Online surface code decoder with a superconducting circuit

Special Postdoc Researcher (SPDR)
Superconducting Quantum Computing System Research Unit
RIKEN Center for Quantum Computing

Yosuke Ueno

Yosuke Ueno (上野洋典)

- Career
 - o 2022.3: Ph.D. in Information Sci. and Tech. @ University of Tokyo
 - Supervisors: Masaaki Kondo (Keio Univ., R-CCS), Hiroshi Nakamura
 - Thesis: Online Quantum Error Correction Using a Superconducting Circuit
 - 2022.5 to 2023.2: Guest researcher @ Technical University Munich
 - 2023.4 to Present: SPDR @ RIKEN Center for Quantum Computing
- Research interest
 - Computer architecture
 - Quantum error correction
 - Cryogenic computing

My first and last beer in Germany

Summary of this talk

- Decoding surface code is reduced to graph matching problem
- A practical decoder should be <u>accurate</u>, <u>fast</u>, <u>and scalable</u>
- For superconducting QCs, decoder also should be power efficient to be operated in a cryogenic environment
- Our solution: online decoder with superconducting digital circuit
 - QECOOL: Online decoder with superconducting circuits (DAC'21, arXiv:2103.14209)
 - QULAIS: Extension of QECOOL for logical operation with lattice surgery (HPCA'22)
 - NEO-QEC: Extension of QECOOL/QULATIS with binarized NN for better accuracy (arXiv:2208.05758)

Outline

- Introduction
 - Superconducting quantum computer
 - Quantum error correction with surface code
- Requirements for a practical decoder
- QECOOL: online decoder with a superconducting circuit
- QULATIS: online superconducting decoder for lattice surgery
- Summary

Superconducting quantum computer (QC)

Dilution refrigerator

- # of qubits: around 100
- Error rate: 1%
- Noisy Intermediate Scale
 Quantum (NISQ) device

- Superconducting qubit: one of the most promising qubit implementation
 - Operate only at cryogenic environment (~20 mK)
- Qubits have very low error tolerance
 - Quantum error correction (QEC) code

[1] Frank Arute, Kunal Arya, Ryan Babbush, et al., Quantum supremacy using a programmable superconducting processor, Nature 574, 505–510 (2019).

Surface code

Function of surface code

- Each ancilla qubit is used for error parity detection of neighboring data qubits
 - Endpoints of error chains are expected to be <u>hot syndromes</u>
- Errors on data qubit can be detected without direct measurement

Decoding surface code

Assumption

- X and Z errors can be decoded independently
- Shorter error chains are likely to occur

Minimum Weight Perfect Matching (MWPM)

V: Hot syndromes

 W_e : Manhattan distance

Exact solution: Blossom algorithm (O(n3))

Decoding surface code

Assumption

- X and Z errors can be decoded independently
- Shorter error chains are likely to occur

Minimum Weight Perfect Matching (MWPM)

V: Hot syndromes

 W_e : Manhattan distance

Exact solution: Blossom algorithm (O(n3))

Measurement error on ancilla qubit

- If ancilla qubit measurement is susceptible to read errors, multiple measurement processes are required
 - o For every new measurement, the new syndrome is **XORed** with the latest value

Outline

- Introduction
 - Superconducting quantum computer
 - Quantum error correction with surface code
- Requirements for a practical decoder
- QECOOL: online decoder with a superconducting circuit
- QULATIS: online superconducting decoder for lattice surgery
- Summary

Requirements for a practical decoder

QEC architecture for supercond. QCs

Power budget ~ 1 W

Single flux quantum (SFQ) logic

- Absence (presence) of flux quanta within the ring represents digital '0' ('1')
- Operates only in a cryogenic environment (~ 4 K)
- High speed and low latency compared to CMOS circuits
- Limitation: Large amount of RAM is expensive
 - -> Conventional decoders such as MWPM are not implementable with SFQ

Critical path

Error-

corrected

result

Impact of decoding latency

CNOT

Decode

Logical

meas.

Syndrome

meas.

Noise

Pauli frame

Error

correction

Error-corrected

results

Why is MWPM not practical?

Measurement and decoding processes with the MWPM decoder

Batch-QEC manner

- + Accurate decoding
- Slow decoding
- $-O(Td^2)$ bits of storage

Our solution: Online-QEC manner

Measurement and decoding processes with a practical decoder

Online-QEC manner

- Degradation of decoding accuracy
- + Fast decoding
- + $O(Kd^2)$ bits of storage

Outline

- Introduction
 - Superconducting quantum computer
 - Quantum error correction with surface code
- Requirements for a practical decoder
- QECOOL: online decoder with a superconducting circuit
- QULATIS: online superconducting decoder for lattice surgery
- Summary

QECOOL

Architecture overview of QECOOL decoder

- Quantum Error COrrection by On-Line decoding algorithm
- A distributed architecture without large amount of RAM
 - Multiple processing elements (<u>Units</u>) corresponding one-to-one with ancilla qubits
 - Matching problems are solved by signal propagation among Units

Overview of QECOOL algorithm

Based on a greedy graph matching algorithm

 $O(n^2)$, approximation degree 1/2

Matching problem on a 3-D lattice

- Each Unit has a O(K) buffer to store multiple syndrome values
- Almost the same procedure as in case of 2-D lattice

Decoding performance of QECOOL

Experimental condition

- Measurement process is performed once every 1 μs
- Each QECOOL Unit has a **7-bit** buffer to store syndrome values
- If buffer entry size is greater than K=3, QECOOL is performed; otherwise, each Unit waits for measurement process
- MWPM operates with batch-QEC manner
- Threshold value: QECOOL p=0.01, MWPM p=0.03

SFQ implementation of QECOOL decoder

Architecture overview of QECOOL

SFQ design layout of QECOOL Unit

JJs: 3177

Area: 1.274 mm²

Latency: 215 ps

Power cons.: **2.78 μW**

of protectable logical qubits on 4-K environment

Suppose d=9, and power budget in 4-K env. is 1 W

$$1_{[W]}/(9 \times 8 \times 2 \times 2.78_{[\mu W]}) = 2498$$
 logical qubits

Summary of QECOOL

- Online decoding of surface code in a cryogenic environment is necessary for a scalable superconducting quantum computer
- QECOOL decoder with SFQ implementation is power-efficient and fast to operate in a 4-K environment within code cycle (1 μ s)
- QECOOL is capable of decoding a <u>single logical qubit</u> with measurement errors

Requirements for practical decoder

- ✓ Power consumption
- √ Latency
 Functionality

Accuracy

Outline

- Introduction
 - Superconducting quantum computer
 - Quantum error correction with surface code
- Requirements for a practical decoder
- QECOOL: online decoder with a superconducting circuit
- QULATIS: online superconducting decoder for lattice surgery
- Summary

Req 3. Functionality

Protecting logical {*H*, CNOT, *T*}

Logical Hadamard
Performed
straightforwardly

Logical CNOT
Performed by
Lattice surgery

Performed by **logical** *H* **and CNOT operations**

(+ magic state & gate teleportation)

<u>Decoding lattice surgery</u> is essential for fault-tolerant universal quantum computation

Lattice surgery (LS)

- Framework to perform logical operations with SC-based QEC
- Implement logical Pauli measurements on multiple logical qubits by merging and splitting two of them

Merge and split operation

- <u>Pauli-XX</u> and <u>Pauli-ZZ</u> measurements are realized by merge and split operation
- Logical CNOT operation is realized by Pauli-XX and Pauli-ZZ measurements

Decoding process of LS

X-stabilizer lattice

Boundaries of X-stabilizer lattice

Left - Right: Z_0Z_1 error

Left - Upper or Lower saddle: Z_0I_1 error

Right - Upper or Lower saddle: I_0Z_1 error

Upper - Lower saddle: Measurement error

Z-stabilizer lattice

Limitation of QECOOL

Boundary Unit
Hardware modules for
boundary matching

Architecture of QECOOL

 The hardware modules cannot handle dynamic boundary changes required for LS procedures

Overview of QULATIS

- QUantum error correction methodology toward <u>LATtlce Surgery</u>
- Introduce decoding unit named <u>united line module (ULM)</u>
 - Associated with horizontal or vertical line of ancilla qubits
 - Token, Spike and Acknowledge signals between adjacent ULMs to pair hot syndromes

Architecture overview of QECOOL decoder

Merge operation of X-stabilizer lattice

Merge operation of Z-stabilizer lattice

QEC performance of QULATIS

Error model: depolarizing noise model ([I, X, Z, Y] = [1 - p, p/3, p/3, p/3])

MWPM: batch-QEC

QULATIS: online-QEC (buffer size = 7, operating frequency = 2 GHz)

SFQ design of ULM

SFQ design of ULM except memory module

Total: 2412 JJs

Area: 0.889 mm²

Latency: 157.5 ps

Power : **2.07 μW** @2 GHz

1.56 mm

- Memory module is assumed to be a 64-kb hybrid
 SFQ-CMOS memory array proposed by Van Duzer et al.[4]
 - Readout delay 400 ns, power 12 mW@1 GHz, 4 K
- 2395 distance-9 logical qubits can be protected in a cryogenic environment in terms of power consumption

[4] Theodore Van Duzer, Lizhen Zheng, Stephen Whiteley, Hoki Kim, Jaewoo Kim, Xiaofan Meng, and Thomas Ortlepp. 64-kb hybrid Josephson-CMOS 4 Kelvin RAM With 400 ps access time and 12 mW read power. IEEE Transactions on Applied Superconductivity, vol. 23, no. 3

Summary of QULATIS

- Lattice surgery and its decoding are essential for fault-tolerant universal quantum computation
- We propose QULATIS to decode lattice surgery
 - Accuracy threshold value: 0.6% for merge-and-split operation
- We design superconducting decoder based on QULATIS
 - o 2395 logical qubit can be protected in a cryogenic environment

Requirements for practical decoder

- ✓ Power consumption
- √ Latency
- √ Functionality
 - Accuracy

Outline

- Introduction
 - Superconducting quantum computer
 - Quantum error correction with surface code
- Requirements for a practical decoder
- QECOOL: online decoder with a superconducting circuit
- QULATIS: online superconducting decoder for lattice surgery
- Summary

Summary

- Online decoding of surface code in a cryogenic environment is necessary for a scalable superconducting quantum computer
- **QECOOL** decoder is power-efficient enough to protect around 2500 logical qubits with distance-9 SC in a cryogenic env.
- QULATIS is an extension of QECOOL, which supports logical operations via lattice surgery
- Accuracy of QECOOL and QULATIS is lower than MWPM due to its greedy and online nature
 - <u>NEO-QEC</u>: Extension of QECOOL/QULATIS with binarized NN for better accuracy (arXiv:2208.05758)