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A robot with large-degree-of-freedom joints is a promising future space robot capable of

adapting to various environments and can perform dexterous tasks with multiple manipulators.

The attitude dynamics of a free-flying robot shows nonholonomy, which enables the robot to

reorient its attitude by moving its body. However, previous studies were not generally able

to handle the nonholonomy, especially for robots with large degrees of freedom of joints. In

the present study, we analytically investigate a maneuver in which joints are actuated along

a parallelogram trajectory in joint angle space and propose an analytical path modification

method in joint angle space in order to achieve the target attitude. Parallelogram actuation

guarantees that the body configuration is returned to the initial state after one set of maneuvers,

and thus the attitude of the robot is independently reoriented to the target maintaining the

body configuration. The analytical solution is provided by applying Magnus expansion to

the kinematics equation of rotational matrices, and its Lie group structure contributes to

concise mathematical expressions. In addition, the analytical solution does not cause numerical

difficulties, such as combinatorial explosion, and so can fully make use of the reorientation

ability of a robot with large degrees of freedom.

Nomenclature

C = Direction cosine matrix (rotational matrix)

d = Second-order term of a generalized velocity

f ‡X = Inertial force exerted on the center of mass of body X , N

fX = External force exerted on the center of mass of body X , N

hc = Angular momentum around the center of mass of the entire spacecraft, kg · m2/s

IX = Moment of inertia of body X around the center of mass of body X , kg · m2
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M = Generalized mass matrix

mX = Total mass of body X , kg

n‡X = Inertial torque exerted on the center of mass of body X , N · m

nX = External torque exerted on the center of mass of body X , N · m

RX = Absolute position of the center of mass of body X , m

rX = Relative position of the center of mass of body X with respect to the center of mass of the first body, m

rXY = Relative position of the center of mass of body X with respect to the center of mass of body Y , m

U = Identity matrix

u = Control input

v = Generalized velocity

w = Derivative of generalized velocity

θ = Joint angle vector (each component holds the angular displacement of a joint), rad

θk = Angular displacement of the k-th joint, rad

λk = Rotational axis of the k-th joint

τ = Generalized force

Φ = State transition matrix

ω = Angular velocity vector, rad/s

(·)k = Subscript indicating the k-th body

(·)c = Subscript indicating the entire spacecraft

(·)k̂ = Subscript indicating the k-th outer group

(·)k = Subscript indicating the inside neighbor of the k-th body

(·)hk = Subscript indicating the k-th joint

(·)× = Skew symmetric matrix of a vector (·)

(·)∨ = Inverse operator of (·)×

(·)ij = (i, j) component of a matrix (·)

(·)† = Pseudo-inverse of a matrix (·)

I. Introduction
In recent years, space activities have been expanding. Under such circumstances, future space robots (including

spacecraft in a broad sense) will need to be, for example, more autonomous, more intelligent, more adaptive, more

dexterous, and more economical. In fact, the OSAM-1 mission by NASA will attempt on-orbit refueling and assembly,

and the Robotic Servicing of Geosynchronous Satellites program of DARPA is investigating on-orbit satellite repair
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and orbit correction in the near future [1, 2]. Such missions indicate a growing demand for space robots that can

perform more complicated tasks than conventional manipulation. In this context, a free-flying space robot that has

large degrees of freedom of active joints is promising as a future space robot in the following aspects:

1) the robot can be adaptive by reconfiguring itself into multiple different morphologies,

2) the robot can be dexterous by manipulating multiple instruments leveraging its redundancy, and

3) the robot can be economical by saving fuel owing to its nonholonomic reorientation technique.

We refer to such a robot as a transformable free-flying space robot. A typical example of such a transformable free-

flying space robot is the "Transformer" spacecraft under consideration mainly by JAXA since 2019. This spacecraft

is designed to be able to flexibly adapt to multiple environments by reconfiguring itself into several operation modes.

For example, the principal operation modes are a stowed mode in the launch phase, a solar sailing mode suitable for

saving fuel consumption, and an observation mode suitable for scientific observation [3]. In addition, the spacecraft

can economically maintain its nominal orbit around the sun-earth L2 using solar radiation pressure [4]. Moreover, by

using redundant degrees of freedom of manipulators, the system is expected to achieve multi-tasking, such as pointing

the telescope toward the target object and simultaneously carrying out solar sailing by pointing a reflective surface

toward the sun.

The attitude motion of a transformable free-flying robot is governed by the angular momentum conservation law if

no external force/torque is exerted. Due to this dynamic constraint, when a part of the body is actuated, the attitude

of the remainder of the body reactively changes. The mechanics has been studied extensively for a long time, mainly

regarding space manipulators [5, 6]. These studies have numerically solved a forward problem in which attitude motion

is computed under the given joint actuation procedure. Such investigations have also revealed that this attitude motion

is nonholonomic. Since the moment of inertia of a transformable robot is not constant when reconfiguring its body, the

angular momentum conservation law becomes a non-integrable differential constraint, i.e., a nonholonomic constraint.

Due to this nonholonomy, the attitude of the free-flying robot depends on its joint actuation procedure, and thus can

be reoriented by actuating its body [7, 8]. This attitude reorientation maneuver is induced only by internal torque. It

consumes electric energy stored in a spacecraft but does not consume any expendable fuel. In addition, this maneuver

does not cause momentum accumulation of reaction wheels. These characteristics are preferable to elongate the

life-span of the spacecraft. However, in order to solve the inverse problem of designing the joint actuation procedure

that achieves the target attitude, the following three issues must be resolved:

1) In a non-holonomic system, state variables cannot reach the target state by time-invariant continuous feedback

control. This fact is mathematically proven by the negative aspect of the Brockett’s theorem on necessary

conditions of asymptotic stability in a nonlinear system [9].

2) The attitude equation of a transformable free-flying robot cannot generally be transformed into a canonical form,

except for special types of systems such as a planar system [10]. Therefore it cannot be controlled by common
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methods that are effective for such systems.

3) In the case of general three-dimensional attitude motion, an angular velocity vector becomes non-integrable,

and therefore, additional nonholonomy needs to be taken into account as well as the nonholonomy derived

from the angular momentum conservation law. In the present paper, the former nonholonomy is referred to as

kinematic nonholonomy, whereas the latter nonholonomy is referred to as momentum nonholonomy [11].

In order to solve the above problems, we herein propose a method that we refer to as parallelogram actuation. In this

method, joints are actuated along a parallelogram trajectory in joint angle space, which is a multi-dimensional space in

which each point corresponds to one set of joint states, i.e., a body configuration. With the aid of rectilinear movement

in joint angle space, analytical solution of its attitude motion becomes concise, which helps to solve the aforementioned

inverse problem. In addition, the fact that a parallelogram is a closed loop guarantees that the body configuration of a

robot returns to the initial state after a set of parallelogram actuations. Therefore, the robot can independently achieve

the target attitude while maintaining its initial body configuration. In a previous study, Ohashi et al. also numerically

investigated a similar maneuver, which he referred to as nonholonomic turn [12]. The proposed method is applicable

to any type of transformable free-flying robot and is widely applicable because the proposed method is expressed in a

form that is valid for general three-dimensional attitude motion and is not limited to planar motion. Furthermore, since

the solution is expressed analytically, the proposed method can handle large degrees of freedom, which was difficult

with conventional combinatorial optimization methods, such as that proposed by Ohashi et al.

Classic problem of the nonholonomic system is sliding or rolling motion of rigid bodies such as skidding knife

edges [13] and ground vehicles with rolling wheels [14]. In particular, a system which can be transformed into a

chained form has been thoroughly investigated [15, 16]. The chained form is one of the most well-structured set of

equations of motion, which makes its control much easier. However, it is difficult to transform general nonholonomic

systems into the chained form. A well-known phenomenon regarding the nonholonomic property of free-flying robots

is the falling-cat phenomenon. This is a phenomenon in which a cat can always land in an upright attitude by twisting its

body in the air, even when dropped in an upside-down attitude. There have been many studies to elucidate the dynamics

of this phenomenon [17, 18] and to apply the attitude maneuver of this phenomenon to free-flying robots [19–22]. In

the 1980s, since numerous space robots were proposed to construct space stations [23, 24], more studies focused on

the dynamics of transformable free-flying robots. Some hardware experiments have demonstrated successful control

of space manipulator, e.g., ETS-VII, the first successful demonstrator of on-orbit manipulation [25] and an experiment

using a planar air-bearing microgravity simulator or a parabolic flight [26, 27].

The related formulations are roughly classified into two types: Euler-Lagrange formulation and Kane’s formulation.

The Euler-Lagrange formulation is energy-based and systematic but requires complex differentiation of a Lagrange

function [28]. On the other hand, Kane’s formulation is based on the Newton-Euler equation. The Newton-Euler

formulation generally has difficulty in handling the constraint forces, but Kane solved this problem by performing a
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mathematical operation that prevents the constraint forces from appearing in the equations. In general, Kane method

is suitable for rapid numerical computation for large degree-of-freedom system [29]. The fundamental equations

in the present study are also based on Kane’s formulation. Other researchers used different formulations such as

Hamiltonian-based method [30].

The principal task of a space manipulator is to control the position and attitude of the end-effector, and the reaction

of attitude is usually canceled by thrusters or reaction wheels [31–33]. However, some researchers proposed actively

using the attitude reaction when actuating its manipulator. In the case of planar motion, several attitude reorientation

methods have been proposed that leverage the nonholonomy of the attitude motion [34–38]. However, since the angular

velocity is integrable in planar motion (i.e., the angular velocity can be expressed as the time derivative of the azimuthal

angle), the kinematic nonholonomy is not taken into account in these studies. Therefore, the abovementioned methods

cannot be directly applied to general three-dimensional attitude control. As for the case of three-dimensional attitude

motion, few studies actively use the nonholonomy of attitude motion. The hierarchical Lyapunov method proposed by

Nakamura and Mukherjee[8] is one of the few examples by which to achieve the desired end-effector trajectory under

some joint constraints using its nonholonomy. In this method, the first-priority Lyapunov function is constructed to

obtain the target end-effector state and the second-priority Lyapunov function is constructed to satisfy the constraints on

the state space. However, it is known that the constraints of the second Lyapunov function are not always satisfied, and

convergence to the target is not always guaranteed in this method. Another example is the method of using sinusoidal

input in joint actuation [39, 40]. This method can achieve arbitrary attitude reorientation by repeating sinusoidal joint

actuation. However, the applicability of this method is limited because the input is restricted to sinusoids. In addition,

this method is not agile because the attitude is gradually shifted to the target by repeating sinusoidal actuation. In

addition, none of these methods cover large-scale body reconfiguration that dramatically changes the structure of a

robot. Thus, although the dynamics of transformable free-flying robots has been studied for a long time, a method by

which to achieve a target morphology and attitude simultaneously has not been sufficiently studied.

Research closely related to our research was conducted by Ohashi et al. [12]. Their method was motion-primitive

based and took a comprehensive combination of joint actuation patterns. Their method stored all results of the total

attitude changes of the corresponding joint actuation patterns. In this method, the number of combinations increases

exponentially with the increase in the number of joints. Therefore, their control method cannot fully make use of the

attitude reorientation ability of the robot. In addition, they solved the attitude motion of the robot by using numerical

integration, which cannot extract any analytical information, to solve the inverse problem, which limited their method to

a brute-force search. Moreover, Ohashi et al. used a heuristic or meta-heuristic algorithm, such as a genetic algorithm,

to solve the inverse problem, but this requires a huge calculation for each attitude reorientation planning task.

Most of the abovementioned related studies assume total angular momentum of the system is always conserved

and set to zero. In such systems, the angular momentum conservation law serves as a symmetrically affine (driftless)
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system. On the other hand, a few studies handle a system with non-zero angular momentum [41, 42]. Such an affine

(drifted) system is much more difficult to handle and still needs to be investigated.

In the present paper, we propose an attitude reorientation method by parallelogram actuation with angular mo-

mentum always zero. First, we derive an approximate analytical solution for rectilinear actuation in joint angle space.

Next, by taking the Jacobian for the analytical solution, a joint path modification law to achieve the target attitude is

analytically obtained, which enables us to directly solve the aforementioned inverse problem. Finally, we present an

application of the attitude reorientation planning. The proposed method can handle large degrees of freedom of joints

without causing combinatorial explosion, as is the case for Ohashi’s method. The main findings and limitations of the

proposed method are presented after numerical simulation.

II. Preliminary Formulations
In this section, attitude motion of a transformable free-flying robot is formulated. The nomenclature of body

components and their positions are shown in Fig. 1. In this representation, an entire spacecraft is divided into a

main body, assigned to index k = 0, and some other branches rooted from the main body. Here, for convenience

of formulation, we assume that each branch has no loop structure. This assumption assures one-directional index

assignment from the main body (innermost) to the tip of each branch (outermost). Body indices in each branch are

allotted sequentially from an inner body to an outer body. The hinge joint component connecting the k-th body and its

inside neighbor is labeled as the k-th joint, and all bodies outside from the k-th joint are labeled as k̂, which is referred

to as the k-th outer group. (From the above definitions, all indices in the outer group k̂ are larger than k.) This k̂

grouping contributes to simple formulations because all bodies in the k-th outer group move in the same manner with

respect to the main body when the k-th joint is actuated. The rotational degrees of freedom of each hinge joint is set to

be 1, and the rotational angle of the k-th joint is described as θk . Any joint rotation can be expressed by a combination

of 1-D rotations, and hence this assumption does not lose generality. The body frame is fixed to the main body and its

origin is at the center of mass (CoM) of the main body. In addition, the orientation of the main body is aligned with

the arbitrary geometry of the main body. Note that the position of the CoM of an entire robot is not constant in the

body-fixed coordinate as the robot changes its body configuration.

We use Kane’s formulation in the present paper, which is, in general, suitable for handling three-dimensional

attitude motion [5, 6]. A general form of the dynamics equation can be described as follows:



Mvv Mvω Mvθ

Mωv Mωω Mωθ

Mθv Mθω Mθθ





wv

wω

wθ


+



dv

dω

dθ


=



τv

τω

τθ


(1)
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Inertial frame

𝑅𝑅0
𝑅𝑅c

Body frame

𝑅𝑅𝑘𝑘

𝑘𝑘-th joint
(subscript h𝑘𝑘)

𝑘𝑘-th
body

𝑘𝑘-th outer group
(subscript �𝑘𝑘)

𝑟𝑟𝑘𝑘

Fig. 1 Nomenclature of body components and their positions

or simply,

Mw + d = τ (2)

The corresponding generalized velocities are the translational velocity of the CoM of the entire spacecraft vv , the

angular velocity of the main body vω , and the joint actuation speed vθ , which are all expressed in the body frame:

vv = vc =

[
vc,x vc,y vc,z

]T

∈ R3 vω = ω0 =

[
ω0,x ω0,y ω0,z

]T

∈ R3 vθ = Ûθ =
[
Ûθ1 · · · Ûθm

]T

∈ Rm

(3)

An explicit description of the components in Equation (1) is given in Appendix A. In particular, Mωω and Mωθ are

important in the following discussion because these values provide the relationship between joint actuation and attitude

motion:

Mωω = Ic

Mωθ, j =
(
I ĵ − m ĵr

×
ĵcr

×
ĵh j

)T
λj

(4)

where Mωθ, j indicates the j-th column of Mωθ . With these expressions, total angular momentum hc around the

centroid of the entire spacecraft can be represented as follows:

hc = Mωωvω + Mωθvθ (5)

In the present paper, we focus on attitude motion in which the total angular momentum is always zero. Applying this

assumption to Equation (5) yields the following kinematic relationship:

vω = ω0 = −M−1
ωωMωθvθ = −M−1

ωωMωθ
Ûθ (6)
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Now, we use a rotational matrix (i.e., direction cosine matrix) C to express the attitude of the main body. This is

because the rotational matrix is the most natural expression of the Lie group structure of the three-dimensional rotation,

which helps to analytically solve the differential equation. Substituting Equation (6) into the equation of a rotational

matrix, we obtain

ÛC = −ω×
0 C =

(
M−1

ωωMωθ
Ûθ
)×

C = (g(θ)u)×C (7)

where g(θ) = M−1
ωωMωθ ∈ R3×m, and control input u = Ûθ ∈ Rm. Similar kinematics formulation is found in coordinate-

free motion planning method such as [43]. In the present research, the joint actuation speed Ûθ is regarded as control

input, rather than joint actuation torque. This is because the angular momentum conservation law is expressed in

integral form, and, therefore, the kinematics level equation can appropriately grasp the characteristics of the dynamics

when there is no external force or torque. This equation expresses the relationship between attitude change and hinge

joint actuation and has two important features:

1) Equation (7) is a nonholonomic constraint (or non-integrable differential constraint). Although the system is

underactuated because the attitude (three DoF) + body configuration (m DoF) is controlled by m-dimensional

control input u = Ûθ ∈ Rm, the nonholonomy practically provides extra degrees of freedom in control space and

therefore enables the underactuated system to be controllable (locally, at least).

2) The function g(θ) is independent of attitude C, and therefore, in this equation, we can independently handle

kinematic nonholonomy (induced by the non-integrability of a three-dimensional angular velocity vector) and

momentum nonholonomy (induced by the change in the moment of inertia).

In the next section, Equation (7) is further investigated in order to obtain an approximate analytical attitude solution.

III. Derivation of Approximate Analytical Attitude Solution
The following derivations are based on a previous study [11]. The fundamental equation given by Equation (7) has

a form similar to that of a linear autonomous differential equation Ûx = Ax with respect to C. If matrix A in Ûx = Ax is

constant, then the equation can be solved analytically with x = eAt x0. However, if matrix A is a general time-variant

function, this matrix can be solved by Magnus expansion in the form of an infinite series [44]. We obtain a general

solution of Equation (7) by the Magnus expansion in the following form:

C = exp

( ∞∑
k=1
Ωk(t)

)
C0

where Ω1(t) =
∫ t

0

(
g(t) Ûθ

)×dt

Ω2(t) =
1
2

∫ t

0
dt1

∫ t1

0
dt2

[ (
g(t1) Ûθ

)×
,
(
g(t2) Ûθ

)×]
...

(8)
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where [X,Y ] = XY − Y X is a commutator or a Lie bracket operator, and exp(·) is a matrix exponential. The higher-

order Ωk consists of higher-order Lie brackets. If the components in the Lie bracket are always commutative for any

combination of t, then the Lie bracket term becomes zero. Therefore, the termΩk (k ≥ 2) indicates non-commutativity

of the matrix
(
g(t) Ûθ

)×.

This solution is the most general form but is not suitable for practical use due to integrals in Ωk . In order to derive

a more practical solution, we first assume rectilinear actuation in joint angle space. The rectilinear actuation is a joint

actuation law in which joint motion is expressed as a straight path in joint angle space. The simple rectilinear trajectory

in joint angle space contributes to simple joint actuation input. Each point in the m-dimensional joint angle space

corresponds to one joint angle vector θ ∈ Rm. The joint angle history θ from the initial body configuration θ0 to θ1 is

expressed as follows:

θ(s) = θ0 + s∆θ (0 ≤ s ≤ 1)

∆θ = θ1 − θ0
(9)

Owing to this equation, Ûθdt = dθ
ds ds = ∆θds can replace the time variable t with the arc length parameter s. In addition,

the function g(θ) = g(s) is approximated by a polynomial function with a certain interpolation method, such as Newton

interpolation and Hermite interpolation. In the present study, we use the Newton interpolation because it does not

require derivative terms and hence is computationally inexpensive. As a general form of the Newton interpolation, the

g(s)∆θ can be expressed as follows:

g(s)∆θ = σ0(s)T A0γ0 (10)

where σ0(s) is a vector that contains si−1 in the i-th component, A0 is a constant matrix determined by coefficients of

Newton interpolation, and γ0 consists of values of interpolation points g(sj)∆θ ( j = 0,1, · · · ,n), where n is the order

of the polynomial. In the case of second-order Newton interpolation, for example, these terms are given as follows:

σ0(s) =
[
1 s s2

]T

A0 =



1 −s0 s0s1

0 1 −(s0 + s1)

0 0 1





1 0 0

1 s1 − s0 0

1 s2 − s0 (s2 − s0)(s2 − s1)



−1

γ0 =

[
g0∆θ g1∆θ g2∆θ

]T

(11)

where gj is defined as gj = g(sj) ( j = 0,1,2). The interpolation interval sj can be arbitrarily sampled, and we use

Chebyshev nodes as the most promising solution. The Chebyshev nodes prevent the Runge phenomenon, in which the
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approximation error diverges at the end of the interval. Here, sj is determined by the following equation:

sj = cos
(

2 j + 1
2(n + 1)π

)
( j = 0,1,2, · · · ,n). (12)

Throughout the above operations, all terms in the integrals in Equation (8) can be expressed with polynomials of s,

which can be analytically integrable. Finally, we can obtain the following tensor form solution:

C = exp

( ∞∑
k=1
Ωk(s)

)
C0

where

Ω1(s) = σ1(s)i A1
i
jγ1

j

Ω2(s) = σ2(s)ik A2
ik
jl γ2

jl

...

(13)

This equation uses Einstein’s summation convention, where contraction is carried out between a pair of sub-

scripts/superscripts. The σk is a k-th-order tensor containing s polynomials, and Ak is a k × k-th-order constant

tensor determined by the applied polynomial interpolation method. In addition, γk is a k-th order vectrix containing

functions of g(sj)∆θ ( j = 1,2, · · · ,n), which indicates that the elements in the vectrix are treated as if they were

scalars throughout this contraction. Generally, Ωk is expressed by contraction of the k-th-order tensor σk , γk , and the

k × k-th-order tensor Ak . If g(s)∆θ is interpolated as Equation (11), then the specific expressions of each tensor in Ω1

and Ω2 are as follows:

σ1(s) =
(∫ s

0
σ0(s)ds

)
=

[
s s2/2 s3/3

]T

A1 = A0

γ1 =

[
(g0∆θ)× (g1∆θ)× (g2∆θ)×

]T

(14)
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σ2(s) =
(∫ s

0
σ1(s)σ0(s)Tds

)
=



s2/2 s3/3 s4/4

s3/6 s4/8 s5/10

s4/12 s5/15 s6/18


A2

ik
jl =

1
2

A0
i
j A0

k
l

γ2 =



0 (g0∆θ) ∧ (g1∆θ) (g0∆θ) ∧ (g2∆θ)

(g1∆θ) ∧ (g0∆θ) 0 (g1∆θ) ∧ (g2∆θ)

(g2∆θ) ∧ (g0∆θ) (g2∆θ) ∧ (g1∆θ) 0



(15)

where the wedge product ∧ is defined by x ∧ y = [y×, x×] for x, y ∈ R3. In order to express its final attitude after the

rectilinear actuation, we define a state transition matrix as Cfinal = ΦC0, where Φ can be obtained by substituting s = 1

into the above equation as Φ = exp(Ω(s))|s=1. Throughout the above equations, the edge nodes in joint angle space θ0

and θ1 are given as fixed points. However, the equation Cfinal = ΦC0 no longer depends on s and can be interpreted as

a function of θ0 and θ1 as follows:

C(θ1, θ0) = exp (Ω(θ1, θ0))C0 = Φ(θ1, θ0)C0 (16)

This equation is further investigated in the following section in order to derive the proposed parallelogram actuation.

IV. Parallelogram Actuation
Nonholonomy appears as an accumulation of nonlinear effects along a trajectory in state space. In particular,

this effect is distinctly confirmed by a circumvented path in state space. For example, a vehicle cannot directly move

in the traversal direction, but going back and forth with proper handling can induce displacement in the traversal

direction due to nonholonomy. In the case of a transformable free-flying robot, such a control corresponds to designing

a proper circumvented path in joint angle space that achieves the target final attitude. As one of the most basic

circumvented paths, a parallelogram path is used in the present study. Since a parallelogram path is closed, the body

configuration returns to its initial state after four joint actuation strokes, but the final attitude becomes different due

to the nonholonomic effect. Since the path is composed of two sets of parallel line segments, the free-flying robot

executes two joint actuation patterns alternately, with the latter half reversing sign. We refer to such a maneuver as a

parallelogram actuation. A similar actuation scheme has been used in a previous study by Ohashi et al. [12].

An example of the parallelogram actuation of a five-panel free-flying robot is shown in Fig. 2. In this example,
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the joint actuation pattern A is set to ∆θA = [−90,−90,0,0] (deg) and the joint actuation pattern B is set to ∆θB =

[+45,+45,+90,+90] (deg). Actuating with the pattern +A, +B, -A, and -B is equivalent to drawing a parallelogram

in four-dimensional joint angle space. When the joint is actuated in this pattern, the final morphology returns to its

original state, but we can confirm that the final attitude is different from the initial attitude.

1
+A +B

-A-B

Different 
attitude

Δ𝜃𝜃A = −90,−90, 0, 0
(deg)

Δ𝜃𝜃B = +45, +45, +90, +90

+90, +90, 0, 0−45,− 45,− 90,−90

2
3

4

Fig. 2 Example of a parallelogram actuation

A. Analytical Attitude Solution of Parallelogram Actuation

Since the parallelogram actuation is represented as four consecutive rectilinear paths in joint angle space, the

analytical solution presented in the previous section can be used in a piecewise manner. If the state transition matrix

of the i-th stroke is represented as Φi(θi, θi−1), then the final attitude after a parallelogram actuation can be expressed

as consecutive matrix multiplications of the state transition matrices:

Cfinal = Φ4(θ4, θ3)Φ3(θ3, θ2)Φ2(θ2, θ1)Φ1(θ1, θ0)C0 (17)

where θi ∈ Rm is the joint angle state after the i-th stroke. From the definition of the parallelogram actuation, we can

derive the following relationships for θ0 through θ4:

θ1 = θ0 + ∆θA

θ2 = θ1 + ∆θB = θ0 + ∆θA + ∆θB

θ3 = θ2 − ∆θA = θ0 + ∆θB

θ4 = θ3 − ∆θB = θ0

(18)

The final attitude Cfinal is dependent on a trajectory in joint angle space due to the nonholonomic property. However,

the assumption of rectilinear actuation reduces this problem to the problem of allocating the waypoints θi in joint angle

space. In the next section, we discuss how to modify these waypoints to achieve the target attitude.
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B. Path Modification Method in Joint Space

Equation (17) is a forward solution of obtaining the attitude change given a transformation process of a space robot.

On the other hand, in order to solve the inverse problem of obtaining a joint actuation process for a given target state,

we need to modify the path in the joint angle space so that the final attitude Cfinal approaches the target attitude. In

order to extract information for such path modification, we take a Jacobian of Equation (17) with respect to ∆θA and

∆θB. Note that "Jacobian" here means the multi-dimensional matrix obtained by taking a gradient for each component

in Cfinal. Thus, they constitute a third-order tensor ∂Cfinal
∂∆θ ∈ R3×3×m. A schematic diagram of modifying ∆θA is shown

in the Fig. 3. When modifying ∆θA, waypoints θ1 and θ2 are shifted by the same amount. Similarly, θ2 and θ3 are

shifted by the same amount when modifying ∆θB. Thus, the Jacobian of Equation (17) can be described as follows:

∂Cfinal

∂∆θA
=
∂Cfinal

∂θ1
+
∂Cfinal

∂θ2

= Φ4Φ3

(
∂Φ2

∂θ1
Φ1 + Φ2

∂Φ1

∂θ1

)
C0 + Φ4

(
∂Φ3

∂θ2
Φ2 + Φ3

∂Φ2

∂θ2

)
Φ1C0

∂Cfinal

∂∆θB
=
∂Cfinal

∂θ2
+
∂Cfinal

∂θ3

= Φ4

(
∂Φ3

∂θ2
Φ2 + Φ3

∂Φ2

∂θ2

)
Φ1C0 +

(
∂Φ4

∂θ3
Φ3 + Φ4

∂Φ3

∂θ3

)
Φ2Φ1C0

(19)

Joint angle space
(𝑚𝑚-dimensional)

𝜃𝜃0
d𝜃𝜃1

d𝜃𝜃2

𝜃𝜃4 = 𝜃𝜃0 Δ𝜃𝜃A

−Δ𝜃𝜃A

Δ𝜃𝜃B

−Δ𝜃𝜃B
𝜃𝜃1

𝜃𝜃2

𝜃𝜃3 Modify Δ𝜃𝜃A

𝜃𝜃1 + d𝜃𝜃1

𝜃𝜃2 + d𝜃𝜃2

Fig. 3 Schematic diagram of modifying ∆θA in joint angle space

The Jacobian of the state transition matrix ∂Φ
∂θ in Equation (19) can be calculated as follows by applying a derivative

formula of an exponential matrix: [45]:

∂Φ

∂θ
=
∂ exp (Ω(θ))
∂θ

=

∫ 1

0
eαΩ(θ)

∂Ω(θ)
∂θ

e(1−α)Ω(θ)dα (20)

where ∂Ω(θ)
∂θ denotes ∂Ω(θi ,θi−1)

∂θi
or ∂Ω(θi ,θi−1)

∂θi−1
and is described as follows:

∂Ω(θ)
∂θ

= σ̄1i A1
i
j

∂γ1(θ)j
∂θ

+ σ̄2ik A2
ik
jl

∂γ2(θ)jl
∂θ

+ · · · (21)
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in which σ̄ = σ(s)|s=1 and Einstein’s summation convention is applied for pairs of same indices. The expressions of
∂γk
∂θ depend on its interpolation method. For example, in the case of the Newton interpolation, the j-th components of
∂γ1
∂θi

and ∂γ1
∂θi−1

are expressed as follows:

∂γ1
j

∂θi
=

(
sj
∂gj

∂θ
∆θ + gj

)×
∂γ1

j

∂θi−1
=

(
(1 − sj)

∂gj

∂θ
∆θ − gj

)× (22)

where gj = g
(
sj

)
, and ∂g j

∂θ =
∂g
∂θ

(
sj

)
( j = 0,1, · · · ,n). The detailed expression of ∂g

∂θ is provided in Appendix B.

Throughout these mathematical operations, all the components in Equation (19) can be explicitly computed.

Equation (19) expresses the difference of Cfinal when ∆θA and ∆θB are varied. Therefore, a path in joint angle space

can be modified by leveraging this equation. We use the Newton-Raphson method to modify the parallelogram path in

the present study. First, ∂Cfinal
∂∆θ is converted to ∂efinal

∂∆θ , where efinal is the corresponding final Euler angle. This is because
∂Cfinal
∂∆θ exhibits singularity due to its constraints of orthonormality. The conversion equation is

∂efinal

∂∆θ
= E(efinal)

(
−∂Cfinal

∂∆θ
CT

final

)∨
(23)

where E(efinal) is a matrix that converts angular velocity ω to Euler angle velocity Ûe. Finally, the path in joint angle

space can be modified by the Newton-Raphson method using Equation (23) as follows:

∆θ(k+1) = ∆θ(k) + αk

(
∂efinal

∂∆θ

)† (
e∗ − e(k)final

)
(24)

where (·)† is the pseudo-inverse, (·)(k) denotes the value in the k-th iteration, and e∗ is the target Euler angle. In

addition, αk is a modification coefficient in the k-th iteration determined so that the modification value in one iteration

step is kept sufficiently small. In the present study, we set αk as

αk =


1/β (if β > 1)

1 (if 0 ≤ β ≤ 1)
(25)

where β =
����( ∂efinal

∂∆θ

)† (
e∗ − e(k)final

)����. Here, ∆θA and ∆θB are repeatedly modified using Equation (24) until the final

attitude efinal approaches the target attitude e∗ within a certain tolerance.

The kinematic relationship (24) involves pseudo-inverse operation of the Jacobian. This operation can cause

singularity when rank of the Jacobian is degenerated. Similar singularity problem is one of the main issues of robotic

manipulators and a lot of studies are focused on it [46, 47]. When the path modification law encounters a singularity,

14



such singularity avoidance method developed for robotic manipulators can also be applied to this path modification

law. This singularity problem is in the scope of our future studies.

V. Numerical Simulation

A. Model Definitions

Using the path modification method described in the previous section, we specifically design a parallelogram

actuation to achieve an arbitrary target attitude. As mentioned in Section I, the proposed method is especially useful for

robots with many degrees of freedom of joints. Here we use the 8-DoF free-flying robot shown in Fig. 4 a). This figure

shows the fully deployed body configuration, in which all joint angles are set to zero. The local coordinates fixed on

each body are defined such that they correspond to the x-y-z coordinates in this fully deployed body configuration. The

mass and dimensions of each body are according to Table 1. All bodies are defined as cuboids and the corresponding

side lengths are Lx , Ly , and Lz . The definitions of pk , pk , and λk in Table 1 are shown in Fig. 4b). The subscript

k indicates the inside neighbor of the k-th body. The values of pk in Table 1 is expressed in the local body-fixed

coordinates of the k-th body, and pk and λk are expressed in the local body-fixed coordinates of the k-th body. The

angle limit of each joint is −π/2 ≤ θk ≤ π/2. The maximum joint speed is set to be 10 deg/s, and the joint actuation

speed in each stroke is normalized such that the fastest joint is actuated at 10 deg/s.

4

5

6

7

8

Hinge joints𝑥𝑥

𝑦𝑦

𝑧𝑧

𝜆𝜆𝑘𝑘𝑝𝑝𝑘𝑘
𝑝𝑝𝑘𝑘

𝑅𝑅𝑘𝑘
𝑅𝑅h𝑘𝑘 𝑅𝑅𝑘𝑘

Reference 
framea) b)

0

2

1 3

Fig. 4 Model definitions: a) Body connection map of the 9-panel free-flying robot, b) Illustration of pk , pk , and
λk

B. Initial Guess Search

In order to start the Newton-Raphson iteration described in Section IV.B, a proper initial guess of parallelogram

actuation must be provided, although it is generally a difficult task. In the present study, we construct a motion primitive

database beforehand, and one promising maneuver is selected from the database as an initial guess. We constructed the

database of the parallelogram actuations such that only one joint is actuated in each stroke of parallelogram actuations.

Joint actuation angles of the database are sampled with 15-degree interval between maximum and minimum joint angle

limits: [−90,−75,−60,−45,−30,−15,15,30,45,60,75,90] [deg]. Provided the total number of actuatable joints is m

and the number of joint actuation pattern is na, the total number of datasets adds up to mC2 × n2
a × 2, which becomes
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Table 1 Mass and dimension properties of the 9-panel free-flying robot

Body # Mass [kg] Lx × Ly × Lz [mm] pk [mm] pk [mm] λk

0 10.0 1000 × 1000 × 100 - - -
1 10.0 1000 × 1000 × 100 [550, 0, 0] [550, 0, 0] [0, 1, 0]
2 10.0 1000 × 1000 × 100 [0, 550, 0] [0, 550, 0] [1, 0, 0]
3 10.0 1000 × 1000 × 100 [550, 0, 0] [550, 0, 0] [0, 1, 0]
4 10.0 1000 × 1000 × 100 [0, -550, 0] [0, -550, 0] [1, 0, 0]
5 10.0 1000 × 1000 × 100 [-550, 0, 0] [-550, 0, 0] [0, 1, 0]
6 10.0 1000 × 1000 × 100 [0, 550, 0] [0, 550, 0] [1, 0, 0]
7 10.0 1000 × 1000 × 100 [-550, 0, 0] [-550, 0, 0] [0, 1, 0]
8 10.0 1000 × 1000 × 100 [0, -550, 0] [0, -550, 0] [1, 0, 0]

very large for robots with a large number of joints. However, these attitude calculations are not difficult because the

entire spacecraft can be divided into only two rigid bodies when only one joint is actuated while the other joints are

rigidly fixed. Therefore, we can construct the motion primitive database with less computational effort.

Figure 5 shows one example of the motion primitive database for the fully deployed body configuration. (Note that

the database distribution is dependent on the initial body configuration, and therefore the database must be reconstructed

for different body configurations.) The attitude change of each parallelogram actuation is expressed by a dot in the

y-x-z Euler angle space supposing initial attitude is [e1, e2, e3] = [0,0,0] (the rotation angles around each axis are e1,

e2, and e3, respectively, in this order). In addition, each point is colored by its rotational efficiency, which is defined as

follows: (total rotational angle of attitude)/(total joint actuation angle). This model has 8 joints in total, and therefore

the total number of points is 8C2 × 122 × 2 = 8,064. From this database, the point that is the closest to the target

attitude in Euler angle space is selected as a promising initial guess.

In the proposed path modification law, constraints on joint angles are not included, and therefore the resulting path

in joint angle space could violate θmax and θmin limits. In particular, actuated joints in the chosen initial guess are the

most likely to violate the constraints because they are already set to be θmax or θmin at the start of the iteration. For this

reason, we omitted the corresponding columns of ∂efinal
∂∆θ and rows of ∆θ(k) in Equation (24) in order that angles of these

joints were not updated.

C. Simulation Conditions and Result

We carried out a numerical simulation to validate the proposed path modification method to achieve target attitude

with parallelogram actuation. The initial body configuration is set to be the fully deployed state (in which all joint

angles are zero), as shown in the Fig. 4 a), and the corresponding motion primitive database is as shown in Fig. 5. The

initial and target attitudes were set to y-x-z Euler angles of [0,0,0] deg and [7.5,−7.5,7.5] deg, respectively. Under

these conditions, the chosen initial guess is the case of [∆θA8,∆θB
5] = [90,−90] deg. Throughout path modification,
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Fig. 5 Motion primitive database in y-x-z Euler angle space and its rotational efficiency (three-view display)

∆θA
8 and ∆θB5 are not updated, as explained at the end of the previous section. The infinite series of Ω in Equation

(13) is truncated at k = 2, and the number of interpolation points in Chebyshev nodes is set to be eight by trading off

computational cost and approximation accuracy. Newton-Raphson iteration is finished when the norm of the Euler

angle difference with respect to the target Euler angle is less than 10−3 radians.

Figure 6 shows the iteration process in Euler angle space. In this example, the solver exits the iterations after three

loops. The figure shows that the final attitude of the parallelogram actuation gradually approaches the target point as

the iteration proceeds. Table 2 shows the values of ∆θA and ∆θB. Figure 7 is an illustration of the body reconfiguration

procedure. This figure clearly shows that the spacecraft successfully achieves the target attitude after the designed

parallelogram actuation and that its body configuration returned to the original state in the end. The Euler angle of the

final attitude of the designed parallelogram actuation was [7.509,−7.507,7.503] [deg].

This numerical simulation validated that the proposed path modification method can effectively design the paral-

lelogram actuation to achieve the target attitude. This maneuver guarantees that the space robot maintains the initial

body configuration after one set of maneuvers. Therefore, the robot can independently achieve the target attitude while

maintaining its initial body configuration.

Table 2 Components in ∆θA and ∆θB [deg]

Joint 1–12 Joint 13–24
i ∆θA

i ∆θB
i i ∆θA

i ∆θB
i

1 -6.60 81.04 5 0.00 -90.00
2 -12.31 -21.87 6 0.32 18.96
3 0.07 17.72 7 2.07 10.11
4 -19.39 -2.18 8 90.00 0.00
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Fig. 6 Path modification process in Euler angle space (three-view display)

Target
Attitude

X
Y
Z

Current
Attitude

X
Y
Z

Fig. 7 Illustration of body reconfiguration procedure in the designed parallelogram actuation

VI. Discussions

A. Main Findings

The present research constructed a general analytical solution and approximate analytical solution for the rectilinear

actuation, which is not usually adopted in the context of space manipulators. This solution is described in a widely

applicable form and hence is a promising analytical tool for control of various space robots. In addition, the analytical

solution can fully use large degrees of freedom of joints with much less computational effort than brute-force numerical

search, such as Ohashi’s motion primitive method [12]. Although the proposed method is also required to construct a

database for the initial guess, it is computationally inexpensive if only one joint is actuated in each stroke.

In particular, the ∂Cfinal
∂θk

in Equation (19) can be an important indicator. This is because the ∂Cfinal
∂θk

provides

information about the sensitivity of the final attitude with respect to the difference of the intermediate point θk in joint

angle space. In other words, the ∂Cfinal
∂θk

can provide how the path should be circumvented in joint angle space, which

is strongly related to the essence of nonholonomic motion planning. Therefore, this analytical formulation is also

expected to be a powerful tool for other motion planning methods using free-flying robots.
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B. Limitations

We formulated the equations for the kinematics level in the present study. This formulation is suitable to capture the

characteristics of a nonholonomic system because nonholonomy is characterized by a dynamic constraint on velocity,

rather than on acceleration. However, it does not directly provide a torque-based control law, and thus the designed

path in joint angle space cannot be exactly traced in most cases. In addition, the control law in the proposed method is

provided in feedforward form and does not compensate for the deviation from the designed trajectory. Further studies

should provide control laws that can provide torque-based input and also compensate for control errors.

The proposed method cannot generate a path that satisfies joint angle constraints. In the proposed method, the

constraint violation is avoided by not updating ∆θ for joints close to their angle limits. However, other types of

constraints, such as self-collision avoidance, are difficult to handle using the proposed method. One promising solution

to overcome this problem is a numerical optimization, such as interior point methods, which can systematically handle

various types of constraints [48]. For the initial guess of such an optimization method, the trajectory generated by the

proposed method can be applicable.

The last important limitation of the proposed method is the difficulty of preparing the initial guesses. The

successful convergence of the Newton-Raphson method depends on the quality of the initial guesses. Although the

database construction can be completed relatively quickly, not all combinations can be explored for large-degree-of-

freedom joints, which limits the possibility of providing a good initial guess. One possible solution is to develop a

learning-based motion planner to provide an initial guesses. Some research focused on reinforcement learning in order

to generate a nonholonomic reorientation procedure with a free-flying space robot [49, 50]. The problem of the learning

based method is a huge learning time for large degrees of freedom, and therefore we can expect a low-resolution path

by restricting the search space to explore.

VII. Conclusion
In the present paper, we developed parallelogram actuation, which achieves the target attitude with an analytical

solution for the rectilinear actuation. The final part demonstrated a desired attitude reorientation using the developed

parallelogram actuation. The proposed attitude reorientation does not consume any propellant and does not accumulate

the momentum of wheels, which contributes to the longer life-span of the robot. The developed analytical solution

is a widely applicable and powerful tool for motion planning for free-flying space robots. In particular, the proposed

method can fully make use of the reorientation ability of robots with large degrees of freedom of joints without causing

numerical difficulties. Such robots with large degrees of freedom of joints are promising future space robots that can be

adaptive, dexterous, and economical, and the present study contributes to greatly enhancing the ability of such future

space robots.
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Appendix A: Components in a Generalized Equation of Motion
The explicit expressions in Equation (1) are provided as follows. These equations can be derived through Kane’s

method [6].

Mvv = mU

Mωω = Ic

Mωθ, j =
(
I ĵ − m ĵr

×
ĵcr

×
ĵh j

)T
λj

Mθω,i = λ
T
i

(
Iî − mîr

×
îcr

×
îhi

)
Mθθ,i j = M∗

θθ,i j +
mîm ĵ

m
λT
i

(
r×
îhi

r×
ĵh j

)T
λj

M∗
θθ,i j =



λT
i

(
I ĵ − m ĵr

×
ĵhi

r×
ĵh j

)T
λj ( j ∈ î)

λT
i

(
Iî + mîr

×
îhi

r×
îh j

)T
λj (i ∈ ĵ)

0 (i < ĵ ∩ j < î)

Mvω = Mvθ = Mωv = Mθv = O (Zero matrix)

(26)

dv = mω×
0
ÛRc

dω =
∑
k

{
(Rk − Rc)× f ‡

k
+ n‡

k

}
dθ,i = λT

i


∑
k∈î

{(
Rk − Rhi

)× f ‡
k
+ n‡

k

}
− mîr

×
îhi
ω×

0
ÛRc


(27)

τv = fc

τω =
∑
k

{
(Rk − Rc)× fk + nk

}
τθ,i = λ

T
i


∑
k∈î

{(
Rk − Rhi

)× fk + nk
}
−

∑
k

mî

m

(
r×
îhi

fk
) + nθi

(28)

where Mωθ, j is the j-th column of Mωθ , Mθω,i is the i-th row of Mθω , dθ,i is the i-th component of dθ , and τθ,i is the

i-th component of τθ .

Appendix B: Analytical Expression of ∂g∂θ
For the sake of brevity, in this section, Mωω is replaced by M and Mωθ is replaced by N . From Equation (7), g(θ)

is expressed as follows:

g(θ) = M−1N (29)
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In this equation, M and N depend only on the body configuration θ ∈ Rm, and therefore ∂g
∂θ ∈ R3×m×m is obtained as

follows:

∂gij

∂θk
=
∂M−1N

∂θ
= −M−1i

p

∂Mp
n

∂θk
M−1n

r Nr
j + M−1i

p

∂Np
j

∂θk
(30)

where X i
j is the (i, j) component of matrix X , and the subscript/superscript expresses contraction with respect to

the dimension (Einstein’s summation convention). Moreover, all three-dimensional matrices, ∂M
∂θ and ∂N

∂θ , can be

described explicitly as follows:

∂M

∂θk
=

∑
l<k̂

mlmk̂

m

{
r×lc,

(
λ×k rk̂hk

)×}
+

[
λ×k , Ik̂

]
− mk̂

©«1 −
mk̂

m

ª®®¬
{
r×
k̂c,

(
λ×k rk̂hk

)×} (31)

∂Nj

∂θk



= λ×
k

I ĵλj − m ĵr
×
ĵc
λ×
k

r×
ĵh j
λj

−m ĵ

©«λ×k r ĵhk −
mk̂

m
λ×
k

rk̂hk

ª®®¬
×

r×
ĵh j
λj

(
j ∈ k̂

)
= −∑

p∈ ĵ
p<k̂

mk̂mp

m ĵ

{
r×
ĵ p
,
(
λ×
k

rk̂hk

)×}
λj

−mk̂

©«
mk̂

m ĵ

− 1
ª®®¬
{
r×
ĵ k̂
,
(
λ×
k

rk̂hk

)×}
λj

−m ĵ

©«
mk̂

m ĵ

−
mk̂

m

ª®®¬
(
λ×
k

rk̂hk

)×
r×
ĵh j
λj

+
[
λ×
k
, Ik̂

]
λj − mk̂r×

ĵc

(
λ×
k

rk̂hk

)×
λj

(
k ∈ ĵ

)
=

m ĵmk̂

m

(
λ×
k

rk̂hk

)×
r×
ĵh j
λj

(
j < k̂ ∩ k < ĵ

)

(32)

where [X,Y ] = XY − Y X is a commutator, and {X,Y } = XY + Y X is an anticommutator. Here, Nj is the j-th column

of matrix N ∈ R3×m and represents the generalized moment of inertia of the j-th outer group. Note that there are three

branches depending on the geometrical relationship between the j-th body and the k-th body when calculating dN j

dθ .
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