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Polyphase groundmasses (micro-scale minerals with or without glass) are generated from silicate liquids during the
cooling of natural lavas often alongside larger minerals formed long before eruption. Many researchers have posited that
compositions gleaned from the analysis of groundmasses closely approximate the compositions of the melts they were
derived from, and these have been used frequently to model pre-eruptive magma conditions. However, it is difficult to
confidently identify and sample these groundmasses once they are formed. Using a sample of lava that exhibits a wide
degree of textural variation (ranging from holocrystalline to hypohyaline) we show that compositions of groundmasses
sampled using defocused electron beams are significantly different from glass compositions in terms of mean composition
and covariance. Despite this, several groundmass compositions qualify as ‘in equilibrium’ with matrix/rim olivine. When
processed using available thermometers, however, modelled equilibrium temperatures are significantly higher than those
produced using glass data, on average. Because of this, we prescribe caution in using polyphase groundmass data
generated using defocused beam analysis even as a rudimentary approach.
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The application of quantitative petrological methods
such as mineral-melt thermobarometry requires high-quality
compositional data on materials assumed to be in chemical
equilibrium with one another. In practice, petrologists often
encounter non-ideal sample materials when attempting to
quantitatively express the origin(s) of igneous rocks with such
methods. Ideally, when interrogating volcanic rocks for
information on magma storage, they will be made up of
equant and homogeneous crystalline phases set in a
homogeneous glass representing a closed system. In many
cases open system and kinetic processes have affected
natural materials to alter them from their ideal condition, for
example through syn/post-eruptive crystallisation. To sum-
marise the problem, the formation of a groundmass during
the cooling of natural lavas makes it difficult for petrologists

to confidently quantify the petrogenetic condition(s) that
formed the lava under scrutiny using compositional datasets.
How may compositions be gleaned from such sample
materials to accurately express petrogenesis?

One method may be to mechanically separate matrix
fragments for bulk analysis via XRF or ICP-AES. Throughout
this text, matrix is used as an umbrella term for glass and/or
groundmass and is applied to both macro scale (e.g., hand
specimen to mm) and micro scale observations (using either
a petrographic microscope or SEM). This method takes an
exorbitant amount of time with several processing steps (i.e.,
separation, weighing, ignition, fusion and other intermediate
control measures, such as X-ray diffraction analysis).
Importantly, it requires painstaking effort to ensure that
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phases non-representative of the melt sub-system be
excluded during separation (namely large crystals). It also
assumes the absence of foreign materials at the micro-scale
(xenocrysts or micro-xenoliths). The inclusion of such material
could potentially bias compositional data gathered using
bulk methods towards the composition of the contaminant.
Instead, the petrologist may be tempted to use a
microanalytical approach. EPMA offers efficiency, accessibil-
ity and convenience. Sample preparation is limited to
selection, mounting, grinding and polishing, and most
instruments also include an on-board electron microscope
for phase identification and imaging.

Again, two methods are immediately available when
using this microanalytical approach. One method involves
integrating signal intensities over an area of interest using
an electron microprobe equipped with a wavelength
dispersive spectrometer (WDS) to produce quantitative
concentration maps with pixel values representing the mass
fraction of a given element at a given spot on a given
image (Barkman et al. 2013, Donovan et al. 2021). Such
maps are analytically expensive, often requiring multiple
hours for a given suite of elements for a single sample area.
They also require additional post-processing, which enables
the calculation of a melt composition through modelling
(e.g., mass-balance). The analysis of a polyphase ground-
mass may also be accomplished using the same approach
used to analyse natural glass. That is, with a defocused
electron beam.

Defocused beam analysis (DBA) is commonly applied to
natural glasses to mitigate the migration of Na (plus K and
volatile elements) out of the analysis volume during analysis
with a WDS. Frequently, geologists have utilised DBA to
analyse sample groundmasses and create placeholder
compositions that they claim are representative of the
residual melt prior to alteration by syn/post-eruptive crystal-
lisation (e.g., Kimura et al. 2005, Noguchi et al. 2008,
Zellmer et al. 2014, Geiger et al. 2016, Saito et al. 2018).
However, the microanalytical community warns against such
routines (Barkman et al. 2013, Llovet et al. 2021). An under-
lying assumption of quantitative EPMA is that the analysis
volume constitutes a homogeneous domain at the micron-
scale. This assumption enables the correction of signal
intensity using a given matrix correction routine (e.g., the ZAF
procedure, Bence and Albee 1968). The assumption is
violated when a polyphase material is analysed, and error
increases. This is mainly because of averaging correction
factors (Llovet et al. 2021) and probably also as a function of
the size (volume) of the inhomogeneous materials included.
Finally, it is important to note that beam diameters over 20
μm are known to generate poor analyses due to geometry.

X-rays emitted far from the beam centre will be defocused to
the WDS.

Here we present geochemical data gathered from a
New Zealand basalt. These data were gathered on
materials representing the residual melt left after eruption
of the lava. Locally, glass is preserved alongside equant
microcrystalline phases. Elsewhere, pervasive microlite
growth has formed a groundmass phase with little glass
remaining. Datasets representing these texturally distinct
materials are compared with respect to mean composition
and sample covariance, and hypothesis testing conducted
using these data will determine our confidence in the use of
DBA to replicate glass compositions by analysing ground-
mass. Each dataset is also investigated independently using
multivariate statistical methods to further contextualise the
results of the hypothesis tests.

Experiment details

Sample description and preparation

For the present study, a sample of basalt originating from
Rangitoto Island, New Zealand (Figure 1a), was taken from
the rock archive at Massey University, New Zealand. The
rock was sourced from a slab flow emplaced along the
southern edge of the island (-36.808747, 174.860735,
WGS 84). These flows (e.g., Figure 1b) are c. 500 years old
(Needham et al. 2011) and were erupted during the
second phase of magmatism to form the island.

A hammer was used to expose fresh rock surfaces for
further processing. Visibly fresh fragments, which were
observed to contain abundant olivine macrocrysts (Figure 1c)
were either sawed and ground flat for thin sectioning,
mounted in 1-inch rounds of epoxy resin as whole rock
mounts, or further crushed for mineral and matrix separation.
In all cases, fresh rock fragments were ultrasonically treated
in de-ionised water to remove debris and dried overnight at
45 °C. From the crushed material, twenty-four olivine
macrocrysts and six visually glassy matrix fragments were
handpicked to make an additional grain mount. Coarse
grinding to polishing used a series of loose SiC grits,
microdiamond suspensions and an alumina suspension
polishing compound.

Two sample splits were picked for whole rock analysis
from the same batch of crushed material. Under the scrutiny
of a stereomicroscope, approximately 2 g of rock fragments
were gathered indiscriminately and powdered using a
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tungsten-carbide ring mill. This split is referred to as bulk rock.
The second split was gathered while carefully avoiding
olivine macrocryst contamination to represent the matrix of
the rock minus the largest olivine phase. This split

(approximately 1 g) was powdered by hand using a quartz
mortar and pestle, and it is referred to as matrix.

Prior to ignition for XRF spectrometry, the bulk rock and
matrix powders were stored at 110 °C for 2 h, weighed into
alumina crucibles at room temperature, placed into an
atmospheric muffle furnace, and ignited at 900 °C for 5 h.
Once removed from the furnace, we re-weighed the
crucibles after cooling for precisely 10 min to measure loss
on ignition (LOI). Ignited sample powders were then mixed
with a Li-metaborate:Li-tetraborate (12:22) flux in a 1:10
ratio (approximately 0.8 g sample to 8.0 g flux). Fusion and
casting utilised an XRFuse2 electronic fusion apparatus to
produce uniformly thick glass discs for analysis.

Analytical methods and data quality assessment

Whole rock major element composition was quantified
using a 1 kW Bruker Tiger S8 Series II WD-XRF spectrometer
at The School of Agriculture and Environment, Massey
University, New Zealand. Interference-corrected signal
intensities were converted to element oxide mass fractions
using calibration curves consisting of natural reference
materials. The (long-term) intermediate measurement preci-
sion of the instrument was assessed using the basaltic Oreas
24c and granodioritic Oreas 24b reference materials (RMs).
Precision (1s) was typically � 0.5–1.0% for major element
oxides and better than � 3% relative for minor element
oxides, except for P2O5 (� 5–10%).

Chemical compositions for glass, minerals and ground-
mass phases were determined using a Schottky-type JEOL
field emission (FE) JXA-8500F EPMA equipped with five WD
spectrometers at the Institute of Earth Sciences, Academia
Sinica, Taiwan. Back-scattered electron images (BEIs) were
taken at this stage using the on-board SEM. Quantitative
WD spectrometry was operated at an acceleration voltage
of 12 kV with a beam current of 6 nA. A 2 μm spot diameter
was used for mineral analyses, while defocused beam
diameters of 5 or 10 μm were used for glass and
groundmass analysis. Use of a 12 kV acceleration voltage,
in conjunction with a 6 nA current, has been observed to
mitigate beam damage when analysing silicate materials
including potentially hydrous glasses and minerals with the
FE-EPMA. Prior to gathering the data presented here, when
analysed with a 2-μm beam, glass Na2O was observed to
decrease significantly compared with data gathered using 5
and 10 μm spot sizes. Since we observed little variation in
Na2O at these latter beam diameters, we initially concluded
that these latter settings were suitable for mitigating Na2O
migration.

(a)

(b)

(c)

Figure 1. (a) Topographic map of Rangitoto Island

adapted from Land Information New Zealand NZ

Topo50 Map (available under Creative Commons

Attribution 4.0 International – https://data.linz.govt.

nz/license/attribution-4-0-international/). The site

photographed (b) was along the coastline near the red

star (where buildings are indicated). (b) Partially

eroded flow characteristic of the lavas on this coast-

line. (c) Fresh surface of the sample material used in

this study exhibiting olivine macrocrysts, vesicles and

smaller plagioclase meso- and microcrysts. The smal-

lest squares visible on the grid paper in (c) are 1 mm in

diameter.

3© 2024 The Authors. Geostandards and Geoanalytical Research © 2024 International Association of Geoanalysts.
This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

 1751908x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ggr.12546 by A

cadem
ia Sinica, W

iley O
nline L

ibrary on [23/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://data.linz.govt.nz/license/attribution-4-0-international/
https://data.linz.govt.nz/license/attribution-4-0-international/


Measured X-ray intensities were corrected using the PRZ
(Oxide-ZAF, via the on-board JEOL software) method using
a mixed suite of reference materials (RMs) provided by both
JEOL and SPI (Structure Probe, Inc.) Supplies (Table 1). Peak
counting of Kα lines for each element lasted 10 s, while
upper and lower background X-rays were counted for 5 s.
RMs analysed as unknowns yielded relative standard
deviations (1s) of < 1% for Si, Na and K, and < 0.5% for
all other elements. Detection limits (2s) were � 600–800 μg
g-1 for all elements except Si (� 1000 μg g-1).

Results

Sample petrography

Throughout this text, we use the crystal size classification
scheme of Zellmer (2021). Briefly, microlites are 1–30 μm in
width, microcrysts are greater than 30 μm in width but less
than 100 μm in length, mesocrysts are between 100–500
μm in length, and macrocrysts are over 500 μm in length.
The most abundant mineral in this sample is plagioclase
feldspar, which commonly appears both as matrix microlites
and as microcrysts, which are barely visible in hand
specimen (Figure 2). Large olivine macrocrysts commonly
appear in glomerocrysts alongside clinopyroxene and rare
large plagioclase mesocrysts (Figure 2c, d). Olivine microlites
and microcrysts are also commonly observed. The matrix is
both glassy (Figure 2a) and cryptocrystalline (Figure 2c), the
latter of which is probably due to sample thickness, which
was kept relatively thick to enable later microanalysis.

BEIs taken to guide EPMA revealed matrix textures that
were not visible during analysis with a petrographic
microscope (Figure 3). Here, we observed a range of
textures: areas with clean glass and euhedral-subhedral

microcrysts (Figure 3a), areas which experienced incipient
disequilibrium crystallisation producing glass volumes with
compositional gradients (Figure 3b), and areas which
experienced pervasive disequilibrium crystallisation, which
has completely eliminated glass from all but the finest of
interstitial volumes (Figure 3c). In the latter two areas, the
most commonly observed crystals were feathery clinopyrox-
ene microlites, which formed larger blades as exhibited in
Figure 3c. Where these blades have grown particularly
large, skeletal oxides are seen also, whose habit resembles
those of spinels observed in komatiites.

For our purposes, the last texture was determined to be
unsuitable for our microanalytical method due to the size of
the feathery pyroxene microlites and the presence of Fe-Ti
oxides. Instead, EPMA focused on the textures observed in
Figures 3a, b.

Major element compositions and preliminary
data screening

All compositional data used in this study, including major
element compositions, are freely available for download
alongside BEIs and a description of each sample area
through Coulthard Jr. et al. (2023). Analyses of whole rock
samples show that both bulk rock and matrix separates
classify as basalts (Figure 4). Table 2 provides compositions
for both samples. Negative LOI values were measured for
both separates during sample preparation, which we
ascribe to a strong degree of sample oxidation. Thus, we
recalculated iron speciation assuming a proportion of 0.2 for
Fe2O3 (reflecting a system buffered approximately to Ni-
NiO, which has been assumed elsewhere for primitive lavas
of the Auckland Volcanic Field, Brenna et al. 2018) and
report this mass fraction as well as FeO.

Glass/groundmass compositions whose element oxide
totals deviated significantly from 100% (falling beyond a
range of approximately 95–102%, accounting for some
volatile element mass fractions) were assumed to result from
a deficient analysis, and these were discarded outright.
Similarly, analyses of olivine were recalculated based on
stoichiometric constraints using twelve O atoms for the
calculation. Compositions returning model cation totals
deviating significantly from accepted values (greater than
� 0.03) were similarly discarded from consideration. In total,
forty-seven analyses of visually microlite-free glass had
acceptable analytical totals. DBA of partially crystallised
glass produced two additional data populations: one
gathered using a 5 μm beam, which produced 174
acceptable groundmass compositions, and one using a 10

Table 1.
Calibration material information for EPMA

Element Crystal RM name Composition Source
(JEOL/SPI)

Si TAP Wollastonite CaSiO3 JEOL
Ca PETH Wollastonite CaSiO3 JEOL
Ti PET Rutile TiO2 JEOL
Al TAP Corundum Al2O3 JEOL
Cr PET Cr Oxide Cr2O3 JEOL
Fe LiFH Hematite Fe2O3 SPI
Mn PET Mn Oxide MnO JEOL
Mg TAPH Periclase MgO JEOL
Ni LiFH Ni Oxide NiO JEOL
Na TAPH Albite NaAlSi3O8 JEOL
K PETH Orthoclase KAlSi3O8 SPI
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μm wide beam, which produced forty-four compositions.
Glass compositions mainly classify as basalt but a few spots
trend into the trachybasalt field of the total alkali-silica
diagram (Figure 4). On the same plot, we observe that
groundmass sampled via both 5 and 10 μm DBA plot as
basalt, trachybasalt and basaltic trachyandesite. Olivine core
compositions are clearly distinguishable from rim/matrix
olivine in terms of forsterite content (Fo#, calculated using
moles Mg/Mg+Fe, Figure 5) with core composition Fo#
ranging between approximately 0.80–0.83, matrix Fo#
between approximately 0.69–0.72 and rim Fo# trending
slightly higher, from approximately 0.69–0.74. Table 3
contains summary compositional data for the glass,
groundmass and olivine data.

Statistical inferences and hypothesis testing

Together, the glass and groundmass compositions
represent three datasets to be compared against each
other. The two groundmass datasets were grouped based
on whether a 5 or 10 μm wide beam was used. Hereafter,
these datasets are termed DBA-5 and DBA-10, respectively.
Because the following procedure is sensitive to zeros, we
elected to reduce the dimensionality of our data and remove
select minor element oxides (MnO, Cr2O3 and NiO) from
consideration. Thus, our input datasets are comprised of

normalised (to 100%) compositions containing the remain-
ing element oxides: SiO2, TiO2, Al2O3, FeO, MgO, CaO,
Na2O and K2O.

Each dataset must be determined to be normally
distributed in multivariate space prior to any additional
hypothesis testing. To this end, we utilised the Anderson-
Darling normality test (Anderson and Darling 1952) via the
robCompositions package (Templ et al. 2011) on the R
platform (R Core Team 2013). This test implements a Monte
Carlo approach and robust estimates of input sample mean
and covariance to produce normally distributed synthetic
data. Test statistics are then calculated for each of these
distributions and compared with the same statistic calculated
for the input sample data. The p-value (a value between 0
and 1) returned represents the probability of obtaining a test
statistic at least as extreme as the value observed. Low
p-values generally indicate that one should reject the null
hypothesis (that the input data are normally distributed).
Calculated p-values for each dataset are glass= 0.058,
DBA-5 < 0.001, and DBA-10= 0.069. Thus, none of the
datasets are likely to be normally distributed.

It is thought that the inclusion of extreme data (outliers)
reduces the power of statistical inference especially in small
datasets. It is possible that the p-values calculated above led
to type I errors (mistaken rejection of a null hypothesis). To

(a)

(c) (d)

(b)

Figure 2. (a) Plane-polarised image of an olivine mesocryst with an exposed melt inclusion (near orange star) set in

a glassy matrix containing abundant plagioclase microlites and microcrysts. Scale bar is 350 μm. (b) Cross-polarised

image of (a). (c) Glomerocryst containing both olivine macrocrysts (e.g., cyan star), plagioclase mesocrysts and

clinopyroxene mesocrysts (e.g., left of purple star, note simple twinning in cross-polarised image). Scale bar is

1.5 mm. (d) Cross-polarised image of (c).
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assess for this, we checked each dataset for outliers by first
converting each from geochemical data to isometric log
ratio (ILR) coordinates (Egozcue et al. 2003). The ILR
transformation is a necessary step since geochemical data
cannot be interrogated using standard statistical
approaches due to their closed nature (they are parts of a
whole that must sum to an arbitrary constant, see
Chayes 1960, Aitchison 1986). Once transformed, the
estimate of the sample covariance structure is then used to

assess each individual sample for its distance relative to the
centre of the data cloud. This distance is referred to as the
Mahalanobis distance (MD).

MD xið Þ ¼ xi�Tð Þ0C�1 xi�Tð Þ
h i1=2

for i ¼ 1, 2, . . . n (1)

from Filzmoser and Hron (2008), where T and C are the
location and covariance estimators, respectively. Here, T is
the mean and C is the sample covariance matrix. The
distribution of squared MDs calculated for each dataset are
assumed to approximate a χ2 distribution with a given

(a)

(b)

(c)

Figure 3. Backscattered electron image gallery. (a) a

glass-rich fragment (grain E6, area a) mounted

alongside olivine macrocrysts. Analyses marked with *

indicate a 5 μm beam was used, while an arrow

indicates a 2 μm beam was used. Bright minerals (point

8) are olivine, dark lath-shaped minerals are plagio-

clase feldspar, and grey minerals (points 9 and 10) are

clinopyroxene. (b) A glassy area partially affected by

syn/post-eruptive crystallisation. (c) groundmass

wholly altered during slow cooling with little to no

glass preservation. Note the skeletal Fe-Ti oxides in the

interstices between feathery clinopyroxene.

Figure 4. Total alkali-silica diagram. The data shown

here have been screened for outlier compositions, as

described in the Results section.

Table 2.
Whole rock compositions (% m/m)

Bulk rock (1s) Matrix separate (1s)

SiO2 49.79 (0.34) 50.94 (0.35)
TiO2 1.98 (0.06) 2.25 (0.06)
Al2O3 14.90 (0.35) 16.67 (0.39)
FeO 8.99 (0.02) 8.39 (0.02)
Fe2O3 2.50 (0.02) 2.33 (0.02)
MnO 0.17 (< 0.01) 0.16 (< 0.01)
MgO 9.12 (0.38) 5.64 (0.24)
CaO 9.44 (0.05) 9.95 (0.05)
Na2O 3.44 (0.15) 3.84 (0.17)
K2O 0.75 (0.05) 0.86 (0.06)
P2O5 0.31 (0.03) 0.37 (0.03)
LOI -0.72 -0.58
Total 100.67 100.82
Mg# 0.64 0.55
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number of degrees of freedom. Values above a defined
cut-off value, such as the value at the 95% quantile, may be
considered as extreme and therefore identified as outliers.
This work was performed using the outCoDa function from
robCompositions. We assigned a cut-off value at the 95%
quantile and used the ‘robust’ calculation strategy, which
automatically converts input geochemical data into pivot
coordinates (a special kind of ILR coordinates). Figure 6
identifies the outliers on select bivariate plots.

Within the glass dataset (n= 47), sixteen compositions
were determined to be outliers. The DBA-5 dataset
(n= 174) included forty-one outliers, and the DBA-10
dataset (n= 44) included twelve. Once these were
removed, we reperformed the Anderson-Darling normality
tests and produced significantly different p-values:
glass= 0.668, DBA-5= 0.967, and DBA-10= 0.791.
Based on these updated p-values, we fail to reject each
null hypothesis. Thus, outlier removal has probably produced
normally-distributed data, albeit with different degrees of
certainty.

Logically, comparing the means of any two compositions
is a way of assessing whether the input groups are similar in
multivariate space or not. Similarly, comparing sample
covariance matrices assesses for differences in how the
individual element oxides within our datasets vary with one
another. Following this, four hypotheses may be stated
regarding the relationship between any two datasets (after
Pawlowsky-Glahn et al. 2015):

(1) The sample means and covariance matrices being
compared are insignificantly different from one another;

(2) The sample means being compared are significantly
different from one another, and their covariance matrices
are insignificantly different from one another;

Figure 5. Bivariate chart exhibiting change in olivine

composition. High MgO olivine have Fo#s near 0.82,

while meso-/microcryst cores and macrocryst rims have

lower Fo#s between 0.70–0.77.

Table 3.
Representative compositions for matrix datasets and olivine

Melt compositions Olivine compositions

Glass DBA-5 DBA-10 Macrocryst core Mesocryst core Microcryst/rim

n 47 174 44 38 2 12
SiO2 50.35 50.48 50.82 39.58 38.73 37.60
** (0.46) (0.70) (0.88) (0.45) (0.35) (0.40)
TiO2 3.33 3.42 3.46 b.d.l. b.d.l. b.d.l.
** (0.17) (0.21) (0.27)
Al2O3 12.74 12.74 12.64 b.d.l. b.d.l. b.d.l.
** (0.12) (0.52) (0.74)
FeOTotal 12.79 12.91 12.52 16.43 21.48 26.49
** (0.42) (1.48) (1.67) (0.47) (0.08) (0.84)
MgO 4.39 4.25 3.95 43.29 39.55 34.93
** (0.11) (0.80) (0.81) (0.42) (0.57) (0.84)
CaO 8.91 9.18 9.13 0.24 0.31 *0.40
** (0.20) (1.15) (1.18) (0.03) (0.05) (0.07)
Na2O 3.57 3.67 4.16 b.d.l. b.d.l. b.d.l.
** (0.23) (0.55) (0.42)
K2O 1.20 1.29 1.28 b.d.l. b.d.l. b.d.l.
** (0.04) (0.23) (0.30)
Total 97.29 97.93 97.96 99.59 100.19 99.12
Mg# 0.38 0.37 0.36 0.82 0.77 0.70

* Secondary fluorescence probably affects this value.
** Lines below values in parenthesis are 1s uncertainties on the above value.
b.d.l. = Below detection limit.
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(3) The sample means being compared are insignificantly
different from one another, and their covariance matrices
are significantly different from one another;

(4) The sample means and covariance matrices being
compared are significantly different from one another.

Hypothesis 4 is termed the “general” hypothesis by
Pawlowsky-Glahn et al. (2015). Each of the other three
hypotheses was tested against it as null hypotheses. Intuitively,
and following the arguments of many of the authors who
have used DBA to approximate melt compositions in the past,
one may expect to find similar mean compositions for the
glass and either DBA dataset but differences in the way the
elements co-vary within each dataset. This is hypothesis 3
above. Using any two pairs of means and covariance
matrices, combined/pooled sample estimates were calcu-
lated according to Pawlowsky-Glahn et al. (2015). All
calculations described below were taken from chapter 7.3
of Pawlowsky-Glahn et al. (2015), who adapted operations
given by (Krzanowski 2000) for compositional data.

These hypothesis tests follow the generalised likelihood
ratio test. Considering the maximised likelihood function of
any ILR-transformed data under a given null hypothesis,
L0(XILR) and the general hypothesis, Lg(XILR), the test statistic
may be approximated.

R XILR
� �

¼ Lg X ILR
� �

=L0 XILR
� �

(2)

The larger the value of R(XILR), the less likely we are to
reject the null hypothesis. Here, the exact distribution of R(XILR)
is unknown. Thus, we used Wilks’ asymptotic approximation.
Concerning the null hypothesis, the test statistic may be re-
written.

Q XILR
� �

¼ 2ln R XILR
� �� �

(3)

It follows that this test statistic is distributed approximately
as χ2(c), where c is the number of constraints from the input
parameters. The c values used here were calculated using
Table 7.1 of Pawlowsky-Glahn et al. (2015), and the test
statistics calculated here were compared against critical
values taken from the upper-tail of a non-centred χ2

distribution at 95% confidence.

Based on this testing procedure, we rejected each null
hypothesis in favour of the general hypothesis when
comparing each pair of datasets (summary statistics are
provided in Table 4). Thus, we can say with 95% confidence
that the sample means and covariance matrices calculated
for each dataset (glass, DBA-5 and DBA-10) may be treated
as unique and that by extension neither dataset produced

Figure 6. Bivariate plots illustrating select relationships within the glass, DBA-5 and DBA-10 datasets. Multivariate

outliers are illustrated as red points.
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using DBA can be said to approximate the glass data
structure.

Principal component analysis

It is not obvious, based on univariate observations (e.g.,
Figure 6), which geochemical features distinguish the glass
data from the DBA-5 and DBA-10 datasets besides minute
(and probably spurious) differences in covariation. Principal
component analysis (PCA) offers a practical and efficient
method of reducing the dimensionality of our datasets such
that the internal covariation is illustrated on compositional
biplots. Normalised compositions were transformed into
centred log ratio (CLR) coordinates (Aitchison 1986) prior to
PCA. There are advantages and disadvantages to either
transformation, but for our purposes we selected the CLR
transformation since it is easier to contextualise the results of
PCA in terms of the original input variables (i.e., in terms of
individual element oxide variation and covariations). The
CLR transformation was performed using the compositions
package (van den Boogaart et al. 2008), and PCA data are
illustrated using the Factoextra (Kassambara and
Mundt 2020) and FactoMineR (Lê et al. 2008) packages
via R.

Figure 7 illustrates how variance is distributed between
the PCs for each dataset and is a gross illustration of the

quality of our PCA procedure. The goal is to compress as
much variance in as few PCs as possible. These scree plots
show that PCs 1–4 explain 86.7% of the variance in the
glass dataset. Meanwhile, the same PCs explain 89.2 and
96.9% of the variance in the DBA-5 and DBA-10 datasets,
respectively. Thus, most of the information under scrutiny has
been compressed into four dimensions.

Compositional biplots (Figure 8) show which elements
are represented the most by which PCs as well as which
elements correlate with one another in the context of any two
plotted PCs. Warm coloured eigenvectors indicate good
representation, while cooler colours represent poorer
representation. If two eigenvectors are sub-parallel, then this
indicates positive correlation between those two variables. If
they are opposite one another, then anticorrelation is
indicated, and if they are set at a right angle to one
another, then non-correlation may be inferred.

Regarding PCs 1 and 2, which contain most of the
variance in any dataset, the glass biplot (Figure 8a) illustrates
strong anticorrelation between Na and K, anticorrelation
between Ca and Fe + Ti (the latter two are weakly
represented by these PCs), non-correlation between Na and
Ca, Ca and K, and weak correlation between Ca, Al and Si,
and between Fe and Ti. Variation of Mg, Fe and Ti are much
better represented by PCs 3 and 4 (Figure 8b), with these
three elements non-correlating with one another. The biplots

Table 4.
Test statistics for glass-groundmass data comparisons

Null Hypothesis Parameters for χ2 distribution Test statistics*

Degrees of freedom Critical value DBA-5 DBA-10

Same Mean and Covariance 35 22 362 419
Diff. Mean, Same Covariance 28 17 334 327
Same Mean, Diff. Covariance 7 2 70 81

* To be compared with the Critical value.
italicised = reject Null Hypothesis.

Figure 7. Scree plot detailing the distribution of variance between principal components 1–7 for the glass, DBA-5

and DBA-10 datasets.
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for DBA-5 and DBA-10 (Figure 8c, d) provide similar
information. In particular, the elements best represented by
PCs 1 and 2 on these biplots are Mg, Ca, Al and Si, with Na
following. Broadly, Mg and Ca correlate within both
datasets as do Al, Si and Na (more so in the DBA-10
dataset). Variation in K, Ti and Fe are poorly represented by
these PCs, which together explain nearly 70% of the
variance in each dataset.

Discussion

Differences between the glass and DBA datasets

Succinctly, our analysis has shown that DBA of a
polyphase groundmass derived from a melt of a given
composition probably does not reproduce the composition
of glass quenched from that same melt based on the

hypothesis tests summarised in Table 4. This indicates that a
significant difference in terms of both mean and covariance
distinguish these datasets from one another. Both DBA
datasets are highly scattered in compositional space
compared with the glass data (Figures 4 and 6). Thus, the
precision of DBA, as investigated here using the same or
similar analytical conditions as glass analysis, is much worse
for any given element oxide when analysing a polyphase
groundmass. Furthermore, differences in how individual
element oxides correlate with one another (Figure 8) are
maximised when considering the glass and DBA datasets
separately. Within the glass dataset, correlation between Ca,
Al and Si may be attributed to plagioclase fractionation.
Since there is little to no correlation between Mg and Ca,
there is probably little effect from clinopyroxene crystallisation
on the glass dataset. This contrasts with correlation observed
within the DBA datasets. Here, Mg and Ca are strongly
correlated, which indicates that clinopyroxene fractionation
probably sets these data apart. This is consistent with the

Figure 8. Compositional biplots detailing how variance is distributed for certain elements among certain principal

components. For the glass dataset, since a significant portion of variance is distributed between the first four

principal components, two biplots (a and b) are included. For the other two datasets, single biplots are included,

which explain a majority of the variance. (c) Biplot for DBA-5, and (d) is the biplot for DBA-10. The colours represent

how well the variance contributing to the principal components is represented by the elements under scrutiny with

warmer colours denoting better representation. For example, see the difference in colour for MgO, FeO and TiO2

between plots (a) and (b). These element oxides are better represented in by principal components 3 and 4 in (b), as

the warmer colours represent this.
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observation that the primary phase grown during cooling is
feathery pyroxene (Figure 3b). The influence of plagioclase
fractionation persists here as well with Na replacing Ca on
the biplot (Figure 8c, d).

Based on these observations, we posit that the magma
erupted during the formation of Rangitoto Island was actively
growing plagioclase feldspar during ascent and eruption
but that clinopyroxene growth was limited. Clinopyroxene
growth initiated under a depressed thermal gradient and
led to the modification of the interstitial melt to form a
polyphase groundmass characterised by the presence of
feathery pyroxene. This late stage of growth caused fine-
scale heterogeneity in the local melt composition, which is
evidenced by the appearance of mass fraction gradients in
glass (Figure 3b). Fine scale glass heterogeneity, when
sampled with the 5 and 10 μm electron beams, probably
produced data that form a mixing array in multi-dimensional
space.

If our hypothesis testing were conducted using a lower
confidence interval (e.g., at 67% confidence instead of 95%
confidence), then perhaps our testing would indicate similar
means between the glass and DBA dataset(s). This is
significant because we have by no means exhausted our
analytical capabilities in testing DBA. It could be the case
that, with refinement to the analytical conditions, DBA could
be better constructed to accurately replicate glass compo-
sitions. What we show here is that they cannot be replicated
using a similar analytical approach to routine glass analysis.

Regarding covariance, we see no reason to treat these
datasets as similar in any significant way. This is bolstered by
our PCA, which has shown that there are significant
differences in the variances and correlations of individual
element oxides between the glass and groundmass
datasets.

Alternatively, the cause for the differences between the
glass and groundmass datasets could be ascribed to error
accrual during measurement. Random error is accrued by
the application of DBA to a polyphase groundmass. This is
an unavoidable consequence of this method. Functionally,
what occurs is an analysis of not one but multiple discrete
volumes of material simultaneously. Thus, the analytical
volume is always heterogeneous. Ideally, separate matrix
correction factors must be calculated for each of these
discrete volumes, but this cannot occur when X-rays are
being collected within a single point. Thus, the calculated
correction factors average out, which is the underlying
reason for the random error (Llovet et al. 2021). Additionally,
based on Figure 4, several analyses of the groundmass

produced compositions with lower SiO2 than the whole rock
composition. This is only possible if these analysis volumes
were focused primarily on olivine or on Fe-Ti oxides. This
reflects human error, as these analyses represent biased
compositions that are too different from the melt composition
(at any point during differentiation) to be representative.
More careful placement of analysis points should refine the
DBA datasets. Another source of error could lie in choosing
an improper beam size. Smaller beam sizes applied to a
matrix with relatively large microlites could produce data
with biased compositions like we observe here. Increasing
beam size would increase the probability of sampling a
representative matrix volume. This would decrease differ-
ences in analytical background as well, which produces
analyses with different signal intensities for certain elements.
These differences point to a potential solution to DBA in
beam size. This would necessitate a distinct analytical routine
than that used for glass analysis.

On the utility of DBA for petrological modelling

Given glass and groundmass data represent distinct
data structures, it would be injudicious to simply treat them as
equivalent for the purpose of petrological modelling. Here,
we will perform thermometry using both glass and
groundmass compositions (along with paired olivine ana-
lyses) in the same way any petrologist might in order to
investigate and detail differences in the results obtained from
a straightforward application of thermometry.

Figure 9 is an olivine-liquid equilibrium diagram that is
commonly used to identify potential input data for

Figure 9. Olivine-liquid equilibrium diagram. The grey

line on this chart denotes a distribution coefficient of

0.3, which is commonly taken as the equilibrium

distribution coefficient of Mg and Fe between olivine

and melt. The finely dashed line represents a 0.03 (1s)

envelope around this line, while the coarsely dashed

line represents a 0.06 (2s) envelope.
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thermometry. The solid line on this diagram represents
mineral-melt pairs grown under equilibrium conditions
following the observation that Mg and Fe partition between
the 2 phases such that (FeO/MgO)olivine/(FeO/MgO)melt =
0.30 � 0.03 (1s, Roeder and Emslie 1970). When pairing
olivine macrocryst core compositions with the bulk rock
composition, we observe that these data plot within this error
envelope at the highest end of the diagram. This observation
favours an equilibrium condition for the primitive end-
member of our geochemical dataset. Zoned olivine micro-
cryst cores pair well with the matrix composition at lower
Mg#. The matrix composition obtained using XRF is too high
in Mg to pair with olivine microlites or macrocryst rims at the
low end of the diagram. Because of this, we must use either
glass or groundmass compositions near the microlites/rims
themselves. Plotting select pairs shows that there are indeed
potential equilibrium pairs within our dataset. Further
modelling utilised pairs that plot within 2s of the 0.30 line
(eleven pairs in total). Unfortunately, our matrix separation at
the macro scale has failed to produce a melt composition in
equilibrium with the least forsteritic olivine in our dataset. This
is unsurprising considering how small the mineral phases are
in this sample.

To keep our modelling simple, since in-depth petrolog-
ical modelling is beyond the scope of this publication, we
assume (1) that the difference between the analytical total of
the melt composition used during modelling and a perfect
total of 100% is due to the presence of water, (2) that this
water is magmatic in origin, and (3) a system pressure of
100 MPa, since the crust at Rangitoto Island is 25 � 2 km
(Stern et al. 1987). We utilised equation 22 from Putirka
(2008) and these conditions to calculate magmatic
temperatures for each olivine-liquid pair that passed our
test for equilibrium using Figure 9. These data are plotted in
Figure 10 alongside their estimated water mass fractions.

We observe contrast between temperatures estimated
using olivine-groundmass pairs and olivine-glass pairs.
Olivine-groundmass pairs produced temperature estimates
ranging from 1073–1136 °C (five pairs, mean= 1105 �
23 °C, 1s), while olivine-glass pairs produced estimates
ranging from 1058–1089 °C (six pairs, mean= 1072 �
12 °C, 1s). Thermometry results are summarised in Table 5.

The reason the groundmass compositions produce
higher temperature estimates when paired with matrix or
rim olivine is because of lower input melt water mass fraction,
which is produced by lower average analytical total deficits.
The reason groundmass compositions return higher analyt-
ical totals is probably because the groundmass analyses
were performed on areas with a larger proportion of
nominally anhydrous material (pyroxene). Based on the
difference between mean temperature estimates (33 °C), we
note that a significantly different thermometry result is
produced via the substitution of a groundmass composition
for a glass composition (at 68% confidence). However, if 2
standard deviations are considered for each population of
thermometry data, then we observe overlap in these
distributions. Thus, we cannot ascribe a high degree of
certainty to the differences observed within the thermometry
model output.

Conclusions

We have shown that compositional data generated
using routine electron probe methods produce significantly

Figure 10. Estimates of temperature and melt water

mass fraction from thermometric modelling.

Table 5.
Thermometry results

Olivine
analysis
and point

Glass/
groundmass
and point(s)

H2O
(% m/m)

Temperature
(°C)

Rim Analysis;
B3c-33

Groundmass;
B3c-39:43

1.2 1136

Rim Analysis; B6-1 Groundmass;
B6a-13:22

2.4 1073

Microlite; B6c-83 Groundmass;
B6c-87-94

2.1 1102

Microlite; B6c-84 Groundmass;
B6c-87-94

2.1 1103

Rim Analysis; C6-8 Glass; C6-27:28 2.0 1084
Rim Analysis; C6-8 Groundmass;

C6-23:24
1.0 1111

Microlite; D1-10 Glass; D1-11 3.2 1061
Microlite; D2aa-22 Glass; D2aa-11 2.7 1058
Microlite; E2a-3 Glass; E2a-11:12 3.5 1062
Microlite; E2a-4 Glass; E2a-16,

19, 20
2.7 1080

Microlite; E3a-1 Glass; E3a-13:16 2.8 1073
Microlite; E6a-7 Glass; E6a-1:4 2.2 1089
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different data structures when analysing volcanic glass and
polyphase groundmasses produced from a melt of the same
composition as that of the glass. These data structures are
significantly different in terms of both mean composition and
covariance, which indicates that they must be approached
with caution when utilising them for petrological modelling.

On average, temperature estimates produced using
olivine-glass pairs are 33 °C lower than those produced
using olivine-groundmass pairs. We show this is primarily
due to differences in estimated melt water mass fraction for
each set of pairs. This error is significant considering any
single equilibrium olivine-melt pair produces a temperature
estimate with a standard error of 29 °C.

We consider that the methods we have employed are
likely to be widely used at least as a preliminary measure in
petrological modelling. If that is the case, then we must
prescribe caution when using defocused beam analysis to
assess a polyphase groundmass composition (when using
the same recipe and beam size as during glass analysis).
The results of such a routine cannot be treated as the same
as those produced using defocused beam analysis of a
uniform and relatively homogeneous material like glass.

Unfortunately, our approach using bulk methods (i.e.,
separation of whole and matrix rock for X-ray fluorescence
analysis) produced results that were biased towards olivine-
rich compositions. Our ability to screen mineral phases from
the matrix separate proved insufficient, as the matrix
composition is not in equilibrium with the least forsteritic
olivine. We consider that this is certainly not always going to
be the case and that matrix separation for other rock types
(e.g., tephras) is likely to see higher rates of success. In the
end, we conclude that, without distinct methodological
development, defocused beam analysis is an inferior
technique to quantitative WDS mapping for quantifying
the bulk composition of polyphase groundmass
compositions.
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S., Gudmundsson Ó., Tryggvason A., Krumbholz M. and
Harris C. (2016)
Magma plumbing for the 2014–2015 Holuhraun
eruption, Iceland. Geochemistry, Geophysics, Geosystems,
17, 2953–2968.

Kassambara A. and Mundt F. (2020)
Factoextra: Extract and visualize the results of multivariate
data analyses. R package version 1.0.7.

Kimura M., Weisberg M.K., Lin Y., Suzuki A., Ohtani E.
and Okazaki R. (2005)
Thermal history of the enstatite chondrites from silica
polymorphs. Meteoritics and Planetary Science, 40, 855–
868.

Krzanowski W. (2000)
Principles of multivariate analysis. Oxford University Press
(Oxford), 586pp.
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