Comprehension contradicts to the induction within Łukasiewicz predicate logic

Shunsuke Yatabe

Abstract

We introduce the simpler and shorter proof of Hajek's theorem that the mathematical induction on ω implies a contradiction in the set theory with the comprehension principle within Lukasiewicz predicate logic L \forall [H05] by extending the proof in [Y06] so as to be effective in any linearly ordered **MV**-algebra.

1 Introduction

In this paper, we introduce the simpler and shorter proof of Hajek's theorem that the mathematical induction on ω implies a contradiction in the set theory with the comprehension principle within Lukasiewicz predicate logic $L\forall$ [H05].

A significance of the set theory with the comprehension principle is to allow a general form of the recursive definition: For any formula $\varphi(x, \dots, y)$, the comprehension principle implies

$$(\exists z)(\forall x)[x \in z \equiv \varphi(x, \cdots, z)]$$

within Grišin logic (classical logic minus the contraction rule) [C03]. This allows us to represent, for example, the set of natural numbers ω , and any partial recursive function on ω .

Let CL_0 be a set theory with the comprehension principle within $L\forall$, an extension of Grišin logic. CL_0 seems to be enough strong to develop an arithmetic: the general form of recursive definition can be used in place of the mathematical induction to define arithmetic. And it had been expected that the arithmetic is a subset of **PA** in classical logic. However, Petr Hajek showed that the following [H05]:

Theorem 1 The extension CL of the theory CL_0 by the(strong) induction scheme on ω is contradictory.

Hajek's result is very surprising, but his proof is very long.

In [Y06], we proved the similar result in a simple way that the induction scheme implies a contradiction in the set theory within $\forall \mathbf{L}$ which is weaker than $\mathbf{L}\forall$. In this paper, we extend this proof so as to be effective in $\mathbf{L}\forall$.

This theorem shows that the general form of recursive definition contradicts to the induction within $\mathbf{L}\forall$ though they are consistent within classical logic. Therefore \mathbf{CL}_0 gives a new viewpoint to analyze concepts in arithmetic since it gives a new possibility to give a nonstandard arithmetic (an arithmetic developed only by the general form of recursive definition) in a natural way. Since $\mathbf{L}\forall$ is nicely axiomatized, this result might help a study of such recursive definitions.

2 Preliminaries

Our framework in this paper is Łukasiewicz predicate logic $\mathbf{L}\forall$. $\mathbf{L}\forall$ is a fuzzy logic weaker than $\forall \mathbf{L}$, and is axiomatized in Hilbert style as follows.

Definition 1 The axioms of $\mathbf{L}\forall$ consists of axioms of propositional Lukasiewicz logic \mathbf{L} plus the following two additional rules:

- $\forall x \varphi(x) \to \varphi(t),$
- $\forall x(\nu \to \varphi) \to (\nu \to (\forall x)\varphi)$ if x is free in ν .

 $\mathbf{L}\forall$ proves $\neg \exists \neg \varphi \equiv \forall x \varphi$ and $(\nu \rightarrow \exists x \varphi) \rightarrow \exists x (\nu \rightarrow \varphi)$. We note that $\mathbf{L}\forall$ is a predicate logic which is complete for models over **linearly ordered MV-algebras**.

Definition 2 Let CL_0 be a set theory within $L\forall$, which has a binary predicate \in and terms of the form $\{x : \varphi(x)\}$, and whose axiom scheme is **the comprehension principle**: for any φ not containing u freely, $(\forall u)[u \in \{x : \varphi(x, \cdots)\} \equiv \varphi(u, \cdots)]$.

We can define Leibniz equality x = y iff $(\forall z)[x \in z \leftrightarrow y \in z]$, the empty set $\emptyset = \{x : x \neq x\}$ in standard way.

As we see, \mathbf{CL}_0 proves the general form of the recursive definition [C03]. In particular, we can construct a term θ such that $\theta =_{\text{ext}} \{u : \varphi(u, \dots, \theta)\}$ for any formula $\varphi(x, \dots, y)$. By using this, we can prove that the set of natural numbers ω can be defined as follows:

$$(\forall x)x \in \omega \equiv [x = \emptyset \lor (\exists y)[y \in \omega \land x = \{y\}]]$$

For simplicity, we write n + 1 instead of $\{n\}$ hereafter.

Once Hajek suggested to introduce the induction scheme:

Definition 3 The induction scheme on ω is a scheme of the form: for any formula φ ,

$$\varphi(0) \land (\forall n \in \omega) [\varphi(n) \equiv \varphi(n+1)] \text{ infer } (\forall x) [x \in \omega \to \varphi(x)]$$

However, Hajek finally proved theorem 1 in a very complex, long proof.

Let $\forall \mathbf{L}$ be Lukasiewicz infinite-valued predicate logic whose algebra of truth functions is the standard $\mathbf{M}V$ -algebra $[0,1]_{\mathbf{L}}$ which is generated by $\langle [0,1], \Rightarrow, * \rangle$. $\forall \mathbf{L}$ is stronger than $\mathbf{L}\forall$, but $\forall \mathbf{L}$ is not recursively axiomatizable. And let \mathbf{H} be the set theory with the comprehension principle within $\forall \mathbf{L}$. In [Y06], we proved:

Theorem 2 The extension of **H** by the induction scheme on ω is contradictory.

The proof is a very simple, but the proof is only valid for models over Archimedean $\mathbf{M}V$ -algebras.

3 A short proof of theorem 1

Here, we extend the proof of the theorem 2 of [Y06]. Let us define

- $\theta = \{ \langle n, x \rangle : (n = 0 \land x \notin x) \lor (\exists k \in \omega) [n = k + 1 \land x \in x \to \langle n, x \rangle \in \theta] \},\$
- $R_{\omega} = \{x : (\exists n) \langle n, x \rangle \in \theta\}.$

The existence of these sets is guaranteed by the recursion theorem. First we can show that $R_{\omega} \in R_{\omega}$, i.e. $(\exists n) \langle n, R_{\omega} \rangle \in \theta$, is provable in **H**:

$$\frac{R_{\omega} \in R_{\omega} \equiv (\exists n) \left[\langle n, R_{\omega} \rangle \in \theta \right]}{R_{\omega} \in R_{\omega} \to (\exists n) \left[\langle n, R_{\omega} \rangle \in \theta \right]}$$
$$\frac{(\exists n) \left[R_{\omega} \in R_{\omega} \to \langle n, R_{\omega} \rangle \in \theta \right]}{\left(\exists n) \langle n + 1, R_{\omega} \rangle \in \theta \right]}$$
$$\frac{(\exists n) \langle n + 1, R_{\omega} \rangle \in \theta}{R_{\omega} \in R_{\omega}}$$

Let us assume the induction scheme on ω . We remark that the induction scheme implies the crispness of ω [H05]. As we see, $R_{\omega} \in R_{\omega}$ is provable, and this means that $\langle 0, R_{\omega} \rangle \notin \theta$ is provable. For any $n \in \omega$, we can prove $\langle n, R_{\omega} \rangle \notin \theta \rightarrow \langle n+1, R_{\omega} \rangle \notin \theta$:

$$\frac{R_{\omega} \in R_{\omega}}{[R_{\omega} \in R_{\omega} \to \langle n, R_{\omega} \rangle \in \theta] \to \langle n, R_{\omega} \rangle \in \theta}$$
$$\frac{\langle n, R_{\omega} \rangle \not\in \theta \to \neg [R_{\omega} \in R_{\omega} \to \langle n, R_{\omega}]}{\langle n, R_{\omega} \rangle \not\in \theta \to \neg \langle n + 1, R_{\omega} \rangle \in \theta}$$

and $\langle n+1, R_{\omega} \rangle \notin \theta \to \langle n, R_{\omega} \rangle \notin \theta$:

$$\frac{\langle n+1, R_{\omega} \rangle \notin \theta}{\neg (R_{\omega} \in R_{\omega} \to \langle n, R_{\omega} \rangle \in \theta)} \frac{R_{\omega} \in R_{\omega} \& \langle n, R_{\omega} \rangle \notin \theta}{\langle n, R_{\omega} \rangle \notin \theta}$$

Therefore $\langle n, R_{\omega} \rangle \notin \theta \equiv \langle n+1, R_{\omega} \rangle \notin \theta$ holds for any $n \in \omega$. The induction scheme proves $(\forall x \in \omega) \langle x, R_{\omega} \rangle \notin \theta$. $R_{\omega} \notin R_{\omega}$ holds by the crispness of ω , but this contradicts to $R_{\omega} \in R_{\omega}$.

We note that, this proof involves that the theory **H** is ω -inconsistent, since $\langle j, R_{\omega} \rangle \notin \theta$ is provable for any standard natural number j though $(\exists x)\langle x, R_{\omega} \rangle \in \theta$ is provable. Also we note that, since we use $(\varphi \to \exists x \nu) \to \exists x (\varphi \to \nu)$ and double negation elimination, this proof is not valid in some semantics of **BL** \forall . \Box

4 Conclusion

We introduced the simpler and shorter proof of Hajek's theorem that the mathematical induction on ω implies a contradiction in the set theory with the comprehension principle within $\mathbf{L}\forall$ [H05]. We extended the proof of [Y06] to be effective within $\mathbf{L}\forall$.

Acknowledgement

The author would like to thank the anonymous referee, Petr Cintula, Uwe Petersen, and in particular Petr Hajek for their helps.

References

- [C03] Andrea Cantini. "The undecidability of Grisĭn's set theory" Studia logica 74 (2003) pp.345-368
- [H05] Petr Hajek. 2005. On arithmetic in the Cantor-Lukasiewicz fuzzy set theory. Archive for Mathematical Logic. 44(6): 763 - 82.
- [Y06] Shunsuke Yatabe. 2007. "Distinguishing non-standard natural numbers in a set theory within Lukasiewicz logic" Archive for Mathematical Logic, 46(3-4): 281-287.