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Abstract. Gareth Evans proved that if two objects are indeterminately equal then

they are different in reality. He insisted that this contradicts the assumption that there

can be vague objects. However we show the consistency between Evans’s proof and the

existence of vague objects within classical logic. We formalize Evans’s proof in a set

theory without the axiom of extensionality, and we define a set to be vague if it violates

extensionality with respect to some other set. There exist models of set theory where the

axiom of extensionality does not hold, so this shows that there can be vague objects.

§1. Introduction. In his short paper “Can There Be Vague Objects?” [5],
Gareth Evans questioned a consistency between two assumptions: Vagueness
is ‘a necessary feature of any true description’ of the world, and ‘amongst the
statements which may not have a determinate truth value as a result of their
vagueness are identity statements’. He defined vague objects as having vague
identity statement: a is a vague object if there exists an object b such that a = b
is of indeterminate truth value. Let us assume there can be vague objects in the
world; we call this Evans’s Vagueness Assumption (EVA). He proceeded with
his argument as follows: Let a, b be vague objects, then

(I) 5(a = b), i.e. a = b is indeterminate (assumption),
(II) λx[5(a = x)]b, i.e. b is indeterminately equal to a (from (I)),
(III) ¬5 (a = a), i.e. a = a is determinate,
(IV) ¬λx[5(a = x)]a, i.e. a is not indeterminately equal to a (from (III)),
(V) a 6= b, i.e. a is not equal to b (from (II) and (IV)).

We note that 5ϕ means that the truth value of ϕ is indeterminate. The con-
clusion (V) is ‘contradicting the assumption that the identity statement “a = b”
is of indeterminate truth value’. Hence (I) must be rejected, that is to say, any
identity statement has determinate truth value. Therefore, he seems to conclude
EVA does not hold.
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vagueness, vague object.
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Some philosophers have agreed with his conclusion1. For example, Brian Gar-
rett denied the possibility of vague identity and vague object [7]. However, many
articles have been published against Evans’s conclusion. One typical approach is
to analyze his proof within many-valued logic. For example, Jack Copeland tried
to prove that the derivation of (V) from (I) is not valid within fuzzy logic with-
out mentioning EVA [3]. Michael Tye accepted EVA and represented vagueness
within many-valued logic: membership relation x ∈ y can be a vague predicate,
i.e. its truth value is neither 0 nor 1 for some sets x and y [18]. However, it
has been objected that ‘the writers who adopt this strategy rarely provide much
argument for the need for a many-valued logic’ [11, 55]. Another approach takes
the modal point of view. For example, Ken Akiba defined a vague object as a
transworld object. He distinguished identity relation from coincidence relation
on identity in Evans’s proof, and then tried to show that Evans’s proof holds
true only for the case of identity statement [1].

In this paper, we defend both EVA and Evans’s derivation from (I) to (V): We
show that EVA does not imply a contradiction even within classical logic and
nevertheless Evans’s derivation from (I) to (V) is correct. In many-valued logic
and modal approaches, some non-classical logic is required to represent vague
object. However, we need not to require any non-classical logic: We can regard
Evans’s proof as being done within classical logic2, and it is not necessary to
abandon classical logic to represent a vague object.

We claim that, among other properties, extension is worth being focused on
when we consider a vague object. In fact, philosophical discussions about vague-
ness often begin with explaining or sometimes defining it in terms of extension
[11]. Now, one of the simplest frameworks to consider extension is set theory,
so we employ set theory in this paper. The key to formalize Evans’s proof in
set theory is to interpret his word “indeterminate”. There are many ways to
interpret it. For example, it is interpreted as “its truth value is neither 0 nor 1”
in many-valued logic, or it is represented by using a modal operator in modal
logic. However, we regard the truth value of any formula as determinate, and
we add neither a new predicate nor operator which represent indeterminacy. We
can interpret ‘a = b is indeterminate’ as some set-theoretic property, namely the
axiom of extensionality is violated for a and b, which is definable by membership
relation. We will demonstrate that a formalization of Evans’s proof in set theory
justifies the interpretation above.

Technically speaking, Evans’s proof seems to have three implicit assumptions
as follows:

(i) For every a, a = a has definite truth value (¬5 (a = a)),
(ii) the Diversity of the Dissimilar (DD) : if object a has a property that b

lacks, then you can infer a 6= b,

1In this paper ‘vague object’ is meant in Evans’s sense. Some philosophers insisted that
Evans’s proof merely shows that vague object in his sense does not exist. They say, there

could be other kinds of vague object and, as Harold Noonan wrote, ‘it is consistent to hold

both that there are vague objects and that the identity relation is precise’ [16]. However, we
do not consider these kinds of vague objects because we concentrate on Evans’s proof.

2Even if we regard Evans’s derivation as being done within modal logic, modality does not

play an essential role in the derivation of (V) from (I): DD eliminates all operators in (V).
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(iii) ` ϕ implies ` 4ϕ (as the generalization law in S5-modal logic).

For more details, see [11]. We note that 4ϕ means that the truth value of ϕ is
determinate. (ii) is used to infer (V) from (II) and (IV). Now,4(a 6= b) is inferred
from (V) and (iii). For duality3, ¬ 5 (a = b) is inferred from 4(a 6= b). This
contradicts (I). But, we can disregard (iii). Indeed, (i) and (ii) are necessary to
derive (V) from (I), but (iii) has nothing to do with the derivation itself. Then,
if we do not admit (iii), what Evans proved is merely that the vague identity
statement (I) implies (V). We call ‘5(a = b) → a 6= b’ Evans Conditional (EC)
as in [3]. We show that our definition of indeterminate equality satisfies EC, and
that both EVA and EC are consistent when we employ a set theory without
the axiom of extensionality.

§2. Formalizing Evans’s proof in set theory. In this section, we attempt
to formalize Evans’s proof in set theory. We seek a way of formalizing axioms
of set theory with operators 4,5 which satisfies (i) and (ii) but not (iii). The
difficulty lies in formalizing inferences which have as conclusion formulas of the
form4(a 6= b) or5(a = b). As a basis for discussion, we notice such an inference
rule proposed by Harold Noonan. However, it is known that his rule implies a
contradiction if it is applied to Evans’s proof. So, we must examine his rule and
restrict it not to imply a contradiction. At the end of this section, we formalize
Evans’s proof in set theory and show it is valid (for a complete list of axioms
and their consistency, see Appendix).

In Evans’s proof, two kinds of relation are used: Leibniz equality relation and
vague equality relation. The confusion of these relations seems to make Evans’s
proof paradoxical, so it is important to distinguish them. The famous relations
are as follows:

Leibniz equality: x = y iff (∀z)[(z ∈ x ↔ z ∈ y)& (x ∈ z ↔ y ∈ z)],
Extensional equality: x =ext y iff (∀z)[z ∈ x ↔ z ∈ y].

Of course x = y → x =ext y holds. Since (∀z)[x ∈ z ↔ y ∈ z] → (∀z)[z ∈
x ↔ z ∈ y] holds4, the definition of Leibniz equality is usually written as x =
y iff (∀z)[x ∈ z ↔ y ∈ z]. The Leibniz law a = b → (ϕ(a) ↔ ϕ(b)) surely holds
for Leibniz equality, however there is no guarantee that it holds for extensional
equality. It is necessary to consider the axiom of extensionality when we think
about identity relations: The axiom of extensionality guarantees that, for any
set x and y, x =ext y → x = y.

Our purpose here is to analyze equality relation separately from membership
relation, so we decide to require the following axiom in a single uniform way:
For any set x, y,

x ∈ y → ¬5 (x ∈ y)(1)

3Duality between 4 and 5 is valid: ¬4 ¬ϕ ↔5ϕ.
4By definition, when a 6=ext b, there is a set c such that c ∈ a & c 6∈ b or vice versa.

So the axiom of separation and the axiom of power set guarantee that, a set D such that

(∀x)[x ∈ D ↔ (∀y)[y ∈ x → y ∈ a] & c ∈ x] exists, and it distinguishes a and b; a ∈ D and

b 6∈ D holds. We remind that such a way of distinction is the same as Evans’s proof.
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In our framework, vagueness appears not in the truth value of membership re-
lation as fuzzy set theory or Tye’s set theory5, but in another property which
concerns the equality relation. We also require duality of 5 and 4.

As for DD, by interpreting λ-term in Evans’s proof6, we formalize the Diversity
of the Dissimilar for Sets

DDS : (∀x, y)(∃X)[x ∈ X & y 6∈ X → x 6= y]

It is clearly true from definition of Leibniz equality.
DDS never tells us anything about 4,5, so we need another (or a stronger)

principle to examine their properties. However, there are few such principles;
here we attempt to reformalize the most famous one, Noonan’s formulation of
Evans’s proof [15]. He used the Diversity of the Definitely Dissimilar7

DDD : from (4ϕ(a)& 4¬ϕ(b)), you can infer 4 (a 6= b)

As we work in set theory, we formalize this principle as the axiom scheme: the
axiom scheme of the Diversity of the Definitely Dissimilar is,

(4ϕ(a)& 4¬ϕ(b)) →4(a 6= b) for any formula ϕ

Combining this scheme with the axiom (1), we formalize the axiom of the Diver-
sity of the Definitely Dissimilar for Sets8 as follows:

DDDS : (∀x, y)(∃X)[x ∈ X & y 6∈ X →4(x 6= y)]

DDDS says that X distinguishes x and y. Noonan showed that DDD implies the
same conclusion as Evans that 5(a = b) implies a contradiction, without using
(iii). In this sense, admitting DDD is more than admitting (iii) and DDDS is
too strong to be consistent.

Now, we remark about the axiom of extensionality. For any sets a and b,
assume they are not extensionally equal. Fix any set x such that x ∈ a but x 6∈ b
(or x ∈ b but x 6∈ a if it is not the case). Then a ∈ X and b 6∈ X where X is
any set such that (∀y)[y ∈ X ↔ y ∈ Y &x ∈ y] (guaranteed by the separation
schema) and Y is any set such that (∀x)[x ∈ Y ↔ x = a ∨ x = b] (guaranteed
by the axiom of pairing)9, so DDDS proves ¬ 5 (a = b), i.e. (∃x)[x ∈ a&x 6∈
b] → 4(a 6= b). Taking its contraposition and combining it with EC, we can
conclude the following:

5(a = b) → a =ext b & a 6= b(2)

5Tye’s set theory is an attempt to represent vagueness within Kleene’s 3-valued logic. We

insist that it is not enough to represent vagueness as it appears in Evans’s proof. In Tye’s
theory, the truth value of a = a is indefinite: This contradicts assumption (i). He wrote

that it is a quasi-tautology; it must be true in any sharpened world, so we can regard it as

almost-determinate statement (similarly he insisted that the axiom of extensionality is also
a quasi-tautology). However, it is difficult to interpret “quasi-tautology” as “determinately

true”: He seems to justify both a = a and the axiom of extensionality by supposing that they
should be true.

6We interpret λy[P (y)]x as (∃X)x ∈ YX where (∀y)[y ∈ YX ↔ y ∈ X & P (y)].
7Here we employ its derivative version which is called ‘DD3’ in [11, 54].
8We follow Noonan’s notation but Evans’s hypothesis (i) suggests to write ¬5x 6= y instead

of 4x 6= y.
9We usually write X = {y : y ∈ {a, b}& x ∈ y} and Y = {a, b} in ZF. However, we will

work in the non-extensional set theory, and we cannot guarantee the uniqueness of X, Y there.
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It shows that, whenever a = b is indefinite, the axiom of extensionality is violated.
Of course, the violation of the axiom of extensionality itself does not imply a

contradiction. The same is true of EC. However, DDDS implies a contradiction
from (2). Let us assume 5(a = b). Fix any set A such that (∀x)[x ∈ A ↔ x = a]
holds (guaranteed by the axiom of pairing), then DDDS implies 4(a 6= b)
because a ∈ A and b 6∈ A. It contradicts the assumption 5(a = b).

To analyze this derivation in depth, we write it without using DDDS: Suppose
5(a = b) (we note that this means a and b are vague objects), then10

(a) a ∈ A and b 6∈ A (from EC: a 6= b)
(b) 4(a 6∈ A) and 4(b ∈ A) (from (a), the axiom (1) and duality of 4)
(c) 4(a 6= b) (from (b) and the axiom scheme of DDD)

The point of this argument lies in (b), 4(b ∈ A). It is clear that b ∈ A ↔
a = b holds, and the axiom (1) insists 4(b ∈ A) on the left-hand side even
though 5(a = b) holds on the right-hand side. Such difference itself is not a
contradiction, because 4(b ∈ A) is a statement about membership but 5(a =
b) is about equality relation. However, the axiom scheme of DDD connects
both kinds of statements: 4(b ∈ A) implies 4(a 6= b), which contradicts the
assumption. In this sense, the axiom (1) and DDDS (or the axiom scheme of
DDD) are incompatible when the set A, which distinguishes a and b, contains
a vague object.

As we saw, DDS is consistent nevertheless DDDS is too strong to be con-
sistent when we assume the axiom (1). So the limit of consistency is between
them. We will approximate where the limit is: Our strategy is that we restrict
DDDS to an axiom which is weak enough not to imply a contradiction and
strong enough to tell us something about 4,511.

But, how? It is observed that a contradiction is derived when A, which dis-
tinguishes two sets a and b in DDDS, contains a vague object a. As working
assumption, we abandon this way of distinguishing in the case that the set, which
distinguishes two objects, contains some vague object. And the weakest candi-
date for an alternative principle is to abandon such way of distinguishing, not
only in the case when A contains a vague object, but also in the case when, for
any set X, X distinguishes two objects x and y externally, i.e. x ∈ X and y 6∈ X,
in DDDS. We formalize the Diversity of the Extensional Dissimilar

DED : (∀x, y)(∃z)[z ∈ x& z 6∈ y →4(x 6= y)]

It represents x 6=ext y → 4(x 6= y); DDDS implies DED as we noticed above.
We show DED is enough strong to prove some property of 5.

10As for the derivation of (b) from (a), Noonan argued that λx[5(a = x)]b in Evans’s proof

is definitely true so we can conclude that 4λx[5(a = x)]b. Similarly 4¬λx[5(a = x)]a holds.

Therefore, we can conclude 4a 6= b. It was objected that allowing such derivations strengthens
DDD in effect [10]. However, we do not take this up here because we investigate vagueness

when any membership is definitive.
11Such strategy is known as effective way to find the limit empirically in set theory. Let us

remember the solution of Russell paradox within classical logic. We restrict the comprehension

principle to the axioms, ZFC, which is weak enough not to imply a contradiction, and strong

enough to express classical mathematics.
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Taking contraposition of DED and combining it with EC, we can conclude
(2). So, if we employ DED principle, we can formalize Evans’s proof in set
theory as follows:

(I’) 5(a = b),
(I”) a =ext b & a 6= b (from (2)),
(II’) b ∈ X where X is such that (∀x)[x ∈ X ↔ x ∈ Y & a =ext x& a 6= x] and

Y is such that (∀x)[x ∈ Y ↔ x = a ∨ x = b] (from (I’)),
(III’) ¬(a =ext a& a 6= a),
(IV’) a 6∈ X (from (III’)),
(V’) a 6= b (from DDS)

This shows that EC is always valid in our set theory. It does not imply a
contradiction (for the proof, see the next section and Appendix). This is because
the theory does not have any principle which derives 4(a = b) from (V’).

§3. Models of EVA and EC. As we saw in the previous section, DED
implies (2): We again take notice of the violation of the axiom of extensionality.
The axiom of extensionality can be seen as a representation of precision since
any set is determined precisely by its members. In this sense, the violation of
the axiom of extensionality represents some aspect of vague object. This means
that the converse of (2) holds in set theory. So we regard such violation of this
axiom as a representation of vagueness here12:

5(a = b) ↔ a =ext b & a 6= b(3)

As we saw, vague object is defined by using vague identity, i.e. a is a vague
object if and only if (∃x)5 (a = x). So we call a vague object when this axiom
is violated. More precisely,

Definition 1. a is a vague object iff the axiom of extensionality is violated
for a, i.e.

(∃x)[a =ext x& a 6= x]

Assuming Definition 1, EVA implies a contradiction only when we assume the
axiom of extensionality. Otherwise, 5(a = b) implies a 6= b without implying
4(a 6= b). So (3) and Definition 1 show that any model of set theory in which
the negation of the axiom of extensionality holds is a model of EVA and EC.
There exist many such models, so this fact proves consistency of our definition.

We can easily generalize Definition 1: The violation of the axiom of exten-
sionality represents vagueness not only within classical logic but also within a
greater variety of logics. So, within any logic, we insist that set theory without
the axiom of extensionality is required to represent vague object. Conversely,

12We remark that George Boolos [2] insisted that the axiom of extensionality is so essential

that any collection of objects which violate this axiom is unqualified to be called set. However,
we do not agree with him: His motivation seems to analyze ZF, however many other set

theories without the axiom of extensionality have been studied and such theories seem to say

something valid about some aspects of set.



ON EVANS’S VAGUE OBJECT FROM SET THEORETIC VIEWPOINT 7

many such set theories have been proposed by now13. These theories seem to
give an example of vague object in the sense of Definition 1.

§4. Conclusion. In this paper, we examined Evans’s proof from a set the-
oretic viewpoint. We defined vague objects as objects for which the axiom of
extensionality does not hold within classical logic, so we could construct a model
of EVA and EC (at the same time we reformulated DD to DED). This means
that the assumption that there can be vague objects in the world itself does not
imply a contradiction nevertheless Evans’s proof is still valid. Namely, if you
accept our definition of vague objects, you can conclude that there can be vague
object in the world.

Needless to say, we must inquire further into vague object. We must investi-
gate what properties does vagueness, represented by violation of the axiom of
extensionality, have. It seems to have many interesting aspects: For example, it
can be regarded as vagueness without boundary. R.M. Sainsbury wrote that ‘a
description of concepts or predicates in terms of what sets they determine is a
description of them as boundary drawers’ [17, 252]. However, we note that, when
a =ext b & a 6= b, a and b share the same boundary. In this sense, our vagueness

13Traditionally, this has been studied within intuitionistic logic; one of the most famous
results is due to Harvey Friedman [6].

V.N.Gris̆ın showed that the comprehension principle alone does not imply Russell paradox

within Gris̆ın logic, which is classical logic minus the contraction rule [8]. He also showed that
the comprehension principle and the axiom of extensionality are incompatible within Gris̆ın’s

logic: the axiom of extensionality implies the contraction rule (so this implies Russell paradox)

in set theory with the comprehension principle within Gris̆ın logic.
Peter Hajek and Zuzana Hanikova developed Fuzzy Set Theory FST [9], within the frame-

work of fuzzy logic with operator 4 which means ‘determinately true’, i.e. the truth value of

4ϕ is 1 if the value of ϕ is already 1; otherwise, the truth value of ϕ is less than 1, then 4ϕ
takes value 0 (in BL-chains). It is in the style of ZF, and it seems to be an attempt to ax-

iomatize our intuition of fuzzy set. In FST, the axiom of extensionality cannot be valid. This
is because that Leibniz equality becomes crisp (i.e. its truth value is 0 or 1) nevertheless the

truth value of extensional equality can be indeterminate: They proved the following lemma.

lemma 1. A theory with comprehension (for open formulas) or pairing (or singletons) over
a logic which proves the propositional formula (ϕ → ϕ & ϕ) → (ϕ ∨ ¬ϕ) proves (∀x, y)[x =

y ∨ x 6= y], i.e. Leibniz equality is crisp.

For the proof, see [9, §4]. We note that fuzzy logic proves (ϕ → ϕ & ϕ) → (ϕ ∨ ¬ϕ), and FST

has the axiom of pairing. It is clear that the truth value of extensional equality could be any
real value between 0 and 1. Here, the axiom of extensionality holds for any crisp set, but it

might be violated for some fuzzy set: The truth value of Leibniz equality and that of extensional

equality might be different for some fuzzy set. So FST can only have the weakened version
of the axiom of extensionality: x = y iff 4(x ⊆ y)&4 (y ⊆ x). Such violation of the axiom

has been regarded as merely introduced for technical reasons, however this seems to suggest

that such violation is a necessary feature of fuzzy set implicitly connoted by our intuition of
fuzziness itself. In this sense, Definition 1 can be regarded as an isolation of some aspect of

fuzziness so that we can represent it even within classical logic.

As for modal logic, Jan Krajicek developed the Modal Set Theory MST [13] [14]. It has an
operator 2 which represents ‘to be knowable’, and it is an axiomatization of a set theory based

on a modal version of the comprehension axioms as the only non-logical axioms. Unfortunately
the consistency of MST is still an open problem. It is worthy of special mention that MST

disproves the axiom of extensionality: Therefore such the similarity, with Gris̆ın’s and with

ours, is worthy of attention.
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is an example of vagueness without boundary, nevertheless it is represented in
terms of sets.

Another problem is studying the relationship between vague object and vague
predicate. Vague object is an object for which identity relation is a vague pred-
icate. Some philosopher, as Michael Dummett [4], claimed that vague predicate
contains inconsistency, so, no semantics of vague predicate can be given. But so
far, we can give a model of vague object in classical logic. So, if the relationship
between vague object and vague predicate becomes clearer, the possibility of
existence of semantics of vague predicate would remain.

Appendix: The axioms of set theory with operators 5, 4 and their
consistency. For the reader’s convenience, we give an analysis of our set theory
with two operators 5, 4. Let T be any consistent set theory within classical
logic with enough power of expression and with the negation of the axiom of
extensionality.

The axioms. We expand T to T ∗ by adding the following axioms. We note
that the language of T ∗ contains two predicates ∈ and =, and two operators
4,5.

Definition 2. The added axioms and axiom schemata are as follows:

(A) The membership relation is definite, i.e. (∀x, y)x ∈ y → ¬5 x ∈ y.
(B) 5 and 4 are dual, i.e. 5ϕ ↔ ¬4¬ϕ for any ϕ.
(C) ϕ is definite (indefinite) iff ¬ϕ is definite (indefinite), i.e. 5ϕ ↔5¬ϕ and

4ϕ ↔4¬ϕ for any ϕ.
(D) Our definition (3), i.e. 5(a = b) iff (a =ext b & a 6= b).

The interpretation. From now on, we write a
4
= b instead of a = b∨a 6=ext b,

and a
5
= b instead of a =ext b & a 6= b just for simplicity. To show the consistency

of T ∗, we provide an interpretation of sentences of T ∗ into T inductively as
follows. Let us suppose that 〈ϕi : i ∈ ω〉 is an enumeration of all formulae such
that

• if ϕi is a subformula of ϕj then i ≤ j holds,
• if ϕk is of the form 4ϕl (or 5ϕl) then l ≤ k holds,
• if ϕm is of the form (Qx)ϕn(x) then n ≤ m holds where Q is either ∀ or ∃.

We note that the list 〈ϕi : i ∈ ω〉 guarantees the uniqueness of the order of
interpretation.

Definition 3. For any formula ϕ ≡ ϕi, we define the following interpretation
inductively along the list 〈ϕi : i ∈ ω〉:
(1)(1a) if there is some j < i such that ϕi is equivalent to ϕj then 5ϕi (4ϕi)

is interpreted as the same formula as 5ϕj (4ϕi),
(1b) if there is some j < i such that ϕi is equivalent to ¬ϕj then 5ϕi (4ϕi)

is interpreted as the same formula as 5ϕj (4ϕi),
(2) ϕ is interpreted as ϕ if it includes neither 5 nor 4 (and if it is not the

case (1)),
(3) if ϕ(x0, · · · , xn−1) has only n free variables,



ON EVANS’S VAGUE OBJECT FROM SET THEORETIC VIEWPOINT 9

(3a) 5ϕ(a0, · · · , an−1) is interpreted as

¬ϕ(a0, · · · , an−1)& [(∃x0)(x0
5
= a0 &ϕ(x0, a1, · · · , an−1))

∨ · · · ∨ (∃xn−1)(xn−1
5
= an−1 &ϕ(a0, · · · , an−2, xn−1))]

(3b) 4ϕ(a0, · · · , an−1) is interpreted as

ϕ(a0, · · · , an−1) ∨ [(∀x0)(a0
4
= x0 ∨ ¬ϕ(x0, a1, · · · , xn−1))

& · · · &(∀xn−1)(an−1
4
= xn−1 ∨ ¬ϕ(a0, · · · , an−2, xn−1))]

(3c) 5(Qx0, · · · , Qxn−1)ϕ(x0, · · · , xn−1) is interpreted as (Qx0, · · · , Qxn−1)5
ϕ(x0, · · · , xn−1) where Q is either ∀ or ∃,

(3d) 4(Qx0, · · · , Qxn−1)ϕ(x0, · · · , xn−1) is interpreted as (Qx0, · · · , Qxn−1)4
ϕ(x0, · · · , xn−1).

So, for example, the following hold:

• 5(a ∈ b) is interpreted as (a 6∈ b)& [(∃x)(x
5
= a&x ∈ b) ∨ (∃y)(y

5
= b & a ∈

y)]. However, y
5
= b & a ∈ y implies a ∈ b, and it is impossible because

a 6∈ b. So the above is equivalent to (a 6∈ b)& (∃x)(x
5
= a&x ∈ b).

• 4(a ∈ b) is interpreted as (a ∈ b) ∨ (∀x)(x
4
= a ∨ x 6∈ b) by the similar

argument to the above. This means our axiom (A) holds.

• 55(a ∈ b) is interpreted as ¬5(a ∈ b)& [(∃x)(x
5
= a&5(x ∈ b))∨(∃y)(y

5
=

b & 5 (a ∈ y))]. So this is interpreted as

[a ∈ b ∨ [(∀x0)(a
4
= x0 ∨ x0 6∈ b)& (∀x1)(b

4
= x1 ∨ a 6∈ x1)]]

& [(∃x)(x
5
= a&(x 6∈ b &((∃z0)(z0

5
= x& z0 ∈ b) ∨ (∃z1)(z1

5
= b &x ∈ z1))))

∨ (∃y)(y
5
= b &(a 6∈ y &((∃r0)(r0

5
= a& r0 ∈ y) ∨ (∃r1)(r1

5
= y & a ∈ r1))))]

As the above, this is equivalent to

[a ∈ b∨(∀x0)(a
4
= x0∨x0 6∈ b)]& (∃x)(x

5
= a&(x 6∈ b &((∃z0)(z0

5
= x& z0 ∈ b)))

• 5(a = b) is interpreted as [(∃x)(x
5
= a&x = b)∨(∃y)(y

5
= b & a = y)]& a 6=

b. Clearly this is equivalent to a
5
= b: This means axiom (D) holds.

• 4(a = b) is interpreted as [(∀x)(x
4
= a∨x 6= b)& (∀y)(y

4
= b∨a 6= y)]∨a = b

and this means [(∀x)(x = b → x
4
= a)& (∀y)(y = a → y

4
= b)] ∨ a = b:

Clearly this is equivalent a
4
= b ∨ a = b, so a

4
= b holds,

• 4(ϕ(a) ∨ 5(a ∈ b)) is interpreted as (ϕ(a) ∨ 5(a ∈ b))& [(∀x)(x
4
= a ∨

¬(ϕ(x) ∨5(a ∈ b)))]. This can be interpreted as

(ϕ(a) ∨ (a 6∈ b&(∃x0)(x0
4
= a&x0 ∈ b)))&

(∀x1)(x1
4
= a ∨ (¬ϕ(x1)& (x1 ∈ b ∨ (∀x2)(x1

4
= x2 ∨ x2 6∈ b))))
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Under this interpretation, it is routine that any of the axiom and axiom schemata
is interpreted as being true. This means that the consistency of T implies the
consistency of T ∗.
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