論文

査読有り
2017年10月

Polymer-Stabilized Micropixelated Liquid Crystals with Tunable Optical Properties Fabricated by Double Templating

ADVANCED MATERIALS
  • Yuji Sasaki
  • ,
  • Motoshi Ueda
  • ,
  • Khoa V. Le
  • ,
  • Reo Amano
  • ,
  • Shin Sakane
  • ,
  • Shuji Fujii
  • ,
  • Fumito Araoka
  • ,
  • Hiroshi Orihara

29
37
開始ページ
1703054
終了ページ
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1002/adma.201703054
出版者・発行元
WILEY-V C H VERLAG GMBH

Self-organized nano-and microstructures of soft materials are attracting considerable attention because most of them are stimuli-responsive due to their soft nature. In this regard, topological defects in liquid crystals (LCs) are promising not only for self-assembling colloids and molecules but also for electro-optical applications such as optical vortex generation. However, there are currently few bottom-up methods for patterning a large number of defects periodically over a large area. It would be highly desirable to develop more effective techniques for high-throughput and low-cost fabrication. Here, a micropixelated LC structure consisting of a square array of topological defects is stabilized by photopolymerization. A polymer network is formed on the structure of a self-organized template of a nematic liquid crystal (NLC), and this in turn imprints other nonpolymerizable NLC molecules, which maintains their responses to electric field and temperature. Photocuring of specific local regions is used to create a designable template for the reproducible selforganization of defects. Moreover, a highly diluted polymer network (approximate to 0.1 wt% monomer) exhibits instant on-off switching of the patterns. Beyond the mere stabilization of patterns, these results demonstrate that the incorporation of self-organized NLC patterns offers some unique and unconventional applications for anisotropic polymer networks.

Web of Science ® 被引用回数 : 12

リンク情報
DOI
https://doi.org/10.1002/adma.201703054
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000412184100026&DestApp=WOS_CPL

エクスポート
BibTeX RIS