Geometric invariants associated with the discrete series representations

Hiroshi Yamashita (Hokkaido University)

The discrete series representations form a family of square-integrable irreducible unitary representations of a real semisimple Lie group G. They are fundamental in representation theory and harmonic analysis on G. In this talk, we discuss some geometric invariants: associated variety, associated cycle and isotropy representation, for the discrete series representations. These invariants play an essential role to understand irreducible representations of G in connection with nilpotent orbits in the Lie algebra. The talk will start with explaining the above geometric invariants explicitly by using three dimensional simple Lie group $SU(1,1)$. Then, the associated variety and isotropy representation for the discrete series will be described by means of the principal symbol mapping of certain differential operator of gradient-type on the Riemannian symmetric space G/K. We may discuss also a relationship between the isotropy representation and the moment map defined on a conormal bundle on the flag variety.