Quantization of singular quaternionic nilpotent K-orbits

Hiroshi Yamashita (Hokkaido University)
Fuhai Zhu (Nankai University)

Abstract
We study singular quaternionic representations of exceptional real simple Lie groups of real rank 4. These representations, constructed by Gross and Wallach, are closely related to singular orbits on certain prehomogeneous vector spaces arising from quaternionic structure of the Lie algebras. We show that these quaternionic representations are obtained by quantization of singular quaternionic nilpotent K-orbits.

1. Simple Lie groups of quaternionic type
Let G_R be a connected, simply connected real simple Lie group of quaternionic type, and K_R be a maximal compact subgroup of G_R. We denote by g_R, k_R the Lie algebras of G_R, K_R respectively. Take a compact Cartan subalgebra t_R of g_R contained in k_R. We write g, k and t for the complexification of real Lie algebras g_R, k_R and t_R respectively.

Consider the root system Δ for $(g; t)$. Then, there exists a positive system Δ^+ of Δ with the following property: the \mathbb{Z}-gradation of g defined by the highest root $g = \bigoplus_{j=0,\pm1,\pm2} g(j)$ with $g(j) = \{Z \in g | [H, Z] = jZ\}$, gives rise to a complexified Cartan decomposition $g = k \oplus p$ with $k = g(2) \oplus g(0) \oplus g(-2)$, $p = g(1) \oplus g(-1)$.

Here H_β denotes the element of t corresponding to the co-root $\beta^\vee = 2\beta/(\beta, \beta) \in t^*$ through the Killing form of g. Note that $g(\pm2)$ equals the root space for $\pm\beta$: $g(\pm2) = g_{\pm\beta}$.

Now, let m be the semisimple part of $g(0)$. Then k is a direct sum $k = k_1 \oplus m$ with $k_1 := g(2) \oplus CH_\beta \oplus g(-2) \simeq sl(2, \mathbb{C})$.
This implies that the complexification K of K_R is the direct product $K = K_1 \times M$, where $K_1 \simeq SL(2, \mathbb{C})$ and M is the simply connected Lie group with Lie algebra m.

2. Orbit structure of prehomogeneous vector space V
In what follows, we assume that g_R is one of four exceptional simple Lie algebras of real rank 4, namely $g_R = F_{4,4}$, $E_{6,4}$, $E_{7,4}$, $E_{8,4}$. We see $m = C_3$, A_5, D_6, E_7 respectively. Let L be the centralizer of H_β in K. Then $L = T_1 \times M$ with $T_1 = \exp CH_\beta$ is a connected Lie group with Lie algebra $g(0)$, and L acts on the vector space $V := g(1)$ by the adjoint action. We thus have an irreducible reduced prehomogeneous vector space (L, V) with relative invariant $f_4 \in \mathbb{C}[V]$ of degree 4. See (14), (5), (23) and (29) of [2, §7, Table I] for more details.

By Serge, Igusa and Harris, V has exactly four nonzero L-orbits O_i $(i = 1, 2, 3, 4)$. We can arrange them as $V = O_4 \supset O_3 \supset O_2 \supset O_1$, where O_i denotes the closure of O_i. Note that O_4 is the open L-orbit and that $\overline{O_3}$ coincides with the hypersurface $f_4 = 0$.
3. Singular quaternionic representations σ_O
We now focus our attention to three singular L-orbits $O := O_i$ for $i = 1, 2, 3$. The subgroup M acts on O transitively. Set $\kappa = 1, 2, 4, 8$ according as $g_\mathbb{R} = F_{4,4}, E_{6,4}, E_{7,4}, E_{8,4}$ respectively. We define a positive integer k_O by $k_O = i\kappa + \delta_{i,3}$ with Kronecker’s $\delta_{i,3}$.

By using cohomological parabolic induction, Gross and Wallach [1] constructed an irreducible unitary representation σ_O of $G_\mathbb{R}$ such that

$$\sigma_O|_K \simeq \bigoplus_{m=0}^{\infty} \tau_{m+k_O} \otimes \mathbb{C}^m[\mathcal{O}] \quad \text{as } K = K_1 \times M\text{-modules}. \quad (1)$$

Here τ_m denotes the irreducible representation of K_1 of dimension $m + 1$, and $\mathbb{C}^m[\mathcal{O}] = \mathbb{C}^m[V]|_{\mathcal{O}}$ is the M-module consisting of homogeneous polynomials on V of degree m restricted to the affine variety \mathcal{O}.

4. Quantization of nilpotent K-orbits $\tilde{\mathcal{O}}$
Let $\tilde{\mathcal{O}} = \text{Ad}(K)\mathcal{O}$ be the nilpotent K-orbit containing \mathcal{O}. Take an element $X \in \mathcal{O}$ and consider the isotropy subgroup $K(X) = Z_K(X)$ of X in K. We write $\mathfrak{t}(X)$ for the Lie algebra of $K(X)$. We see $K(X) = L(X) \ltimes N_1$ with $L(X) = K(X) \cap L$ and $N_1 = \exp \mathfrak{g}(2)$. It is known that $K(X)$ is connected.

The following theorem, which is the main result of this paper, says that the representation σ_O gives a quantization of nilpotent K-orbit $\tilde{\mathcal{O}}$ in the sense of [3].

Theorem 1 (1) The square-root of coisotropy representation $\chi(y) = \det(\text{Ad}(y)|_{\mathfrak{t}(X)})^{-1/2}$ ($y \in K(X)$) gives a well-defined character of the group $K(X)$. Hence the nilpotent K-orbit $\tilde{\mathcal{O}}$ is admissible.

(2) One gets $\sigma_O \simeq \text{Ind}^K_{K(X)}(\chi)$ as K-modules. Here the induced representation on the right hand side is defined on the space of algebraic sections of the line bundle $K \times_{K(X)} \chi$ on $K/K(X)$.

Furthermore, we can show that χ coincides with the isotropy representation for σ_O, which is defined in connection with the associated cycle of Harish-Chandra modules (see [3], [4]).

The following proposition is crucial to prove Theorem 1.

Proposition 2 (1) Choose an \mathfrak{sl}_2-triple (X, H, Y) such that $H \in \mathfrak{t}$ and $X \in \mathcal{O}$. Set $\tilde{H} = 2(H - 2H_0)/(\beta(H) - 4)$. Then, \tilde{H} is a nonzero central element of the reductive part of $\mathfrak{t}(X)$, and one gets $\text{tr}(\text{ad}(\tilde{H})|_{\mathfrak{t}(X)}) = 2k_O$.

(2) The affine coordinate ring $\mathbb{C}[\mathcal{O}] = \bigoplus_{m=0}^{\infty} \mathbb{C}^m[\mathcal{O}]$ is isomorphic to $\text{Ind}^M_{K(X) \cap M}(1)$ as an M-module.

References