network flow problem considers a problem that has only a subset of the paths of the original
problem (i.e., a restricted master problem) and paths are generated as needed (Ahuja et al., 1993). Hence, by considering only a
subset of the (dynamic) paths of the problem [DSO], a restricted master problem [C-RMP] is formulated as
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where Rod(t) is a subset of paths in destination arrival time period t. Since the problem [C-RMP] and the problem [DSO] have
the same optimization problem except for the number of paths, we can solve the problem [C-RMP] through the day-to-day
auction mechanism presented in the previous sections.

A new path is generated by solving a column generation sub-problem corresponding to the pricing step of the simplex algo-
rithm (for the liner relaxation of the problem [C-RMP]). In the standard column generation for a multicommodity flow prob-
lem, the sub-problem is given as a shortest path problem for each commodity (Ahuja et al., 1993). Thus, by following the
standard theory, our sub-problem is formulated as the following all-or-nothing problem for each user:
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where p̂aðtÞ is an optimal Lagrange multiplier for the link capacity constraint (45) of the linear relaxation of the restricted
master problem [C-RMP], which is interpreted as an optimal link permit price. These link permit prices are obtained at
the final path capacity adjustment phase of the day-to-day auction mechanism (see Section 6.2).

The column generation sub-problem yields a path that maximizes each user payoff for given constant link permit prices p̂.
The path is generated if a maximum payoff exceeds the current payoff achieved in the final auction phase of the day-to-day
auction mechanism. Specifically, the path is generated if the optimal value of the objective function p�i exceeds an optimal
Lagrange multiplier p̂i for the constraint (44); i.e., ki � p�i � p̂i > 0. To improve his or her payoff, the user requests that the
manager sells the bundle for the path in the auction phase. The road manager receives the requests of all users and adds the
paths to the set Rod(t) (if the path do not exists in the set). Then, the restricted master problem [C-RMP] is again solved
through the day-to-day auction mechanism.

The steps in the extended mechanism mentioned above can be summarized as follows:

1. Initial setting. Set n = 1. Determine the initial path set R1
odðtÞ for each OD pair at each destination arrival time period.

2. Day-to-day auction phase. For a fixed path set Rn
odðtÞ, the restricted master problem [C-RMP] is solved through the day-to-

day auction mechanism (see Sections 5 and 6). The optimal link permit prices p̂n are determined in the final path capacity
adjustment phase and are announced by the road manager.

3. Path generation phase. Each user finds a path by solving the column generation sub-problem and requests that the man-
ager adds the path if the maximum payoff p�i exceeds the current payoff p̂n. If all requested paths exist in the path set
Rn

odðtÞ, then stop. Otherwise, the road manager creates a new path set Rnþ1
od ðtÞ by adding requested paths to the set

Rn
odðtÞ. Let n = n + 1. Go to Step 2.

The paths are efficiently generated in Step 3 because the numerous number of users generate paths simultaneously. The
road manager, on the other hand, employs a path-adding rule that allows each user to purchase not only paths generated by
himself but also those generated by other users of the same OD pair,8 which promotes path generation. The extended mech-
anism is guaranteed to converge because the number of paths is finite. Furthermore, when the number of users is large, the
allocation of network permits achieved under the extended mechanism converges to the optimal one (i.e., the optimal solution
of the problem [DSO]) since the gap between the problem [DSO] and the linear relaxation converges to zero (Proposition 6.2).
e employ the standard column generation procedure, subsets of the paths differ among users because the column generation sub-problem (48) is
ted for each user. However, in the auction phase, it will be more natural that the same set of paths are sold for all users of the same OD pair.
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8. Numerical example

We finally show a numerical example to demonstrate the convergence properties of the proposed mechanism in a real-
istic network. The network that we employ is the Sioux Falls network (LeBlanc et al., 1975) which has 24 nodes and 76 links
(Fig. 4). The physical conditions of each link (i.e., free-flow travel time, capacity), which is based on Han (2003), are summa-
rized in Table B.1 in Appendix B. The network has 528 OD pairs, which was used by LeBlanc et al. (1975), and the number of
users for each OD pair is a quarter of the number provided in Dr. Hillel Bar-Gera’s website (http://www.bgu.ac.il/�bargera/
tntp/); i.e., the total number of users is 90,150. We set time interval for each time period to Dt = 3 (minute) and the number
of time periods to jTj = 40. The desired arrival time period for each user is set randomly and the distribution of the desired
arrival time periods is shown in Fig. 3. Under this distribution, the network is congested (i.e., almost links have positive per-
mit prices) during peak periods. As the initial path set for each OD pair, we simply choose some shortest paths. A box step
parameter � = 5 is chosen. An optimal social surplus is calculated by 10,000 iterations of the proposed mechanism for a suf-
ficiently accurate determination of the maximum one.

Let us now show the numerical results of the proposed mechanism. Fig. 5 illustrates the convergence process of the pro-
posed mechanism until the relative error between the achieved social surplus SSs and the optimal social surplus is reduced
below 0.05%. The horizontal axis represents the number of days, s, and the vertical axis represents the ratio between the
achieved social surplus SSs on each day and the optimal social surplus. The vertical lines (at day 59, 110, 164, 232, . . .) show
Fig. 3. Sioux Falls network.

Fig. 4. Distribution of the desired arrival times.

http://www.bgu.ac.il/~bargera/tntp/
http://www.bgu.ac.il/~bargera/tntp/
http://www.bgu.ac.il/~bargera/tntp/


Fig. 5. Convergence process of the proposed mechanism.

Fig. 6. Number of paths in each day-to-day auction phase.
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days at which a day-to-day auction phase (or mechanism) terminated. On such a day, the path generation phase starts. Note
that the path set is fixed in each day-to-day auction phase.

By using Fig. 5, we explain the convergence properties of the first day-to-day auction phase from day 1 to day 59. In this
phase, the achieved social surplus SSs (the solid black curve) increases as path capacities are adjusted on a day-to-day basis.
Conversely, the upper bound of the maximum social surplus hs (the gray curve) for a fixed path set and the convergence
threshold hs (the black dotted curve) that are obtained in the path capacity adjustment phase decrease monotonically. Even-
tually, these three values converge to the almost the same value. This means that the allocation of network permits achieved
under the day-to-day auction phase converges to the approximate dynamic system optimal allocation for a fixed path set.

After the first day-to-day auction phase terminates (at day 59), the first path generation phase starts. In the path generation
phase, each user requests a path to improve his or payoff based on the current permit prices and payoff realized in the pre-
vious day-to-day auction phase. As a result of increasing the number of paths, the achieved social surplus increases drastically
in the second day-to-day auction phase. This is because a large number of paths is generated in the first path generation phase
(see Fig. 6). We also see from Fig. 6 that the number of paths generated in each subsequent phase decreases, and then the
achieved social surplus reaches close to the optimal value after a small number of iterations of the path generation phase.

9. Conclusion

Akamatsu et al. (2006) and Akamatsu (2007b) proposed a dynamic traffic congestion control scheme, called tradable net-
work permits, and proved its efficiency properties for general networks. To implement trading markets for the network per-
mits, we proposed an auction mechanism for general networks. We first discussed the impossibility of applying the VCG
mechanism to the trading markets due to NP-hardness. To avoid such computational infeasibility, we constructed a day-
to-day auction mechanism that is readily implementable. We then proved that the proposed mechanism is strategy-proof
and that the network permit allocation pattern under this mechanism converges to an approximation of the socially optimal
state in the sense that the achieved social surplus reaches its maximum value when the number of users is large. Further-
more, we showed that the proposed mechanism can be extended to obviate path enumeration by introducing a column gen-
eration procedure, and we demonstrated its convergence properties for a realistic network.
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Throughout this paper, we constructed the implementation mechanism for tradable network permits, considering the
first-best situation in which the road manager can issue network permits for all links. This does not necessarily implies that
the proposed mechanism works effectively in the second-best situation in which the manager can issue permits for partial
links. In that case, queuing congestion occurs at a link that is not controlled by the scheme. To address the case, we need to
connect the tradable network permits scheme to a DTA problem; this is not a trivial problem because we would face complex
interactions among queuing congestion. Nevertheless, since this direction of research increases the applicability of the
scheme and its implementation mechanism, further exploration on this issue is one of the challenging but important issues
that should be addressed in future work.

While this paper has focused on managing road transportation networks, the mechanism proposed seems applicable in
principle to the management of other transportation networks (e.g., railway and freight networks). For example, freight net-
works have many users who choose routes and departure times so as to maximize their utility as is the case for road trans-
portation networks. In contrast, the behaviors of network managers are totally different; i.e., while a road manager aims to
maximize the social surplus, a freight network manager (i.e., a freight company) aims to maximize its profit. Nevertheless,
managing other transportation networks using the proposed mechanism seems a fruitful topic for future work.
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Appendix A. Proof of Proposition 6.2

We first show that a new extreme point is generated in every auction phase until the convergence criterion is satisfied. We
denote the path capacities at day s by Fs and the convergence threshold by hs. From Eq. (40), the following holds:
hs
6 Ps þ

X
od2W

X
t2I

X
r2R

Fs
rðtÞP

s
rðtÞ 8ðPs;PsÞ 2 Vs: ðA:1Þ
From the duality theorem, the optimal value of the objective function of the sub-problem at day s (i.e., the value of the
social surplus achieved by the ascending proxy auction), SSs

od, coincides with the optimal value of the objective function of its
dual problem; that is
SSs ¼
X

od2W

SSs
od ¼

X
od2W

X
i2N od

X
t2T

X
r2Rod

v i;rðtÞf s�
i;r ðtÞ ¼ Ps� þ

X
od2W

X
t2T

X
r2Rod

Fs
rðtÞP

s�
r ðtÞ; ðA:2Þ
where (fs⁄, Ps⁄, Ps⁄) is the optimal solution of the sub-problem and its dual problem. We here consider the case that the con-
vergence criterion is not satisfied (i.e., SSs < hs). Then, the following relationships are hold:
X

od2W

X
i2N od

ps�
i þ

X
od2W

X
t2T

X
r2Rod

Fs
rðtÞP

s�
r ðtÞ ¼ SSs < hs

6 Ps þ
X

od2W

X
t2I

X
r2R

Fs
rðtÞP

s
rðtÞ ð8ðPs;PsÞ 2 VsÞ: ðA:3Þ
Hence, (Ps⁄, Ps⁄) – (Ps, Ps) 2 Vs is obtained; i.e., a new extreme point is generated. Since the number of extreme points is
finite, we can conclude that the proposed mechanism converges in a finite number of steps.

Next, we show that the ratio h⁄/SS⁄ in the left-hand side of Eq. (42) converges to 1 when the number of users is large
(assuming that the ratio between the number of uses and the total link capacity is held constant). In order to show this,
we prove that a ratio h�=h� that is less than h⁄/SS⁄ converges to 1. We denote the extreme point that minimizes the problem
Eq. (40) by (P,P) 2 V, and we denote the extreme point that produces the weak upper bound h� by ðP;PÞ 2 V . Then the gap
between h� and h⁄ is investigated with the following equations:
h� � h� ¼ Pþ
X

od2W

X
t2I

X
r2R

eF sþ1
r ðtÞPrðtÞ

 !
� Pþ

X
od2W

X
t2I

X
r2R

FrðtÞPrðtÞ
 !

; ðA:4Þ
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FrðtÞPrðtÞ
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<
X

od2W

X
t2I

X
r2R

PrðtÞ
 !

¼ ðthe number of pathsÞ � ðaverage priceÞ: ðA:6Þ
The second line represents the fact that the extreme points of minimizing (40) and (33) are different. The third line fol-
lows because the maximum rounded value of each path capacity is 1.

Alternatively, h� can be estimated as follows:
h� P SS� ¼
X

od2W

X
i2N od

v�i;rðtÞ ¼ ðthe number of usersÞ � ðaverage winning valuationÞ; ðA:7Þ



Table B.1
Physical conditions of links in Sioux Falls network.

Link (upstream,
downstream)

Free-flow travel time
(min)

Capacity (vehicles/
min)

Link (upstream,
downstream)

Free-flow travel time
(min)

Capacity (vehicles/
min)

(1, 2) and (2, 1) 9 65 (11, 12) and (12, 11) 3 60
(1, 3) and (3, 1) 3 55 (11, 14) and (14, 11) 6 50
(2, 6) and (6, 2) 3 60 (12, 13) and (13, 12) 9 65
(3, 4) and (4, 3) 3 60 (13, 24) and (24, 13) 3 60
(3, 12) and (12, 3) 6 60 (14, 15) and (15, 14) 3 50
(4, 5) and (5, 4) 3 50 (14, 23) and (23, 14) 3 40
(4, 11) and (11, 4) 6 55 (15, 19) and (19, 15) 3 40
(5, 6) and (6, 5) 3 50 (15, 22) and (22, 15) 3 45
(5, 9) and (9, 5) 3 50 (16, 17) and (17, 16) 3 45
(6, 8) and (8, 6) 3 45 (16, 18) and (18, 16) 3 55
(7, 8) and (8, 7) 3 40 (17, 19) and (19, 17) 3 45
(7, 18) and (18, 7) 3 50 (18, 20) and (20, 18) 12 55
(8, 9) and (9, 8) 3 45 (19, 20) and (20, 19) 6 50
(8, 16) and (16, 8) 3 45 (20, 21) and (21, 20) 3 40
(9, 10) and (10, 9) 3 45 (20, 22) and (22, 20) 6 45
(10, 11) and (11, 10) 3 50 (21, 22) and (22, 21) 3 50
(10, 15) and (15, 10) 6 45 (21, 24) and (24, 21) 3 50
(10, 16) and (16, 10) 3 40 (22, 23) and (23, 22) 3 40
(10, 17) and (17, 10) 3 45 (23, 24) and (24, 23) 3 40
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where v�i;rðtÞ is the winning valuation when the social surplus is maximized. By using the above equations, the relative error
between h� and h⁄ is obtained as follows:
h� � h�

h�
<

ðthe number of pathsÞ � ðaverage priceÞ
ðthe number of usersÞ � ðaverage winning valuationÞ <

ðthe number of pathsÞ
ðthe number of usersÞ : ðA:8Þ
Since the bundle prices obtained by the ascending proxy auction never exceed the truthful valuation of each user, the final
inequality holds. When the number of users is large (i.e., Q ?1) with the ratio between the number of users and the total
link capacity held constant, the relative error converges to zero because the number of paths is constant. Thus, the following
equations hold:
lim
Q!1

h�

h�
¼ 1 ) lim

Q!1

h�

SS�
¼ 1: ðA:9Þ
Hence, we can conclude that the range (42) converges to zero when the number of users is large.

Appendix B. Network data

See Table B.1.
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