Misc.

Dec, 2013

Strong Quadrupole-Strain Interaction of Vacancy Orbital in Boron-Doped Czochralski Silicon

JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
  • Kazuki Okabe
  • ,
  • Mitsuhiro Akatsu
  • ,
  • Shotaro Baba
  • ,
  • Keisuke Mitsumoto
  • ,
  • Yuichi Nemoto
  • ,
  • Hiroshi Yamada-Kaneta
  • ,
  • Terutaka Goto
  • ,
  • Hiroyuki Saito
  • ,
  • Kazuhiko Kashima
  • ,
  • Yoshihiko Saito

Volume
82
Number
12
Language
English
Publishing type
DOI
10.7566/JPSJ.82.124604
Publisher
PHYSICAL SOC JAPAN

We have carried out ultrasonic measurements of a boron-doped silicon ingot grown by the Czochralski method in order to determine the quadrupole-strain interaction constant of a vacancy orbital. The low-temperature softening of the elastic constant C-44 shows a remarkable variation depending on positions of the ingot, which reflects the distribution of vacancy concentration N in the ingot. An infrared laser scattering tomograph was employed to measure the density and size of voids in the silicon wafers by determining the vacancy concentration N-cons consumed in void formation. Using a combination of laser scattering tomography and low-temperature softening, we have found a sum rule in which the initially created vacancy concentration N-total corresponds to the sum of the residual vacancy concentration N and the consumed vacancy concentration N-cons as N-total N + N-cons. Taking account of the sum rule, we deduce the interaction constant g(Gamma 5) = (2.8 +/- 0.2) x 10(5) K for the quadrupole-strain interaction H-QS = -g(Gamma 5)O(zx)epsilon(zx) of the vacancy orbital. The huge deformation energy of 1.6 x 10(5) K per vacancy with the Gamma(8) ground state for unit strain epsilon(zx) = 1 verified the strong electron-lattice interaction of the vacancy orbital. Employing the one-to-one correspondence between the softening of Delta C-44/C-44 = 1.0 x 10(-4) down to 30 mK and the vacancy concentration of N = 1.5 x 10(13) cm(-3), we can determine the vacancy concentration by low-temperature ultrasonic measurements. The present work surely puts forward a novel semiconductor technology based on low-temperature ultrasonic measurements for evaluating vacancy concentration in silicon wafers.

Link information
DOI
https://doi.org/10.7566/JPSJ.82.124604
CiNii Articles
http://ci.nii.ac.jp/naid/110009756849
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000327350700025&DestApp=WOS_CPL
ID information
  • DOI : 10.7566/JPSJ.82.124604
  • ISSN : 0031-9015
  • CiNii Articles ID : 110009756849
  • identifiers.cinii_nr_id : 1000010303174
  • Web of Science ID : WOS:000327350700025

Export
BibTeX RIS