Yukihiro UCHIDA

J-GLOBAL         Last updated: Apr 1, 2019 at 17:26
 
Avatar
Name
Yukihiro UCHIDA
URL
http://www.comp.tmu.ac.jp/y-uchida/index_e.html
Affiliation
Tokyo Metropolitan University
Section
Department of Mathematical Sciences, Graduate School of Science
Job title
Associate Professor
Degree
Ph.D. (Mathematical Science)(Nagoya University)
Research funding number
90533258

Research Areas

 
 

Academic & Professional Experience

 
Apr 2018
 - 
Today
Associate Professor, Department of Mathematical Sciences, Graduate School of Science, Tokyo Metropolitan University
 
Apr 2012
 - 
Mar 2018
Associate Professor, Department of Mathematics and Information Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University
 
Apr 2009
 - 
Mar 2012
Research Fellow of the Japan Society for the Promotion of Science (PD), Graduate School of Science, Kyoto University
 
Oct 2008
 - 
Mar 2009
GCOE Program-Specific Research Fellow, Graduate School of Science, Kyoto University
 
Apr 2008
 - 
Sep 2008
Research Fellow of the Japan Society for the Promotion of Science (PD), Graduate School of Mathematics, Nagoya University
 

Education

 
Apr 2006
 - 
Mar 2008
Doctoral Program, Graduate School of Mathematics, Nagoya University
 
Apr 2004
 - 
Mar 2006
Master's Program, Graduate School of Mathematics, Nagoya University
 
Apr 2000
 - 
Mar 2004
Department of Mathematics, School of Science, Nagoya University
 

Awards & Honors

 
Sep 2017
Best Paper Award 2017 (Survey), The Japan Society for Industrial and Applied Mathematics
 

Published Papers

 
Masanori Sawa, Yukihiro Uchida
to appear in J. Math. Soc. Japan      [Refereed]
Yukihiro Uchida
JSIAM Lett.   11 1-4   2019   [Refereed]
Yukihiro UCHIDA
Transactions of the Japan Society for Industrial and Applied Mathematics   25(3) 229-253   2015   [Refereed]
Akihiko Onishi, Yukihiro Uchida, Shigenori Uchiyama
JSIAM Lett.   7 41-43   2015   [Refereed]
Junichi Yarimizu, Yukihiro Uchida, Shigenori Uchiyama
JSIAM Lett.   6 5-7   2014   [Refereed]

Misc

 
Hiro-o Tokunaga, Yukihiro Uchida
arXiv      Aug 2018
In this note, an analogous statement to the Nagell-Lutz theorem does not hold
for the Jacobian of a certain curve of genus 2 over Tex. As a
by-product, we give a (2, 3, 6) quasi-torus decomposition for the dual curve of
a smooth cubic.