
268

Lead Author: 

Yasuhide Okuyama University of Kitakyushu, Japan

Contributing Authors:

Serkan Girgin 			   University of Twente, Netherlands

María Isabel Martínez Torre-Enciso 	 Universidad Autónoma de Madrid, Spain

Zdenko Šimić European Commission, Joint Research Centre

3.3.3 Industry and energy

Okuyama, Y., Girgin, S., Martínez Torre-Enciso, M.I., Šimić, Z., ‘Industry and energy’, In: Casajus Valles, A., Marin Ferrer, M., Poljanšek, K., 
Clark, I. (eds.), Science for Disaster Risk Management 2020: acting today, protecting tomorrow, EUR 30183 EN, Publications Office of the 
European Union, Luxembourg, 2020, ISBN 978-92-76-18182-8, doi:10.2760/571085, JRC114026.



CHAPTER 3   ASSETS AT RISK AND POTENTIAL IMPACTS 

269

1 Introduction and background

This section focuses on the secondary sector, namely manufacturing and energy industries. These industries 
produce goods and services that are consumed as final or intermediate goods and services, and that are 
necessary for activities in a society, while they also employ labour and provide wages to households. Physical 
damage to these industries not only leads to a shortage of goods and services that they produce, but also causes 
declines in income to their labour forces. In addition, because of the globalised production networks as well as the 
lean production system employed in various manufacturing industries, the damage and business interruptions 
brought about in one region could spread to other regions in the same countries and potentially across the world. 
Some recent empirical observations, for example the declines in production of car-manufacturing companies at 
various countries in the aftermath of the 2011 east Japan earthquake and tsunami, proved that the modern 
manufacturing network appears vulnerable to such catastrophic disasters (Reuters, 2016). In this context, 
the production networks, such as intra- and interindustry linkages, should be encompassed to understand a 
comprehensive picture of disaster effects.

In this section, damage to physical facilities, resulting from internal causes or external forces, is called ‘damage’, 
while the decline in production level caused by the damage is called ‘(first-order) losses’ of production (Okuyama, 
2007). While the terminology used in the United Nations (2016) refers to damage and losses as ‘direct economic 
losses’ and ‘indirect economic losses’ respectively, the use of the words ‘direct’ and ‘indirect’ creates some confu-
sion, such as adding these two different measures together, which is theoretically incorrect and potentially leads 
to the double counting of impacts. In addition, the methodologies to measure higher-order effects use the term 
‘indirect’ with a different definition (Rose, 2004). The most up-to-date Handbook for Disaster Assessment by the 
Economic Commission for Latin American and the Caribbean (ECLAC, 2014), known as the ECLAC methodology, 
also employs definitions of damage and loss similar to Rose’s. Therefore, in this section, ‘damage’, ‘losses’ and 
‘higher-order effects’ are utilised, instead. These two numbers of damage and losses should be clearly distin-
guished, because adding them together would double-count the impacts, and Rose (2004) suggested listing 
both of them separately to paint an inclusive picture. A few methodologies are available for the quantification of 
damage and losses, and their details are discussed below.

2  Risks in industry and energy industries

Manufacturing and energy industries inherently involve risks that can be classified 
into internal and external, and/or can lead to broader effects on the macroeconomy 

and the natural environment.

Manufacturing and energy industries inherently involve risks that could lead to accidents that might result in 
a disaster, or could experience a catastrophic natural hazard, such as earthquake, flooding, severe weather, or 
drought, that would bring about damage or losses to the production facilities. These risks can be classified into 
internal (within the industry) and external (from other industries), and/or can lead to broader effects on the mac-
roeconomy and natural environment. For example, internal risks include the malfunctioning of production equip-
ment, software bugs, faulty operation of production systems by humans, financial risks, reputational risks if the 
company does not address climate change and so on. External risks can be threats of catastrophic natural (and 



270

man-made) hazards, which can cause physical damage to production facilities and/or networks, and increased 
climate variability leading to hazards. Internal risks can be dealt with by technological and behavioural means, 
while external risks may be responded to by prevention and preparedness, such as a business continuity plan 
(BCP).

In particular, modern manufacturing and energy industries rely heavily on supply chains (value chains) because 
of the increasing globalisation of production processes, through which a company purchases parts (intermediate 
inputs) provided by other companies (upstream industries) for its products and sells its products to other com-
panies (downstream industries) or to consumers as final products. Specifically, upstream industries are mainly 
mining, material production (chemical, steel, etc.) and energy industries, and downstream industries include 
product-assembling industries (automobile, electrical and electronic products, etc.) and service industries. In this 
way, manufacturing and energy industries form complex and interwoven interindustry networks. Given this, one 
company’s stoppage of production due to damage to its production facility resulting from internal or external 
causes would create a negative ripple effect on a wide range of industries and on the economy, as well as pos-
itive opportunities to other companies that can provide substitutable products. The impacts of such an event 
can be classified into the following five types: (1) production (supply) disruptions due to damage to production 
facilities; (2) forward effects of the supply disruptions to the downstream industries; (3) technical and/or spatial 
substitution effects for replaceable goods and services; (4) decline in both intermediate and final demands due 
to the decreased production and earnings; and (5) backward and positive effects from intensive demand injection 
of reconstruction activities (Oosterhaven, 2017). It is expected that the interindustry 

2.1 Risks within industries

Manufacturing and energy industries inherently involve risks within their operations, and the realisation of such 
risks may cause damage to their facilities. These risks include faulty design of production processes, malfunc-
tion of the production facility and/or equipment, software problems, mismanagement of the company, or other 
human errors. Each company in these industries tries to minimise these risks using redundancy, backup facilities, 
periodical maintenance and so on. Because all the production systems, facilities, and equipment are designed 
and installed by humans, it is inevitable by our nature that they will contain some major or minor errors or draw-
backs. While these risks originate internally in the production system in question, the systems are also exposed 
to external risks. Some natural hazards, for example earthquakes, flooding, severe storms, and drought, can 
damage or even destroy part or all of the production facilities, creating the similar impacts to the internal risks 
above. This risk will create production disruptions, as in type 1, and would trigger a ripple effect on the economy 
and society as described above.

2.2 Risks among industries

Modern manufacturing and energy industries require a set of intermediate inputs for producing their products, 
creating interwoven interindustry linkages. For example, car manufacturers require thousands of intermediate 
inputs, such as tyres, glass, seats, plastic materials, paints, electrical parts, electronic circuits and, water, from 
their suppliers. Even though a car-manufacturing company did not have any physical damage to its production 
facility, it would eventually halt or delay its operations if one of the suppliers that produces critical intermediate 
input were damaged and could not supply its products. This type of cascading impact on an undamaged company 
is called ‘higher-order effects’ (Rose, 2004), which can potentially produce the ripple effect of impacts through 
interindustry linkages (supply chains) to many other industries, described as types 2, 3, and 4 above.
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This ripple effect would propagate not only to the downstream industries through the supply chain but also to 
the upstream industries. If one company (A) needs to pause its production because of severe damage to one 
of its critical suppliers (B), this is called the impact on downstream industry. Meanwhile, another company (C), 
which provides its product as an intermediate input to B, will need to decrease its production because B cannot 
produce its product therefore does not need intermediate inputs from C. This is an upstream propagation of the 
impact. Moreover, company A uses other intermediate inputs from another company (D) as well as from B. When 
company A halts production as a result of damage to B, it influences the production of company D, since A also 
stops purchasing D’s product. This is also an upstream propagation of impact. Company A’s production stoppage 
can also potentially lead to a downstream propagation of the impacts, if other companies purchase company A’s 
product as their intermediate inputs. The ripple effect of impacts spreads through the web of supply chains that 
modern manufacturing industries have formulated and utilised. Some industries, such as car manufacturing and 
construction, require a wide range of intermediate inputs; if even a small supplier that provides a critical input to 
major companies is damaged by a disaster, it can create extensive ripple effects on many other industries.
Higher-order effects are quite entangled and complex to measure empirically by using usual macroeconomic 
indices, such as changes in gross domestic product, due to other macroeconomic disturbances and so on. There-
fore, the quantification of higher-order effects requires economic models, such as input–output (IO), computable 
general equilibrium (CGE) or econometric models. Some of these models are briefly discussed below.

2.3 Effects on macroeconomy and environment

Since the higher-order effects can propagate across a broad range of industries, there is a concern that a cata-
strophic disaster, such as the 2005 Hurricane Katrina in the United States and the 2011 east Japan earthquake 
and tsunami, could affect negatively the regional or national economy. While a disaster caused by internal or 
external risk to manufacturing or energy industry would lead to localised damage and losses and could spread 
the higher-order effects further to other industries elsewhere, the economic impact of such a disaster, even a 
catastrophic one, may not affect the national economy of developed countries negatively in both the short and 
longer terms (Albala-Bertrand, 2007). This is because developed countries should have sufficient financial, tech-
nological, and other resources to better manage disaster risk through the implementation of countermeasures 
against the adverse impacts of disasters. In other words, if they did not prepare thoroughly against such events, 
there would be substantial and long-lasting negative effects in and around the country, such as after the 1986 
Chernobyl nuclear accident and the 2011 Fukushima nuclear accident.

The timing of a disaster occurrence could influence the overall impact of a disaster in a macroeconomic context. 
When economies exhibit higher growth during a boom period, they may be more vulnerable to disasters than 
those with slower or declining growth in a bust period. This is because during a bust period idle and unused pro-
duction capacity can serve to absorb the production shortage induced by the disaster, whereas during a boom 
period production capacity in economies is fully utilised and hence cannot deal with the production shortage 
(Hallegatte and Ghil, 2008). Having an inventory of intermediate inputs and final products can also serve as a 
buffer against the forward (downstream) effect of supply shortage, whereas modern manufacturing industry has 
been exercising the lean production system, under which it minimises or eliminates such inventories, embedding 
increased vulnerability to the forward effects. However, many manufacturing companies consider that such risk 
would last for a short period so they maintain the lean production system, even after experiencing prolonged 
production stoppage due to forward effects created by a catastrophic disaster (Reuters, 2016).

It is a somewhat common misconception that disasters might cause renewal or update of assets and facilities, 
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leading to upward macroeconomic trends in the long term, which is sometimes referred to as the Schumpeterian 
creative destruction or fertilisation effect. Empirical investigations of the relationship between disasters and eco-
nomic growth/trends indicate otherwise (Okuyama, 2019). The studies using socioeconomic disaster indicators, 
such as those by Noy (2009), Cavallo et al. (2013), and Fomby et al. (2013), provide somewhat mixed results 
for such a relationship, whereas the studies employing physical intensity indicators of disasters, for example 
those of Hsiang and Jina (2014), Felbermayr and Gröshcl (2014), and Berlemann and Wenzel (2016), found clear 
negative effects between them. Hallegatte and Dumas (2009) analysed this relationship that damage caused by 
hazards and subsequent reconstruction with renewed assets only increase production levels but cannot lead to 
overall technological progress, therefore they may not boost long-term economic growth.

Some industries, especially upstream industries (mining and energy industries), characteristically contain risks 
with the potential to trigger environmental damage due to their use of hazardous resources and materials. Some 
accident in such a company, with a natural or human cause, may result in a leakage of hazardous materials into 
the surrounding area, which contaminates the natural environment of the area. This may lead to an environmen-
tal disaster, such as the Exxon Valdez oil spill in 1989 in Alaska, the United States. While downstream industries 
(assembling products) also hold the similar risks to a lesser degree, they are not immune to causing environmen-
tal damage by fire in factories and/or inventory facilities, leading to temporary air pollution from the burning of 
their intermediate and final products.

3 Risks from climate change

Uncertainties related to climate change risks (e.g. time of occurrence and level of 
increase in risk) prevent industry from organising optimal (timely and measured) 

and proactive preparedness.

Climate change is expected to increase both the frequency of occurrence and the magnitude of natural hazards, 
and this will increase the risks (exposure and consequences) to manufacturing and energy industries. The 
similarity of these hazards to already existing threats (i.e. extreme weather events) makes it easier for the 
industry to assess, prepare for and mitigate the risks. However, the uncertainties related to the issues, such as 
the time of occurrence and level of increase in the risk, prevent industry from organising optimal (timely and 
measured) proactive preparedness. 

Premature and/or excessive adaptation presents risk itself. Additional uncertainty is related to regional impacts. A 
special report from the Intergovernmental Panel on Climate Change (IPCC) analyses the risks from various climate 
change scenarios between 2 °C and 1.5 °C warming above pre-industrial levels and related global greenhouse 
gas emission pathways (Hoegh-Guldberg et al., 2018). That report estimates the impacts and risks as high from 
extreme weather events, and moderate from large-scale singular events at 1.5 °C warming, with a moderate 
level of confidence, as shown in Figure 1. 

However, the estimates of coastal flooding risk are very high, with a high level of confidence. The following two 
subsections discuss industry and government actions related to climate change risk assessment, adaptation and 
mitigation measures.
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Figure 1. Estimated impacts and risks from different levels of global warming associated with reasons for concern (RFCs)
Source: Figure 3.21 in Hoegh-Guldberg et al., 2018.

3.1 Climate change risk management for the manufacturing and 
energy industries

The manufacturing and energy industries have been facing climate change risks to their market ratings and reg-
ulation requirements. Dealing with these risks is essential because the government regulations, financial market, 
and insurance companies force and/or expect them to implement timely reactions to such risks.

Goldstein et al. (2018) reviewed more than 16 000 corporate adaptation strategies and significant blind spots 
found in the assessments of climate change impacts and their management. CDP (2019) summarises the fol-
lowing findings from the companies reporting about climate change risks and opportunities: significant risks are 
identified as needing expanded analysis; the largest companies report major financial implications; the risks are 
smaller than the opportunities; some striking regional differences exist; many industries expect to experience 
fewer implications than the financial industry; management costs outweigh the benefits; the energy industry is a 
source of lessons to be learned because of early and wide-ranging impacts.

Industry could prepare better for climate change risks by incorporating its assessment into an overall risk man-
agement (RM) strategy. Continuous updating with the best available data and methodology is necessary for 
tackling all the related uncertainties.
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3.2 Governance for reduction of climate change risk

Regulators and investors had already motivated the industry to transition towards a sustainable and low-carbon 
economy, even before climate-change-related risks were considered transitional risks and became highly publi-
cised. All these various governance measures are imperative because they are designed to prepare for increased 
climate change risks in a socially optimal way. However, there are ongoing debates about what regulations should 
be imposed and which best practices should be encouraged. Considering the extensive uncertainties related to 
climate change risks, finding the best approaches is a daunting task. In this context, research and development to 
reduce uncertainties, and to improve risk assessment for efficient industry applications and effective regulations, 
are indispensable to tackle the climate change risks. Without the knowledge and insights from the best available 
sciences, all those involved would be more likely to underestimate or overestimate the future climate change 
risks. Either way, this would result in significant waste of resources.

4 Estimation methods

It is imperative to understand what assessment models/methods can or cannot 
cover based on their assumptions.

As argued in the 2017 report (Poljanšek et al., 2017), more consistent and systematically gathered data for the 
damage and losses to manufacturing and energy industries, and other industries, are needed for assessing the 
impacts of events. While the OECD governance of critical risks initiative has compiled the data(1) for the poli-
cies, processes and practices through which OECD Member countries govern critical risks, the data for damage 
and losses, as well as higher-order effects, have not been collected consistently or systematically. Because the 
definitions of damage and loss in a disaster situation, such as the spatial and temporal extent and the valuation 
methodology, have not been set, nor is there any consensus among stakeholders (Okuyama, 2007), it is a good 
idea to start with the definitions proposed in the widely used ECLAC assessment methodology (UN ECLAC, 2014), 
which has been employed to assess damage and losses in recent major disaster cases in developing countries. 
Terminology used in this subsection – damage, losses and higher-order effects – follows the definitions in the 
introduction above.

4.1 Assessment of damage

In the ECLAC methodology, damage is defined as the effects that a disaster has on the assets of each industry, 
expressed in monetary terms. The assets here include physical assets such as buildings, machinery, equipment, 
furnishing, roads and ports, land, and inventory of final goods and intermediate inputs. Two pieces of information 
are required to evaluate damage: the level of destruction of each asset and their monetary value (UN ECLAC, 
2014). While the ECLAC methodology uses the replacement cost of damaged assets for the conversion from 
physical quantity to monetary value, it becomes occasionally problematic, especially in a disaster situation (Rose, 
2004). When a machine is partly damaged in a disaster, it does not have to be replaced but can be repaired; in 
this case, the cost should be the repair cost. In addition, even in a case of replacing the damaged equipment, 
it would not be replaced with the same machine; rather, newer equipment can be installed to replace the dam-
aged old one. In this case, the replacement cost (the cost of new equipment) is not equal to the value of the 

(1) See https://qdd.oecd.org/subject.aspx?Subject=GOV_RISK 

https://qdd.oecd.org/subject.aspx?Subject=GOV_RISK 
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old one before the disaster. In an extreme case, if a company’s factory were damaged by a disaster and it went 
bankrupt, there would be no replacement cost. Information on estimated damage is indispensable for industries 
to evaluate their preparedness and mitigation measures and to respond to the damage. Recent increased data 
collection capabilities and advanced information and communication technologies in many developed countries 
make it possible to estimate property damage immediately after a natural hazard hit. One such method has 
been proposed by Heatwole and Rose (2013); it can estimate property damage, including the damage to land, 
livestock, buildings, equipment, etc., from major US earthquakes based on a regression model. This model con-
sists of ‘exposure-related predictors’, such as population, income, and land area of hazard-affected region, and 
‘hazard-related predictors’, such as earthquake magnitude, distance from epicentre and so forth, to derive a set 
of property damage estimates (lower bound, average, and upper bound) in monetary value. While this model is 
only for earthquakes in the United States, this framework can be applied to other types of hazard and to other 
countries. This type of method can be useful to assess the damage that a natural hazard has caused and to 
assist timely disaster response and recovery activities.

4.2 Assessment of losses

Production or business interruptions caused by damage to production facilities lead to declines in production 
flows of goods and services. Losses are defined as goods and services that go unproduced during a period run-
ning from the time the hazard occurs until full recovery of the damaged assets is achieved. 

By and large, different methods have been employed for the estimation of business interruption costs. The popu-
lar approaches are (1) applying an industry-specific reference value per unit affected or per day of interruption to 
estimate the production losses; (2) comparing production output between years with and without hazard; and (3) 
calculating production losses as a proportion of damaged production capital (Meyer et al., 2013). Furthermore, 
loss estimates can be obtained by fitting statistical models to available historical data (e.g. originating from the 
insurance industry) (Hogg and Klugman, 1984) by using methods such as parametric curve fitting based on ex-
treme value theory, and generalised Pareto distribution due to the heavy-tailed and skewed nature of the data 
(McNeil, 1997; Jindrová and Pacáková, 2016). It is cautioned, however, that the hypothetical baseline (without 
disaster) case must be projected from the best information available, in order to avoid losses being over- or un-
derestimated (UN ECLAC, 2014). Losses here are sometimes called first-order losses, to distinguish them clearly 
from higher-order effects, discussed below. 

Like the frameworks to estimate damage discussed above, a few models have been proposed to estimate losses 
from hazard intensity index and socioeconomic data that are readily available. One such model is the estimation 
model for ‘production capacity loss rate’ by Kajitani and Tatano (2014). 

Conventional approaches to production loss estimate require damage data on production facilities and equip-
ment, whereas this model evaluates the production capacity loss rate through functional fragility curves and 
lifeline resilience factors. While their methodology is tailored to earthquakes and Japanese cases, the frame-
work can be applied to other types of hazards and to other countries where similar data are available. One of 
the advantages in this methodology is that, once the ground motions of a particular earthquake are given, the 
estimated changes in the production capacity rate can be derived in the damaged area. This type of rapid assess-
ment method for evaluating production loss is advantageous to timely decision-making in industry for managing 
response and recovery strategies as well as analysing the higher-order effects.
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4.3 Assessment of higher-order effects (2)

As discussed in the introduction, the first-order losses stemming from the business disruptions caused by the 
damage to production facilities set off a chain reaction, or ripple effect, through interindustry linkages (supply 
chains). For instance, if a power station were damaged by an accident, electric power would not be available to 
some or all of the power grids that the power station covered, and manufacturing industries in the affected power 
grids would have to halt their production until power was restored, even if they were not damaged at all. More-
over, due to the lost production of those industries without power, the suppliers to and the customers of those 
industries would need to either decrease or pause their production, too. How the ripples of such effect spread 
across other industries in economies is rather complex, because of intertwined supply chains across industries 
and over space and even across countries.

In order to assess such higher-order effects of a disaster, one needs to use economic models, such as input-out-
put (IO), computable general equilibrium (CGE), econometric, non-linear optimisation or some other macroeco-
nomic models. These models are highly sophisticated and need some lengthy descriptions. In short, IO models 
highlight interindustry transactions to derive ripple effects from changes in demand to one or more industries, 
while CGE models simulate changes in demand and/or supply in various markets to replicate how an economy 
responds (or economies respond) to a shock. Econometric models are regression models based on historical data 
about an economy. Readers interested in this topic are encouraged to consult the relevant literature, such as 
Rose (2004), Okuyama (2007), Okuyama and Santos (2014) and Okuyama and Rose (2019). While these models 
have been popular and employed for numerous recent cases, they are not without criticisms (e.g. Albala-Bertrand, 
2013). Because economic models are representations of specific aspects of the real world, they intrinsically ne-
glect some other aspects, such as psychological impacts on the labour force. It is imperative to understand what 
assessment models/methods can or cannot cover. At the same time, there are also considerable ambiguities in 
the estimates, especially for higher-order effects from the cascading impacts, due to uncertainties in a disaster 
situation that might be amplified by these methods. Further studies on this topic are essential, given the impor-
tance of unbiased estimates of the economic impacts (Girgin et al., 2019).

5 Countermeasures against risks

Prevention, preparedness, mitigation, response and recovery measures are the 
most common countermeasure strategies.

In order to avoid an incident becoming a disaster, strategies for dealing with existing and emerging risks are 
necessary. These strategies, also known as countermeasures against risks, include prevention, preparedness, 
mitigation, and recovery measures. Particularly in manufacturing and energy industries, their production activ-
ities establish a complex system, which covers production, logistics networks, and budget constraints, and this 
complexity and the internal and external risks that they face burden their management decisions about how to 
formulate and implement countermeasures. For example, a company’s production process relies heavily on the 
use of electric power, which is produced by a power company. If the power company could not produce and/or 
transmit power, causing a blackout, this company’s production would be suspended as a higher-order effect of 
the power shutdown. If the accident were caused internally within the power company, the loss of revenue of 

(2)  The 2017 report (Disaster Risk Management Knowledge Centre, 2017) discussed the methodologies assessing higher-order effects (‘indirect economic damage’) to some extent, 
such as simultaneous equation econometric models, input–output models, and computable general equilibrium models. The issues with these models raised in the 2017 report, 
for example dynamic adjustment features such as recovery, resilience, interregional substitution, inventory adjustments, and changes in labour supply, have been dealt with by the 
recent models. In particular, Okuyama and Rose (2019) provide state-of-the-art modelling practices and examples of the recent advances.
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this company could be contractually divided between the two companies and potentially compensated for by the 
power company. On the other hand, if the accident were caused by an external source, such as a natural hazard, 
it would often be out of the scope of contractual matters. As one of the preparedness measures, this company 
would want to install backup generators for such a case; however, the cost of generators and fuels is added to 
the production cost (the larger the backup generators become, the more they cost the company), whereas the 
occurrence of such blackouts is quite infrequent.

The countermeasure strategies against risks try not only to avoid an incident becoming a disaster but also to 
limit the impacts of such an event once it occurs. Usually, prevention, preparedness, and mitigation measures are 
identified during the pre-disaster phase, and the response and recovery measures are set up in the post-disaster 
phase. Measures to reduce or limit the impact of a risk are not arranged in isolation but are put in place along 
with strategic medium- and long-term plans, and always within the enterprise-wide RM, i.e. the overall manage-
ment of the risks that organisations take, to make decisions about how to formulate and implement counter-
measures and how to achieve their strategic objectives.

5.1 Risk management

Risk management is a ‘combination of organisational systems, processes and procedures that identify, assess, 
evaluate and mitigate risks in order to protect the organisation, its strategies and objectives (Martínez Torre-
Enciso, 2007). An effective RM system plays a significant role in reducing exposure to potentially unfavourable 
events. Many organisations follow RM frameworks(3) and models for enterprise risk management (ERM), business 
continuity (BC), disaster management (DM) or crisis and emergency management (CEM), among others. Each of 
these models establishes its own processes and procedures; however, in certain respects they overlap regarding the 
identification and evaluation of risks and the control and financing of both the risks and the measures established 
to limit their effects. Moreover, these overlaps among different strategies (ERM, BC, DM, CEM) are allowed in 
many cases – and especially in regard to operational risks, which are the most important in manufacturing and 
energy industries – in order to obtain important synergies (Laye and Martinez Torre-Enciso, 2001). For example, 
a company that aims to develop ERM and BC plans should carry out the identification, assessment and evaluation 
of risks for both. If the same team deals with ERM and BC plans, significant savings in personnel costs and time 
are achieved, as processes will only be carried out once.

The Committee of Sponsoring Organisations of the Treadway Commission (COSO) ERM model and other 
risk management frameworks, such as International Organization for Standardization (ISO) 31.000, develop 
comprehensive identification, assessment and evaluation of risks through risk mapping, matrix, etc.(ISO, 2018). 
Once risks are determined by the company’s risk tolerance levels, the ERM model and frameworks allow it to 
decide how the risks are treated: control, finance and transfer them. If the risk has been identified, there are 
several ways to deal with it, including acceptance, transference, and mitigation. To transfer the risk, the company 
may purchase insurance or outsource the activity to a third party. Mitigating the risk might mean that it is reduced 
in some way. By applying these processes, it is possible to reduce the inherent risk until only residual risk remains. 
ERM not only calls for corporations to identify all risks they face, so that they can decide which risks to manage 
actively, which helps companies in the complex decision-making process on establishing countermeasures 
against risks; it also involves making that plan of action available to all stakeholders, shareholders and potential 
investors, as part of their annual reports (e.g. figure 2).

(3)  Around the world, a number of risk management standards have been published in order to guide the application of risk management. These standards include (but are not 
limited to) Enterprise risk management – Integrated framework (Committee of Sponsoring Organisations of the Treadway Commission [COSO]–USA, 2017); ISO 31000:2009 Risk 
management – Principles and guidelines (International Organization for Standardization, 2009); BS 6079-3:2000 Project management – Guide to the management of business 
related project risk (British Standards Institute, 2000); King IV report on governance (Institute of Directors in Southern Africa, 2016).
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Figure 2. Enterprise risk management process  Source: © COSO, 2017. 

For manufacturing and energy industries, these risks may entail consideration of supply chain delays/
disruption, third-party vendors, information technology (IT), staffing and succession planning, emerging markets, 
and productivity and quality issues, among others. Controls can be directed to all exposures to risk (hazard, 
operational, strategic and financial) and can be achieved by implementing policies, standards, procedures and 
physical changes to a workplace. For example, when there is an identified risk of fire, organisations may employ 
physical control measures such as good housekeeping, fireproof materials, sprinkler systems or a no-smoking 
policy. For security risks, control measures may include physical barriers and locks. For IT breaches, there are 
measures such as firewalls, increasing password complexity or moving to two-factor authentication. For fraud 
risks, control measures could include background checks on staff members, segregation of incompatible duties 
or implementing system security to limit access.

5.2 Business continuity management

Each company has a number of critical business functions that must not be interrupted and, if they are, must 
be recovered as quickly and at the lowest possible cost. For such situations, companies develop BC plans whose 
countermeasures against risks are planned in the pre-disaster phase, but have their full development in the post-
disaster phases. Business continuity management (BCM) is a ‘holistic management process that is used to ensure 
that operations continue and that products and services are delivered at predefined levels, that brands and value-
creating activities are protected, and that the reputations and interests of key stakeholders are safeguarded 
whenever disruptive incidents occur’ (ISO, 2012).

Implementing the business continuity plan (BCP) of a company can help sort out this complex decision-making and 
can direct it to establish sufficient countermeasures against risks as a result. A BCP is a ‘document that describes 
how a firm intends to continue carrying out critical business processes in the event of disasters (American Bar 
Association, 2011: page 1). BC planning is also the process of creating systems of prevention and recovery to 
deal with a disaster situation (Elliott et al., 1999). It consists of three stages: (1) risk assessment, including ‘risk 
evaluation’ and ‘business impact analysis’; (2) developing and documenting BCP, including ‘develop recovery 



CHAPTER 3   ASSETS AT RISK AND POTENTIAL IMPACTS 

279

strategy’ and ‘document plan’; and (3) testing, approving, and implementing BCP, including ‘test plan’, ‘approve 
and implement plan’, and ‘maintain plan’ (AIG, 2013: Page 3). BC planning appears closer to preparation for how 
to recover from and/or respond during a disaster (including impact from higher-order effects); however, business 
impact analysis at the first stage can highlight weakness in production processes that are vulnerable to disaster 
scenarios. Therefore, constructing and implementing a BCP is not only critical for minimising the impacts during 
recovery from a disaster but also imperative for determining prevention, preparedness and mitigation strategies 
before such a disaster occur’

Two notes on BCP components (Martínez Torre-Enciso and Casares, 2011) are worth discussing here. Crisis and 
disaster situations usually result in the loss or temporary disruption of one or more of the following necessary 
key business resources: facilities, infrastructure, IT applications/systems, people and supply chain. Developing a 
correct and deep business impact analysis is a key element for a BCP’s success, as it identifies the impact of a 
sudden loss of business functions, and evaluates which are the core and critical business activities that must 
not be disrupted. On other hand, some people think a disaster recovery plan is the same as a BCP, but a disaster 
recovery plan focuses mainly on restoring IT infrastructure and operations after a crisis. It is actually just one part 
of a complete BCP, as a BCP looks at the continuity of the entire organisation. In this way, BCP documentation 
may include (1) a disaster recovery plan, including the loss prevention and control measures and the emergency 
plan; (2) a crisis management plan; and (3) contingency plans.

Manufacturing and energy industries need to have strategic plans in place to ensure that disruptions are avoided 
in the areas of staffing, supplies and machinery; the aim is to recover plant operations. They focus their BCPs 
on recovery strategies and mitigation measures, given the difficulty in finding continuity solutions. On the one 
hand, setting aside alternative sites for them is usually avoided because of the costs involved. In the absence 
of alternative production sites, there are few recovery strategies available to manufacturers. When custom 
construction equipment and assembly lines used cannot be easily replaced, recovery options available are (1) 
slowing down when they feel the impact, by using inventory/buffer storage; (2) selective recovery of production 
lines; and (3) ensuring that the recovery/repair operations are performed quickly. Alternatively, if some equipment 
in their production lines is similar to that of their suppliers, manufacturers that assemble semi-finished products 
may try to resume limited production capacities at their suppliers’ premises.

On the other hand, the ability of having redundancies of production process as a backup for efficiency is a key 
objective for manufacturers, and mitigation strategies are often prioritised. Those measures should focus on 
either preventing or limiting the impact of a disruption, taking into account the production of goods or energy. 
For instance, if there is a fire, the sprinkler system might be activated as a whole, and could damage production 
equipment that were otherwise unaffected by the fire. This can be avoided through the use of localised sprinkler 
discharges so that each sprinkler needs to be independently activated, or the use of a dry delivery sprinkler 
system so that, upon activation, fluids are directed to only the discharge point.

Healy and Malhotra (2009) studied public spending on disaster relief measures and countermeasures, and found 
that every USD 1 spent on preparedness saves the equivalent of USD 15 on relief measures for all future 
disasters. While their study concerns only government spending and its consequences, this tendency for pre-
disaster preparedness to be less costly than post-disaster recovery applies to the private sector, especially 
the manufacturing and energy industries, considering the amount and extent of the higher-order effects on a 
society. At the same time, as discussed above, because the lean production system inherently comprises the risk 
of supply chain disruptions, careful preparation in the BCP for alternative suppliers or supply chain, instead of 
having and/or increasing inventory, should be seriously considered.
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6 Case studies

The impacts related to industries and energy production systems are not limited 
to direct physical damage, but also include business interruptions and cascading 
events hazardous to human life and the environment. This is especially the case 

for the aftermath of natural disasters that affect multiple industries at once.

6.1 The 2013 floods of the Danube and Elbe rivers in Germany

The June 2013 flood was the severest large-scale flood in Germany for the last six decades for which a hydrological 
flood severity had been estimated (Merz et al., 2014). In May 2013, rainfall above the long-term average in many 
parts of central Europe caused severe flooding. In that month, 178 % of the long-term monthly precipitation fell 
across the whole of Germany. The flood began after some areas of Germany experienced a total of over 400 mm 
of rain within a few days. While there was only moderate flooding in the south-west of Germany, the authorities 
in parts of southern Bavaria and Austria declared a full-scale emergency. 

In Upper Bavaria, some areas had to be evacuated after embankments were breached. Eastern Germany, such 
as the states of Saxony, Saxony-Anhalt and Thuringia, was also severely affected, and some rivers flooded towns 
and villages, causing damage to houses and vehicles and forcing the evacuation of almost 100 000 people 
(Munich Re, 2014) (Figure 3).

The floods caused damage to a railway bridge, and the important high-speed rail connection between Berlin and 
the western part of Germany was cut off for several months (Schulte in den Bäumen et al., 2015). Manufacturing 
companies were severely affected: Krones, a global market leader in manufacturing bottling machines, shut down 
production in two plants in Upper Bavaria, because its workers were unable to commute to work on inundated 
roads. Volkswagen in Zwickau had to stop its vehicle production, since its suppliers were unable to deliver the parts 
in time owing to the damage to the transport infrastructure (Wenkel, 2013). Thieken et al. (2013) interviewed 
557 flood-affected companies in order to investigate impacts on economic activities. 

Of those companies, 88 % answered that they were affected by ‘interruption of operations’ by flooding, followed 
by ‘building and/or equipment damage’ and ‘turnover losses’. Manufacturing companies reported more frequently 
than other industries that ‘their own delivery problems’ and ‘delivery problems by suppliers’ affected their 
operations. Because manufacturing companies rely heavily on supply chains for intermediate inputs (parts and 
products), also known as vertical specialisation, once any transportation links and/or nodes are disrupted, suppliers 
cannot reach their customers to deliver their products. This leads to business interruptions to the downstream 
companies/industries, propagating higher-order impacts.

The economic cost of the flooding was estimated at EUR 10 billion in Germany alone (EUR 11.7 billion in the entire 
affected area), while the insured amount was EUR 1.8 billion in Germany (Munich Re, 2014). These numbers are 
estimates of damage, not losses, nor do they include higher-order effects over the surrounding regions. For a 
more comprehensive and broader assessment of the socioeconomic impacts of river floods, Alferi et al. (2016) 
proposed an integrated framework to estimate the economic damage and population affected by river floods 
at a continental scale, in which pan-European river flow simulations are linked with a high-resolution impact 
assessment framework. 



CHAPTER 3   ASSETS AT RISK AND POTENTIAL IMPACTS 

281

Figure 3. Wust-Fischbeck (Saxony-Anhalt) submerged by the river flood in June 2013.
Photographer: Jens Wolf. © European Union, 2020

They applied this framework to the 2013 central Europe floods and derived aggregated estimates of (direct) 
damage in Czechia, Germany, and Austria amounting to EUR 10.9 billion and 360 000 people affected by this 
event. Their framework focuses mainly on simulating physical events (floods) and assessing physical damage, but 
not losses or higher-order effects. Nevertheless, this framework is quite useful to simulate events and monitor 
floods in severe weather conditions. For a more comprehensive evaluation of the event, especially covering a 
larger area, the losses and higher-order effects of the event need to be evaluated.

Employing a multi-regional IO model of Germany (including the 16 Länder of Germany and the rest of the 
world, with 41 types of industry) to simulate the supply chain disruptions, Schulte in den Bäumen et al. (2015) 
estimated that the higher-order effects of this event in Germany, which affected not only the motor vehicle and 
food industries in Germany but also foreign production, amounted to EUR 6.2 billion. The higher-order effects 
on regions and industries outside the flooded areas were around EUR 400 million. Their estimates suggest that 
losses of production in the damaged Länder were EUR 3.1 billion in Bavaria, EUR 750 million in Saxony, EUR 423 
million in Saxony-Anhalt, EUR 398 million in Brandenburg and EUR 394 million in Thüringen. Outside the damaged 
Länder, it is estimated that other economies suffered production losses (higher-order effects) through supply-
chain interruptions: for example, EUR 171 million in North Rhine-Westphalia, EUR 151 million in Lower Saxony, 
EUR 80.2 million in Baden-Württemberg and EUR 42.2 million in Hessen. In addition, economies outside Germany 
lost EUR 33.8 million in forgone production as the higher-order effects through supply-chain interruptions. The 
industries in Bavaria most severely affected by production losses were estimated to be real estate services (EUR 
218 million), transport equipment production (EUR 181 million), ‘other business services’ (EUR 154 million) and 
motor vehicle production (EUR 80.2 million). On the other hand, the industries suffering the largest higher-order 
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effects were motor vehicle production in Baden-Württemberg (EUR 85.7 million), and food industries in North 
Rhine-Westphalia (EUR 84.3 million) and Lower Saxony (EUR 34 million). As their results suggest, the impacts 
(higher-order effects) of the event spread geographically and across industries, especially among manufacturing 
industries, through interindustry supply chain networks.

As the globalised production system and the integrated economy, such as in EU Member States and regions, 
expand, it is essential to consider and evaluate the economic values not only of damage and losses but also of 
higher-order effects, which are becoming more extensive and crucial than before. As discussed in the previous 
subsections, standardising the definition and establishing the extent of higher-order effects are essential for 
implementing effective strategies and countermeasures to minimise such broad impacts. At the same time, 
because of the interconnected production systems of these industries, cooperative measures among related 
firms and with the public sector need to be promoted on a wider geographical scale.

6.2 Industrial accidents triggered by natural hazards

The impacts of natural catastrophes on the industries and energy production systems are not limited to direct 
physical damage and business interruption, but may also involve cascading events hazardous to human life and 
the environment, such as fires, explosions, and toxic or radioactive spills. Such cascading events may amplify the 
overall economic loss with further physical damage, injuries, fatalities, medium- or long-term health problems, 
environmental damage, loss of ecosystem services, business interruption, public unrest and social costs. These 
consequences can be quite substantial, and cost even more than the damage directly caused by the natural hazard. 
For example, the earthquakes of 5 March 1987 in Ecuador (Ms 6.9) caused the destruction of more than 40 km of the 
Trans-Ecuadorian Oil Pipeline in massive landslides triggered by the seismic activity. Approximately 100 000 barrels 
of oil spilled into the environment and the loss of revenue during the 5 months required for repair was USD 800 
million, equal to 80 % of the total earthquake losses (NRC, 1991). Furthermore, if persistent or radioactive hazardous 
materials are also involved, environmental clean-up and restoration activities may require an exceptionally long time 
and enormous resources, as seen at the Fukushima nuclear power plant accident caused by the 2011 east Japan 
earthquake and tsunami.

Known as natural-hazard-triggered technological (natech) accidents, such cascading events are a recurring feature 
in many natural disasters, which affect industries and energy systems that store, handle, or transport hazardous 
substances. One noteworthy example in Europe is the 17 August 1999 Kocaeli earthquake (Mw 7.4), which resulted 
in many natech accidents with significant economic and environmental consequences. The earthquake, which was 
one of the most devastating natural disasters in the modern history of Turkey, caused about 17 500 fatalities, injured 
about 44 000 people, affected 15 million people and resulted in property damage totalling over USD 15 billion. 

The affected area is one of the industrial heartlands of the country and is densely populated and heavily industrialised, 
accounting for 35 % of the gross national product (Özmen, 2000; Durukal and Erdik, 2008). The earthquake caused 
significant damage at numerous industrial facilities (Johnson et al., 2000; Rahnama and Morrow, 2000; Suzuki, 
2002; Sezen and Whittaker, 2006; Durukal and Erdik, 2008), which led to many natech accidents ranging from small 
hazardous substance releases to enormous fires (Steinberg et al., 2001; Steinberg and Cruz, 2004). Among these 
events, two were especially noteworthy owing to their consequences: the huge fire at the Tüpraş İzmit Refinery in 
Korfez, Kocaeli, and the acrylonitrile spill at the Aksa acrylic fibre production plant in Ciftlikkoy, Yalova (Girgin, 2011).

Founded in 1961, the Tüpraş İzmit Refinery had 40 % of the refining capacity in Turkey and was one of the most 
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advanced refineries in the Mediterranean region (Tüpraş, 2010). The fire at the refinery lasted for 5 days and could 
only be extinguished with international support (Danış and Görgün, 2005). 

The Aksa plant, which was constructed in 1971 with a capacity of 5 000 tons per year, had a production capacity of 
230 000 tons per year in 1999. Currently, it is the only acrylic fibre producer in Turkey and it is also the largest in 
the world, with a global market share of 18 % and an annual production capacity of 315 000 tons (Aksa, 2019). The 
spill of 6 500 tons of acrylonitrile, a highly flammable, toxic and carcinogenic substance, harmed domestic animals, 
affected agricultural activities, endangered public health and resulted in environmental pollution that required 5 
years of continuous treatment for reclamation (Bayer, 1999; Zanbak, 2008). 

Both events required the evacuation of the nearby settlements and hampered earthquake search and rescue 
operations. There were also considerable economic losses. In the case of the Tüpraş İzmit Refinery, the majority 
of the units were put back into operation within 3 months after the earthquake, but it required 1 year for all units 
to be functional. The total cost of restoration, including the oil spill cleanup, was about USD 58 million. However, 
the refinery also lost roughly 6 months of its crude oil processing capacity (4.6 million tons) during this period as 
operational losses (Girgin, 2011).

The Tüpraş and Aksa incidents showed that preparedness for large external events, considering the extraordinary 
and highly resource-limited conditions they cause, is critical to prevent and reduce the impacts on industries and 
energy production systems. Existing risk should be assessed taking into account temporal change due to factors 
such as climate change and ageing of the equipment; structural (e.g. strengthening of buildings) and organisational 
(e.g. training of personnel) measures should be implemented properly; and response and recovery plans should be 
prepared, periodically reviewed and practised. Sharing of information and involvement of public and other stakeholders 
in decision-making process are also crucial to limit consequences and increase resilience.

As for the lessons learned from the past natech incidents, analysis of historical incident data for selected industries 
shows that, although natech accidents occur less frequently than accidents from other causes, their economic 
consequences are more severe (Girgin and Krausmann, 2016). In fact, owing to synergistic and cascading effects 
among natural and technological hazards, natech accidents may result in complex consequences involving numerous 
hazardous events over large areas, damaging safety systems and barriers, and destroying lifelines needed for 
emergency management purposes. Therefore, it is essential to quantify the losses not only considering the direct 
damage, but also considering the cascading impacts. This can be challenging even for a single facility; hence, dealing 
with multiple facilities and mutual dependencies is a difficult task. 

The main economic damage potential is attributable to fires and explosions, as they cause direct physical property 
damage. However, depending on the market dynamics, serious losses may also occur through business interruption 
even if the property damage is relatively minor. Occasionally, even the proximity of a hazard without any direct impact 
may lead to losses. For example, wildfires in British Columbia, Canada, in 2017 led the operators to temporarily shut 
down natural gas wells, pipelines and other facilities as a precautionary measure where wildfires came dangerously 
close to operations, leading to costly business interruptions (Marsh, 2018). The industry can transfer these risks 
to third parties using financial tools, such as insurance that covers the losses related to natural hazard impacts or 
business interruptions. But the coverage is usually limited and varies with estimated risk and existing RM practices 
(Olson and Wu, 2010). Safety expenditures are often not self-financing for low-probability high-impact risks such as 
natech risk. Therefore, in order to fill the existing gaps, some legislative or financial support might be necessary from 
the public authorities for the required prevention and mitigation measures (Girgin et al., 2019).
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7 Conclusions and key messages

Disaster risks that manufacturing and energy industries face are rather wide-ranging. They can potentially trig-
ger a disaster from internal causes, such as an industrial accident leading to air or water pollution, while they are 
also threatened by external risks, such as natural hazards and/or other companies’ and/or industries’ accidents. 
Furthermore, in some cases these industries can exacerbate disaster processes, resulting in natech events as 
discussed in the case studies above. Internal risks can be mostly treated through management strategies and 
technological means, whereas external risks are often difficult to predict. Integrating RM and BCM with their 
business operations can potentially reduce and/or mitigate risks, but it is still difficult and costly to prepare prac-
tically for infrequent but catastrophic events and their consequences. This type of event should be dealt with and 
prepared for by the public sector, i.e. various levels of government, through several means, such as regulations, 
subsidies, taxation, and so forth.

Some risk transfer mechanisms, for instance disaster insurance, should be considered together with RM and 
BCM. In the EU, disaster finance has been increasingly linked with insurance regulations (Botzen, 2013), climate 
change adaptation strategies (van Renssen, 2013) and a joint compensation scheme between Member States 
(Hochrainer et al., 2010). For developing such insurance mechanisms and joint compensation schemes for future 
disaster situations, detailed information on the probabilities of natural hazard occurrence and estimates of po-
tential damage are essential (Jongman et al., 2014).

Because manufacturing and energy industries are a vital part of economies and because of the intersections 
of broad production factors (resources, intermediate inputs, labour, land, and money) across industries and over 
space, the implementation of RM and BCM requires a multidisciplinary perspective, involving engineers, man-
agement, finance, economists, and environmentalists. Since the higher-order effects could spread over an entire 
economic system in different ways, and in case environmental damage also results, it is vital to define, and po-
tentially legislate about, to what extent these companies should be responsible in a disaster situation.

Practitioners 

Policymakers should legislate and implement the countermeasures against disaster risks that these industries 
face both in the pre-event phase (regulations for handling hazardous material, pre-arrangement of compen-
sation schemes, mandatory insurance, mandatory RM and BCM, etc.) and in the post-event phase (disaster 
relief, macroeconomic stabilisation, evacuation strategy, etc.), based on the findings and insights from scientific 
findings of disaster research.

Policymakers

 Practitioners of risk management should support the efforts of these industries to install and maintain RM and
 BCM in each firm, encourage and help drills in the pre-event phase, and assist the operation of RM and BCM in
.the post-event phase
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In conclusion, each stakeholder has the following roles for dealing with the disaster risks that manufacturing and 
energy industries face.

More importantly, these four groups of stakeholders should work together to achieve the creation of a sustainable 
society and economy.

Scientists should work together in a multidisciplinary way to understand and anticipate the risks in these indus-
tries and provide perspectives and/or devise countermeasures that mitigate the risks and the consequences. 
More importantly, these four groups of stakeholders should work together to achieve the creation of a sustain-
able society and economy.

Scientists

Citizens need to be aware of the risks that these industries face and their impacts on society, and to understand 
how they can be affected both as workers (supply side) and as consumers (demand side).

Citizens
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