論文

国際誌
2017年7月28日

The ubiquitin ligase STUB1 regulates stability and activity of RUNX1 and RUNX1-RUNX1T1.

The Journal of biological chemistry
  • Taishi Yonezawa
  • Hirotaka Takahashi
  • Shiori Shikata
  • Xiaoxiao Liu
  • Moe Tamura
  • Shuhei Asada
  • Tsuyoshi Fukushima
  • Tomofusa Fukuyama
  • Yosuke Tanaka
  • Tatsuya Sawasaki
  • Toshio Kitamura
  • Susumu Goyama
  • 全て表示

292
30
開始ページ
12528
終了ページ
12541
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1074/jbc.M117.785675

RUNX1 is a member of RUNX transcription factors and plays important roles in hematopoiesis. Disruption of RUNX1 activity has been implicated in the development of hematopoietic neoplasms. Chromosomal translocations involving the RUNX1 gene are associated with several types of leukemia, including acute myeloid leukemia driven by a leukemogenic fusion protein RUNX1-RUNX1T1. Previous studies have shown that RUNX1 is an unstable protein and is subjected to proteolytic degradation mediated by the ubiquitin-proteasome pathway. However, the precise mechanisms of RUNX1 ubiquitination have not been fully understood. Furthermore, much less is known about the mechanisms to regulate the stability of RUNX1-RUNX1T1. In this study, we identified several RUNX1-interacting E3 ubiquitin ligases using a novel high-throughput binding assay. Among them, we found that STUB1 bound to RUNX1 and induced its ubiquitination and degradation mainly in the nucleus. Immunofluorescence analyses revealed that the STUB1-induced ubiquitination also promoted nuclear export of RUNX1, which probably contributes to the reduced transcriptional activity of RUNX1 in STUB1-overexpressing cells. STUB1 also induced ubiquitination of RUNX1-RUNX1T1 and down-regulated its expression. Importantly, STUB1 overexpression showed a substantial growth-inhibitory effect in myeloid leukemia cells that harbor RUNX1-RUNX1T1, whereas it showed only a marginal effect in other non-RUNX1-RUNX1T1 leukemia cells and normal human cord blood cells. Taken together, these data suggest that the E3 ubiquitin ligase STUB1 is a negative regulator of both RUNX1 and RUNX1-RUNX1T1. Activation of STUB1 could be a promising therapeutic strategy for RUNX1-RUNX1T1 leukemia.

リンク情報
DOI
https://doi.org/10.1074/jbc.M117.785675
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/28536267
PubMed Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5535027
ID情報
  • DOI : 10.1074/jbc.M117.785675
  • PubMed ID : 28536267
  • PubMed Central 記事ID : PMC5535027

エクスポート
BibTeX RIS