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Abstract

We show that the crispness of ω is not provable in a constructive naive set theory CONS in FLew∀,
intuitionistic predicate logic minus the contraction rule. In the proof, we construct a circularly
defined object fix, a fixed point of the successor function suc, by using a fixed-point theorem.

1 Introduction

Without the contraction rule, the comprehension principle does not imply a contra-
diction on substructural logics. This is well known. A significant use of these naive
set theories is proving a fixed-point theorem for a general recursive definition: the
comprehension principle implies that for any formula ϕ(x, · · · , y), there is a term θ
within many substructural logics such that

(∀x)[x ∈ θ ≡ ϕ(x, · · · , θ)].

See, for example, Cantini [C03] or Terui [Tr04]. This fact allows us to define the set
of natural numbers ω seemingly inductively as follows:

(∀x)[x ∈ ω ≡ [x = 0̄ ∨ (∃y)[y ∈ ω ⊗ x = suc(y)]]]

where 0̄ is a set representing 0 and suc is a successor function (for more details,
see section 2.2). To know how much arithmetic can be developed in these naive set
theories is to know the limit of the power of general recursive definitions.

However, it is not known whether ω is a crisp set. That is, whether tertium non
datur—(∀x)[(x ∈ ω)∨ (x 6∈ ω)]—holds for ω. This is an important problem because it
concerns the nature of sets arising from a general recursive definition. In this paper
we give a partial answer to the question of crispness. The framework for this paper
is Constructive Naive Set Theory CONS, a naive set theory within the full Lambek
predicate calculus with exchange and weakening rules FLew∀ (intuitionistic predicate
logic minus the contraction rule); CONS is very constructive. We prove the following.

Theorem 1.1
CONS does not prove the crispness of ω.

In the proof, a circularly defined object fix, finitely generated and potentially infinite,
plays a key role. This theorem means that, quite contrary to classical theories, the
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distinction between finiteness and non-finiteness in CONS is indefinite because of
the existence of potentially infinite objects.

The structure of this paper is as follows. We introduce FLew∀ and CONS in
section 2. Next, we introduce a secondary motivation of this paper in section 3: to
stress how difficult it is to apply Leibniz equality to potentially infinite objects. The
difficulty in proving crispness seems to be due to this. Therefore, in section 3.1 we
define a bisimulation relation ∼ which is easy to handle in the spirit of [BM96] and
define ∼-equivalent classes ω̃ in section 3.2. We prove theorem 1.1 in section 4. We
begin by proving an analogue of theorem 1.1 for ω̃ in section 4.1: we construct a
non-terminating automaton fix as a fixed point of suc with respect to ∼, that is,
fix ∼ suc(fix), and prove that fix is a counterexample of tertium non datur for ω̃.
We then modify fix to prove the theorem: we unfold fix to contradict provability of
tertium non datur for ω. Section 4.2 contains this proof.

2 Preliminaries

2.1 A constructive naive set theory

Our framework in this paper is full Lambek predicate calculus with exchange (e) and
weakening (w) FLew∀ (intuitionistic predicate logic minus the contraction rule). Let
s, t be arbitrary terms and let Γ, Σ be finite multisets (possibly empty) of formulae.
Brackets of the form [α] in the right-hand side of sequents are so called ∈-levels: these
are used to prove theorem 2.3.

Definition 2.1
FLew∀ consists of the following rules.

t ∈ s ` t ∈ s [0] ⊥ ` [0]

Γ ` A [α] A, Σ ` B [β]
Γ, Σ ` B [α + β]

cut

Structural rules:

Γ, B, A, Σ ` C [α]
Γ, A,B, Σ ` C [α]

e
,

Γ ` C [α]
Γ, A, Σ ` C [α]

w

Implication:
Γ ` A [α] B, Σ ` C [β]
A → B, Γ, Σ ` C [α + β] ,

Γ, A ` B [α]
Γ ` A → B [α]

Multiplicative connectives (fusion):

Γ, A, B, Σ ` C [α]
Γ, A ⊗ B, Σ ` C [α],

Γ ` A [α] Σ ` B [β]
Γ, Σ ` A ⊗ B [α + β]

Additive connectives:

Γ, Ai, Σ ` C[α]
Γ, A1 ∧ A2, Σ ` C [α],

Γ ` A [α] Γ ` B [β]
Γ ` A ∧ B [α + β]
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Γ, A, Σ ` C [α] Γ, B, Σ ` C [β]
Γ, A ∨ B, Σ ` C [α + β] ,

Γ ` Ai [α]
Γ ` A1 ∨ A2 [α]

Quantifiers (a is a variable not free in Γ ` ∀xA and Γ,∃xA ` B):

Γ, A[x := s] ` B [α]
Γ,∀xA ` B [α] ,

Γ ` A[x := a] [α]
Γ ` ∀xA [α] ,

Γ, A[x := a] ` B [α]
Γ,∃xA ` B [α] ,

Γ ` A[x := s] [α]
Γ ` ∃xA [α]

Here the negation ¬A is an abbreviation of A → ⊥. We note that BCK-logic is a
→-fragmentof FLew∀ from the first 5 rules and the 2 implication rules.

FLew∀ is very constructive in the sense that FLew∀ satisfies the disjunction prop-
erty and the existence property. This is crucial for the proof of the main theorem.

Next we introduce a particular naive set theory.

Definition 2.2
Let CONS be a set theory within FLew∀ with a binary predicate ∈, terms of the
form {x : ϕ(x)}, and the following two ∈-rules:

A[x := s], Γ ` B [α]
s ∈ {x : A}, Γ ` B [α + 1],

Γ ` A[x := a] [α]
Γ ` a ∈ {x : A} [α + 1].

We note that CONS is similar to Uwe Petersen’s LiDλ [P00]. LiDλ has only one
connective → (its introduction/elimination rule is the same as ours); other connectives
are simulated by using sets. Kazushige Terui’s LAST [Tr04] is similar to, but more
complex than, LiDλ. LAST has only one connective, linear implication, and only
one quantifier, ∀. Other connectives are simulated by implication, ∀, and set terms.
LAST also has the modal operators ! and §: !A allows the contraction rule to be
applied to !A, and this makes LAST stronger than LiDλ. Comparing the theories,
Cantini’s GL is closer to CONS. CONS is a subsystem of GL, which is itself a
naive set theory in Grisin logic (classical logic minus the contraction rule). The main
difference between GL and CONS is that GL is a multiple conclusion logic (so in
this sense, it is classical) and CONS is a single conclusion logic.

It is easy to see that the cut elimination theorem is provable in CONS.

Theorem 2.3 (Cut elimination)
If A is provable in CONS, then it has a cut-free proof in CONS.

The proof of this is essentially the one given in [C03]: since CONS is “highly sel-
freferential and impredicative, it is not possible to eliminate cuts by progressively
decreasing the complexity of the cut formulas”, but “lack of contraction still allows to
apply a standard elimination procedure, by use of ∈-level”. Actually, the cut elimina-
tion here is easier than for classical or intuitionistic logic. Let us state the following
essential lemma:
Lemma 2.4
For any deduction with cut

S1

Γ1 ` ϕ1 [α]
S2

Γ2, ϕ1 ` ϕ [β]
Γ1, Γ2 ` ϕ [α + β]

there is a cut-free deduction of Γ1, Γ2 ` ϕ whose ∈-level is ≤ α + β.
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Proof. We briefly sketch the proof. The proof uses triple induction: the main in-
duction is on the sum of ∈-levels, and sub-inductions are on the logical complexity
of the cut formula and on the sum of the height of S1 and S2. For example, let us
consider the following case:

Γ1 ` t ∈ {x : A} [α + 1] Γ2, t ∈ {x : A} ` B [β + 1]
Γ1, Γ2 ` B [α + β + 2] .

This can be written as follows:

Γ1 ` A[x := t] [α] Γ2, A[x := t] ` B [β]
Γ1, Γ2 ` B [α + β] .

Here, the complexity of the cut formula is increased, but its ∈-level is decreased. The
induction hypothesis shows that we can rewrite this to a cut-free proof. We note that
this proof is simpler than that of GL: we do not have to consider cases where C(∈,→)
in GL because CONS is a single conclusion calculus. �

This cut elimination procedure makes proofs normal and that this proves the nor-
malization theorem. Let us compare non-normal proofs and normal proofs. For
non-normal proofs, the proof might have detours and the connectives and set terms,
which have been introduced already, might disappear as the proof proceeds, that is,
as the ∈-level increases. For normal proofs, in contrast, there are no detours and the
number of the nested boxes never decreases when ∈-levels increase:

` s ∈ t [α]
` s ∈ {x0 : x0 ∈ t} [α + 1]

` s ∈ {x1 : x1 ∈ {x0 : x0 ∈ t}} [α + 2].

Here, set terms, {x0 : x0 ∈ t} etc. are boxes, and applying the ∈-introduction rule
to a formula introduces a new box. Logical connectives work similarly: once the
connective is introduced, it persists unless it is put in the new box. Conversely,
the back calculation to construct the proof from the consequence is very easy for
normal proofs: we can estimate what introduction rule was applied in the previous
deduction step by examining the logical connectives of the consequence (this plays a
very important role in the proof of lemma 4.2).

Next, we define many standard set-theoretic relations.

Definition 2.5
• Leibniz equality: a = b ≡ (∀z)[a ∈ z ≡ b ∈ z],
• Extensional equality: a =ext b ≡ (∀z)[z ∈ a ≡ z ∈ b].

Lemma 2.6
• ` (∀x)[x = x],
• s = t, ϕ(s) ` ϕ(t) for any term s, t,
• ` (∀x, y)[x = y → x =ext y].

Definition 2.7
• The empty set: ∅ = {x : ⊥},
• The universal set: V = {x : x = x}.
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V is a set in CONS, and this makes CONS very different from ZFC. Similarly, we
can define the following relations [C03]:

Definition 2.8
For any term s, t,

• singleton: {s} = {x : x = s},
• pair: {s, t} = {x : x = s ∨ x = t},
• ordered pair: 〈s, t〉 = {s, {t}}.

We note that writing an ordered n-tuples in the form 〈a0, · · · , an−1〉 is an abbreviation
for the iteration of ordered pairs such as 〈a0, a1, a2〉 = 〈a0, 〈a1, a2〉〉.

Definition 2.9

dom(f) = {y : (∃x)〈x, y〉 ∈ f}

Finally, we introduce the crispness1.

Definition 2.10
• A set X is crisp iff ` (∀x)[x ∈ X ∨ x 6∈ X],
• A relation R is crisp iff ` (∀x, y)[xRy ∨ ¬xRy].

2.2 The fixed point theorem and arithmetic

As we saw, one of the most important properties of CONS is that it allows the fixed
point theorem, or the general recursion form [C03][P00]: we can define a set z which
is defined by using z itself (strictly speaking, we can construct a term θ such that
θ =ext {u : ϕ(u, · · · , θ)}) by just a diagonalization argument.

Theorem 2.11 (The fixed point theorem)
For any formula ϕ(x, · · · , y),

` (∃z)(∀x)[x ∈ z ≡ ϕ(x, · · · , z)]

Proof. We construct a term θ such that θ =ext {u : ϕ(u, · · · , θ)}. Before that, we
introduce the sketch of the proof of the following lemma along the line of [C03].

Lemma 2.12
For any relation f , there is a term If such that f−1(If ) =ext If where f−1(a) = {x :
〈x, a〉 ∈ f}.

Proof. Fix any f .
Let Df be such that Df = {z : (∃x, g)[z = 〈x, g〉 ⊗ x ∈ f−1(g−1(g))]} and If =

D−1
f (Df ). Then the following chain of equivalence is provable in CONS:

x ∈ If ≡ 〈x,Df 〉 ∈ Df

≡ x ∈ f−1(D−1
f (Df ))

≡ x ∈ f−1(If ).
1There are different definitions of crispness. The definition Hajek uses in [H05] is that ω is crisp if t ∈ ω → (t ∈

ω) ⊗ (t ∈ ω) for any t (we can apply contraction-like rule to ω). It is easy to see that tertium non datur implies

this in  Lukasiewicz logic.
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�
Let fϕ = {z : (∃x, y)[z = 〈x, y〉 ⊗ ϕ(x, · · · , y)]}. It is enough to apply lemma 2.12 to
fϕ, from which θ = Ifϕ . �

Next, we develop arithmetic by using theorem 2.11. We note that many definitions
definition of 0̄ and suc(y) are possible; 0̄ is defined as ∅ = {x : ⊥} and suc(y) is
defined as {y} in Zermelo style, for example, in [C03]. For any natural number n
in the metalanguage, let us write the corresponding numeral n̄ which has the form
suc(suc(· · · suc(︸ ︷︷ ︸

n times

0̄) · · · )). The set of natural numbers, ω, is defined as in section 1.

Similarly, we can define arithmetical operations as relations.

Definition 2.13
Addition Plus is defined as follows: a tuple 〈x, y, z〉 is in Plus iff the additive dis-
junction of the following clauses holds.

• 〈x, 0̄, x〉 ∈ Plus,
• 〈x, suc(y), suc(z)〉 ∈ Plus if 〈x, y, z〉 ∈ Plus.

Formally:

Plus = {v : (∃x, y, z)[v = 〈x, y, z〉 ⊗
[(y = 0̄ ⊗ z = x) ∨ (∃y′, z′)[〈x, y′, z′〉 ∈ Plus ⊗ y = suc(y′) ⊗ z = suc(z′)]]]}

We can define multiplication Times as follows:

Times = {v : (∃x, y, z ∈ ω)[v = 〈x, y, z〉 ⊗ [(y = 0̄ ⊗ z = 0̄)
∨(∃y′, z′)[〈x, y′, z′〉 ∈ Times ⊗ y = suc(y′) ⊗ Plus(z′, x, z)]]]}

However, it is difficult to show whether we can define Plus as a function: in other
words, is there a unique z for any x, y ∈ ω such that 〈x, y, z〉 ∈ Plus. Petr Hájek
showed the following in a naive set theory in  Lukasiewicz infinite valued predicate
logic [H05]:

• mathematical induction on ω implies the crispness of ω and that Plus defines a
function and

• mathematical induction implies a contradiction.

Since then, it has been an open question whether plus can be a function.
Lastly, we show that the fixed point theorem, which implies fixed points for all

monotone operators. For example,

• power set operator P: X =ext PX for X =ext {x : (∀y)[y ∈ x → y ∈ X] → x ∈
X},

• stream operator ∞: ∞A =ext A for A =ext {x : (∃y, z ∈ A)x = 〈y, z〉},
• successor operator Suc: Sucω =ext ω for ω =ext {x : x ∈ ω ∨ (∃y ∈ ω)[x =

suc(y)]}.

However we do not know the size of these points: we do not know whether they are
the least fixed points or the largest fixed points or even something else. We will discuss
this in section 4.2 again.



On the crispness of ω in a constructive naive set theory 7

3 Non-extensionality and bisimulation

In this section, we introduce a relatively new concept, bisimulation, which makes it
easy to develop arithmetic in CONS. A secondary motive for this paper is to stress
how difficult Leibniz equality is to handle and introduce a suitable alternative. The
root of the difficulty seems to be the potentially infinite character of CONS; this
character will be introduced in the proof of theorem 1.1. It is difficult to define the
identity criteria for potential infinite objects as fix. Therefore we define a bisimulation
relation, a very natural identity criteria for circularly defined objects, in section 3.1.
After defining the bisimulation relation we define its equivalent classes ω̃ and develop
its arithmetic in section 3.2.

3.1 Bisimulation

In this section, let us see how difficult Leibniz equality is to handle and define the
bisimulation relation ∼ to surmount these difficulties.

Identity is a key to developing mathematics if identity is not decidable. Leibniz
equality, a = b ≡ (∀z)[a ∈ z ≡ b ∈ z], has been widely used in the study of naive
set theories. One of the most important properties of Leibniz equality is that it is
contractive.

Lemma 3.1
CONS proves that Leibniz equality is contractive. For any s, t,

` s = t → (s = t) ⊗ (s = t).

For our aim, = is too strict to use because of its contractiveness. For example, it
is well-known that Leibniz equality is different from extensional equality, given by
a =ext b ≡ (∀z)[z ∈ a ≡ z ∈ b]. The axiom of extensionality implies a contradiction
in many naive set theories [G82]. Leibniz equality acts more like syntactical identity.

Lemma 3.2 (The literal identity property)
If CONS proves t = u then t and u are syntactically identical.

Proof. The proof in [C03] carries to CONS. For simplicity, we consider the proof
of (∀z)[t ∈ z → u ∈ z]. Its normal proof must be of the following form:

....
t ∈ z ` u ∈ z

` t ∈ z → u ∈ z
` (∀z)[t ∈ z → u ∈ z]

However, t ∈ z ` u ∈ z is provable only if t is syntactically equal to u. �

We note that Terui proved a similar theorem for LAST [Tr04]. This syntactical
quality seems to prevent a straightforward arithmetic. For example, the fixed point
theorem only proves the existence of θ; it does not guarantee the uniqueness of such
a term. Therefore, we cannot prove the uniqueness of sets, such as ω, defined by the
fixed point theorem. Thus, if we use =, we cannot take full advantage of the power
of general recursive forms.



8 On the crispness of ω in a constructive naive set theory

What about extensional equality =ext instead? Even =ext is not sufficient to de-
velop arithmetic: it is still too strict. For example, even if a =ext 0̄, we still have
{a} 6=ext 1̄ when a 6= 0̄. This means that the two series,

• 0̄, suc(0̄), suc(suc(0̄)), suc(suc(suc(0̄))), · · ·
• a, suc(a), suc(suc(a)), suc(suc(suc(a))), · · ·

differ completely with respect to =ext. Therefore =ext is not sufficient to develop
arithmetic.

We define an identity relation in the naive set theory so that we can take full advan-
tage of the fixed point theorem. For this identity relation, we introduce bisimulation,
∼ [BM96]. The motivation for introducing ∼ is to express hereditary extensional
equality with respect to iterations of the successor function.

Definition 3.3
• Relation R∼ is defined as follows:

(∀x, y)[〈x, y〉 ∈ R∼ ≡ [x =ext y ∨
(∃v, w)[〈v, w〉 ∈ R∼ ⊗ x = suc(v) ⊗ y = suc(w)]],

• x ∼ y is an abbreviation of 〈x, y〉 ∈ R∼.

The existence of R∼ is guaranteed by theorem 2.11.

Lemma 3.4
• (∀x, y)[x =ext y → x ∼ y],
• (∀x, y)[suc(x) ∼ suc(y) ≡ x ∼ y].

Let us remark here on the view of sets as automata (mathematically, directed
graphs with only one kind of directed edge, ∈) [A88]. For example, {∅, {∅}} gives an
automata of the following form:

{∅, {∅}}
∈

||yyyyyyyyy

∈ ##HH
HH

HH
HH

H

∅ {∅}

∈
��
∅

We see that all sets form well-founded trees in ZF. As automata, they terminate
eventually. The axiom of foundation guarantees that after starting from any node in
a tree we will reach ∅ in finite steps; ∅ can be seen as a terminal state with respect to ∈
since ` (∀x)[x 6∈ ∅]. However, non-terminating automata can be defined in ZFA. For
example, we can define a set a = {a} which represents a non-terminating automaton
with graph
a ∈dd

Similarly, in CONS, theorem 2.11 guarantees the existence of a term θ such that
θ =ext {θ}. We can generalize this framework by regarding natural numbers as
automata, or directed graphs, with only one label, suc, on edges. Theorem 2.11 says
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that any finite automata with edges labeled ∈, suc, or as other functions or relations
can be represented in CONS in this way.

For identity on such automata, it is common in computer science to use bisimulation
to identify observable behaviors. Here ∼ satisfies all conditions of bisimulation [S11]
with respect to the successor function suc: a ∼ b means that the behavior of a and b
are similar with respect to suc.

3.2 Arithmetic with bisimulation

For each x ∈ ω we define an equivalence class [x] and the set of equivalence classes〈ω̃,∼
〉 together with an arithmetic developed from ∼.

Definition 3.5
• For any a, [a] = {x : x ∼ a},
• ω̃ is a set of ∼-equivalence classes whose representative element is a natural num-

ber:
ω̃ = {x : (∃y)[y ∈ ω ⊗ x = [y]]}.

Hereafter, we write a ∈ ω̃ when (∃x ∈ ω)a ∈ [x].
We can develop arithmetic over 〈ω̃,∼〉 by using a general recursive form. For

example, we may definePLUS, an analogue of Plus on ω̃.

Definition 3.6
• PLUS, a relation such that ` PLUS ⊆ ω̃ × ω̃ × ω̃, is defined as

PLUS = {v : (∃x, y, z ∈ ω̃)[v = 〈x, y, z〉 ⊗ [(y ∼ 0̄ ⊗ z ∼ x)
∨(∃y′, z′)[〈x, y′, z′〉 ∈ PLUS ⊗ y ∼ suc(y′) ⊗ z ∼ suc(z′)]]]}.

• TIMES, a relation such that ` TIMES ⊆ ω̃ × ω̃ × ω̃ is defined as

TIMES = {v : (∃x, y, z ∈ ω̃)[v = 〈x, y, z〉 ⊗ [(y ∼ 0̄ ⊗ z ∼ 0̄)
∨(∃y′, z′)[〈x, y′, z′〉 ∈ TIMES⊗ y ∼ suc(y′) ⊗ PLUS(z′, x, z)]]]}.

We can develop arithmetic over ω̃ by using ∼, PLUS and TIMES. It is easy to
see that the arithmetic over ω̃ is a conservative extension of arithmetic over ω in the
following sense.

Lemma 3.7
For any a, b, c ∈ ω,

• 〈a, b, c〉 ∈ Plus implies 〈a, b, c〉 ∈ PLUS,
• 〈a, b, c〉 ∈ Times implies 〈a, b, c〉 ∈ TIMES.

Let us extend this result.

Definition 3.8 (Arithmetical formulae)
• PLUS(x, y, z), TIMES(x, y, z) are arithmetical formulae.
• If ϕ0, ϕ1 are arithmetical formulae, then so is ϕ0 ◦ ϕ1 where ◦ is any logical

connective.
• If ϕ[x] is arithmetical, then so is (Qx ∈ ω̃)ϕ[x] where Q is any quantifier.
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Lemma 3.9
Assume that s ∼ n̄ for some numeral n̄ ∈ ω. Then, for any arithmetical formula ϕ,

s ∼ t ` ϕ(s) ≡ ϕ(t)

The proof is by induction on n.

4 The non-crispness of ω

We prove theorem 1.1 in this section. First, we prove an analogue of theorem 1.1 for ω̃
in section 4.1: we implement a non-terminating automaton fix, a counterexample to
the crispness for ω̃, by using the fixed point lemma and bisimulation. Second, we mod-
ify fix to show theorem 1.1 in section 4.2: we unfold fix to serve as a counterexample
in the proof of theorem 1.1.

4.1 The non-crispness of ω̃

In this section, we prove the unprovability of the crispness of ω̃ in CONS.
First, let us introduce a simple automaton fix such that fix suchh

Definition 4.1
fix is a fixed point of the successor function suc with respect to ∼:

suc(fix) ∼ fix.

More precisely, fix is defined by the fixed point theorem:

(∀x)[(x ∈ fix) ≡ (x ∈ suc(fix))].

From a behavioral viewpoint, all numerals (determinate members of ω̃) are termi-
nating automata. However, fix never terminates. Therefore, we can see that fix is a
non-standard element of ω̃ in the following sense.

Lemma 4.2
(1) CONS does not prove fix ∈ ω̃.
(2) CONS does not prove fix 6∈ ω̃.

proof Let us prove (1). Assume otherwise: ` “fix ∈ ω̃”. Then, an easy back-
calculation shows that the normal proof of this assumption should be of the following
form: ....

` t1 = 0̄ ∨ (∃y ∈ ω)t1 = suc(y)
` t1 ∈ ω

....
` t0 = suc(t1)

` t1 ∈ ω ⊗ t0 = suc(t1)
` (∃x ∈ ω)t0 = suc(x)

` t0 = 0̄ ∨ (∃x ∈ ω)t0 = suc(x)

....
` t0 ∼ fix

` t0 ∈ ω ⊗ t0 ∼ fix
` (∃x ∈ ω)fix ∼ x

` fix ∈ ω̃
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Since ` fix ∼ suc(fix), this proof never terminates; the proof never achieves the
bottom case, ` tn ∈ ω and suc(suc(· · · (tn) · · · )) ∼ fix for some tn, in finite steps.
Therefore, there is no finite proof of ` “fix ∈ ω̃”.

As for (2), assume otherwise: ` “fix 6∈ ω̃”. Its normal proof should be of the
following form:

....
fix ∼ 0̄ ` ⊥

....
x0 ∼ 0̄,fix ∼ suc(x0) ` ⊥

....
x1 ∈ ω̃, x0 ∼ suc(x1),fix ∼ suc(x0) ` ⊥

(∃x1 ∈ ω)x0 ∼ suc(x1)],fix ∼ suc(x0) ` ⊥
[x0 ∼ 0̄ ∨ (∃x1 ∈ ω)x0 ∼ suc(x1)],fix ∼ suc(x0) ` ⊥

x0 ∈ ω,fix ∼ suc(x0) ` ⊥
(∃x0 ∈ ω)fix ∼ suc(x0) ` ⊥

fix ∼ 0̄ ∨ (∃x0 ∈ ω)fix ∼ suc(x0) ` ⊥
fix ∈ ω̃ ` ⊥
` fix 6∈ ω̃

In this way, to show x1 ∈ ω̃, x0 ∼ suc(x1),fix ∼ suc(x0) ` ⊥, we should prove
x1 ∼ 0̄, x0 ∼ suc(x1),fix ∼ suc(x0) ` ⊥ and (∃x2)x1 ∼ suc(x2), x0 ∼ suc(x1),fix ∼
suc(x0) ` ⊥. The former is obvious, but the latter is problematic: to show this
we need to show (∃x3)x2 ∼ suc(x3), x1 ∼ suc(x2), x0 ∼ suc(x1),fix ∼ suc(x0) ` ⊥.
However, this regress continues unless we reach the bottom case; in other words, there
is a term δ such that δ is not of the form suc(γ) and ` δ 6∼ 0̄ and suc(suc(· · · (δ) · · · )) ∼
fix. However, this is impossible because ` fix ∼ suc(fix). This means that there is
no finite proof of ` fix 6∈ ω̃. �

This proof shows that neither the proposition asserting that the fixed point fix on
suc (unique up to ∼) is a member of ω̃ nor its negation can be proved in finite length
in CONS.

Therefore, we have

Lemma 4.3
CONS does not prove (fix ∈ ω̃) ∨ (fix 6∈ ω̃).

Proof. Otherwise, since CONS satisfies the disjunction property, fix ∈ ω̃ or fix 6∈ ω̃
is a theorem of CONS. �

4.2 The non-crispness of ω: unfolding fix

In this section, we prove theorem 1.1. The difficulty for this is that fix is clearly not
a member of ω because it is not of the form {x : x = a} due to it being constructed
by using the fixed point theorem. We therefore define a (possibly partial) function
which unfolds fix.

Definition 4.4 (rank)
rk is a relation over sets and (possibly) natural numbers:

〈x, y〉 ∈ rk ≡ [(x ∼ 0̄⊗y = 0̄)∨(∃z0, z1)[〈z0, z1〉 ∈ rk⊗x =ext suc(z0)⊗y = suc(z1)]]
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Roughly speaking, rk unfolds nested boxes and counts how many singletons are
nested. We note that CONS proves any numerals are in the range of rk.

We do not know whether CONS proves that rk can unfold fix. That is, whether
fix ∈ dom(rk), CONS proves that rk cannot unfold fix or if CONS can prove
neither that rk can unfold fix nor that rk cannot unfold fix. However, at least we
can say that CONS does not reject fix ∈ dom(rk); in other words, CONS does not
prove there is no s such that 〈fix, s〉 ∈ rk. For, if so, it proves ¬(∃x ∈ ω)x ∼ fix,
which contradicts lemma 4.2. So, let us extend the CONS by adding the following
axiom:
Definition 4.5
CONS is an extension of CONS by adding

• the new axiom “fix ∈ dom(rk)”,
• the new constant c which satisfies 〈fix, c〉 ∈ rk.

The intuitive image of c is suc(suc(suc(· · · ))), an infinite stream of suc (i.e. {{{· · · }}}
in Zermelo style). Therefore, we can prove the analogue of lemma 4.2 as follows.

Lemma 4.6
(1) CONS does not prove c ∈ ω,
(2) CONS does not prove c 6∈ ω, and
(3) CONS does not prove c ∈ ω ∨ c 6∈ ω.

Proof. Otherwise, we can prove the negation of lemma 4.2. �

This gives a proof of theorem 1.1: this theorem is proved because CONS, an extension
of CONS, cannot prove (∀x)[x ∈ ω ∨ x 6∈ ω]. �

The non-crispness of ω implies some corollaries; we prove one of them here.

Corollary 4.7
Arithmetic developed in the theory CONS does not prove the axioms of Robinson’s
minimal arithmetic Q.

Proof. CONS does not prove (∀x)[x 6∼ suc(x)] since suc(c) ∼ c. �

5 Conclusion

We proved that the constructive naive set theory CONS does not prove the crispness
of ω. Formally, (∀x)[(x ∈ ω) ∨ (x 6∈ ω)].

The crispness of ω is an important problem because it concerns the nature of sets
defined by a general recursive form. In the proof, a circularly defined object fix,
which is finitely generated and potentially infinite, plays a key role. We remark that
we introduced 〈ω̃,∼〉 to show the above theorem, and this system seems to have many
interesting aspects in its own right. For example, our theorem shows that we can never
prove the negation of the statement that ω, which is seemingly defined inductively,
contains an infinite object fix. This highlights the potentially infinite character of
CONS. Quite contrary to classical theories, the distinction between finiteness and
non-finiteness in CONS is indefinite because of the existence of potentially infinite
objects.
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