論文

査読有り
2014年3月

CUDA programs for the GPU computing of the Swendsen-Wang multi-cluster spin flip algorithm: 2D and 3D Ising, Potts, and XY models

COMPUTER PHYSICS COMMUNICATIONS
  • Yukihiro Komura
  • ,
  • Yutaka Okabe

185
3
開始ページ
1038
終了ページ
1043
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1016/j.cpc.2013.10.029
出版者・発行元
ELSEVIER SCIENCE BV

We present sample CUDA programs for the GPU computing of the Swendsen-Wang multi-cluster spin flip algorithm. We deal with the classical spin models; the lsing model, the q-state Potts model, and the classical XY model. As for the lattice, both the 20 (square) lattice and the 3D (simple cubic) lattice are treated. We already reported the idea of the CPU implementation for 2D models (Komura and Okabe, 2012). We here explain the details of sample programs, and discuss the performance of the present CPU implementation for the 3D Ising and XY models. We also show the calculated results of the moment ratio for these models, and discuss phase transitions.
Program summary
Program title: SWspin
Catalogue identifier: AERM_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERM_v1_0.html
Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 5632
No. of bytes in distributed program, including test data, etc.: 14688
Distribution format: tar.gz
Programming language: C, CUDA.
Computer: System with an NVIDIA CUDA enabled CPU.
Operating system: System with an NVID1A CUDA enabled CPU.
Classification: 23.
External routines: NVIDIA CUDA Toolkit 3.0 or newer
Nature of problem:
Monte Carlo simulation of classical spin systems. Ising, q-state Potts model, and the classical XY model are treated for both two-dimensional and three-dimensional lattices.
Solution method:
GPU-based Swendsen-Wang multi-cluster spin flip Monte Carlo method. The CUDA implementation for the cluster-labeling is based on the work by Hawick et al. [1] and that by Kalentev et al. 121.
Restrictions:
The system size is limited depending on the memory of a CPU.
Running time:
For the parameters used in the sample programs, it takes about a minute for each program. Of course, it depends on the system size, the number of Monte Carlo steps, etc.
References:
[1] K.A. Hawick, A. Leist, and D. P. Playne, Parallel Computing 36 (2010) 655-678
[2] O. Kalentev, A. Rai, S. Kemnitzb, and R. Schneider, J. Parallel Distrib. Comput. 71 (2011) 615-620 (C) 2013 Elsevier B.V. All rights reserved.

リンク情報
DOI
https://doi.org/10.1016/j.cpc.2013.10.029
DBLP
https://dblp.uni-trier.de/rec/journals/cphysics/KomuraO14
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000331919100035&DestApp=WOS_CPL
URL
http://dblp.uni-trier.de/db/journals/cphysics/cphysics185.html#journals/cphysics/KomuraO14
ID情報
  • DOI : 10.1016/j.cpc.2013.10.029
  • ISSN : 0010-4655
  • eISSN : 1879-2944
  • DBLP ID : journals/cphysics/KomuraO14
  • Web of Science ID : WOS:000331919100035

エクスポート
BibTeX RIS