論文

国際誌
2021年7月22日

Transcriptome Profiling and Metagenomic Analysis Help to Elucidate Interactions in an Inflammation-Associated Cancer Mouse Model.

Cancers
  • Kazuko Sakai
  • ,
  • Marco A De Velasco
  • ,
  • Yurie Kura
  • ,
  • Kazuto Nishio

13
15
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.3390/cancers13153683

Colitis is a risk factor for colorectal cancer (CRC) and can change the dynamics of gut microbiota, leading to dysbiosis and contributing to carcinogenesis. The functional interactions between colitis-associated CRC and microbiota remain unknown. In this study, colitis and CRC were induced in BALB/c mice by the administration of dextran sodium sulfate (DSS) and/or azoxymethane (AOM). Whole transcriptome profiling of normal colon was then performed, and gene set enrichment analysis (GSEA) revealed enriched fatty acid metabolism, oxidative phosphorylation, and PI3K-Akt-mTOR signaling in the tissues from DSS/AOM mice. Additionally, immunohistochemical staining showed increased expression levels of phosphorylated S6 ribosomal protein, a downstream target of the PI3K-Akt-mTOR pathway in the inflamed mucosa of DSS/AOM mice. Fecal microbes were characterized using 16S rDNA gene sequencing. Redundancy analysis demonstrated a significant dissimilarity between the DSS/AOM group and the others. Functional analysis inferred from microbial composition showed enrichments of the sphingolipid signal and lipoarabinomannan biosynthetic pathways. This study provides additional insights into alterations associated with DSS/AOM-induced colitis and associates PI3K-Akt-mTOR, sphingolipid-signaling and lipoarabinomannan biosynthetic pathways in mouse DSS/AOM-induced colitis.

リンク情報
DOI
https://doi.org/10.3390/cancers13153683
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/34359585
PubMed Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345192
ID情報
  • DOI : 10.3390/cancers13153683
  • PubMed ID : 34359585
  • PubMed Central 記事ID : PMC8345192

エクスポート
BibTeX RIS