論文

査読有り 筆頭著者 責任著者 本文へのリンクあり
2013年3月20日

Bayesian Network Model that Infers Purchase Probability in an Online Shopping Site

Journal of Advanced Computational Intelligence and Intelligent Informatics
  • Yutaka Matsushita
  • ,
  • Syunsuke Maeda

17
2
開始ページ
221
終了ページ
226
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.20965/jaciii.2013.p0221
出版者・発行元
Fuji Technology Press Ltd.

In order to understand the properties of online shopping that contribute to visitors’ purchasing habits, we have developed a Bayesian network model that infers the probability of purchase from eye movement and web log data. The results obtained from this model imply that a short visit time on catalog pages and a high frequency of fixation on all pages are related to increased purchase probability. Furthermore, it is shown that websites conforming to Internet Usability Guidelines (IUG)make visitors feel little stress regardless of browsing patterns, and that websites not conforming to IUG require a very short visit time on catalog pages if low stress is to be maintained.

リンク情報
DOI
https://doi.org/10.20965/jaciii.2013.p0221 本文へのリンクあり
URL
https://www.fujipress.jp/main/wp-content/themes/Fujipress/phyosetsu.php?ppno=JACII001700020011
ID情報
  • DOI : 10.20965/jaciii.2013.p0221
  • ISSN : 1343-0130
  • eISSN : 1883-8014

エクスポート
BibTeX RIS