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Summary of this talk

Decoding surface code is reduced to graph matching problem

A practical decoder should be accurate, fast, and scalable

For superconducting quantum computers, decoder also should be
power efficient to be operated in a cryogenic environment

Our solution: online decoder with superconducting digital circuit

Our works on real-time decoding for FTQC
o | QECOOL: Online decoder with superconducting circuits (DAC’21, arXiv:2103.14209)
o QULAIS: Extension of QECOOL for logical operation with lattice surgery (HPCA’22)

o NEO-QEC: Extension of QECOOL/QULATIS with binarized NN for better accuracy
(arXiv:2208.05758)

More detailed slide
from my RQC seminar

A https://researchmap.jp/y-ueno/presentations/42717344
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e [Introduction
o Superconducting quantum computer

o Quantum error correction with surface code (SC)
e Requirements for a practical decoder

e QECOOL: online decoder with a superconducting circuit
e Conclusion and advanced works
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Superconducting guantum computer (QC)

Cryogenic

environment m
. _

e Superconducting qubit: one of the most promising qubit
implementation

o Operate only at cryogenic environment (~20 mK)
e Qubits have very low error tolerance

o Quantum error correction (QEC) code
[1] Frank Arute, Kunal Arya, Ryan Babbush, et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505-510 (2019).

) Figure from [1]
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Example of QEC code: Surface code (SC)

Surface code Hot syndromes
(Code distance d = 3)
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Decoding SC is specifying most
likely errors from hot syndromes,
and reduced to graph matching

problem
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Function of surface code

O [#] O - O O Data qubit
- ) - 2 A /_ Errors on data qubit
OB O
F Ancilla qubit (Z error detection)
- o - o - -
- - Ancilla qubit (X error detection)

e Each ancilla qubit is used for error parity detection of neighboring
data qubits

o Endpoints of error chains are expected to be hot syndromes
e Errors on data qubit can be detected without direct measuring
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Decoding surface code
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Decoding surface code
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Measurement error on ancilla qubit

1st measurement 2nd measurement 3rd measurement

Measurement
error
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e If ancilla qubit measurement is susceptible to read errors,
multiple measurement processes are required

o For every new measurement, the new syndrome is XORed with the latest value
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e Introduction

o Superconducting quantum computer
o Quantum error correction with surface code (SC)

e |Requirements for a practical decoder
e QECOOL: online decoder with a superconducting circuit
e Conclusion and advanced works
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Requirements for a practical decoder

Requirements Our solutions

1. Power consumption =

o Decoder must operate in a cryogenic
environment with limited power budget

2. Latency =
o Slow decoding leads to accumulation of
errors and slow quantum computation

3. Scalability

o Decoder must protect not only
single qubit but also logical operations

4. ACCU racy QULATIS, HPCA’22
o Decoder must have a high error threshold

Superconducting
digital circuits

Online-QEC manner

. . NEO-QEC
Binarized arXiv:2022.05758

neural network
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QEC architecture for superconducting QCs

Conventional architecture Proposed architecture

Decoder Room temperature

(MWPM, UF, etc.) [NEIAY
Wiring between different

Cryosta perature layers Cryostat
Y E=

Cryogenic environment (20 mK to 4 K)
Power budget~1W

Improve scalability of
QC by reducing wires
) \ =

Josephson junction
(W)

High speed & Low power
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Single flux gquantum (SFQ) logic

Bias current

l E JJ structure
Superconductor | | Superconductor| 1
rings ! :
T Insulator :
\_ | Superconductor| | IJ"'11 J J2 JJS
— - ¢y L
Single flux quantum @ Josephson junction (JJ)

e Absence (presence) of flux quanta within the ring
represents digital ‘0" (‘1’)

e Operates only in a cryogenic environment (™~ 4 K)

e High speed and low latency compared to CMOS circuits

e Limitation: Large amount of RAM is expensive

o ->Conventional decoders such as MWPM are not implementable with SFQ
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High-latency decoding slows down gquantum computation

Logical Clifford operation
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why iIs MWPM not practical?

M |: Measurement - : Decode Syndrome lattice
d - g IT(“ DN
M M M .
o lps o lus o lps s

Measurement and decoding processes with the MWPM decoder

Batch-QEC manner
+ Accurate decoding

— Slow decoding
— 0(Td?) bits of storage
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Our solution: Online-QEC manner

M |: Measurement -:Decode Syndrome lattice
K
e e
M M ™ [D]
- 1lus  1us  1us

Measurement and decoding processes with a practical decoder

Online-QEC manner
— Degradation of decoding accuracy

+ Fast decoding
+ 0(Kd?) bits of storage
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e Introduction

o Superconducting quantum computer
o Quantum error correction with surface code (SC)

e Requirements for a practical decoder
e [QECOOQL: online decoder with a superconducting circuit
o Conclusion and advanced works
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QECOOL
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Architecture overview of QECOOL decoder

e Quantum Error COrrection by On-Line decoding algorithm
o A distributed architecture without large amount of RAM

o Multiple processing elements (Units) corresponding one-to-one with ancilla qubits
o Matching problems are solved by signal propagation among Units
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Overview of QECOOQOL algorithm

Step 1
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Perform nearest neighbor search using
two types of signals among Units
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Based on a greedy graph matching algorithm

0(n?), approximation degree 1/2
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Matching problem on a 3-D lattice

ked
: Ollgd®ligd(®)
O O
: _ Z0[#0[#10Z
Yz Map 3-D lattice .to = O O /i
Units on 2-D grid O O[—#10
3-D syndrome lattice Units with O(K) memory

e Each Unit has a O(K) buffer to store multiple syndrome values
e Almost the same procedure as in case of 2-D lattice
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Decoding performance of QECOOL

y Error threshold o
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Experimental condition
Measurement process is performed once every 1 us
Each QECOOL Unit has a 7-bit buffer to store syndrome values
If buffer entry size is greater than K = 3, QECOOL is performed; otherwise, each Unit
waits for measurement process
MWPM operates with batch-QEC manner

e Threshold value: QECOOL p=0.01, MWPM p=0.03

Target lattice shape




SFQ implementation of QECOOL decoder
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Architecture overview of QECOOL decoder

1770 um

SFQ layout of QECOOL Unit

Js:

3177

Area: 1.274 mm?

Latency: 215 ps

Power cons.: 2.78 uW

Total power consumption of per distance-9 logical qubit

9X8X2X 2-78[uW] ~

400 uW
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e Introduction

o Superconducting quantum computer
o Quantum error correction with surface code (SC)

e Requirements for a practical decoder
e QECOOL: online decoder with a superconducting circuit
e |Conclusion and advanced works
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Conclusion and advanced works

e Online decoding of surface code in a cryogenic environment is

necessary for a scalable superconducting quantum computer
e QECOOL is power-efficient enough to operate in a cryogenic env.
o Next step is supporting logical operations of

the universal quantum gate set {H, CNOT, T'}

o QULAIS: Extension of QECOOL for logical operation with lattice surgery (HPCA’22)

e Accuracy of QECOOL is lower than MWPM

due to its greedy and online nature

o NEO-QEC: Extension of QECOOL/QULATIS with binarized NN for better accuracy
(arXiv:2208.05758)

More detailed slide

from my RQC seminar
A https://researchmap.jp/y-ueno/presentations/42717344
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QULATIS: QEC methodology towards lattice surgery

Lattice surgery Target lattice shape —
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Framework to perform logical operations

. ) Single logical qubit Lattice surgery
with SC-based QEC (QECOOL) QULATIS

e Extension of QECOOL for decoding of lattice surgery

o Supporting logical operations of the universal quantum gate set {H, CNOT, T}

e SFQ circuit design of QULATIS decoder is
suitable for online decoding in a cryogenic environment
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QECOOL decoders
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QECOOL decoders decode each logical

Decode lattice surgery by
orchestrating multiple QULATIS decoders

gubits independently
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QECOOL decoders decode each logical

Decode lattice surgery by
orchestrating multiple QULATIS decoders

gubits independently
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NEO-QEC: NN enhanced online QEC

QECOOL /
QULATIS

Z syndrome

QECOOL /
QULATIS

X syndrome

Binarized CNN decoder
X&Z syndrome (Extension of [1])

e A two-stage decoder with binarized CNN and QECOOL/QULATIS
o Improve threshold values of QECOOL/QULATIS
e SFQ design of Neural Processing Unit for binarized CNN

o Suitable for online decoding in a cryogenic environment

[1] S. Gicev, L. C. Hollenberg, and M. Usman, A scalable and fast articial neural network syndrome
decoder for surface codes, arXiv preprint arXiv:2110.05854 (2021).
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