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Abstract. We consider the variable selection problem of generalized linear
models (GLMs). Stability selection (SS) is a promising method proposed for solv-
ing this problem. Although SS provides practical variable selection criteria, it is
computationally demanding because it needs to fit GLMs to many re-sampled
datasets. We propose a novel approximate inference algorithm that can conduct
SS without the repeated fitting. The algorithm is based on the replica method
of statistical mechanics and vector approximate message passing of information
theory. For datasets characterized by rotation-invariant matrix ensembles, we
derive state evolution equations that macroscopically describe the dynamics of
the proposed algorithm. We also show that their fixed points are consistent
with the replica symmetric solution obtained by the replica method. Numeri-
cal experiments indicate that the algorithm exhibits fast convergence and high
approximation accuracy for both synthetic and real-world data.
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1. Introduction

Modern statistics require the handling of high-dimensional data. The term high-
dimensional refers to the situation where the ratio of the number of measurements and
the number of the parameters is of order 1. Among the many tasks in high-dimensional
statistics, variable selection of statistical models is a notoriously difficult problem. In
high-dimensional settings, standard sparse regression methods, including the least abso-
lute shrinkage and selection operator (LASSO) method [1], suffer from the problem of
choosing the regularization parameter. Although re-sampling methods, such as stabil-
ity selection (SS) [2], can provide much more accurate variable selection criteria, these
methods require substantial computational costs.
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As an example, let us consider variable selection in logistic regression. In this regres-
sion, we have a dataset D = {(aμ, yμ)}Mμ=1 , where each aμ = (aμ1, aμ2, . . . , aμN)

� ∈ R
N

is an N -dimensional vector of features or predictors, and each yμ ∈ {−1, 1} is the
associated binary response variable. We denote by � the matrix/vector transpose.
The response variables are independently generated based on a true parameter x0 =
(x0,1, x0,2, . . . , x0,N)

� ∈ R
N as

yμ ∼ 1

1 + e−a�μ x0
δ(yμ − 1) +

1

1 + ea
�
μ x0

δ(yμ + 1), μ = 1, 2, . . . ,M. (1)

We denote by supp(x 0) = {i|x0,i �= 0, i = 1, 2, . . . ,N} the support of x 0. The goal of vari-
able selection is to estimate supp(x 0) from the dataset D. In high-dimensional settings,
a simple strategy is to use �1 regularized logistic regression or LASSO [1]. LASSO seeks
an estimator of x 0 as

x̂(γ,D) = arg min
x∈RN

[
−

M∑
μ=1

log
1

1 + e−yμa�μ x
+ γ

N∑
i=1

|xi|
]
, (2)

where γ > 0 is a parameter that controls the strength of the �1 regularizer. The �1
regularization term γ

∑N
i=1 |xi| allows LASSO to select variables by shrinking a part of

the estimated parameters exactly to 0. For any given regularization parameter γ, LASSO
estimates supp(x 0) as

Ŝ(γ,D) ≡ {i|x̂i(γ,D) �= 0, i = 1, 2, . . . ,N} . (3)

Unfortunately, this estimated support Ŝ (γ,D) depends strongly on the choice of the
regularization parameter γ in real-world datasets. Hence, choosing the regularization
parameter for variable selection can be more challenging than for prediction of the
response variable where cross-validation is guaranteed to offer the optimal choice on
average if features are generated independently from an identical distribution [3].

SS was proposed for tackling this difficulty. We denote by D∗ =
{(a∗

1, y
∗
1), (a

∗
2, y

∗
2), . . . , (a

∗
M , y∗M)} a resampled dataset of size M drawn with replacement

from D. For this resampled dataset, the resampling probability Πi(γ) that the variable
i is included in the estimated support is given by

Πi(γ) = ProbD∗ [x̂i(γ,D
∗) �= 0] . (4)

The probability in (4) is with respect to the random resampling and it equals the relative
frequency for x̂i(γ,D

∗) �= 0 over all MM resampled dataset with size M . The probability
in (4) can be approximated by B random samples D∗

1,D
∗
2, . . . ,D

∗
B (B should be large):

Πi(γ) �
1

B

B∑
b=1

�

(
x̂i(γ,D

∗
b) �= 0

)
, (5)

where �(. . .) is the indicator function. This probability is termed the selection probability
and measures the stability of each variable. SS chooses variables that have large selection
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Figure 1. Left: the LASSO solutions x̂(γ,D) based on (2) for the colon cancer
dataset with M = 62 and N = 2000. The vertical line corresponds to the cross-
validation optimal regularization parameter. The red-dashed lines represent vari-
ables chosen by the cross-validation procedure. The non-zero variables strongly
depend on the choice of the regularization parameter γ. Right: the selection proba-
bility Π(λ0) based on (6). The selection probability is less dependent on the choice
of γ0, indicating that choosing the regularization parameter is less critical than the
naive LASSO.

probabilities. The original literature [2] combined the above resampling procedure with
the randomization of the regularization parameter γ as follows

Πi(γ0) = ProbD∗,γ [x̂i(γ,D
∗) �= 0] , i = 1, 2, . . . ,N , (6)

x̂(γ,D∗) = arg min
x∈RN

[
−

M∑
μ=1

log
1

1 + e−y∗μ(a∗μ)�x
+

N∑
i=1

γi|xi|
]
, (7)

γi ∼
1

2
δ(γi − γ0) +

1

2
δ(γi − 2γ0), i = 1, 2, . . . ,N. (8)

Figure 1 illustrates the comparison of the LASSO solution (2) and the selection prob-
ability (6). Here we used the colon cancer dataset [4]. The task is to distinguish cancer
from normal tissue using the micro-array data with N = 2000 features per example.
The data were obtained from 22 normal (yμ = −1) and 40 (yμ = 1) cancer tissues. The
total number of the samples is M = 62. The left panel of figure 1 shows the LASSO
solutions for the various regularization parameters. Non-zero variables depend strongly
on γ. Choosing the proper value of γ is difficult for the original LASSO. Although
the cross-validation can optimize the prediction for the response variable, this choice
often includes false positive elements [5]. The right panel of figure 1 shows the selection
probability for various γ0 in (8). This figure motivates that choosing the regularization
parameter γ0 is much less critical for the selection probability and that the selection
probability approach has a better chance of selecting truly relevant variables.

A major drawback of SS is its computational cost. SS repeatedly solves the �1 reg-
ularized logistic regression in (7) for multiple resampled datasets and regularization
parameters. The number of resampled datasets and regularization parameters B needs
to be large so that the selection probability is reliably estimated.
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In this study, we address the problem of this computational cost. We propose a
novel approximate inference algorithm that can conduct SS without repeated fitting.
The algorithm is based on the replica method [6] of statistical mechanics and vec-
tor approximate message passing (VAMP) [7, 8] of information theory. We term our
algorithm replicated VAMP (rVAMP).

The rest of the paper is organized as follows. In section 2, we describe SS in general-
ized linear models (GLMs) that we will focus on, and in section 3, we derive the proposed
algorithm using the replica method and VAMP. In section 4, we analyze the proposed
algorithm in a large system limit under the assumption that the set of features is char-
acterized by rotation-invariant matrix ensembles. There, we derive the state evolution
for self-averaging rVAMP that macroscopically describes the convergence dynamics of
rVAMP in an approximate manner, and show that its fixed point is consistent with the
replica symmetric solution. In section 5, we apply the proposed algorithm to logistic
regression. Through numerical experiments, we confirm the validity of our theoreti-
cal analysis and show that the proposed algorithm exhibits fast convergence and high
approximation accuracy for both synthetic and real-world data. The final section is
devoted to a summary and conclusion.

1.1. Related work

Malzahn and Opper first proposed a combination of the replica method and approxi-
mate inference to reduce the computational cost of resampling methods [9–11]. They
demonstrated that employing the adaptive Thouless–Anderson–Palmer (TAP) method
[12, 13], as an approximate inference algorithm, can accurately estimate the bootstrap
generalization error for Gaussian process classification/regression. However, the poor
convergence of this method is a major flaw of their approach. The adaptive TAP method
is based on a naive iteration of TAP equations. The literature in information theory has
revealed that the convergence property of such naive iteration scheme is terribly bad [8,
14, 15]. Thus it requires to find a correct choice of initial conditions. As an algorithm,
the adaptive TAP method is undesirable because approximate inference aims to save
computation time.

The aforementioned algorithmic problem has been significantly improved by the
discovery of approximate message passing (AMP) algorithms in information theory.
This type of algorithms was first introduced as an efficient signal processing algorithm
[16]. [16] analyzed its convergence dynamics in a large system limit and showed its fast
convergence. [16] also revealed that the fixed point of the AMP algorithm shares the
same fixed point with the corresponding TAP equation, and thus, AMP can be used as
an efficient algorithm to solve the TAP equation. Subsequently, [14, 17] developed its
mathematically rigorous analysis. These rigorous analyses were further generalized in
[18, 19]. However, the above analyses are based on the assumptions that the elements
of the feature vectors are independently and identically distributed (i.i.d.) zero-mean
random variables, which is not realistic in the context of statistics. To go beyond such
simple distributions, VAMP and similar generalizations [7, 8, 20] were developed based
on expectation propagation (EP) of machine learning [21, 22]. Under the assumption
that feature matrices, whose rows are composed of each feature vectors, are drawn from
rotation-invariant random matrix ensembles, VAMP algorithms were analyzed in a large
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system limit. These analyses derived the convergence dynamics of the VAMP algorithms
and revealed that their fixed points are consistent with the corresponding adaptive TAP
equations [7, 8, 23–26]. In this paper, we extend such VAMP algorithms to replicated
systems for approximately performing SS in GLMs.

[27] proposed an AMP-based approximate resampling algorithm for SS. However,
the algorithm assumes independence between the features and was developed for linear
regression only. A preliminary application of VAMP to SS in linear regression was also
demonstrated [28]. In the present study, we further generalize the use of VAMP to
GLMs, and also carry out a theoretical analysis of this method.

1.2. Notations

Here we introduce some shorthand notations used throughout the paper. We denote
by [ωi]1�i�N a vector ω = (ω1,ω2, . . . ,ωN)

� ∈ R
N . Similarly, we denote by [Ωμi] 1�μ�M

1�i�N

an M ×N matrix whose μith entry is Ωμi. For an integer n = 1, 2, . . . , we denote
by 1n = (1, 1, . . . , 1) ∈ R

n a constant vector. For integers n ∈ N,m ∈ Z, and vec-
tors ω = [ωi]1�i�n,ψ = [ψi]1�i�n, we denote by ω/ψ = [ωi/ψi]1�i�n and ωm = [ωm

i ]1�i�n

component-wise operations. Finally, 〈ω〉 ≡
∑n

i=1 ωi/n.

2. Stability selection in generalized linear models

In the following, we consider SS in generalized linear regression/classification. We
have a dataset D = {(aμ, yμ)}Mμ=1, where each aμ = (aμ1, aμ2, . . . , aμN)

� ∈ R
N is an N -

dimensional vector of features or predictors, and each yμ ∈ Y ⊂ R is the associated
response variable. The domain of the response variables Y includes R for regression and
{−1, 1} for classification. We also use matrix/vector notations A = [aμi] 1�μ�M

1�i�N
∈ R

M×N

and y = (y1, y2, . . . , yM)� ∈ YM .
Let D∗ = {(a∗

1, y
∗
1), . . . , (a

∗
M , y∗M)} be a resampled dataset composed ofM data points

drawn with replacement from D. Some data point (aμ, yμ) in D appears multiple
times in D∗, and while others do not appear at all. SS in generalized linear regres-
sion/classification computes the selection probability Π ∈ [0, 1]N by repeatedly refitting
GLMs py|z for multiple resampled datasets and regularization parameters:

Πi(γ0) = ProbD∗,γ [x̂i(γ,D
∗) �= 0] , i = 1, 2, . . . ,N , (9)

x̂(γ,D∗) = arg min
x∈RN

[
−

M∑
μ=1

log py|z(y
∗
μ|(a∗

μ)
�x) +

N∑
i=1

γi|xi|
]
, (10)

γi ∼
1

2
δ(γi − γ0) +

1

2
δ(γi − 2γ0), i = 1, 2, . . . ,N , (11)

where γ0 > 0 is a control parameter that determines the amount of the regularization.
The goal of this paper is to develop a computationally efficient algorithm that returns
Π(γ0) for any positive γ0.
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3. Replicated vector approximate message passing

To approximate the computation of the selection probability Π, we will use the replica
method and VAMP. This section provides a derivation of the proposed algorithm.

3.1. Occupation vector representation of sampling with replacement

For convenience, let us introduce the occupation vector representation of the resampled
dataset D∗. The resampled dataset D∗ is composed of M data points sampled from
D with replacement. Hence, it can be represented by a vector of occupation numbers
c = (c1, c2, . . . , cM)� ∈ {0, 1, . . . ,M}M with

∑M
μ=1 cμ = M , where cμ is the number of

times that the data point (aμ, yμ) appears in D∗. Although the strict distribution of

c is the multinomial distribution, for large M , the correlation among {cμ}Mμ=1 is weak.
By ignoring this correlation, we can approximate the distribution of c by a product of
Poisson distribution with mean 1 [9] as:

p(c) �
M∏
μ=1

e−1

cμ!
. (12)

In this way, we can rewrite the average with respect to D∗ by the average over the
random variable c ∈ {0, 1, . . .}M that follows the probability distribution (12), which is
simple and easy to handle.

3.2. Statistical mechanical formulation of stability selection

The selection probability Π in (9) is defined through the optimization problem in (10).
To use techniques of statistical mechanics and approximate inference algorithm, we
introduce the Boltzmann distribution as

p(β)(x, z ; c,γ,D) =
1

Z(β)(c,γ,D)
δ(z− Ax)

M∏
μ=1

py|z(yμ|zμ)βcμ
N∏
i=1

e−βγi|xi|, (13)

Z(β)(c,γ,D) =

∫
δ(z− Ax)

M∏
μ=1

py|z(yμ|zμ)βcμ
N∏
i=1

e−βγi|xi|dxdz, (14)

where x ∈ R
N , z ∈ R

M , β > 0 is the inverse temperature, and Z is the partition function.
The random variables γ and c follow distributions (11) and (12), respectively. Then
the selection probability can be written using the Boltzmann distribution at the zero-
temperature limit as follows:

Πi(γ0) = Ec,γ [�(x̂i(c,γ) �= 0)] , i = 1, 2, . . . ,N , (15)

x̂i(c,γ) = lim
β→∞

∫
xip

(β)(x, z ; c,γ,D)dxdz. (16)

https://doi.org/10.1088/1742-5468/ababff 7
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In the rest of the paper, we will omit the argument D when there is no risk of confusion
to avoid cumbersome notation. Still, note that we calculate the above quantities only
for the fixed dataset D.

3.3. Replica method for semi-analytic approximate resampling method

Our purpose is to compute the selection probability Π(γ0) for any γ0 > 0. For this, we
compute the distribution of x̂i:

p(mi) = Ec,γ [� (mi − x̂i (c,γ))] , (17)

which is reduced to computing the moments Ec,γ [x̂
r
i (c,γ)] for any r = 1, 2, . . . . We now

describe how the replica method can be used for this purpose, following the approach
of [9].

We use drx = dx 1dx 2 . . .dx r to denote a measure over R
N×r, with

x1 = (x1,1, . . . , x1,N)
�, . . . , xr = (xr,1, . . . , xr,N)

�. Analogously, we denote by
drz = dz 1dz 2 . . .dz r as a measure over R

M×r, with z1 = (z1,1, . . . , z1,M)�, . . . , zr =
(zr,1, . . . , zr,M)�. Using the definition (16), the moments Ec,γ [x̂

r
i (c,γ)] can be formally

written as2

Ec,γ

[
x̂r
i (c,γ)

]
= lim

β→∞
Ec,γ

[∫ r∏
s=1

xs,i

r∏
s=1

p(β)(xs, zs)d
rxdrz

]

= lim
β→∞

∫ r∏
s=1

xs,iEc,γ

[
r∏

s=1

{
1

Z(β)(c,γ)
δ(zs − Axs)

×
M∏
μ=1

py|z(yμ|zs,μ)βcμ
N∏
i=1

e−βγi|xs,i|

}]
drxdrz, (18)

which is difficult to evaluate analytically due to the presence of the partition function
that depends on c and γ in the denominator. The replica trick [6] bypasses this problem
via an identity limn→0Z

n−r = Z−r. Using this identity, (18) is formally re-expressed as

Ec,γ

[
x̂r
i (c,γ)

]
= lim

n→0
lim
β→∞

A(β)
i,n , (19)

where

A(β)
i,n =

∫ r∏
s=1

xs,iEc,γ

[(
Z(β)(c,γ)

)n−r
r∏

s=1

{
δ(zs − Axs)

×
M∏
μ=1

py|z(yμ|zs,μ)βcμ
N∏
i=1

e−βγi|xs,i|

}]
drxdrz. (20)

2 Since the aim of this paper is not to provide rigorous analysis, we assume that the exchange of limits, integrals, etc, such as
Ec,γ [limβ→∞ . . . ] = limβ→∞Ec,γ [. . . ], are possible throughout the paper without further justification.
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The advantage of this formula is that for integers n � r, the negative power of the
partition function (Z(β)(c,γ))−r is eliminated by an integral with respect to n repli-
cated variables. More precisely, using the definition of the partition function (14), we
obtain

A(β)
i,n = Ξn

∫ r∏
s=1

xs,i
1

Ξn

n∏
s=1

δ(zs − Axs)
M∏
μ=1

Ecμ

[
n∏

s=1

py|z(yμ|zs,μ)βcμ
]

×
N∏
i=1

Eγi

[
n∏

s=1

e−βγi|xs,i|

]
dnxdnz, (21)

where Ξn is the normalization constant

Ξn =

∫ n∏
s=1

δ(zs − Axs)

M∏
μ=1

Ecμ

[
n∏

s=1

py|z(yμ|zs,μ)βcμ
]

N∏
i=1

Eγi

[
n∏

s=1

e−βγi|xs,i|

]
dnxdnz. (22)

The expression (21) is much easier to evaluate than the negative power of the partition
function. We call the probability density function given by

p(β)({xs}ns=1, {zs}ns=1) =
1

Ξn

n∏
s=1

δ(zs −Axs)
M∏
μ=1

Ecμ

[
n∏

s=1

py|z(yμ|zs,μ)βcμ
]

×
N∏
i=1

Eγi

[
n∏

s=1

e−βγi|xs,i|

]
, (23)

the replicated system. Note that by construction limn→0Ξn = 1.
In this way, we have replaced the original problem with computing first moments

of the replicated system (23). Of course, we would not expect that we could compute
the moments exactly. Otherwise we should have obtained the exact solution without

using the replicas. The replica method evaluates a formal expression of limβ→∞A(β)
i,n

for n = r + 1, r + 2, . . . .under appropriate approximations, and then extrapolates it as
n→ 0.

To obtain a formal expression of limβ→∞A(β)
i,n , the following observation is critical.

Because the replicated system (23) is merely a product of the n-copied systems, it is
intrinsically invariant under any permutations of {(x 1, z 1), (x 2, z 2), . . . , (x n, z n)}. This
property is termed the replica symmetry. From this property, de Finetti’s representation
theorem [29] guarantees that the replicated system (23) is expressed as

p(β)({xs}ns=1, {zs}ns=1) =

∫ n∏
s=1

p(β)(xs, zs|η)p(β)(η)dη, (24)

where η is a vector of some random variables that reflects the effects of c and γ. This

expression indicates that A(β)
i,n is reduced to a considerably simple form
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A(β)
i,n =

∫ (∫
xip

(β)(x, z|η)dxdz
)r(∫

p(β)(x, z|η)dxdz
)n−r

p(β)(η)dη

=

∫ (∫
xip

(β)(x, z|η)dxdz
)r

p(β)(η)dη, (25)

that can be easily extrapolated as n→ 0. The second equality follows from the nor-
malization condition

∫
p(β)(x , z |η)dxdz = 1. Thus by obtaining tractable approximate

densities for p(β)(x , z |η) and p(β)(η) in (24), we can obtain an arbitrary degree of the
moment without refitting3.

3.4. Replica symmetric Gaussian expectation propagation in the replicated system

To approximate the replicated system (23), we will use the Gaussian diagonal EP of
machine learning [21, 22] that is used to derive VAMP in [8]. For i = 1, 2, . . . ,N and
μ = 1, 2, . . . ,M , let x̃i and z̃μ ∈ R

n be (x1,i, x2,i, . . . , xn,i)
� ∈ R

n and
(z1,μ, z2,μ, . . . , zn,μ)

� ∈ R
n, respectively. The Gaussian diagonal EP recursively updates

the following two approximate densities:

p
(β)
1 ({xs}ns=1, {zs}ns=1) ∝

M∏
μ=1

Ecμ

[
n∏

s=1

py|z(yμ|zs,μ)βcμ
]

N∏
i=1

Eγi

[
n∏

s=1

e−βγi|xs,i|

]

×
N∏
i=1

e−
1
2 x̃

�
i Λ

(β)
1x,ix̃i+(h

(β)
1x,i)

�x̃i

M∏
μ=1

e−
1
2 z̃

�
μΛ

(β)
1z,μz̃μ+(h

(β)
1z,μ)

�z̃μ

︸ ︷︷ ︸
p̃
(β)
1 ({xs}ns=1,{zs}ns=1)

, (26)

p
(β)
2 ({xs}ns=1, {zs}ns=1) ∝

n∏
s=1

δ(zs − Axs)

×
N∏
i=1

e−
1
2 x̃

�
i Λ

(β)
2x,ix̃i+(h

(β)
2x,i)

�x̃i

M∏
μ=1

e−
1
2 z̃

�
μΛ

(β)
2z,μz̃μ+(h

(β)
2z,μ)

�z̃μ

︸ ︷︷ ︸
p̃
(β)
2 ({xs}ns=1,{zs}ns=1)

, (27)

where Λ
(β)
1x,i, Λ

(β)
2x,i, Λ

(β)
1z,μ, Λ

(β)
2z,μ ∈ R

n×n and h
(β)
1x,i,h

(β)
2x,i,h

(β)
1z,μ,h

(β)
2z,μ ∈ R

n are natural parame-
ters of the Gaussians. The first approximation is a factorized distribution but contains
the original non-Gaussian factors. The second approximation is a multivariate Gaussian
distribution that replaces the non-Gaussian factors by the factorized Gaussians. Both
of these distributions are tractable but ignore either the interactions or non-Gaussian
factors. To include both the interactions and non-Gaussian factors, EP determines the
natural parameters using the following moment-matching conditions:

3Of course, the replica symmetry may not hold for n /∈ N. In such cases, we have to include the effect of the replica symmetry
breaking [6]. However, we restrict ourselves to the replica symmetric case for simplicity.
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xs,ip

(β)
1 dnxdnz =

∫
xs,ip

(β)
2 dnxdnz =

∫
xs,ip̃

(β)
1 p̃

(β)
2 dnxdnz, (28)∫

zs,μp
(β)
1 dnxdnz =

∫
zs,μp

(β)
2 dnxdnz =

∫
zs,μp̃

(β)
1 p̃

(β)
2 dnxdnz, (29)∫

xs,ixt,ip
(β)
1 dnxdnz =

∫
xs,ixt,ip

(β)
2 dnxdnz =

∫
xs,ixt,ip̃

(β)
1 p̃

(β)
2 dnxdnz, (30)∫

zs,μzt,μp
(β)
1 dnxdnz =

∫
zs,μzt,μp

(β)
2 dnxdnz =

∫
zs,μzt,μp̃

(β)
1 p̃

(β)
2 dnxdnz, (31)

for any i = 1, 2, . . . ,N , μ = 1, 2, . . . ,M , and s, t = 1, 2, . . . ,n. Schematically, the update

rule of EP is depicted in algorithm 1. There, the density p̃
(β)
1 p̃

(β)
2 is used to the moment-

matching condition in lines 10–17 and 25–33.
The critical issue is to choose an appropriate form of the natural parameters in (26)

and (27). Based on the observations in section 3.3, we impose the replica symmetry for
these parameters:

Λ
(β)
1x,i =

⎛
⎜⎝βQ̂1x,i − β2v̂1x,i −β2v̂1x,i

. . .

−β2v̂1x,i βQ̂1x,i − β2v̂1x,i

⎞
⎟⎠ , (32)

Λ
(β)
2x,i =

⎛
⎜⎝βQ̂2x,i − β2v̂2x,i −β2v̂2x,i

. . .

−β2v̂2x,i βQ̂2x,i − β2v̂2x,i

⎞
⎟⎠ , (33)

Λ
(β)
1z,μ =

⎛
⎜⎝βQ̂1z,μ − β2v̂1z,μ −β2v̂1z,μ

. . .

−β2v̂1z,μ βQ̂1z,μ − β2v̂1z,μ

⎞
⎟⎠ , (34)

Λ
(β)
2z,μ =

⎛
⎜⎝βQ̂2z,μ − β2v̂2z,μ −β2v̂2z,μ

. . .

−β2v̂2z,μ βQ̂2z,μ − β2v̂2z,μ

⎞
⎟⎠ , (35)

h
(β)
1x,i = βh1x,i1N , (36)

h
(β)
2x,i = βh2x,i1N , (37)

h
(β)
1z,μ = βh1z,μ1M , (38)

h
(β)
2z,μ = βh2z,μ1M. (39)

With these parameterizations, we use Q̂1x = (Q̂1x,1, Q̂1x,2, . . . , Q̂1x,N )
� for the vector

notation. Q̂2x, Q̂1z, Q̂2z, v̂1x, v̂2x, v̂1z, v̂2z,h1x,h2x,h1z, and h 2z are defined similarly. These
parameterizations allow the extrapolation n→ 0 as follows.
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Algorithm 1. Expectation propagation.

Require: Approximate densities p
(β)
1 , p

(β)
2 and the number of iterations T iter.

1: Select initial Λ
(β)
1x,i, Λ

(β)
1z,μ,h

(β)
1x,i, and h

(β)
1z,μ

2: for t = 1, 2, . . . ,T iter do

3: // Factorized part (moment computation for p
(β)
1 )

4: for i = 1, 2, . . . ,N ,μ = 1, 2, . . . ,M do

5: x̂
(β)
1,i =

∫
x̃ip

(β)
1 dnxdnz

6: ẑ
(β)
1,μ =

∫
z̃μp

(β)
1 dxdz

7: V
(β)
1x,i =

∫
x̃ix̃

�
i p

(β)
1 dnxdnz− (x̂

(β)
1,i )(x̂

(β)
1,i )

�

8: V
(β)
1z,μ =

∫
z̃μz̃

�
μ p

(β)
1 dnxdnz− (ẑ

(β)
1,μ)(ẑ

(β)
1,μ)

�

9: end for
10: // Moment-matching (1→ 2)
11: for i = 1, 2, . . . ,N ,μ = 1, 2, . . . ,M do

12: update Λ
(β)
2x,i, Λ

(β)
2z,μ,h

(β)
2x,i and h

(β)
2z,μ so that the density p̃

(β)
1 p̃

(β)
2 has the same

moment with p
(β)
1 calculated in line 4–9

13: h
(β)
2x,i = (V

(β)
1x,i)

−1x̂
(β)
1,i − h

(β)
1x,i

14: h
(β)
2z,μ = (V

(β)
1z,μ)

−1ẑ
(β)
1,μ − h

(β)
1z,μ

15: Λ
(β)
2x,i = (V

(β)
1x,i)

−1 − Λ
(β)
1x,i

16: Λ
(β)
2z,μ = (V

(β)
1z,μ)

−1 − Λ
(β)
1z,μ

17: end for

18: // Gaussian part (moment computation for p
(β)
2 )

19: for i = 1, 2, . . . ,N ,μ = 1, 2, . . . ,M do

20: x̂
(β)
2,i =

∫
x̃ip

(β)
2 dnxdnz

21: ẑ
(β)
2,μ =

∫
z̃μp

(β)
2 dxdz

22: V
(β)
2x,i =

∫
x̃ix̃

�
i p

(β)
2 dnxdnz− (x̂

(β)
2,i )(x̂

(β)
2,i )

�

23: V
(β)
2z,μ =

∫
z̃μz̃

�
μ p

(β)
2 dnxdnz− (ẑ

(β)
2,μ)(ẑ

(β)
2,μ)

�

24: end for
25: // Moment-matching (2→ 1)
26: for i = 1, 2, . . . ,N ,μ = 1, 2, . . . ,M do

27: update Λ
(β)
1x,i, Λ

(β)
1z,μ,h

(β)
1x,i and h

(β)
1z,μ so that the density p̃

(β)
1 p̃

(β)
2 has the same

moment with p
(β)
2 calculated in line 19–24

28: h
(β)
1x,i = (V

(β)
2x,i)

−1x̂
(β)
2,i − h

(β)
2x,i

29: h
(β)
1z,μ = (V

(β)
2z,μ)

−1ẑ
(β)
2,μ − h

(β)
2z,μ

30: Λ
(β)
1x,i = (V

(β)
2x,i)

−1 − Λ
(β)
2x,i

31: Λ
(β)
1z,μ = (V

(β)
2z,μ)

−1 − Λ
(β)
2z,μ

32: end for
33: end for

34: return Λ
(β)
1x,i, Λ

(β)
2x,i, Λ

(β)
1z,μ, Λ

(β)
2z,μ and h

(β)
1x,i,h

(β)
2x,i,h

(β)
1z,μ,h

(β)
2z,μ.
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For ηx,i, ηz,μ ∈ R, let φ
(β)
x,i and φ

(β)
z,μ be

φ
(β)
x,i =

1

β
log

∫
exp

(
−β

Q̂1x,i

2
x2 + β(h1x,i +

√
v̂1x,iηx,i)x− βγi|x|

)
dx, (40)

φ(β)
z,μ =

1

β
log

∫
exp

(
−β

Q̂1z,μ

2
z2 + β(h1z,μ +

√
v̂1z,μηz,μ)z + βcμ log py|z(yμ|z)

)
dz. (41)

We also denote by Dx = e−x2/2/
√
2π the standard Gaussian measure, and by Diagm(x )

a diagonal matrix with [Diagm(x)]ii = xi. The use of the replica symmetric parameter-
izations (32)–(39) yields the following expressions for the moments and the moment-
matching conditions that are used in line 10–17 and 25–33 in algorithm 1. First, for the

approximate density p
(β)
1 , we obtain∫

xs,ip
(β)
1 dnxdnz = x̂1,i, (42)∫

xs,ixt,ip
(β)
1 dnxdnz = v1x,i + x̂2

1,i, s �= t, (43)∫
x2
s,ip

(β)
1 dnxdnz =

χ1x,i

β
+ v1x,i + x̂2

1,i, (44)∫
zs,μp

(β)
1 dnxdnz = ẑ1,μ, (45)∫

zs,μzt,μp
(β)
1 dnxdnz = v1z,μ + ẑ21,μ, s �= t, (46)∫

z2s,μp
(β)
1 dnxdnz =

χ1z,μ

β
+ v1z,μ + ẑ21,μ, (47)

where

x̂1,i =

Eγi

[∫ ∂φ
(β)
x,i

∂h1x,i
eβnφ

(β)
x,i Dηx,i

]
Eγi

[∫
eβnφ

(β)
x,i Dηx,i

] , (48)

χ1x,i =

Eγi

[∫ ∂2φ
(β)
x,i

∂h21x,i
eβnφ

(β)
x,i Dηx,i

]
Eγi

[∫
eβnφ

(β)
x,i Dηx,i

] , (49)

v1x,i =

Eγi

[∫ (
∂φ

(β)
x,i

∂h1x,i

)2

eβnφ
(β)
x,i Dηx,i

]

Eγi

[∫
eβnφ

(β)
x,i Dηx,i

] −

⎛
⎜⎜⎝
Eγi

[∫ ∂φ
(β)
x,i

∂h1x,i
eβnφ

(β)
x,i Dηx,i

]
Eγi

[∫
eβnφ

(β)
x,i Dηx,i

]
⎞
⎟⎟⎠

2

, (50)
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ẑ1,μ =

Ecμ

[∫ ∂φ
(β)
z,μ

∂h1z,μ
eβnφ

(β)
z,μDηz,μ

]
Ecμ

[∫
eβnφ

(β)
z,μDηz,μ

] , (51)

χ1z,μ =

Ecμ

[∫ ∂2φ
(β)
z,μ

∂h21z,μ
eβnφ

(β)
z,μDηz,μ

]
Ecμ

[∫
eβnφ

(β)
z,μDηz,μ

] , (52)

v1z,μ =

Ecμ

[∫ (
∂φ

(β)
z,μ

∂h1z,μ

)2

eβnφ
(β)
z,μDηz,μ

]

Ecμ

[∫
eβnφ

(β)
z,μDηz,μ

] −

⎛
⎜⎜⎝
Ecμ

[∫ ∂φ
(β)
z,μ

∂h1z,μ
eβnφ

(β)
z,μDηz,μ

]
Ecμ

[∫
eβnφ

(β)
z,μDηz,μ

]
⎞
⎟⎟⎠

2

, (53)

Next, for the approximate density p
(β)
2 , we obtain∫

xs,ip
(β)
2 dnxdnz = x̂2,i, (54)∫

xs,ixt,ip
(β)
2 dnxdnz = v2x,i + x̂2

2,i, s �= t, (55)∫
x2
s,ip

(β)
2 dnxdnz =

χ2x,i

β
+ v2x,i + x̂2

2,i, (56)∫
zs,μp

(β)
2 dnxdnz = ẑ2,μ, (57)∫

zs,μzt,μp
(β)
2 dnxdnz = v2z,μ + ẑ22,μ, s �= t, (58)∫

z2s,μp
(β)
2 dnxdnz =

χ2z,μ

β
+ v2z,μ + ẑ22,μ, (59)

where

x̂2 =
(
Diagm(Q̂2x) +A�Diagm(Q̂2z)A

)−1 (
h2x + A�h2z

)
, (60)

χ2x,i =

[(
Diagm(Q̂2x) + A�Diagm(Q̂2z)A

)−1
]
ii

, (61)

v2x,i =

[(
Diagm(Q̂2x) + A�Diagm(Q̂2z)A

)−1 (
Diagm(v̂2x) +A�Diagm(v̂2z)A

)
×

(
Diagm(Q̂2x) +A�Diagm(Q̂2z)A

)−1
]
ii

, (62)

ẑ2 = A�x̂2, (63)

χ2z,μ =

[
A
(
Diagm(Q̂2x) + A�Diagm(Q̂2z)A

)−1

A�
]
μμ

, (64)
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v2z,μ =

[
A
(
Diagm(Q̂2x) + A�Diagm(Q̂2z)A

)−1 (
Diagm(v̂2x) + A�Diagm(v̂2z)A

)
×

(
Diagm(Q̂2x) +A�Diagm(Q̂2z)A

)−1

A�
]
μμ

. (65)

Finally, the moment-matching conditions are written as

h2x,i =
x̂1,i

χ1x,i

− h1x,i +O(n), h1x,i =
x̂2,i

χ2x,i

− h2x,i +O(n), (66)

Q̂2x,i =
1

χ1x,i

− Q̂1x,i +O(n), Q̂1x,i =
1

χ2x,i

− Q̂2x,i +O(n), (67)

v̂2x,i =
v1x,i
χ2
1x,i

− v̂1x,i +O(n), v̂1x,i =
v2x,i
χ2
2x,i

− v̂2x,i +O(n), (68)

h2z,μ =
ẑ1,μ
χ1z,μ

− h1z,μ +O(n), h1z,μ =
ẑ2,μ
χ2z,μ

− h2z,μ +O(n), (69)

Q̂2z,μ =
1

χ1z,μ

− Q̂1z,μ +O(n), Q̂1z,μ =
1

χ2z,μ

− Q̂2z,μ +O(n), (70)

v̂2z,μ =
v1z,μ
χ2
1z,μ

− v̂1z,μ +O(n), v̂1z,μ =
v2z,μ
χ2
2z,μ

− v̂2z,μ +O(n), (71)

In all of the above expressions, the indices i and μ run as i = 1, 2, . . . ,N and μ =
1, 2, . . . ,M , respectively. χx and χz are termed susceptibility. vx and v z are termed
variance. Clearly, these equations can be easily extrapolated as n→ 0.

Inserting the limiting form of these quantities at n→ 0, β →∞ into the algorithm
1, we obtain rVAMP in algorithm 2. There, g 1x, g 1z, g

′
1x and g ′

1z are denoising functions
and their derivatives. These are defined as follows:

g1x(h1x, Q̂1x, v̂1x ;γ,ηx) = [g1x(h1x,i, Q̂1x,i, v̂1x,i ; γi, ηx,i)]1�i�N , (72)

g′1x(h1x, Q̂1x, v̂1x ;γ,ηx) = [g′1x(h1x,i, Q̂1x,i, v̂1x,i ; γi, ηx,i)]1�i�N , (73)

g1z(h1z, Q̂1z, v̂1z ; c,ηz, y) = [g1z(h1z,μ, Q̂1z,μ, v̂1z,μ ; cμ, ηz,μ, yμ)]1�μ�M , (74)

g′1z(h1z, Q̂1z, v̂1z ; c,ηz, y) = [g′1z(h1z,μ, Q̂1z,μ, v̂1z,μ ; cμ, ηz,μ, yμ)]1�μ�M , (75)

where

g1x(h1x,i, Q̂1x,i, v̂1x,i ; γi, ηx,i) =
h1x,i +

√
v̂1x,iηx,i − γi sign(h1x,i +

√
v̂1x,iηx,i)

Q̂1x,i

× �

(∣∣∣h1x,i +
√

v̂1x,iηx,i

∣∣∣ > γi

)
, (76)

g′1x(h1x,i, Q̂1x,i, v̂1x,i ; γi, ηx,i) =
1

Q̂1x,i

�

(∣∣∣h1x,i +
√

v̂1x,iηx,i

∣∣∣ > γi

)
, (77)
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g1z(h1z,μ, Q̂1z,μ, v̂1z,μ ; cμ, ηz,μ, yμ) = argmax
z∈R

[
−Q̂1z,μ

2
z2 +

(
h1z,μ

+
√

v̂1z,μηz,μ

)
z + cμ log py|z(yμ|z)

]
, (78)

g′1z(h1z,μ, Q̂1z,μ, v̂1z,μ ; cμ, ηz,μ, yμ) =
∂g1z(h1z,μ, Q̂1z,μ, v̂1z,μ ; cμ, ηz,μ, yμ)

∂h1z,μ
. (79)

If the likelihood py|z is differentiable with respect to z, g′1z can be written as

g′1z(h1z,μ, Q̂1z,μ, v̂1z,μ ; cμ, ηz,μ, yμ) =

[
Q̂1z,μ − cμ

∂2 log py|z(yμ|z)
∂z2

∣∣∣∣
z=g1z

]−1

. (80)

Because the averages with respect to c and γ are incorporated in line 4–9 of the
algorithm 2 as the averages with respect to one-dimensional random variables, rVAMP
does not require refitting.

Although the two approximate densities have the same first and second moments at a
fixed point, these two densities have different characteristics. For higher-order marginal

moments, we expect that p
(β)
1 is more precise than p

(β)
2 because it accurately includes

the non-Gaussian factors. Similarly, p
(β)
2 is argued to have more accurate off-diagonal

moments because it includes the interaction term correctly [22, 30]. Thus, these two
distributions should be used depending on the objective. Because we are interested in

the distribution of the marginal moment (17), here we use p
(β)
1 to compute Πi(γ0).

3.5. Calculation of the selection probability

Using the expression

p
(β)
1 ({xs}, {zs}) ∝

N∏
i=1

Eγi

[∫ n∏
s=1

e−
βQ̂1x,i

2 x2s,i+β(h1x,i+
√

v̂1x,iηx,i)xs,i−βγi|xs,i|Dηx,i

]

×
M∏
μ=1

Ecμ

[∫ n∏
s=1

e−
βQ̂1z,μ

2 z2s,μ+β(h1z,μ+
√

v̂1z,μzs,μ)py|z(yμ|zs,μ)βcμDηz,μ

]
, (81)

we obtain the following form of the rth moment:

Ec,γ

[
x̂r
i

]
= Eγi

[∫
g1x(h1x,i, Q̂1x,i, v̂1x,i ; γi, ηx,i)

rDηx,i

]
. (82)

To understand the meaning of ηx,i, suppose that we omit to take the expectations of
(c,γ) in lines 4–9 of algorithm 2 and to run rVAMP for a fixed set of (c,γ). Then,
one can show that v1x,i = v2x,i = v̂1x,i = v̂2x,i = 0 and v1z,μ = v2z,μ = v̂1z,μ = v̂2z,μ = 0 yield
the fixed point condition for these variables, and the rest part of the algorithm exactly
coincides with the VAMP algorithm for LASSO without a resampling [8]. Thus, we
expect that

√
v̂1x,iηx,i behave as random variables that approximately reflect the effect
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Algorithm 2. rVAMP.

Require: Denoising functions g1x, g1z from (72) and (74), the features A ∈ R
M×N ,

the response variable y ∈ YM , the convergence criterion εtol,
the maximum number of iterations T iter.

1: Select initial h
(1)
1x ∈ R

N ,h
(1)
1z ∈ R

M , Q̂
(1)
1x , v̂

(1)
1x ∈ [0,∞)N , and Q̂

(1)
1z , v̂

(1)
1z ∈ [0,∞)M .

2: for t = 1, 2, . . . ,T iter do
3: // Factorized part

4: x̂
(t)
1 = Eγ [

∫
g1x(h

(t)
1x , Q̂

(t)
1x , v̂

(t)
1x

;γ,ηx)Dηx]

5: χ
(t)
1x = Eγ [

∫
g′1x(h

(t)
1x , Q̂

(t)
1x , v̂

(t)
1x

;γ,ηx)Dηx]

6: v
(t)
1x = Eγ [

∫
g21x(h

(t)
1x , Q̂

(t)
1x , v̂

(t)
1x

;γ,ηx)Dηx]− (x̂
(t)
1 )2

7: ẑ
(t)
1 = Ec[

∫
g1z(h

(t)
1z , Q̂

(t)
1z , v̂

(t)
1z

; c,ηz,y)Dηz]

8: χ
(t)
1z = Ec[

∫
g′1z(h

(t)
1z , Q̂

(t)
1z , v̂

(t)
1z

; c,ηz,y)Dηz]

9: v
(t)
1z = Ec[

∫
g21z(h

(t)
1z , Q̂

(t)
1z , v̂

(t)
1z

; c,ηz,y)Dηz]− (ẑ
(t)
1 )2

10: // Moment-matching (1→ 2)

11: h
(t)
2x = x̂

(t)
1 /χ

(t)
1x − h

(t)
1x , Q̂

(t)
2x =

(
χ

(t)
1x

)−1

− Q̂
(t)
1x , v̂

(t)
2x = v

(t)
1x/

(
χ

(t)
1x

)2

− v̂
(t)
1x

12: h
(t)
2z = ẑ

(t)
1 /χ

(t)
1z − h

(t)
1z , Q̂

(t)
2z =

(
χ

(t)
1z

)−1

− Q̂
(t)
1z , v̂

(t)
2z = v

(t)
1z /

(
χ

(t)
1z

)2

− v̂
(t)
1z

13: // Gaussian part

14: X =
(
Diagm(Q̂

(t)
2x) +A�Diagm(Q̂2z)A

)−1

15: x̂
(t)
2 = X(h

(t)
2x + A�h

(t)
2z ), ẑ

(t)
2 = Ax̂

(t)
2

16: χ
(t)
2x = diag[X], χ

(t)
2z = diag[AXA�]

17: v
(t)
2x = diag

[
X

(
Diagm(v̂

(t)
2x) +A�Diagm(v̂

(t)
2z )A

)
X
]

18: v
(t)
2z = Diagm

[
AX

(
Diagm(v̂

(t)
2x) +A�Diagm(v̂

(t)
2z )A

)
XA�

]
19: // Moment-matching (2→ 1)

20: h
(t+1)
1x = x̂

(t)
2 /χ

(t)
2x − h

(t)
2x , Q̂

(t+1)
1x =

(
χ

(t)
2x

)−1

− Q̂
(t)
2x , v̂

(t+1)
1x = v

(t)
2x/

(
χ

(t)
2x

)2

− v̂
(t)
2x

21: h
(t+1)
1z = ẑ

(t)
2 /χ

(t)
2z − h

(t)
2z , Q̂

(t+1)
1z =

(
χ

(t)
2z

)−1

− Q̂
(t)
2z , v̂

(t+1)
1z = v

(t)
2z /

(
χ

(t)
2z

)2

− v̂
(t)
2z

22: if max{‖x̂(t)1 − x̂
(t)
2 ‖22/N , ‖ẑ(t)1 − ẑ

(t)
2 ‖22/M} < εtol then

23: t← T iter

24: break
25: end if
26: end for

27: return h
(Titer)
1x , Q̂

(Titer)
1x , v̂

(Titer)
1x

of taking average of c. This consideration and the expression of the rth moment in (82)
yield the following form of the distribution function p(mi):

p(mi) � Eγi

[∫
�

(
mi − g1x(h1x,i, Q̂1x,i, v̂1x,i ; γi, ηx,i)

)
Dηx,i

]
. (83)
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Because g1x(h1x,i, Q̂1x,i, v̂1x,i ; γi, ηx,i) is non-zero iff �(|h1x,i +
√
v̂1x,iηx,i| > γi) is satisfied,

rVAMP yields the following expression for the selection probability Πi:

Πi(γ0) � Eγi

[∫
�

(∣∣∣h1x,i +
√

v̂1x,iηx,i

∣∣∣ > γi

)
Dηx,i

]
, (84)

which is easy to calculate.

3.6. Implementation details

For practical implementation, we find that it is helpful to make several small mod-
ifications to rVAMP of the algorithm 2. In this subsection, we discuss these minor
modifications.

First we address the computational complexity regarding the matrix inversion.
Although rVAMP requires the matrix inversion in line 14, this computational cost is
reduced to O(M 3) from O(N 3) using the Woodbury identity [31]:(

Diagm(Q̂2x) +A�Diagm(Q̂2z)A
)−1

= Diagm(Q̂−1
2x )

−Diagm(Q̂−1
2x )A

�
(
Diagm(Q̂−1

2z ) + A Diagm(Q̂−1
2x )A

�
)−1

A Diagm(Q̂−1
2x ). (85)

Because in high-dimensional statistics, the number of the samples in the data is often
one or several orders of magnitude smaller than the number of the parameters, the
computational cost is drastically reduced using this identity.

Second, for a real-world dataset with a small number of samples, VAMP trajectories
can show large oscillations, which lead to poor convergence. In such cases, introducing a
small amount of damping factor ηd ∈ (0, 1] can improve the convergence of the algorithm.
We suggest replacing line 20 and 21 with the damped versions:

h(t+1)
1x = ηd

(
x̂
(t)
2

χ
(t)
2x

− h(t)
2x

)
+ (1− ηd)h

(t)
1x , (86)

Q̂(t+1)
1x = ηd

(
1N

χ
(t)
2x

− Q̂(t)
2x

)
+ (1− ηd)Q̂

(t)
1x , (87)

v̂
(t+1)
1x = ηd

⎛
⎜⎝ v

(t)
2x(

χ
(t)
2x

)2 − v̂
(t)
2x

⎞
⎟⎠+ (1− ηd)v̂

(t)
1x , (88)

h
(t+1)
1z = ηd

(
ẑ
(t)
2

χ
(t)
2z

− h
(t)
2z

)
+ (1− ηd)h

(t)
1z , (89)

Q̂
(t+1)
1z = ηd

(
1M

χ
(t)
2z

− Q̂
(t)
2z

)
+ (1− ηd)Q̂

(t)
1z , (90)
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v̂
(t+1)
1z = ηd

⎛
⎜⎝ v

(t)
2z(

χ
(t)
2z

)2 − v̂
(t)
2z

⎞
⎟⎠+ (1− ηd)v̂

(t)
1z . (91)

Third, GLMs may require including an intercept term z0 so that yμ ∼ py|z(yμ|z0 +
a�
μx0). To incorporate the intercept term, we add an extra column in the feature

matrix so that A0,μ = 1,μ = 1, 2, . . . ,M , and for this component we do not require any
regularization term.

The last point regards how to obtain the selection probability for various values
of the regularization strength γ0. In practice, we are often interested in finding the
selection probability not only for a single fixed γ0, but also for the various regularization
parameters γ0 (as in figure 1). A reasonable approach is to begin with the largest γ0.
Then, we decrease γ0 by a small amount and run rVAMP until convergence. Decreasing
γ0 again and using previous parameters at the fixed point as the initial conditions (warm
start), we then run rVAMP until convergence. Using this method, we can efficiently
compute the selection probabilities over a grid of γ0.

4. Macroscopic analysis

The salient feature of the VAMP algorithms is that we can macroscopically analyze their
convergence dynamics in a large system limit under specific assumptions on the distri-
butions of the set of feature vectors. The derived dynamics are termed state evolution
(SE). In this section, we derive SE for self-averaging rVAMP (SA rVAMP), which would
describe the converging dynamics of rVAMP approximately. We also show that its fixed
point is consistent with the replica symmetric solution obtained by the replica method,
which is believed to be exact in the large system limit under appropriate conditions.
Although the procedure of the replica method has not been justified mathematically
yet, many studies have rigorously validated its conjectures in the last few decades, espe-
cially in Bayes optimal settings [8, 32–34], and more recently in model-mismatched cases
[35].

4.1. Setup for the macroscopic analysis

For the theoretical analysis, we assume the actual data generation process as follows.
First, the true parameter vector x 0 and the response variables are generated as

x0,i ∼ qx0(x0,i), i = 1, 2, . . . ,N , (92)

yμ ∼ qy|z(yμ|a�
μx0), μ = 1, 2, . . . ,M. (93)

Generally, the model used for the fitting and the actual generation model may be dif-
ferent py|z �= qy|z or e−γ|x| �= qx0 . Additionally, we assume that the feature matrix A is
drawn from the rotation-invariant random matrix ensembles, i.e. for the singular value
decomposition A = USV �,U ∈ R

M×M ,S ∈ R
M×N ,V ∈ R

N×N , we assume that U and V
are drawn from uniform distributions over M ×M and N ×N orthogonal matrices.
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We are interested in the large system limit where both of the numbers of data points
and parameters diverge as M ,N →∞ keeping the ratio α ≡ M/N ∈ (0,∞). Because
U and V are drawn independently from uniform distributions over M ×M and N ×N
orthogonal matrices, for vectors ω ∈ R

N and φ ∈ R
M , we expect that the empirical

distributions of V �ω and U�φ converge to Gaussians with mean zero and variance
‖ω‖22/N and ‖φ‖22/M in this limit, respectively.

4.2. Self-averaging rVAMP

Our first interest is the convergence dynamics of rVAMP. Unfortunately, directly inves-
tigating the dynamics of rVAMP is difficult because the time evolution of the empirical
distributions of h1x,h1z,h2x,h2z may not be described by a small number of statistics,
although the dynamical-functional theory [26, 36–38] might give some insights for the
raw rVAMP. To detour this difficulty approximately, we consider SA rVAMP, which
eliminates the site dependence of the natural parameters in the approximate densities:

Q̂
(t)
1x,i = Q̂

(t)
1x , Q̂

(t)
2x,i = Q̂

(t)
2x, (94)

v̂
(t)
1x,i = v̂

(t)
1x , v̂

(t)
2x,i = v̂

(t)
2x , (95)

Q̂
(t)
1z,μ = Q̂

(t)
1z , Q̂

(t)
2z,μ = Q̂

(t)
2z , (96)

v̂
(t)
1z,μ = v̂

(t)
1z , v̂

(t)
2z,μ = v̂

(t)
2z . (97)

Eliminating the site dependence replaces the component-wise moment-matching condi-
tions in (30) and (31) with the macroscopic moment-matching conditions:

1

N

N∑
i=1

∫
xs,ixt,ip

(β)
1 dnxdnz =

1

N

N∑
i=1

∫
xs,ixt,ip

(β)
2 dnxdnz

=
1

N

N∑
i=1

∫
xs,ixt,ip̃

(β)
1 p̃

(β)
2 dnxdnz, (98)

1

M

M∑
μ=1

∫
zs,μzt,μp

(β)
1 dnxdnz =

1

M

M∑
μ=1

∫
zs,μzt,μp

(β)
2 dnxdnz

=
1

M

M∑
μ=1

∫
zs,μzt,μp̃

(β)
1 p̃

(β)
2 dnxdnz. (99)

These modifications yield SA rVAMP described in algorithm 3. We will use it in the
following analysis.

4.3. State evolution

To derive the SE of SA rVAMP heuristically, we make the following assumptions
following the literature [23].
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Algorithm 3. Self averaging rVAMP.

Require: Denoising functions g1x, g1z from (72) and (74), the features A ∈ R
M×N ,

the response variable y ∈ R
M , the convergence criterion εtol, and

the maximum number of iterations T iter.

1: Select initial h
(1)
1x ∈ R

N ,h
(1)
1z ∈ R

M , Q̂
(1)
1x , v̂

(1)
1x , Q̂

(1)
1z , and v̂

(1)
1z ∈[0,∞).

2: for t = 1, 2, . . . ,T iter do
3: // Factorized part

4: x̂
(t)
1 = Eγ [

∫
g1x(h

(t)
1x , Q̂

(t)
1x1N , v̂

(t)
1x1N ;γ,ηx)Dηx]

5: χ
(t)
1x = 〈Eγ[

∫
g′1x(h

(t)
1x, Q̂

(t)
1x1N , v̂

(t)
1x1N ;γ,ηx)Dηx]〉

6: v
(t)
1x = 〈Eγ [

∫
g21x(h

(t)
1x , Q̂

(t)
1x1N , v̂

(t)
1x1N ;γ,ηx)Dηx]− (x̂

(t)
1 )2〉

7: ẑ
(t)
1 = Ec[

∫
g1z(h

(t)
1z , Q̂

(t)
1z1M , v̂

(t)
1z1M ; c,ηz,y)Dηz]

8: χ
(t)
1z = 〈Ec[

∫
g′1z(h

(t)
1z , Q̂

(t)
1z1M , v̂

(t)
1z1M ; c,ηz,y)Dηz]〉

9: v
(t)
1z = 〈Ec[

∫
g21z(h

(t)
1z , Q̂

(t)
1z1M , v̂

(t)
1z1M ; c,ηz,y)Dηz]− (ẑ

(t)
1 )2〉

10: // Moment-matching (1→ 2)

11: h
(t)
2x = x̂

(t)
1 /(χ

(t)
1x1N )− h

(t)
1x , Q̂

(t)
2x =

(
χ
(t)
1x

)−1

− Q̂
(t)
1x , v̂

(t)
2x = v

(t)
1x/

(
χ
(t)
1x

)2

− v̂
(t)
1x

12: h
(t)
2z = ẑ

(t)
1 /(χ

(t)
1z1M )− h

(t)
1z , Q̂

(t)
2z =

(
χ
(t)
1z

)−1

− Q̂
(t)
1z , v̂

(t)
2z = v

(t)
1z /

(
χ
(t)
1z

)2

− v̂
(t)
1z

13: // Gaussian part

14: X =
(
Q̂

(t)
2xIN + Q̂

(t)
2z A

�A
)−1

15: x̂
(t)
2 = X(h2x +A�h2z), ẑ

(t)
2 = Ax̂

(t)
2

16: χ
(t)
2x = N−1 Tr[X], χ

(t)
2z = M−1 Tr[AXA�]

17: v
(t)
2x = N−1 Tr

[
X

(
Diagm(v̂

(t)
2x) +A�Diagm(v̂

(t)
2z )A

)
X
]

18: v
(t)
2z = M−1 Tr

[
AX

(
Diagm(v̂

(t)
2x) +A�Diagm(v̂

(t)
2z )A

)
XA�

]
19: // Moment-matching (2→ 1)

20: h
(t+1)
1x = x̂

(t)
2 /(χ

(t)
2x1N )− h

(t)
2x , Q̂

(t+1)
1x =

(
χ
(t)
2x

)−1

− Q̂
(t)
2x , v̂

(t+1)
1x = v

(t)
2x /

(
χ
(t)
2x

)2

− v̂
(t)
2x

21: h
(t+1)
1z = ẑ

(t)
2 /(χ

(t)
2z1M )− h

(t)
2z , Q̂

(t+1)
1z =

(
χ
(t)
2z

)−1

− Q̂
(t)
2z , v̂

(t+1)
1z = v

(t)
2z /

(
χ
(t)
2z

)2

− v̂
(t)
2z

22: if max{‖x̂(t)1 − x̂
(t)
2 ‖22/N , ‖ẑ(t)1 − ẑ

(t)
2 ‖22/M} < εtol then

23: t← T iter

24: break
25: end if
26: end for

27: return h
(Titer)
1x , Q̂

(Titer)
1x , v̂

(Titer)
1x

Assumption: at each iteration t = 1, 2, . . . ,T iter, positive constants m̂
(t)
kx, m̂

(t)
kz , χ̂

(t)
kx,

χ̂
(t)
kz ∈ R, (k = 1, 2) exist such that for the singular value decomposition A = USV �,

h
(t)
1x − m̂

(t)
1xx0

.
=

√
χ̂
(t)
1xξ

(t)
1x, (100)

h
(t)
1z − m̂

(t)
1z z0

.
=

√
χ̂
(t)
1z ξ

(t)
1z , (101)
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V �(h
(t)
2x − m̂

(t)
2xx0)

.
=

√
χ̂
(t)
2xξ

(t)
2x, (102)

U�(h
(t)
2z − m̂

(t)
2z z0)

.
=

√
χ̂
(t)
2z ξ

(t)
2z , (103)

hold, where
.
= denotes the equality of empirical distributions, z 0 is Ax 0,

and ξ
(t)
kx, ξ

(t)
kz , (k = 1, 2, t = 1, 2, . . . ,Titer) are mutually independent standard Gaussian

variables.
The equations (102) and (103) are expected from the mixing by randomly sampled

orthogonal matrices V � and U�. The equations (100) and (101) are expected from the

Onsager correction terms −h
(t)
2x,−h

(t)
2z that appears in the moment-matching conditions

in line 20–21.
To characterize macroscopic behavior of rVAMP, we introduce the following

macroscopic order parameters for t = 1, 2, . . . ,T iter:

m
(t)
1x =

1

N
x�
0 x̂

(t)
1 , m

(t)
1z =

1

M
z�0 ẑ

(t)
1 , (104)

q
(t)
1x =

1

N

∥∥∥ x̂(t)
1

∥∥∥2

2
, q

(t)
1z =

1

M

∥∥∥ ẑ(t)1

∥∥∥2

2
, (105)

m
(t)
2x =

1

N
x�
0 x̂

(t)
2 , m

(t)
2z =

1

M
z�0 ẑ

(t)
2 , (106)

q
(t)
2x =

1

N

∥∥∥ x̂(t)
2

∥∥∥2

2
, q

(t)
2z =

1

M

∥∥∥ ẑ(t)2

∥∥∥2

2
, (107)

Tx =
1

N

∥∥∥x0

∥∥∥2

2
, Tz =

1

M

∥∥∥ z0∥∥∥2

2
. (108)

These order parameters and the susceptibilities have limiting expressions in the limit

N →∞. First, q
(t)
1x can be written as

q
(t)
1x � 1

N

N∑
i=1

(
Eγi

[∫
g1x(h

(t)
1x,i, Q̂

(t)
1x, v̂

(t)
1x
; γi, ηx,i)Dηx,i

])2

N→∞→ Ex0

[∫ (
Eγ

[∫
g1x(m̂

(t)
1xx0 +

√
χ̂
(t)
1xξx, Q̂

(t)
1x , v̂

(t)
1x
; γ, ηx)Dηx

])2

Dξx

]
.

(109)

Here, the summation is replaced with the average in the limit N →∞. The average
Eγ[. . . ] is with respect to the density p(γ) = δ(γ − γ0)/2 + δ(γ − 2γ0)/2. Similar results

can be obtained for m
(t)
1x ,m

(t)
1z ,χ

(t)
1x, v

(t)
1x , q

(t)
1z ,χ

(t)
1z and v

(t)
1z . Next, for the singular value

decomposition A = USV �, we denote by {
√
λi} the diagonal elements of S. Then, q

(t)
2x

can be written as follows:

q
(t)
2x =

1

N

N∑
i=1

((
m̂

(t)
2x+S

�Sm̂
(t)
2z

)
(V �x0)+

(√
χ̂
(t)
2xξ

(t)
2x+

√
χ̂
(t)
2z S

�ξ
(t)
2z

))�(
Q̂

(t)
2xIN+S

�SQ̂
(t)
2z

)−2
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×
((

m̂
(t)
2x + S�Sm̂

(t)
2z

)
(V �x0) +

(√
χ̂
(t)
2xξ

(t)
2x +

√
χ̂
(t)
2z S

�ξ
(t)
2z

))

� 1

N

N∑
i=1

(m̂
(t)
2x + λim̂

(t)
2z )

2(V �x0)
2
i

(Q̂
(t)
2x + λiQ̂

(t)
2z )

2
+

1

N

N∑
i=1

χ̂
(t)
2xξ

2
2x,i + λiχ̂2zξ

2
2z,i

(Q̂
(t)
2x + λiQ̂

(t)
2z )

2

N→∞→ TxEλ

[
(m̂

(t)
2x + λm̂

(t)
2z )

2

(Q̂
(t)
2x + λQ̂

(t)
2z )

2

]
+ Eλ

[
(χ̂

(t)
2x + λχ̂

(t)
2z )

(Q̂
(t)
2x + λQ̂

(t)
2z )

2

]
, (110)

where we used the independence between ξ
(t)
2x, ξ

(t)
2z , x0 and {λi}, and we denoted by Eλ[. . .]

an average with respect to the limiting eigenvalue spectrum ρ(λ) of A�A. The calcula-

tions for m
(t)
2x ,m

(t)
2z ,χ

(t)
2x , v

(t)
2x , q

(t)
2z ,χ

(t)
2z and v

(t)
2z are similar. Finally, using the singular value

decomposition A = USV �, Tx and T z are written as

Tx =
1

N

N∑
i=1

x2
0,i

N→∞→
∫

x2
0qx0(x0)dx0, (111)

Tz
N→∞→ Ez0 [z

2
0] =

Eλ[λ]

α
Tx, (112)

where the average of z0 is taken with respect to a Gaussian measure

exp

(
− T̂ z

2
z20

)√
T̂ z

2π
dz, T̂ z =

α

Eλ[λ]Tx
, (113)

based on the observation in [39]; for a vector ω ∈ R
N that is independent of A, the

empirical distribution of Aω is a Gaussian with mean zero and variance Eλ[λ]‖ω‖22/(αN)
in the large system limit.

The moment-matching conditions also have the following limiting expressions. First,

m̂
(t)
2x can be written as

m̂
(t)
2x

(a)−−→ 1

‖x0‖22
x�
0 h

(t)
2x

(b)
=

1

‖x0‖22
x�
0

(
x̂
(t)
1

χ
(t)
1x

− h
(t)
1x

)

(c)
=

m
(t)
1x

Txχ
(t)
1x

− m̂
(t)
1x, (114)

where the limit (a) follows from the definition of m̂
(t)
2x; (b) follows from the moment-

matching condition of SA rVAMP; (c) follows from the definitions of m
(t)
1x and m̂

(t)
1x . For

χ̂
(t)
2x , its update rule can be written as
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χ̂
(t)
2x

(a)−−→ 1

N
‖h(t)

2x − m̂
(t)
2xx0‖22

(b)
=

1

N

∥∥∥∥ x̂
(t)
1

χ
(t)
1x

− m
(t)
1x

Txχ
(t)
1x

x0 −
√

χ̂
(t)
1xξ

(t)
1x

∥∥∥∥2

2

(c)
=

q
(t)
1x

(χ
(t)
1x)

2
− (m

(t)
1x)

2

Tx(χ
(t)
1x)

2
+ χ

(t)
1x − 2

√
χ̂
(t)
1x

χ
(t)
1x

1

N
(x̂

(t)
1x)

�ξ
(t)
1x,

(d)
=

q
(t)
1x

(χ
(t)
1x)

2
− (m

(t)
1x)

2

Tx(χ
(t)
1x)

2
− χ

(t)
1x , (115)

where (a) follows from the definition of χ̂
(t)
2x ; (b) follows from the moment-matching

condition of SA rVAMP and the assumption 2; (c) uses the independence between x 0

and ξ
(t)
1x , and the definition of m

(t)
1x ; (d) can be obtained from the following integration

by parts according to

1

N
(x̂(t)

1x)
�ξ

(t)
1x → Ex0

[∫
Eγ

[∫
g1x(m̂

(t)
1xx0 +

√
χ̂
(t)
1xξx, Q̂

(t)
1x , v̂

(t)
1x
;λ, ηx)Dηx

]
ξxDξx

]

=

√
χ̂
(t)
1xEx0

[∫
Eγ

[∫
g′1x(m̂

(t)
1xx0 +

√
χ̂
(t)
1xξx, Q̂

(t)
1x , v̂

(t)
1x
;λ, ηx)Dηx

]
Dξx

]

=

√
χ̂
(t)
1xχ

(t)
1x. (116)

Similarly, m̂
(t+1)
1x and χ̂

(t+1)
1x are obtained as follows. For m̂

(t+1)
1x , its update rule is derived

exactly same way as in (114). For χ̂
(t)
1x ,

χ̂
(t)
1x

(a)→ 1

N
‖h(t+1)

1x − m̂
(t+1)
1x x0‖22

(b)
=

1

N

∥∥∥∥ x̂2

χ
(t)
2x

− m
(t)
2x

Txχ
(t)
2x

x0 −
√

χ̂
(t)
2xV ξ

(t)
2x

∥∥∥∥2

2

(c)
=

q
(t)
2x

(χ
(t)
2x)

2
− (m

(t)
2x)

2

Tx(χ
(t)
2x)

2
+ χ̂

(t)
2x − 2

√
χ̂
(t)
2x

χ
(t)
2x

1

N
(V �x̂

(t)
2 )�ξ

(t)
2x

(d)
=

q
(t)
2x

(χ
(t)
2x)

2
− (m

(t)
2x)

2

Tx(χ
(t)
2x)

2
− χ̂

(t)
2x , (117)

where (a) follows from the definition of χ̂
(t+1)
1x ; (b) follows from the moment-matching

condition and the assumption 2; (c) uses the independence between V �x 0 and ξ
(t)
2x , and

the definition of m
(t)
2x ; (d) can be obtained from the independence between V �x0,S

�ξ
(t)
2z
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and ξ
(t)
2x :

1

N
(V �x̂

(t)
2 )�ξ

(t)
2x =

1

N

N∑
i=1

(
(m̂

(t)
2x + λim̂

(t)
2z )[V

�x0]i +

√
χ̂
(t)
2xξ2x,i +

√
χ̂
(t)
2z [S

�(ξ
(t)
2z )]i

)
ξ
(t)
2x,i

Q̂
(t)
2x + λiQ̂

(t)
2z

→
√
χ̂
(t)
2xEλ

[
1

Q̂
(t)
2x + λQ̂

(t)
2z

]∫
ξ22xDξ2x

=

√
χ̂
(t)
2xχ

(t)
2x. (118)

Similar results can be obtained for m̂
(t)
2z , χ̂

(t)
2z , m̂

(t+1)
1z and χ̂

(t+1)
1z .

The above observations yield the SE of SA rVAMP as follows:

Initialization: select initial m̂
(1)
1x , χ̂

(1)
1x , Q̂

(1)
1x , v̂

(1)
1x , m̂

(1)
1z , χ̂

(1)
1z , Q̂

(1)
1z , and v̂

(1)
1z ∈ [0,∞).

Iteration: for t = 1, 2, . . . ,T iter, update the parameters as follows:
factorized part :

q
(t)
1x = Ex0

[∫ (
Eγ

[∫
g1x(m̂

(t)
1xx0 +

√
χ̂
(t)
1xξx, Q̂

(t)
1x , v̂

(t)
1x
; γ, ηx)Dηx

])2

Dξx

]
, (119)

χ
(t)
1x = Ex0

[∫
Eγ

[∫
g′1x(m̂

(t)
1xx0 +

√
χ̂
(t)
1xξx, Q̂

(t)
1x , v̂

(t)
1x
; γ, ηx)Dηx

]
Dξx

]
, (120)

v
(t)
1x = Ex0

[∫
Eγ

[∫
g21x(m̂

(t)
1xx0 +

√
χ̂
(t)
1xξx, Q̂

(t)
1x , v̂

(t)
1x
; γ, ηx)Dηx

]
Dξx

]

− Ex0

[∫ (
Eγ

[∫
g1x(m̂

(t)
1xx0 +

√
χ̂
(t)
1xξx, Q̂

(t)
1x , v̂

(t)
1x
; γ, ηx)Dηx

])2

Dξx

]
, (121)

m
(t)
1x = Ex0

[∫
x0Eγ

[∫
g1x(m̂

(t)
1xx0 +

√
χ̂
(t)
1xξx, Q̂

(t)
1x, v̂

(t)
1x
; γ, ηx)Dηx

]
Dξx

]
, (122)

q
(t)
1z = Ez0

[∫ (
Ec

[∫
g1z(m̂

(t)
1z z0 +

√
χ̂
(t)
1z ξz, Q̂

(t)
1z , v̂

(t)
1z
; c, ηz, y)Dηx

])2

qy|z(y|z0)dyDξz

]
,

(123)

χ
(t)
1z = Ez0

[∫
Ec

[∫
g′1z(m̂

(t)
1z z0 +

√
χ̂
(t)
1z ξz, Q̂

(t)
1z , v̂

(t)
1z
; c, ηz, y)Dηz

]
qy|z(y|z0)dyDξz

]
,

(124)

v
(t)
1z = Ez0

[∫
Ec

[∫
g21z(m̂

(t)
1z z0 +

√
χ̂
(t)
1z ξz, Q̂

(t)
1z , v̂

(t)
1z
; c, ηz, y)Dηz

]
qy|z(y|z0)dyDξz

]
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− Ez0

[∫ (
Ec

[∫
g1z(m̂1zz0+

√
χ̂
(t)
1z ξz, Q̂

(t)
1z , v̂

(t)
1z
; c, ηz, y)Dηz

])2

qy|z(y|z0)dyDξz

]
,

(125)

m
(t)
1z = Ez0

[∫
z0Ec

[∫
g1z(m̂1zz0 +

√
χ̂
(t)
1z ξz, Q̂

(t)
1z , v̂

(t)
1z
; c, ηz, y)Dηz

]
qy|z(y|z0)dyDξz

]
.

(126)

Moment-matching:

Q̂
(t)
2x =

1

χ
(t)
1x

− Q̂
(t)
1x, Q̂

(t)
2z =

1

χ
(t)
1z

− Q̂
(t)
1z , (127)

v̂
(t)
2x =

v
(t)
1x

(χ
(t)
1x)

2
− v̂

(t)
1x, v̂

(t)
2z =

v
(t)
1z

(χ
(t)
1z )

2
− v̂

(t)
1z , (128)

m̂
(t)
2x =

m
(t)
1x

Txχ
(t)
1x

− m̂
(t)
1x, m̂

(t)
2z =

m
(t)
1z

Tzχ
(t)
1z

− m̂
(t)
1z , (129)

χ̂
(t)
2x =

q
(t)
1x

(χ
(t)
1x)

2
− (m

(t)
1x)

2

Tx(χ
(t)
1x)

2
− χ̂

(t)
1x , χ̂

(t)
2z =

q
(t)
1z

(χ
(t)
1z )

2
− (m

(t)
1z )

2

Tz(χ
(t)
1z )

2
− χ̂

(t)
1z . (130)

Gaussian part:

q
(t)
2x = TxEλ

[
(m̂

(t)
2x + λm̂

(t)
2z )

2

(Q̂
(t)
2x + λQ̂

(t)
2z )

2

]
+ Eλ

[
(χ̂

(t)
2x + λχ̂

(t)
2z )

(Q̂
(t)
2x + λQ̂

(t)
2z )

2

]
, (131)

χ
(t)
2x = Eλ

[
1

Q̂
(t)
2x + λQ̂

(t)
2z

]
, (132)

v
(t)
2x = Eλ

[
v̂
(t)
2x + λv̂

(t)
2z

(Q̂
(t)
2x + λQ̂

(t)
2z )

2

]
, (133)

m
(t)
2x = TxEλ

[
m̂

(t)
2x + λm̂

(t)
2z

Q̂
(t)
2x + λQ̂

(t)
2z

]
, (134)

q
(t)
2z =

Tx

α
Eλ

[
λ(m̂

(t)
2x + λm̂

(t)
2z )

2

(Q̂
(t)
2x + λQ̂

(t)
2z )

2

]
+ Eλ

[
λ(χ̂

(t)
2x + λχ̂

(t)
2z )

(Q̂
(t)
2x + λQ̂

(t)
2z )

2

]
, (135)

χ2z =
1

α
Eλ

[
λ

Q̂
(t)
2x + λQ̂

(t)
2z

]
, (136)

v
(t)
2z =

1

α
Eλ

[
λ(v̂

(t)
2x + λv̂

(t)
2z )

(Q̂
(t)
2x + λQ̂

(t)
2z )

2

]
, (137)
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m
(t)
2z =

Tx

α
Eλ

[
λ(m̂

(t)
2x + λm̂

(t)
2z )

Q̂
(t)
2x + λQ̂

(t)
2z

]
. (138)

Moment-matching:

Q̂
(t+1)
1x =

1

χ
(t)
2x

− Q̂
(t)
2x, Q̂

(t+1)
1z =

1

χ
(t)
2z

− Q̂
(t)
2z , (139)

v̂
(t+1)
1x =

v
(t)
2x

(χ
(t)
2x)

2
− v̂

(t)
1x , v̂

(t+1)
1z =

v
(t)
2z

(χ
(t)
2z )

2
− v̂

(t)
1z , (140)

m̂
(t+1)
1x =

m
(t)
2x

Txχ
(t)
2x

− m̂
(t)
1x , m̂

(t+1)
1z =

m
(t)
2z

Tzχ
(t)
2z

− m̂
(t)
1z , (141)

χ̂
(t+1)
1x =

q
(t)
2x

(χ
(t)
2x)

2
− (m

(t)
2x)

2

Tx(χ
(t)
2x)

2
− χ̂

(t)
2x, χ̂

(t+1)
1z =

q
(t)
2z

(χ
(t)
2z )

2
− (m

(t)
2z )

2

Tz(χ
(t)
2z )

2
− χ̂

(t)
2z ,

(142)

where Ec[. . . ] is the average with respect to the probability function p(c) = e−1/c!, c =
0, 1, . . . .

At the fixed point, q
(t)
1x = q

(t)
2x ,χ

(t)
1x = χ

(t)
2x , v

(t)
1x = v

(t)
2x , and m

(t)
1x = m

(t)
2x are approximate

values of the following quantities:

qx � lim
β→∞,N→∞

1

N

∥∥∥∥Ec,γ

[∫
xp(β)(x, z ; c,γ,D)dxdz

]∥∥∥∥2

2

, (143)

χx � lim
β→∞,N→∞

β

N
Ec,γ

[∫
‖x‖22p(β)(x, z ; c,γ,D)dxdz

]

−
∥∥∥∥
∫

xp(β)(x, z ; c,γ,D)dxdz

∥∥∥∥2

2

]
, (144)

vx � lim
β→∞,N→∞

1

N

(
Ec,γ

[∥∥∥∥
∫

xp(β)(x, z ; c,γ,D)dxdz

∥∥∥∥2

2

)

−
∥∥∥∥Ec,γ

[∫
xp(β)(x, z ; c,γ,D)dxdz

]∥∥∥∥2

2

]
(145)

mx � lim
β→∞,N→∞

Ec,γ

[
x�
0

∫
xp(β)(x, z ; c,γ,D)dxdz

]
. (146)

A similar interpretation is also possible for q
(t)
1z = q

(t)
2z ,χ

(t)
1z = χ

(t)
2z , v

(t)
1z = v

(t)
2z , and

m
(t)
1z = m

(t)
2z .
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4.4. Replica analysis

Generally, typical values of the macroscopic order parameters introduced in the last
section can be obtained by calculating the Helmholtz free energy f using the replica
method [6]:

f = ED [f(D)] ≡ − lim
N ,β→∞,n→0

1

Nnβ
ED[log Ξn(D)] (147)

= − lim
N ,β→∞
n,l̃→0

1

Nnl̃ β
ED

[
Ξn(D)l̃

]
. (148)

Although the above formula contains the nested replicas, its replica symmetric com-
putation is formally analogous to the standard one-step replica symmetry breaking
(one-RSB) computation by treating l̃ as the Parisi’s breaking parameter. Because the
one-RSB computation was already described in appendix C of reference [23], we only

show the final result. By rescaling the replica number as l̃ = l/β, we obtain the following
expression:

f = − lim
β→∞,l→0

extr
mx,qx ,vx,χx ,
mz ,qz ,vz ,χz

[gF + gG − gS] , (149)

gF = extr
m̂1x ,χ̂1x,v̂1x ,Q̂1x,

m̂1z ,χ̂1z ,v̂1z ,Q̂1z

[
−mxm̂1x +

1

2

(
qx + vx +

χx

β

)
Q̂1x

− l

2
((qx + vx)(χ̂1x + v̂1x)− qxχ̂1x)−

1

2
χx(χ̂1x + v̂1x)− αmzm̂1z

+
α

2

(
qz + vz +

χz

β

)
Q̂1z −

lα

2
((qz + vz)(χ̂1z + v̂1z)− qzχ̂1z)

− α

2
χz(χ̂1z + v̂1z) +

1

l

∫ {
logEγ

[∫
elφ

(β)
x Dηx

]}
qx0(x0)dx0Dξx

+
1

l

∫ {
log Ec

[∫
elφ

(β)
z Dηz

]}√
T̂ z

2π
e−

T̂ z
2 z20qy|z(y|z0) dz0Dξz dy

⎤
⎦ , (150)

gG = extr
m̂2x ,χ̂2x,v̂2x ,Q̂2x,

m̂2z ,χ̂2z ,v̂2z ,Q̂2z

[
−mxm̂2x +

1

2

(
qx + vx +

χx

β

)
Q̂2x

− l

2
((qx + vx)(χ̂2x + v̂2x)− qxχ̂2x)−

1

2
χx(χ̂2x + v̂2x)− αmzm̂2z

+
α

2

(
qz + vz +

χz

β

)
Q̂2z −

αl

2
((qz + vz)(χ̂2z + v̂2z)− qzχ̂2z)

− α

2
χz(χ̂2z + v̂2z)−

1

2

(
1

β
− 1

l

)
Eλ

[
log

(
Q̂2x + λQ̂2z

)]
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− 1

2l
Eλ

[
log

(
Q̂2x + λQ̂2z − l(v̂2x + λv̂2z)

)]

+
1

2
Eλ

[
χ̂2x + λχ̂2z

Q̂2x + λQ̂2z − l(v̂2x + λv̂2z)

]
+

Tx

2
Eλ

[
(m̂2x + λm̂2z)

2

Q̂2x + λQ̂2z − l(v̂2x + λv̂2z)

]]
,

(151)

gS =
1

2

(
1

β
− 1

l

)
log χx +

1

2l
log(χx + lvx) +

1

2

qx
χx + lvx

− 1

2

m2
x

Tx(χx + lvx)

+
α

2

(
1

β
− 1

l

)
log χz +

α

2l
log(χz + lvz) +

α

2

qx
χz + lvz

− α

2

m2
z

Tz(χz + lvz)
, (152)

where

φ(β)
x =

1

β
log

∫
e−β

Q̂1x
2 x2+β(m̂1xx0+

√
χ̂1xξx+

√
v̂1xηx)x−βγ|x|dx, (153)

φ(β)
z =

1

β
log

∫
e−β

Q̂1z
2 z2+β(m̂1zz0+

√
χ̂1zξz+

√
v̂1zηz)z+βc log py|z(y|z)dz. (154)

In the limit l → 0, β →∞, the extreme condition yields the same form of the equations
that appear in the fixed point condition of the SE equations (127)–(142). Addition-
ally, at the extremum, the variational parameters qx,χx, vx and mx are in accordance
with the right-hand side of the equations (143)–(146). Similar accordance also holds
for qz,χz, vz and mz. Thus, the fixed point of SE of SA rVAMP is consistent with the
replica symmetric calculation.

5. Application to logistic regression

For checking the validity of the results obtained so far, we applied rVAMP to logistic
regression and conducted numerical experiments in order to (i) validate our SE, (ii)
obtain insights about the convergence speed from SE, and (iii) test the applicability of
rVAMP to real-world problems.

In logistic regression, the domain of the response variables Y is {−1, 1}, and the
likelihood is given as

py|z(y|z) = δ(y − 1)
1

1 + e−z
+ δ(y + 1)

1

1 + ez
. (155)

Additionally, g′1z in (80) can be written as

g′1z(h1z,μ, Q̂1z,μ, v̂1z,μ ; cμ, ηz,μ, yμ)

=

⎡
⎣Q̂1z,μ +

cμ

4 cosh2
(

1
2
g1z(h1z,μ, Q̂1z,μ, v̂1z,μ ; cμ, ηz,μ, yμ)

)
⎤
⎦−1

. (156)
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Figure 2. Comparison between the iteration dynamics of SA rVAMP in the
algorithm 3 and in the SE equations defined in (127)–(142). The solid lines show the
SE trajectories. The symbols represent the median of SA rVAMP trajectories that
are obtained from 1000 experiments. Top left: macroscopic variables q

(t)
1x ,χ

(t)
1x , v

(t)
1x ,

and m
(t)
1x versus algorithm iteration. Top right: macroscopic variables q

(t)
1z ,χ

(t)
1z , v

(t)
1z ,

and m
(t)
1z versus algorithm iteration. Bottom left: parameters Q̂

(t)
1x , v̂

(t)
1x , χ̂

(t)
1x and m̂

(t)
1x

versus algorithm iteration. Bottom right: parameters Q̂
(t)
1z , v̂

(t)
1z , χ̂

(t)
1z and m̂

(t)
1z versus

algorithm iteration.

All the experiments were conducted on a single Intel(R) Core(TM) i7-8700B (3.20
GHz) CPU.

5.1. Comparing with SE using synthetic data

Synthetic data were generated under the settings described in section 4.1. The actual
data generation process are described by

qx0(x0,i) = ρN (x0,i ; 0, ρ
−1) + (1− ρ)δ(x0,i), (157)

qy|z(yμ|a�
μx0) = δ(yμ − 1)

1

1 + e−a�μ x0
+ δ(yμ + 1)

1

1 + ea
�
μ x0

, (158)

where N (x0,i ;μ, σ
2) is the Gaussian measure with mean μ and variance σ2, and ρ ∈ [0, 1]

is the sparsity. The system size N , the measurement ratio α = M/N , and the sparsity
ρ were specified as N = 10000,α = 0.2, and ρ = 0.01, respectively. Additionally, the
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Figure 3. Time evolution of the convergence criterion max{‖x̂(t)1 − x̂
(t)
2 ‖22/N , ‖ẑ(t)1 −

ẑ
(t)
2 ‖22/M} is plotted versus the iteration step t. The error bars represent the stan-
dard errors. The symbols represent the median of rVAMP trajectories obtained
from 1000 experiments.

Figure 4. Intercept term of logistic regression model plotted versus γ0. The red line
is obtained by the naive refitting procedure, while the blue line is obtained using
rVAMP.

feature matrix A was drawn from the row-orthogonal ensemble [40] for which the limiting
eigenvalue distribution of A�A was ρ(λ) = αδ(λ− 1) + (1− α)δ(λ).

To validate SE, we compared the iteration dynamics of SA rVAMP to those of SE.

Figure 2 plots the order parameters and the parameters of p
(β)
1 versus the iteration

index t. The data of SA rVAMP were obtained from 1000 random trials. The error bars
are smaller than the size of the markers. Although some systematic disagreements are

present in Q̂
(t)
1x and v̂

(t)
1x possibly due to the finite-size effect, most of the experimental

values are in good agreement with the predictions of SE. This shows the validity of our
SE.

The iteration dynamics of SE suggest that rVAMP converges in a few dozens of
iterations, guaranteeing the fast convergence of rVAMP for the synthetic data.
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Figure 5. Comparison of the selection probability plotted for various values of the
regularization strength γ0. For ease of viewing, the selection probabilities are shown
only for 10 features that had the largest selection probability for the smallest γ0.
Red lines are obtained using the naive refitting procedure, while blue lines are
obtained using rVAMP.

Figure 6. Naive refitting estimates of the selection probability Πi, i = 1, 2, . . . ,N
plotted versus those computed by rVAMP for various regularization strengths.

5.2. Applicability of rVAMP in real world data

We explored the performance of rVAMP on the colon cancer dataset [4],
which is also used in the introduction. The data is publicly available at
http://genomics-pubs.princeton.edu/oncology/. The task is to distinguish cancer from
normal tissues using micro-array data with N = 2000 features per example. The data
were derived from 22 normal (yμ = −1) and 40 (yμ = 1) cancer tissues. The total number
of samples is M = 62. We pre-processed the data by carrying out base 10 logarithmic
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Figure 7. Upper panel: the difference between approximated and naively calcu-
lated selection probabilities plotted versus the number of resampled datasets B.
We denote by Πapproximate the selection probability obtained by rVAMP, and by
Πnaive that obtained by naive resampling procedure using B resampled datasets.
The difference is measured as a q-quantile of the difference for all of the selection
probabilities in the grid of γ0. Lower panel: elapsed time is plotted versus the size
of the resampled dataset B.

transformation and standardizing each feature to zero mean and unit variance. Because
the class labels are biased, we included the intercept term. To obtain the selection prob-
abilities for a grid of γ0, we used the warm start procedure. Finally, the damping factor
ηd was set to 0.85.

First, we examined the convergence speed of rVAMP. Figure 3 shows the time evolu-

tion of the convergence criterion max{‖x̂(t)
1 − x̂

(t)
2 ‖22/N , ‖ẑ(t)1 − ẑ

(t)
2 ‖22/M} by plotting its

value versus the iteration step t. For various regularization strengths, regular exponential
decay is observed, This demonstrating the fast convergence of rVAMP in a real-world
dataset.

Next, we examine the accuracy of rVAMP. To compare the estimate of rVAMP with
that of the naive refitting procedure of SS, the naive refitting on 1000000 resampled
datasets was conducted using GLMNet [41]. Figure 4 shows the intercept term plotted
versus the regularization strength. For a wide range of γ0, rVAMP accurately estimated
the intercept term. Figure 5 plots the comparison between the selection probabilities
estimated by rVAMP and by the naive reffiting for the entire grid of γ0. For ease of
viewing, we only plot these values for the 10 features that had the largest selection
probabilities for the smallest γ0. Figure 6 plots the same comparison of all of the features
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for a selected set of γ0. Although the accuracy decreases slightly as we weaken the
regularization, rVAMP successfully approximate the selection probability. The upper
panel of ignore 7 plots the difference between approximated and naively calculated
selection probabilities as a function of the number of resampled datasets B. These results
also provide evidence for the accuracy of rVAMP. The lower panel of figure 7 plots the
elapsed time used to obtain all of the selection probabilities for various γ0. Although
the actual computation time depends on the implementation, this figure suggests that
rVAMP can provide accurate estimate of Π in a much shorter time than the naive SS.
These observations demonstrate the accuracy of rVAMP.

6. Summary and conclusion

We developed an approximate SS algorithm that enables SS without the use of the
repeated fitting procedure. The key concept is to use the combination of the replica
method of statistical mechanics and the VAMP algorithm of information theory. The
derivation of the algorithm was based on the EP of machine learning. We also derived the
SE that macroscopically describes the dynamics of the proposed algorithm, and showed
that its fixed point is consistent with the replica symmetric solution. Through numerical
experiments, we confirmed that the SE equation is valid and that the proposed algorithm
converges in a few dozens of iterations. We applied the proposed algorithm to logistic
regression and demonstrated its application to a real-world dataset through numerical
experiments. Although the real-world dataset has statistical correlations among the fea-
tures, the proposed algorithm achieved fast convergence and high-estimation accuracy,
demonstrating its utility for real-world problems.

A possible drawback of our algorithm is its computational complexity, even though
it was not significant for the experiments described in section 5. Because the algorithm
requires the computation of matrix inversion at each iteration, the computational burden
may increase significantly with the increasing number of samples in the datasets. This
shortcoming may be addressed by the self-averaging version of the proposed algorithm
or the dual-decomposition-like variable augmentation used in the alternating direction
method of multipliers [42, 43].

A promising future research direction includes analyzing the variable selection per-
formance of the SS algorithm using SE. Generally, theoretical analysis of resampling
techniques is difficult in general because we cannot explicitly write down the analytical
form of the estimators. This difficulty prevents the obtaining of useful insights from
quantitative theoretical analysis. Thus, the replica theory [6] may provide a promising
analytical tool in this area. Because our framework can treat only synthetic settings, we
believe that the goal is to investigate precise asymptotic properties for a comprehensive
range of parameters and to find some phenomena that would hold universally, such as
novel phase transitions. However, this kind of exhaustive analysis is quite involved in
practice, although obtaining an order parameter for one specific setting is not difficult.
Thus we postpone this analysis as future work. Another research direction is the investi-
gation of the dynamics of raw rVAMP using techniques such as the dynamical-functional
theory [26, 36–38].
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