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● Decoding surface code is reduced to graph matching problem
● A practical decoder should be accurate, fast, and scalable
● For superconducting quantum computers, decoder also should be 

power efficient to be operated in a cryogenic environment
● Our solution: online decoder with superconducting digital circuit
● Our works on real-time decoding for FTQC

○ QECOOL: Online decoder with superconducting circuits (DAC’21, arXiv:2103.14209)

○ QULAIS: Extension of QECOOL for logical operation with lattice surgery (HPCA’22)

○ NEO-QEC: Extension of QECOOL/QULATIS with binarized NN for better accuracy 
(arXiv:2208.05758)
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Summary of this talk

More detailed slide 

from my RQC seminar

https://researchmap.jp/y-ueno/presentations/42717344
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● Introduction
○ Superconducting quantum computer

○ Quantum error correction with surface code (SC)

● Requirements for a practical decoder
● QECOOL: online decoder with a superconducting circuit
● Conclusion and advanced works

4

Outline



Kobe Quantum Error Correction Symposium 2024/01/23 /29

● Superconducting qubit: one of the most promising qubit 
implementation
○ Operate only at cryogenic environment (~20 mK)

● Qubits have very low error tolerance
○ Quantum error correction (QEC) code
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Superconducting quantum computer (QC)

Qubits

Dilution refrigerator

Cryogenic

environment

[1] Frank Arute, Kunal Arya, Ryan Babbush, et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

Figure from [1]
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Example of QEC code: Surface code (SC)

Logical qubit

X

X

Z
Noise Decoding

Decoding SC is specifying most 
likely errors from hot syndromes, 
and reduced to graph matching 
problem

Syndromes change 
according to errors

Surface code

(Code distance 𝑑 = 3)

Data qubits

Ancilla qubits

Hot syndromes
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● Each ancilla qubit is used for error parity detection of neighboring 
data qubits
○ Endpoints of error chains are expected to be hot syndromes

● Errors on data qubit can be detected without direct measuring
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Function of surface code

X

X

Z X Z

Data qubit

Errors on data qubit

Ancilla qubit (Z error detection)

Ancilla qubit (X error detection)
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Decoding surface code

Z
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Exact solution: Blossom algorithm (O(n3))

𝑉: Hot syndromes
𝑊𝑒: Manhattan distance 

Minimum Weight Perfect Matching
(MWPM)

A

B

C D

Assumption
● X and Z errors can be decoded 

independently

● Shorter error chains are likely to occur
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● If ancilla qubit measurement is susceptible to read errors, 
multiple measurement processes are required
○ For every new measurement, the new syndrome is XORed with the latest value
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Measurement error on ancilla qubit

Measurement 

error

1st measurement 2nd measurement 3rd measurement

X X

⊕ ⊕

~1 𝜇𝑠 ~1 𝜇𝑠
X

… …
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● Introduction
○ Superconducting quantum computer

○ Quantum error correction with surface code (SC)

● Requirements for a practical decoder
● QECOOL: online decoder with a superconducting circuit
● Conclusion and advanced works
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Requirements for a practical decoder

Our solutionsRequirements

Superconducting 
digital circuits

Online-QEC manner

Binarized 
neural network

NEO-QEC 
arXiv:2022.05758QULATIS, HPCA’22

1. Power consumption
○ Decoder must operate in a cryogenic 

environment with limited power budget 

2. Latency
○ Slow decoding leads to accumulation of 

errors and slow quantum computation

3. Scalability
○ Decoder must protect not only 

single qubit but also logical operations

4. Accuracy
○ Decoder must have a high error threshold
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QEC architecture for superconducting QCs

Qubits

Decoder
(MWPM, UF, etc.)

Cryogenic environment (20 mK to 4 K)
Power budget ~ 1 W

Qubits

Decoder

Room temperature
(300 K)

Qubit meas.Error corr.

Conventional architecture Proposed architecture

SFQ circuits

Cryostat Cryostat
Wiring between different 
temperature layers

Improve scalability of 
QC by reducing wires

High speed & Low power
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● Absence (presence) of flux quanta within the ring 
represents digital ‘0’ (‘1’)

● Operates only in a cryogenic environment (~ 4 K)
● High speed and low latency compared to CMOS circuits
● Limitation: Large amount of RAM is expensive 

○ -> Conventional decoders such as MWPM are not implementable with SFQ
14

Single flux quantum (SFQ) logic
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High-latency decoding slows down quantum computation

Syndrome 
meas.

Decode

Noise
Logical Pauli

Logical Clifford
Logical 
meas.

Pauli frame

Error 
correction

Updating Pauli frame

Results with 
errors Error-corrected 

results

Updating Pauli frame

|𝜓𝐿⟩

Logical Clifford operation

Syndrome 
meas.|𝐴𝐿⟩ Noise

Logical 
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Syndrome 
meas.

Decode

Noise

Logical 
CNOT
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meas.

Pauli frame

Error 
correction

Results 
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Error-
corrected 

result
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Decode

Logical 
S-gate

Pauli frame

Error 
correction

Gate teleportation

Error-corrected 
results

Critical path

Logical Non-Clifford operation

Critical path
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Why is MWPM not practical?

M Decoding

1 𝜇𝑠

M M

1 𝜇𝑠

M

1 𝜇𝑠1 𝜇𝑠

……

Measurement and decoding processes with the MWPM decoder 

𝑇(∝ 𝑑)

Syndrome lattice

＋ Accurate decoding 
－ Slow decoding
－ 𝑂(𝑇𝑑2) bits of storage

𝑑

M : Measurement D : Decode

Batch-QEC manner



Kobe Quantum Error Correction Symposium 2024/01/23 /2917

Our solution: Online-QEC manner

M DM MM M MD D D

1 𝜇𝑠 1 𝜇𝑠1 𝜇𝑠1 𝜇𝑠

Measurement and decoding processes with a practical decoder

𝑑 𝑇(∝ 𝑑)

Syndrome lattice

Online-QEC manner
－ Degradation of decoding accuracy
＋ Fast decoding
＋ 𝑂(𝐾𝑑2) bits of storage

M : Measurement D : Decode

𝐾 𝐾 𝐾 𝐾
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● Introduction
○ Superconducting quantum computer

○ Quantum error correction with surface code (SC)

● Requirements for a practical decoder
● QECOOL: online decoder with a superconducting circuit
● Conclusion and advanced works
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● Quantum Error COrrection by On-Line decoding algorithm
● A distributed architecture without large amount of RAM

○ Multiple processing elements (Units) corresponding one-to-one with ancilla qubits

○ Matching problems are solved by signal propagation among Units

19

QECOOL

Architecture overview of QECOOL decoder
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Determine the starting point 
for finding a hot syndrome pair
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Overview of QECOOL algorithm

Step 1 Step 2

Perform nearest neighbor search using 
two types of signals among Units

Based on a greedy graph matching algorithm

𝑂(𝑛2), approximation degree 1/2 
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● Each Unit has a 𝑂 𝐾 buffer to store multiple syndrome values
● Almost the same procedure as in case of 2-D lattice
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Matching problem on a 3-D lattice

3-D syndrome lattice Units with 𝑂 𝐾 memory

Map 3-D lattice to 
Units on 2-D grid
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Decoding performance of QECOOL

● Threshold value: QECOOL p=0.01, MWPM p=0.03

Experimental condition
- Measurement process is performed once every 1 𝝁𝒔
- Each QECOOL Unit has a 7-bit buffer to store syndrome values
- If buffer entry size is greater than 𝐾 = 3, QECOOL is performed; otherwise, each Unit 

waits for measurement process
- MWPM operates with batch-QEC manner

Target lattice shape

𝑑 times 
measurements

Code distance 𝑑

1.0%

Error threshold

3.0%
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SFQ implementation of QECOOL decoder

JJs: 3177     Area: 1.274 mm2 Latency: 215 ps Power cons.: 2.78 𝝁W

Total power consumption of per distance-9 logical qubit

9 × 8 × 2 × 2.78 𝜇𝑊 ≈ 400 𝜇𝑊

Architecture overview of QECOOL decoder SFQ layout of QECOOL Unit
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● Introduction
○ Superconducting quantum computer

○ Quantum error correction with surface code (SC)

● Requirements for a practical decoder
● QECOOL: online decoder with a superconducting circuit
● Conclusion and advanced works
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● Online decoding of surface code in a cryogenic environment is 
necessary for a scalable superconducting quantum computer

● QECOOL is power-efficient enough to operate in a cryogenic env.
● Next step is supporting logical operations of 

the universal quantum gate set {𝐻, CNOT, 𝑇}
○ QULAIS: Extension of QECOOL for logical operation with lattice surgery (HPCA’22)

● Accuracy of QECOOL is lower than MWPM
due to its greedy and online nature
○ NEO-QEC: Extension of QECOOL/QULATIS with binarized NN for better accuracy 

(arXiv:2208.05758)
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Conclusion and advanced works

More detailed slide 

from my RQC seminar
https://researchmap.jp/y-ueno/presentations/42717344
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● Extension of QECOOL for decoding of lattice surgery
○ Supporting logical operations of the universal quantum gate set {𝐻, CNOT, 𝑇}

● SFQ circuit design of QULATIS decoder is 
suitable for online decoding in a cryogenic environment

26

QULATIS: QEC methodology towards lattice surgery

Merge

Split

Lattice surgery

Framework to perform logical operations 
with SC-based QEC

Target lattice shape

Single logical qubit
(QECOOL)

Lattice surgery
QULATIS
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Brief summary of QECOOL and QULATIS decoders

QECOOL QECOOL

QECOOL QECOOL

QULATIS QULATIS

QULATIS QULATIS

QECOOL decoders QULATIS decoders

Decode lattice surgery by 
orchestrating multiple QULATIS decoders

QECOOL decoders decode each logical 
qubits independently
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● A two-stage decoder with binarized CNN and QECOOL/QULATIS
○ Improve threshold values of QECOOL/QULATIS

● SFQ design of Neural Processing Unit for binarized CNN
○ Suitable for online decoding in a cryogenic environment
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NEO-QEC: NN enhanced online QEC

X&Z syndrome

X syndrome

Z syndrome
QECOOL /

QULATIS

QECOOL /

QULATIS

Error correction

Binarized CNN decoder
(Extension of [1])

[1] S. Gicev, L. C. Hollenberg, and M. Usman, A scalable and fast articial neural network syndrome 
decoder for surface codes, arXiv preprint arXiv:2110.05854 (2021).
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