冨川 喜弘
基本情報
- 学位
-
博士(理学)(東京大学)
- J-GLOBAL ID
- 200901034331743275
- researchmap会員ID
- 1000368089
- 外部リンク
研究課題と活動状況:
(1)大気波動
客観解析データを用いて、冬季成層圏の極渦境界領域に見られる周期12~24時間、水平波長2000km程度の短周期擾乱の特徴を統計的に調べた。検出された短周期擾乱は、ほぼ順圧な構造と背景風に対して西向きの位相速度を持ち、南北には渦位勾配の極大付近で最大振幅をもつ節無し構造をしていることがわかった。これらの性質は、この短周期擾乱が極渦境界領域の大きな渦位勾配に捕捉された波動であることを示している。また、この擾乱の季節変動や経度分布の解析から、中緯度対流圏界面に卓越する中間規模波動との相互作用の可能性が示唆された (Tomikawa and Sato, 2003)。
中緯度対流圏界面に卓越する水平波長2000~3000kmの中間規模波動は、Sato et al. (1993)による発見以降、波動の観点から研究が進められる一方、波動ではなく孤立渦として扱う方がその非対称性等を説明しやすいことが指摘されてきた。本研究では、客観解析データを用いて中間規模波動の空間構造を示すとともに、準地衡流理論を1次拡張することで、従来の線形波動論では説明できなかった中間規模波動の非対称性等の性質を説明可能であることを明らかにした。また、従来あまり着目されていなかった中間規模波動の鉛直構造についても、1次拡張した準地衡流理論と有限幅を持つ対流圏界面を考慮することで、その運動エネルギー・ポテンシャルエネルギー分布をうまく説明できることを示した (Tomikawa et al., 2006b)。この研究は、著者がトロント大学留学中にその大部分が行われたものであり、トロント大学のT. G. Shepherd教授との共同研究である。
2002年6月に第43次越冬隊が南極昭和基地で行ったラジオゾンデ集中観測において、ほぼ順圧な構造を持つ周期12~15時間の短周期擾乱が高度22km以上の領域で観測された。客観解析データを用いた解析から、水平波長2000km程度の擾乱が渦位極小領域と共に背景風速に等しい位相速度で東向きに伝播していたことがわかった。この擾乱は上記で示した極渦境界領域の捕捉波と共通する性質を多く持つ一方で、渦位勾配がゼロになる領域で観測されるという顕著な相違を示していた。著者は、準地衡流理論に基づく理論的考察から、この擾乱は順圧不安定な背景流中の中立波として解釈できることを示した (Tomikawa et al., 2006a)。
1999~2008年の南極昭和基地MFレーダーのデータを用いて、南極中間圏・下部熱圏における一日大気潮汐波の振る舞いを調べた。潮汐波の位相・振幅の高度分布や季節変化は概ね過去の研究結果と一致したが、これまで報告されていなかった運動量フラックスの南北成分の高度変化が見出された。また、大気潮汐波の全球モデル(GSWM-02)との比較から、大気重力波に起因する消散プロセスの重要性が示唆された(Tomikawa and Tsutsumi, 2009)。
重力波の伝播特性を表現する手法として、critical level filteringとturning level reflectionの双方を考慮したgravity wave transmission diagramを提案した(Tomikawa, 2015b)。
(2)物質分布・輸送
1998年4月に京都大学信楽MU観測所においてオゾンゾンデ・ラジオゾンデ・MUレーダーを用いた集中観測を行い、高度20km付近の下部成層圏において、鉛直幅2~3km程度のオゾン層状構造が時間と共に下方伝播する現象を捉えた。客観解析データにはそのような鉛直に薄い構造は見られなかったが、客観解析データから得られる低分解能の渦位分布と等温位粒跡線解析を組み合わせたRDF (Reverse Domain Filling) 法を用いることで、オゾン層状構造に対応する高分解能の渦位分布を再現することに成功した。その結果、下方伝播するオゾン層状構造が背景風の鉛直シアと水平波長8000km程度の順圧的な停滞性ロスビー波が引き起こす差分移流によって形成されたことが明らかとなった (Tomikawa et al., 2002)。
2003年の南極オゾンホール回復時に極渦内の下部成層圏で観測された17例のオゾン増大層について、第43次南極観測隊オゾンゾンデ集中観測データを用いて調べた。その結果、これらのオゾン増大層は大部分が極渦境界領域起源と考えられるオゾン混合比を持ち、非定常なプラネタリ波の活動に伴って極渦境界領域から侵入していたことがわかった。さらに、オゾンホールの回復に対する上記の形のオゾン流入の寄与を定量的に評価し、その寄与が限定的であることを示した(Tomikawa et al., 2010)。
第54次南極観測隊員として昭和基地で越冬し、初めて成層圏の高精度水蒸気観測に成功した。得られた観測結果をもとに衛星観測との比較や脱水過程の研究を行い、下部成層圏に脱水が不完全な層が存在することを示した(Tomikawa et al., 2015a)。さらに、第57次隊で実施した水蒸気・オゾンゾンデ集中観測のデータを解析し、昭和基地上空の上部対流圏の水蒸気量変動が、総観規模波動による異なる起源を持つ空気塊の輸送によって引き起こされていることを明らかにした(Tomikawa et al., 2023b)。
(3)対流圏界面・成層圏界面
高解像度気候モデルのデータを用いて冬季亜熱帯成層圏界面に現れる気温極大の研究を行った。その結果、成層圏界面直上を夏半球熱帯域から冬半球亜熱帯域に向かう子午面循環の下降流が、断熱圧縮により気温極大を作り出していることがわかった。この子午面循環は、熱帯域の半年周期振動に伴って現れる絶対角運動量の等値線がほぼ水平な領域を通って赤道を横切っていた。冬半球亜熱帯域の下部中間圏では、極側から伝播してきたプラネタリ波と熱帯域の慣性不安定がEliassen-Palmフラックスの収束を作り出し、子午面循環を駆動していた。また、この子午面循環に伴う角運動量輸送は、半年周期振動の季節進行とも密接に関連する(Tomikawa et al., 2008)。
両極域における過去30年間のオゾンゾンデデータを用いて、極域対流圏界面近傍の気温とオゾンに見られる鉛直微細構造の研究を行った。その結果、対流圏界面逆転層と呼ばれる圏界面直上の気温逆転層が、夏季極域では地球上で最も強くなり、冬季(南)極域では消失することを明らかにした。また、オゾンおよび日射との関係から、オゾンによる紫外線吸収が対流圏界面逆転層の形成・消失に寄与しないことを指摘した(Tomikawa et al., 2009; Tomikawa and Yamanouchi, 2010)。
(4)成層圏突然昇温
客観解析データを用いて成層圏突然昇温時の東風が長期間持続する場合とそうでない場合の比較を行った。その結果、東風の持続期間は対流圏からのプラネタリ波の伝播に依存すること、西風の回復は成層圏内のシア不安定に伴うEliassen-Palmフラックスの発散が引き起こしていることがわかった(Tomikawa, 2010)。
高解像度気候モデル中で自励的に発生した成層圏突然昇温の回復過程に関する研究から、昇温回復時に成層圏・中間圏で傾圧・順圧不安定によるプラネタリ波の増幅が起こっていることを突き止めた。さらに、成層圏の東風による重力波のフィルタリングが、昇温後の成層圏界面のジャンプを引き起こしていることを明らかにした(Tomikawa et al., 2012)。
(5)南極域における大気重力波のスーパープレッシャー気球観測(LODEWAVE)
PANSYレーダーによる拠点観測とスーパープレッシャー(SP)気球による面的観測を組み合わせた重力波研究を実施するため、南極域における大気重力波のSP気球観測計画(LOng-Duration balloon Experiment of gravity WAVE over Antarctica:LODEWAVE)を立ち上げた(Tomikawa et al., 2023a)。LODEWAVEの第1回キャンペーン観測は、2022年1~2月に南極昭和基地(69°00’S,39°35’E)において実施され、下部成層圏における近慣性周期重力波をPANSYとLODEWAVEで同時に捉えることに成功した。第2回のキャンペーン観測は、2024年1~2月に昭和基地で実施した。
(6)その他
国立極地研究所粒跡線モデル(Tomikawa and Sato, 2005)のオンライン化、および気象データ表示システムの作成を行い、2007年度よりWeb上での公開を開始した(http://www.firp-nitram.nipr.ac.jp/)。これまでに、同モデルを用いた論文44編(英文37篇、和文7篇)が出版されている。
2012年度より連続観測を実施しているPANSYレーダーと全球雲解像モデルの結果を組み合わせ、低気圧接近時に昭和基地近傍で発生したハイドローリックジャンプのメカニズムを明らかにした(Tomikawa et al., 2015b(極地研プレスリリース))。
客観解析データを用いて、磁気圏からの高エネルギー粒子の降り込みが中層大気に与える影響の解析を新たに開始している。これまでに、過去の研究結果に誤りがあることを指摘し(Tomikawa, 2015b)、気象再解析データから従来とは異なる統計的手法を用いて粒子降り込みの効果を抽出した(Tomikawa, 2017)。
極域観測歴:
(1)北極・ニーオルスンにおけるOPCゾンデ観測(2010年1~2月)
(2)第53次日本南極地域観測隊夏隊(2011年11月~2012年3月)
(3)第54次日本南極地域観測隊越冬隊(2012年11月~2014年3月)
(4)第63次南極地域観測隊夏隊(2021年10月~2022年2月)
(5)第65次南極地域観測隊夏隊(2023年11月~2024年2月)
研究キーワード
22経歴
11-
2015年11月 - 現在
-
2015年11月 - 現在
-
2023年11月 - 2024年2月
-
2021年10月 - 2022年2月
-
2007年11月 - 2015年11月
-
2007年4月 - 2015年11月
-
2012年11月 - 2014年3月
-
2011年11月 - 2012年3月
-
2006年4月 - 2007年3月
-
2003年4月 - 2006年3月
受賞
2論文
86-
J. Meteorol. Soc. Japan in press 2024年8月 査読有り筆頭著者責任著者
-
宇宙航空研究開発機構研究開発報告: 大気球研究報告 JAXA-RR-23-003 23-36 2024年2月 査読有り筆頭著者責任著者
-
Journal of Geophysical Research: Atmospheres 128(11) 2023年6月9日 査読有り
-
Water vapor in the upper troposphere above Syowa Station in the Antarctic: Its variations and causesScientific Online Letters on the Atmosphere 19 86-93 2023年5月 査読有り筆頭著者責任著者
-
Journal of Geophysical Research: Atmospheres 128 e2022JD037751 2023年3月7日 査読有り
-
J. Evolv. Space Activ. 1 14 2023年3月 査読有り筆頭著者責任著者
-
宇宙航空研究開発機構研究開発報告: 大気球研究報告 JAXA-RR-22-008 25-35 2023年2月 査読有り
-
大気化学研究 48 048A02 2023年1月 査読有り
-
2022 Asia-Pacific Microwave Conference (APMC) 677-679 2022年11月29日 査読有り最終著者
-
Journal of Space Weather and Space Climate 12(37) 37-37 2022年11月 査読有り
-
Quarterly Journal of the Royal Meteorological Society 148(748) 3115-3130 2022年10月 査読有り
-
Journal of Space Weather and Space Climate 12(3) 18-18 2022年6月 査読有り
-
Journal of Geophysical Research: Space Physics 127(1) 2022年1月10日 査読有り
-
Earth, Planets and Space 74(6) 2022年1月 査読有り
-
Journal of Geophysical Research: Atmospheres 126(24) 2021年12月27日 査読有り
-
Progress in Earth and Planetary Science 8 47 2021年8月 査読有り
-
Report of the SPARC Reanalysis Intercomparison Project (S-RIP) SPARC Report No. 10 531-580 2021年7月 査読有り最終著者
-
宇宙航空研究開発機構研究開発報告: 大気球研究報告 JAXA-RR-20-009 35-56 2021年2月 査読有り
-
宇宙航空研究開発機構研究開発報告: 大気球研究報告 JAXA-RR-20-009 19-33 2021年2月 査読有り筆頭著者
-
Geophys. Res. Lett. 47(17) e2020GL088845 2020年9月 査読有り
MISC
63-
信学技報 123 93-98 2024年2月 最終著者
-
信学技報 123 69-71 2024年2月 最終著者
-
大気球シンポジウム: 2023年度 2023年11月 最終著者
-
天気 70(10) 502-504 2023年10月 査読有り招待有り筆頭著者最終著者責任著者
-
ISTS Web Paper Archives (34th ISTS) 2023-m-08 2023年3月
-
信学技報 122(409) 34-39 2023年3月 最終著者
-
地球電磁気・地球惑星圏学会総会及び講演会(Web) 154th 2023年
-
大気球シンポジウム: 2022年度 2022年11月 最終著者
-
大気球シンポジウム: 2022年度 2022年11月
-
大気球シンポジウム: 2022年度 2022年11月 筆頭著者責任著者
-
信学技報 122(163) 1-6 2022年8月 最終著者
-
信学技報 122(44) 34-39 2022年5月 最終著者
-
ISTS Web Paper Archives (33rd ISTS) 2022-m-07 2022年3月 筆頭著者責任著者
-
大気球シンポジウム: 2021年度 2021年11月 筆頭著者責任著者
-
日本地球惑星科学連合大会予稿集(Web) 2021 2021年
-
大気球シンポジウム: 2020年度 2020年12月
-
大気球シンポジウム: 2020年度 2020年12月 筆頭著者責任著者
-
天気 67(5) 285-293 2020年6月 査読有り
-
日本気象学会大会講演予稿集(CD-ROM) (117) 2020年
書籍等出版物
3-
海文堂出版 2024年3月 (ISBN: 9784303562304)
-
南極OB会編集委員会 2019年11月
-
日本気象学会 2017年8月
講演・口頭発表等
197-
JpGU2024 2024年5月28日
-
2023年度PANSY研究集会 2024年3月25日
-
The 14th Symposium on Polar Science 2023年11月16日
-
第67回宇宙科学技術連合講演会 2023年10月17日
-
2023年度JCAR北極域研究計画ワークショップ 2023年5月11日
-
2022年度PANSY研究集会 2023年3月14日
-
2022年度PANSY研究集会 2023年3月14日
-
極域における衛星・大気中微量物質・雪面観測に関する研究集会 2023年3月10日
-
The 13th Symposium on Polar Science 2022年11月18日
-
大気球シンポジウム:2022年度 2022年11月8日
-
5th International ANGWIN Workshop 2022年10月5日
-
宇宙空間からの地球超高層大気観測に関する研究会 2022年9月28日 招待有り
-
COSPAR2022 2022年7月21日
-
京都大学生存圏研究所 大気圏科学セミナー 2022年6月10日 招待有り
-
Space Physics Online Seminar in China 2022年6月8日 招待有り
-
JpGU2022 2022年5月26日
-
2021年度PANSY研究集会 2022年3月9日
-
33rd International Symposium on Space Technology and Science 2022年3月2日
-
第22回宇宙科学シンポジウム 2022年1月6日
Works(作品等)
1-
2007年5月 データベース
共同研究・競争的資金等の研究課題
23-
日本学術振興会 科学研究費助成事業 基盤研究(B) 2024年4月 - 2028年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(B) 2022年4月 - 2026年3月
-
情報・システム研究機構 データサイエンス共同利用基盤施設 ROIS-DS-JOINT 2024 2024年7月 - 2025年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(B) 2021年4月 - 2024年3月
-
JAXA 搭載機器基礎開発研究費 2023年4月
-
情報・システム研究機構 データサイエンス共同利用基盤施設 ROIS-DS-JOINT 2022 2022年7月 - 2023年3月
-
情報・システム研究機構 データサイエンス共同利用基盤施設 ROIS-DS-JOINT 2022 2022年7月 - 2023年3月
-
科学技術振興機構 戦略的創造研究推進事業(CREST)(分担) 2016年10月 - 2022年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(B) 2018年4月 - 2021年3月
-
日本学術振興会 科学研究費助成事業 新学術領域研究(研究領域提案型) 2018年4月 - 2020年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(B) 2017年4月 - 2020年3月
-
日本学術振興会 科学研究費助成事業 若手研究(B) 2014年4月 - 2018年3月
-
科学研究費補助金(研究成果公開促進費(研究成果データベース)) 2015年4月 - 2016年3月
-
日本学術振興会 科学研究費助成事業 挑戦的萌芽研究 2013年4月 - 2016年3月
-
新領域融合研究センター 融合研究シーズ探索提案 2010年4月 - 2011年3月
-
学融合推進センター・学融合研究事業(若手研究者研究支援事業) 2010年4月 - 2011年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(B) 2009年 - 2011年
-
日本学術振興会 科学研究費助成事業 基盤研究(A) 2007年 - 2010年
-
新領域融合研究センター 融合研究シーズ探索提案(分担) 2008年4月 - 2009年3月
-
新領域融合研究センター 融合研究シーズ探索提案 2008年4月 - 2009年3月
委員歴
13-
2021年6月 - 現在
-
2020年12月 - 現在
-
2020年4月 - 現在
-
2020年3月 - 現在
-
2015年2月 - 現在
-
2018年1月 - 2023年3月
-
2018年12月 - 2020年11月
-
2015年3月 - 2020年2月
-
2017年12月 - 2019年11月
-
2017年9月 - 2019年8月
-
2014年12月 - 2018年11月
-
2016年6月 - 2018年3月
-
2007年 - 2011年
学術貢献活動
56-
企画立案・運営等, パネル司会・セッションチェア等National Institute of Polar Research 2022年11月15日 - 2022年11月18日
-
企画立案・運営等, パネル司会・セッションチェア等National Institute of Polar Research 2020年12月3日
メディア報道
11-
四国新聞社;中国新聞;共同通信;新潟日報;西日本新聞;東京新聞;福井新聞;福島民報;北國新聞;岩手日報 2022年2月 新聞・雑誌
-
NHK ラジオ第2 カルチャーラジオ 科学と人間「南極研究の今~南極観測60年によせて~」 2018年12月14日 テレビ・ラジオ番組
-
NHK ラジオ第2 カルチャーラジオ 科学と人間「南極研究の今~南極観測60年によせて~」 2018年12月7日 テレビ・ラジオ番組
-
十勝毎日新聞、陸奥新報、島根日日新聞、苫小牧民放、岩手日日新聞、釧路新聞、熊本日日新聞、八重山毎日新聞 南極から地球を見る 2017年1月1日 新聞・雑誌
-
国立極地研究所 極 No.15 2016夏号 2016年7月 会誌・広報誌
-
日本極地研究振興会 極地 第50巻第2号 2014年9月 会誌・広報誌
-
子供の科学 2013年12月 新聞・雑誌
-
FM NACK5 GOGOMONZ 2013年8月27日 テレビ・ラジオ番組
-
子供の科学 2013年7月 新聞・雑誌
-
えくてびあん 2010年6月 インターネットメディア
-
国立極地研究所 極地研NEWS 2008年9月 会誌・広報誌
その他
11-
2019年3月 - 2019年3月Study on Propagation of Atmospheric Gravity Waves in The Antarctic with Lidar Observation
-
2017年3月 - 2017年3月Study of Mesospheric Gravity Waves in the Antarctic Observed by Airglow Imaging Network, Using Phase Velocity Spectrum
-
2010年3月 - 2010年3月A study on depletion of the upper stratospheric ozone in the Antarctic from Umkehr ozone profile
-
2010年3月 - 2010年3月Study of the polar mesopause region by remote sensing of OH airglow
-
下層から上層へ影響が及ぶという地球大気の基本的な性質は、高度と共に密度が減少する地球大気の成層構造に由来している。一方で、北極振動の下方伝播に代表される成層圏-対流圏結合など、上層から下層への影響が近年多くの関心を集めている。上層から下層へ影響をもたらすメカニズムとして、波動自身の下方伝播、波動平均流相互作用による平均流加速域の下方伝播、子午面循環の下降流などが挙げられるが、いずれも密度成層の効果に抗していかに大きな影響を下層に及ぼすかがポイントとなる。極域の場合、太陽活動に伴う電離圏・熱圏へのエネルギー注入などもあり、それらが下層に及ぼす影響についてはほとんど未知の分野と言っても過言ではない。そこで、従来型の波動を介した上層から下層へ影響を及ぼすメカニズムだけでなく、中性大気の枠組みだけでは説明しきれない電離圏・熱圏領域のプロセスを考慮した上下結合のメカニズムを構築したいと考えている。これは、中性大気と電離大気・電磁流体を組み合わせる融合研究でもある。 一方で、上下結合の研究は各高度領域の正しい理解に基づいて進められる必要がある。上記研究の結合領域となる中間圏・下部熱圏領域は、観測の困難さもあり、定量的な理解はもちろん、定性的な理解もまだ十分には得られていない高度領域である。このような領域の研究には観測データの蓄積が不可欠であり、欧州非干渉散乱レーダー(EISCAT)や昭和基地MFレーダーといったレーダー群、ファブリーペローイメージャーや全天カメラといった光学測器など、極地研が有する中間圏・下部熱圏領域を観測可能な多数の測器を用いて、この高度領域の研究を進めていきたい。同時に、中間圏の唯一の現業客観解析データである英国気象局(UKMO)データや、中間圏・熱圏の温度・風速を測定するTIMED衛星などのデータと組み合わせ、この高度領域の全球的な理解につなげていきたいと考えている。 また、主に成層圏での物質や運動量の南北方向の輸送・混合を定量的に評価するため、改良ラグランジュ平均に基づく輸送・混合の新たな診断手法を開発している。この診断手法を用いた解析には、高分解能大気大循環モデルのデータが不可欠であり、現在も地球シミュレータを運用する地球環境フロンティア研究センターの研究者と共同研究を行っている。このような大気大循環モデルのデータは、観測の不足している中間圏・下部熱圏領域の研究にも有効であり、観測に対して新たな提案を行える可能性もある。
社会貢献活動
16