論文

査読有り
2014年10月

Inhibition of N-type Ca2+ channels ameliorates an imbalance in cardiac autonomic nerve activity and prevents lethal arrhythmias in mice with heart failure

CARDIOVASCULAR RESEARCH
  • Yuko Yamada
  • Hideyuki Kinoshita
  • Koichiro Kuwahara
  • Yasuaki Nakagawa
  • Yoshihiro Kuwabara
  • Takeya Minami
  • Chinatsu Yamada
  • Junko Shibata
  • Kazuhiro Nakao
  • Kosai Cho
  • Yuji Arai
  • Shinji Yasuno
  • Toshio Nishikimi
  • Kenji Ueshima
  • Shiro Kamakura
  • Motohiro Nishida
  • Shigeki Kiyonaka
  • Yasuo Mori
  • Takeshi Kimura
  • Kenji Kangawa
  • Kazuwa Nakao
  • 全て表示

104
1
開始ページ
183
終了ページ
193
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1093/cvr/cvu185
出版者・発行元
OXFORD UNIV PRESS

Aims Dysregulation of autonomic nervous system activity can trigger ventricular arrhythmias and sudden death in patients with heart failure. N-type Ca2+ channels (NCCs) play an important role in sympathetic nervous system activation by regulating the calcium entry that triggers release of neurotransmitters from peripheral sympathetic nerve terminals. We have investigated the ability of NCC blockade to prevent lethal arrhythmias associated with heart failure.
Methods and results We compared the effects of cilnidipine, a dual N- and L-type Ca2+ channel blocker, with those of nitrendipine, a selective L-type Ca2+ channel blocker, in transgenic mice expressing a cardiac-specific, dominant-negative form of neuron-restrictive silencer factor (dnNRSF-Tg). In this mouse model of dilated cardiomyopathy leading to sudden arrhythmic death, cardiac structure and function did not significantly differ among the control, cilnidipine, and nitrendipine groups. However, cilnidipine dramatically reduced arrhythmias in dnNRSF-Tg mice, significantly improving their survival rate and correcting the imbalance between cardiac sympathetic and parasympathetic nervous system activity. A beta-blocker, bisoprolol, showed similar effects in these mice. Genetic titration of NCCs, achieved by crossing dnNRSF-Tg mice with mice lacking CACNA1B, which encodes the alpha 1 subunit of NCCs, improved the survival rate. With restoration of cardiac autonomic balance, dnNRSF-Tg; CACNA1B(+/-) mice showed fewer malignant arrhythmias than dnNRSF-Tg; CACNA1B(+/+) mice.
Conclusions Both pharmacological blockade of NCCs and their genetic titration improved cardiac autonomic balance and prevented lethal arrhythmias in a mouse model of dilated cardiomyopathy and sudden arrhythmic death. Our findings suggest that NCC blockade is a potentially useful approach to preventing sudden death in patients with heart failure.

リンク情報
DOI
https://doi.org/10.1093/cvr/cvu185
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000343317000019&DestApp=WOS_CPL
ID情報
  • DOI : 10.1093/cvr/cvu185
  • ISSN : 0008-6363
  • eISSN : 1755-3245
  • Web of Science ID : WOS:000343317000019

エクスポート
BibTeX RIS