Papers

Peer-reviewed
Dec, 2015

Morphology-sensitive trapping states of photogenerated charge carriers on SrTiO3 particles studied by time-resolved visible to Mid-IR absorption spectroscopy: The effects of molten salt flux treatments

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY
  • Akira Yamakata
  • ,
  • Ham Yeilin
  • ,
  • Masayuki Kawaguchi
  • ,
  • Takashi Hisatomi
  • ,
  • Jun Kubota
  • ,
  • Yoshihisa Sakata
  • ,
  • Kazunari Domen

Volume
313
Number
First page
168
Last page
175
Language
English
Publishing type
Research paper (scientific journal)
DOI
10.1016/j.jphotochem.2015.05.016
Publisher
ELSEVIER SCIENCE SA

The effects of the morphology-change of SrTiO3 particles on the behavior of photogenerated charge carriers are studied by time-resolved absorption (TA) spectroscopy from the visible to mid-IR region. In the case of as-purchased defect-rich commercial SrTiO3 particles, most of the charge carriers are deeply trapped, showing a transient absorption peak at 11,000 cm(-1). Scanning electron microscopy reveals that the irregular-shaped primary particles are heavily aggregated and that the photocatalytic activity for the water splitting reaction is negligibly small. However, when this powder is flux-treated by SrCl2, fine cubic SrTiO3 crystals exposing well-defined surfaces are formed and the photocatalytic activity is greatly improved. TA measurements show that the spectral shape is changed dramatically: the number of deeply trapped electrons is reduced, and that of shallowly trapped electrons producing the absorption band at 2500 cm(-1) is increased. The change in electron trap depth, observed upon flux treatment, is due to the decrease in the number of defects. We also found that further flux treatment in an Al2O3 crucible (i) induces Al doping into SrTiO3, (ii) enhances the photocatalytic activity, (iii) changes the spectral shape, and (iv) prolongs the lifetime of shallowly trapped electrons. The increase in photocatalytic activity is presumably due to the change in lifetime. (C) 2015 Elsevier B.V. All rights reserved.

Link information
DOI
https://doi.org/10.1016/j.jphotochem.2015.05.016
J-GLOBAL
https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=201502200356890999
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000364244800024&DestApp=WOS_CPL
URL
http://jglobal.jst.go.jp/detail.php?from=API&JGLOBAL_ID=201502200356890999
ID information
  • DOI : 10.1016/j.jphotochem.2015.05.016
  • ISSN : 1010-6030
  • J-Global ID : 201502200356890999
  • Web of Science ID : WOS:000364244800024

Export
BibTeX RIS