論文

査読有り
2017年6月

Extreme hydrothermal conditions at an active plate-bounding fault

NATURE
  • Rupert Sutherland
  • John Townend
  • Virginia Toy
  • Phaedra Upton
  • Jamie Coussens
  • Michael Allen
  • Laura-May Baratin
  • Nicolas Barth
  • Leeza Becroft
  • Carolin Boese
  • Austin Boles
  • Carolyn Boulton
  • Neil G. R. Broderick
  • Lucie Janku-Capova
  • Brett M. Carpenter
  • Bernard Celerier
  • Calum Chamberlain
  • Alan Cooper
  • Ashley Coutts
  • Simon Cox
  • Lisa Craw
  • Mai-Linh Doan
  • Jennifer Eccles
  • Dan Faulkner
  • Jason Grieve
  • Julia Grochowski
  • Anton Gulley
  • Arthur Hartog
  • Jamie Howarth
  • Katrina Jacobs
  • Tamara Jeppson
  • Naoki Kato
  • Steven Keys
  • Martina Kirilova
  • Yusuke Kometani
  • Rob Langridge
  • Weiren Lin
  • Timothy Little
  • Adrienn Lukacs
  • Deirdre Mallyon
  • Elisabetta Mariani
  • Cecile Massiot
  • Loren Mathewson
  • Ben Melosh
  • Catriona Menzies
  • Jo Moore
  • Luiz Morales
  • Chance Morgan
  • Hiroshi Mori
  • Andre Niemeijer
  • Osamu Nishikawa
  • David Prior
  • Katrina Sauer
  • Martha Savage
  • Anja Schleicher
  • Douglas R. Schmitt
  • Norio Shigematsu
  • Sam Taylor-Offord
  • Damon Teagle
  • Harold Tobin
  • Robert Valdez
  • Konrad Weaver
  • Thomas Wiersberg
  • Jack Williams
  • Nick Woodman
  • Martin Zimmer
  • 全て表示

546
7656
開始ページ
137
終了ページ
+
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1038/nature22355
出版者・発行元
NATURE PUBLISHING GROUP

Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes(1). Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 +/- 15 degrees Celsius per kilometre(2,3). At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades(4,5). The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 +/- 1 per cent above hydrostatic levels and an average geothermal gradient of 125 +/- 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.

リンク情報
DOI
https://doi.org/10.1038/nature22355
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000402372800043&DestApp=WOS_CPL
URL
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85020188195&origin=inward
ID情報
  • DOI : 10.1038/nature22355
  • ISSN : 0028-0836
  • eISSN : 1476-4687
  • Web of Science ID : WOS:000402372800043

エクスポート
BibTeX RIS